1
|
Lingg RT, Johnson SB, Hinz DC, Skog TD, Lizarazu M, Romig-Martin SA, LaLumiere RT, Narayanan NS, Radley JJ. Prefrontal projections to the bed nuclei of the stria terminalis modulate the specificity of aversive memories. RESEARCH SQUARE 2024:rs.3.rs-4241372. [PMID: 39569181 PMCID: PMC11577250 DOI: 10.21203/rs.3.rs-4241372/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Generalizing aversive memories helps organisms avoid danger, whereas discriminating between dissimilar situations promotes opportunistic behaviors. We identified a novel pathway that controls the contextual specificity of memory consolidation of inhibitory avoidance learning. Optogenetic inhibition of the rostral medial prefrontal cortex (mPFC)-to-anteroventral bed nuclei of the stria terminalis (avBST) pathway after a single footshock exacerbated stress hormonal output, and 2 d later promoted generalization to a novel context. Rostral mPFC-avBST influences were directly mnemonic rather than associated with stress hormone increases, as adrenalectomy did not prevent such influences on generalization. We next observed that fear discrimination between novel and aversive contexts engaged activity along the rostral mPFC and avBST pathway. Finally, post-footshock optogenetic pathway excitation enhanced 2-d discrimination. These findings highlight a prefrontal pathway in which activity immediately after aversive experiences promotes mnemonic discrimination between threatening and non-threatening contexts and may be importance for understanding trauma generalization in psychiatric illnesses.
Collapse
Affiliation(s)
- Ryan T. Lingg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Shane B. Johnson
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
| | - Dalton C. Hinz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Timothy D. Skog
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
| | - Manuela Lizarazu
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Sara A. Romig-Martin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Ryan T. LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Nandakumar S. Narayanan
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Jason J. Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
Aucoin A, Lin KK, Gothard KM. Detection of latent brain states from baseline neural activity in the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598974. [PMID: 38915563 PMCID: PMC11195171 DOI: 10.1101/2024.06.14.598974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The amygdala responds to a large variety of socially and emotionally salient environmental and interoceptive stimuli. The context in which these stimuli occur determines their social and emotional significance. In canonical neurophysiological studies, the fast-paced succession of stimuli and events induce phasic changes in neural activity. During inter-trial intervals neural activity is expected to return to a stable and relatively featureless baseline. Context, such as the presence of a social partner, or the similarity of trials in a blocked design, induces brain states that can transcend the fast-paced succession of stimuli and can be recovered from the baseline firing rate of neurons. Indeed, the baseline firing rates of neurons in the amygdala change between blocks of trials of gentle grooming touch, delivered by a trusted social partner, and non-social airflow stimuli, delivered by a computer-controlled air valve. In this experimental paradigm, the presence of the groomer alone was sufficient to induce small but significant changes in baseline firing rates. Here, we examine local field potentials (LFP) recorded during these baseline periods to determine whether context was encoded by network dynamics that emerge in the local field potentials from the activity of large ensembles of neurons. We found that machine learning techniques can reliably decode social vs. non-social context from spectrograms of baseline local field potentials. Notably, decoding accuracy improved significantly with access to broad-band information. No significant differences were detected between the nuclei of the amygdala that receive direct or indirect inputs from areas of the prefrontal cortex known to coordinate flexible, context-dependent behaviors. The lack of nuclear specificity suggests that context-related synaptic inputs arise from a shared source, possibly interoceptive inputs that signal the sympathetic- vs. parasympathetic-dominated states characterizing non-social and social blocks, respectively.
Collapse
Affiliation(s)
- Alexa Aucoin
- Program in Applied Mathematics, University of Arizona
| | - Kevin K Lin
- Program in Applied Mathematics, University of Arizona
- Department of Mathematics, University of Arizona
| | | |
Collapse
|
3
|
Levitas DJ, James TW. Dynamic threat-reward neural processing under semi-naturalistic ecologically relevant scenarios. Hum Brain Mapp 2024; 45:e26648. [PMID: 38445552 PMCID: PMC10915741 DOI: 10.1002/hbm.26648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Studies of affective neuroscience have typically employed highly controlled, static experimental paradigms to investigate the neural underpinnings of threat and reward processing in the brain. Yet our knowledge of affective processing in more naturalistic settings remains limited. Specifically, affective studies generally examine threat and reward features separately and under brief time periods, despite the fact that in nature organisms are often exposed to the simultaneous presence of threat and reward features for extended periods. To study the neural mechanisms of threat and reward processing under distinct temporal profiles, we created a modified version of the PACMAN game that included these environmental features. We also conducted two automated meta-analyses to compare the findings from our semi-naturalistic paradigm to those from more constrained experiments. Overall, our results revealed a distributed system of regions sensitive to threat imminence and a less distributed system related to reward imminence, both of which exhibited overlap yet neither of which involved the amygdala. Additionally, these systems broadly overlapped with corresponding meta-analyses, with the notable absence of the amygdala in our findings. Together, these findings suggest a shared system for salience processing that reveals a heightened sensitivity toward environmental threats compared to rewards when both are simultaneously present in an environment. The broad correspondence of our findings to meta-analyses, consisting of more tightly controlled paradigms, illustrates how semi-naturalistic studies can corroborate previous findings in the literature while also potentially uncovering novel mechanisms resulting from the nuances and contexts that manifest in such dynamic environments.
Collapse
Affiliation(s)
- Daniel J. Levitas
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| | - Thomas W. James
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| |
Collapse
|
4
|
Murty DVPS, Song S, Surampudi SG, Pessoa L. Threat and Reward Imminence Processing in the Human Brain. J Neurosci 2023; 43:2973-2987. [PMID: 36927571 PMCID: PMC10124955 DOI: 10.1523/jneurosci.1778-22.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
In the human brain, aversive and appetitive processing have been studied with controlled stimuli in rather static settings. In addition, the extent to which aversive-related and appetitive-related processing engage distinct or overlapping circuits remains poorly understood. Here, we sought to investigate the dynamics of aversive and appetitive processing while male and female participants engaged in comparable trials involving threat avoidance or reward seeking. A central goal was to characterize the temporal evolution of responses during periods of threat or reward imminence. For example, in the aversive domain, we predicted that the bed nucleus of the stria terminalis (BST), but not the amygdala, would exhibit anticipatory responses given the role of the former in anxious apprehension. We also predicted that the periaqueductal gray (PAG) would exhibit threat-proximity responses based on its involvement in proximal-threat processes, and that the ventral striatum would exhibit threat-imminence responses given its role in threat escape in rodents. Overall, we uncovered imminence-related temporally increasing ("ramping") responses in multiple brain regions, including the BST, PAG, and ventral striatum, subcortically, and dorsal anterior insula and anterior midcingulate, cortically. Whereas the ventral striatum generated anticipatory responses in the proximity of reward as expected, it also exhibited threat-related imminence responses. In fact, across multiple brain regions, we observed a main effect of arousal. In other words, we uncovered extensive temporally evolving, imminence-related processing in both the aversive and appetitive domain, suggesting that distributed brain circuits are dynamically engaged during the processing of biologically relevant information regardless of valence, findings further supported by network analysis.SIGNIFICANCE STATEMENT In the human brain, aversive and appetitive processing have been studied with controlled stimuli in rather static settings. Here, we sought to investigate the dynamics of aversive/appetitive processing while participants engaged in trials involving threat avoidance or reward seeking. A central goal was to characterize the temporal evolution of responses during periods of threat or reward imminence. We uncovered imminence-related temporally increasing ("ramping") responses in multiple brain regions, including the bed nucleus of the stria terminalis, periaqueductal gray, and ventral striatum, subcortically, and dorsal anterior insula and anterior midcingulate, cortically. Overall, we uncovered extensive temporally evolving, imminence-related processing in both the aversive and appetitive domain, suggesting that distributed brain circuits are dynamically engaged during the processing of biologically relevant information regardless of valence.
Collapse
Affiliation(s)
| | - Songtao Song
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | | | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
5
|
Yin J, Zhou D, Ai D, Sun H, Duan J, Sun Z, Guo X. Event-related potential and behavioural evidence of goal-based expectations for consistent actions among group members. Br J Psychol 2023. [PMID: 36880423 DOI: 10.1111/bjop.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
PLACEHOLDER TEXT ABSTRACT: People expect group members to act consistently. However, because actions are organized hierarchically, incorporating deep-level goals and shallow-level movements, it remains unclear what level of action is expected to be consistent among group members. We determined that these two levels of action representations can be dissociated in object-directed actions and measured the late positive potential (LPP), which indicates expectation. We found that participants identified a new agent's actions more quickly when this agent pursued a consistent goal while moving in a manner inconsistent with group members than when this agent pursued an inconsistent goal while moving in the same manner as group members. Moreover, this facilitation effect disappeared when the new agent was from a different group, revealing goal-based expectations for consistent actions among group members. The LPP amplitude during the action-expectation phase was greater for agents from the same group than for agents from a different group, suggesting that people implicitly generate clearer action expectations for group members than for other individuals. Additionally, the behavioural facilitation effect was observed when the goal of actions was clearly identifiable (i.e. performing rational actions to reach an external target) rather than when there was no clear association between actions and external targets (i.e. performing irrational actions). The LPP amplitude during the action-expectation phase was greater after observing rational actions than after observing irrational actions performed by two agents from the same group, and the expectation-related increase in LPP predicted the behavioural measurements of the facilitation effect. Hence, the behavioural and event-related potential evidence suggest that people implicitly expect group members to behave consistently according to goals rather than movements per se.
Collapse
Affiliation(s)
- Jun Yin
- Department of Psychology, Ningbo University, Ningbo, China.,Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo, China
| | - Dan Zhou
- Department of Psychology, Ningbo University, Ningbo, China.,Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo, China
| | - Danfeng Ai
- Department of Psychology, Ningbo University, Ningbo, China.,Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo, China
| | - Hongli Sun
- Department of Psychology, Ningbo University, Ningbo, China.,Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo, China
| | - Jipeng Duan
- Department of Psychology, Ningbo University, Ningbo, China.,Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo, China
| | - Zhongqiang Sun
- Department of Psychology, Ningbo University, Ningbo, China.,Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo, China
| | - Xiuyan Guo
- Fudan Institute on Ageing, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Murty DVPS, Song S, Surampudi SG, Pessoa L. Threat and reward imminence processing in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524987. [PMID: 36711746 PMCID: PMC9882302 DOI: 10.1101/2023.01.20.524987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the human brain, aversive and appetitive processing have been studied with controlled stimuli in rather static settings. In addition, the extent to which aversive- and appetitive-related processing engage distinct or overlapping circuits remains poorly understood. Here, we sought to investigate the dynamics of aversive and appetitive processing while male and female participants engaged in comparable trials involving threat-avoidance or reward-seeking. A central goal was to characterize the temporal evolution of responses during periods of threat or reward imminence . For example, in the aversive domain, we predicted that the bed nucleus of the stria terminalis (BST), but not the amygdala, would exhibit anticipatory responses given the role of the former in anxious apprehension. We also predicted that the periaqueductal gray (PAG) would exhibit threat-proximity responses based on its involvement in proximal-threat processes, and that the ventral striatum would exhibit threat-imminence responses given its role in threat escape in rodents. Overall, we uncovered imminence-related temporally increasing ("ramping") responses in multiple brain regions, including the BST, PAG, and ventral striatum, subcortically, and dorsal anterior insula and anterior midcingulate, cortically. Whereas the ventral striatum generated anticipatory responses in the proximity of reward as expected, it also exhibited threat-related imminence responses. In fact, across multiple brain regions, we observed a main effect of arousal. In other words, we uncovered extensive temporally-evolving, imminence-related processing in both the aversive and appetitive domain, suggesting that distributed brain circuits are dynamically engaged during the processing of biologically relevant information irrespective of valence, findings further supported by network analysis. Significance Statement In the human brain, aversive and appetitive processing have been studied with controlled stimuli in rather static settings. Here, we sought to investigate the dynamics of aversive/appetitive processing while participants engaged in trials involving threat-avoidance or reward-seeking. A central goal was to characterize the temporal evolution of responses during periods of threat or reward imminence . We uncovered imminence-related temporally increasing ("ramping") responses in multiple brain regions, including the bed nucleus of the stria terminalis, periaqueductal gray, and ventral striatum, subcortically, and dorsal anterior insula and anterior midcingulate, cortically. Overall, we uncovered extensive temporally-evolving, imminence-related processing in both the aversive and appetitive domain, suggesting that distributed brain circuits are dynamically engaged during the processing of biologically relevant information irrespective of valence.
Collapse
|
7
|
Rosen JB, Schulkin J. Hyperexcitability: From Normal Fear to Pathological Anxiety and Trauma. Front Syst Neurosci 2022; 16:727054. [PMID: 35993088 PMCID: PMC9387392 DOI: 10.3389/fnsys.2022.727054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperexcitability in fear circuits is suggested to be important for development of pathological anxiety and trauma from adaptive mechanisms of fear. Hyperexcitability is proposed to be due to acquired sensitization in fear circuits that progressively becomes more severe over time causing changing symptoms in early and late pathology. We use the metaphor and mechanisms of kindling to examine gains and losses in function of one excitatory and one inhibitory neuropeptide, corticotrophin releasing factor and somatostatin, respectively, to explore this sensitization hypothesis. We suggest amygdala kindling induced hyperexcitability, hyper-inhibition and loss of inhibition provide clues to mechanisms for hyperexcitability and progressive changes in function initiated by stress and trauma.
Collapse
Affiliation(s)
- Jeffrey B. Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- *Correspondence: Jeffrey B. Rosen,
| | - Jay Schulkin
- School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Herzallah MM, Amir A, Paré D. Influence of Rat Central Thalamic Neurons on Foraging Behavior in a Hazardous Environment. J Neurosci 2022; 42:6053-6068. [PMID: 35772968 PMCID: PMC9351640 DOI: 10.1523/jneurosci.0461-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 02/05/2023] Open
Abstract
Foraging entails a complex balance between approach and avoidance alongside sensorimotor and homeostatic processes under the control of multiple cortical and subcortical areas. Recently, it has become clear that several thalamic nuclei located near the midline regulate motivated behaviors. However, one midline thalamic nucleus that projects to key nodes in the foraging network, the central medial thalamic nucleus (CMT), has received little attention so far. Therefore, the present study examined CMT contributions to foraging behavior using inactivation and unit recording techniques in male rats. Inactivation of CMT or the basolateral amygdala (BLA) with muscimol abolished the normally cautious behavior of rats in the foraging task. Moreover, CMT neurons showed large but heterogeneous activity changes during the foraging task, with many neurons decreasing or increasing their discharge rates, with a modest bias for the latter. A generalized linear model revealed that the nature (inhibitory vs excitatory) and relative magnitude of the activity modulations seen in CMT neurons differed markedly from those of principal BLA cells but were very similar to those of fast-spiking BLA interneurons. Together, these findings suggest that CMT is an important regulator of foraging behavior. In the Discussion, we consider how CMT is integrated into the network of structures that regulate foraging.SIGNIFICANCE STATEMENT Foraging entails a complex balance between approach and avoidance alongside sensorimotor and homeostatic processes under the control of multiple cortical and subcortical areas. Although the central medial thalamic nucleus (CMT) is connected to many nodes in this network, its role in the regulation of foraging behavior has not been investigated so far. Here, we examined CMT contributions to foraging behavior using inactivation and unit recording techniques. We found that CMT inactivation abolishes the normally cautious foraging behavior of rats and that CMT neurons show large but heterogeneous changes in firing rates during the foraging task. Together, these results suggest that CMT is an important regulator of foraging behavior.
Collapse
Affiliation(s)
- Mohammad M Herzallah
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
- Palestinian Neuroscience Initiative, Al-Quds University, Jerusalem, Palestine 20002
| | - Alon Amir
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102,
| |
Collapse
|
9
|
Liu J, Totty MS, Melissari L, Bayer H, Maren S. Convergent Coding of Recent and Remote Fear Memory in the Basolateral Amygdala. Biol Psychiatry 2022; 91:832-840. [PMID: 35246314 PMCID: PMC9018498 DOI: 10.1016/j.biopsych.2021.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND In both rodents and humans, the basolateral amygdala (BLA) is essential for encoding and retrieving conditioned fear memories. Although the BLA is a putative storage site for these memories, recent evidence suggests that they become independent of the BLA with the passage of time. METHODS We systematically examined the role for the BLA in the retrieval of recent (1 day) and remote (2 weeks) fear memory using optogenetic, electrophysiological, and calcium imaging methods in male and female Long-Evans rats. Critically, we used a behavioral design that permits within-subjects comparison of recent and remote memory at the same time point; freezing behavior served as the index of learned fear. RESULTS We found that BLA c-Fos expression was similar after the retrieval of recent or remote fear memories. Extracellular single-unit recordings in awake, behaving animals revealed that single BLA neurons exhibit robust increases in spike firing to both recent and remote conditioned stimuli. Fiber photometry recordings revealed that these patterns of activity emerge from principal neurons. Consistent with these results, optogenetic inhibition of BLA principal neurons impaired conditioned freezing to both recent and remote conditioned stimuli. There were no sex differences in any of the measures or manipulations. CONCLUSIONS These data reveal that BLA neurons encode both recent and remote fear memories, suggesting substantial overlap in the allocation of temporally distinct events. This may underlie the broad generalization of fear memories across both space and time. Ultimately, these results provide evidence that the BLA is a long-term storage site for emotional memories.
Collapse
Affiliation(s)
| | | | | | | | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas.
| |
Collapse
|
10
|
Kong MS, Kim EJ, Park S, Zweifel LS, Huh Y, Cho J, Kim JJ. 'Fearful-place' coding in the amygdala-hippocampal network. eLife 2021; 10:e72040. [PMID: 34533133 PMCID: PMC8500711 DOI: 10.7554/elife.72040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
Animals seeking survival needs must be able to assess different locations of threats in their habitat. However, the neural integration of spatial and risk information essential for guiding goal-directed behavior remains poorly understood. Thus, we investigated simultaneous activities of fear-responsive basal amygdala (BA) and place-responsive dorsal hippocampus (dHPC) neurons as rats left the safe nest to search for food in an exposed space and encountered a simulated 'predator.' In this realistic situation, BA cells increased their firing rates and dHPC place cells decreased their spatial stability near the threat. Importantly, only those dHPC cells synchronized with the predator-responsive BA cells remapped significantly as a function of escalating risk location. Moreover, optogenetic stimulation of BA neurons was sufficient to cause spatial avoidance behavior and disrupt place fields. These results suggest a dynamic interaction of BA's fear signalling cells and dHPC's spatial coding cells as animals traverse safe-danger areas of their environment.
Collapse
Affiliation(s)
- Mi-Seon Kong
- Department of Psychology, University of WashingtonSeattleUnited States
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
| | - Eun Joo Kim
- Department of Psychology, University of WashingtonSeattleUnited States
| | - Sanggeon Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong UniversityIncheonRepublic of Korea
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Yeowool Huh
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong UniversityIncheonRepublic of Korea
- Department of Medical Science, College of Medicine, Catholic Kwandong UniversityGangneungRepublic of Korea
| | - Jeiwon Cho
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
| | - Jeansok J Kim
- Department of Psychology, University of WashingtonSeattleUnited States
| |
Collapse
|
11
|
Lee J, An B, Choi S. Longitudinal recordings of single units in the basal amygdala during fear conditioning and extinction. Sci Rep 2021; 11:11177. [PMID: 34045527 PMCID: PMC8159982 DOI: 10.1038/s41598-021-90530-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
The balance between activities of fear neurons and extinction neurons in the basolateral nucleus of the basal amygdala (BAL) has been hypothesized to encode fear states after extinction. However, it remains unclear whether these neurons are solely responsible for encoding fear states. In this study, we stably recorded single-unit activities in the BAL during fear conditioning and extinction for 3 days, providing a comprehensive view on how different BAL neurons respond during fear learning. We found BAL neurons that showed excitatory responses to the conditioned stimulus (CS) after fear conditioning ('conditioning-potentiated neurons') and another population that showed excitatory responses to the CS after extinction ('extinction-potentiated neurons'). Interestingly, we also found BAL neurons that developed inhibitory responses to the CS after fear conditioning ('conditioning-inhibited neurons') or after extinction ('extinction-inhibited neurons'). BAL neurons that showed excitatory responses to the CS displayed various functional connectivity with each other, whereas less connectivity was observed among neurons with inhibitory responses to the CS. Intriguingly, we found correlative neuronal activities between conditioning-potentiated neurons and neurons with inhibitory responses to the CS. Our findings suggest that distinct BAL neurons, which are responsive to the CS with excitation or inhibition, encode various facets of fear conditioning and extinction.
Collapse
Affiliation(s)
- Junghwa Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bobae An
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Sukwoo Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Kim J, Kim C, Han HB, Cho CJ, Yeom W, Lee SQ, Choi JH. A bird's-eye view of brain activity in socially interacting mice through mobile edge computing (MEC). SCIENCE ADVANCES 2020; 6:6/49/eabb9841. [PMID: 33268372 PMCID: PMC7821890 DOI: 10.1126/sciadv.abb9841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Social cognition requires neural processing, yet a unifying method linking particular brain activities and social behaviors is lacking. Here, we embedded mobile edge computing (MEC) and light emitting diodes (LEDs) on a neurotelemetry headstage, such that a particular neural event of interest is processed by the MEC and subsequently an LED is illuminated, allowing simultaneous temporospatial visualization of that neural event in multiple, socially interacting mice. As a proof of concept, we configured our system to illuminate an LED in response to gamma oscillations in the basolateral amygdala (BLA gamma) in freely moving mice. We identified (i) BLA gamma responses to a spider robot, (ii) affect-related BLA gamma during conflict, and (iii) formation of defensive aggregation under a threat by the robot, and reduction of BLA gamma responses in the inner-located mice. Our system can provide an intuitive framework for examining brain-behavior connections in various ecological situations and population structures.
Collapse
Affiliation(s)
- Jisoo Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, South Korea
- Department of Brain and Cognitive Engineering, Korea University, Anam-dong 5ga, Seongbuk-gu, Seoul 02841, South Korea
| | - Chaewoo Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, South Korea
- Department of Neural Sciences, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Hio-Been Han
- Center for Neuroscience, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Cheol Jun Cho
- Center for Neuroscience, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, South Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Wooseob Yeom
- Intelligent Sensor Research Section, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, South Korea
| | - Sung Q Lee
- Intelligent Sensor Research Section, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, South Korea.
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, South Korea.
- Department of Neural Sciences, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| |
Collapse
|
13
|
Hammoud MZ, Foa EB, Milad MR. Oestradiol, threat conditioning and extinction, post-traumatic stress disorder, and prolonged exposure therapy: A common link. J Neuroendocrinol 2020; 32:e12800. [PMID: 31595559 DOI: 10.1111/jne.12800] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022]
Abstract
The accumulating evidence regarding the impact of estradiol on learning and memory synergized studies to examine its influence on enhancing animal's ability to quell fear and anxiety. In this review, we first provide a foundational platform regarding the impact of oestradiol on cellular mechanisms of learning and memory and we review recent advances from rodent and human data showing that oestrogen enhances extinction learning across species. We then propose clinical application to these data. We discuss the potential role of oestradiol variance on the aetiology, maintenance and treatment for post-traumatic stress disorder. Specifically, we argue that the use of oestradiol as an adjunct to prolonged exposure (PE) therapy for PTSD may provide a new treatment approach for enhancing the efficacy of PE in women with PTSD. This could advance our understanding of the mechanisms of PTSD and help tailor sex-specific treatments for this disorder.
Collapse
Affiliation(s)
- Mira Z Hammoud
- Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Edna B Foa
- Department of Psychiatry, Center for the Treatment and Study of Anxiety, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammed R Milad
- Department of Psychiatry, New York University Medical Center, New York, NY, USA
| |
Collapse
|
14
|
Michely J, Rigoli F, Rutledge RB, Hauser TU, Dolan RJ. Distinct Processing of Aversive Experience in Amygdala Subregions. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:291-300. [PMID: 31542358 PMCID: PMC7059109 DOI: 10.1016/j.bpsc.2019.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 11/21/2022]
Abstract
Background The amygdala is an anatomically complex medial temporal brain structure whose subregions are considered to serve distinct functions. However, their precise role in mediating human aversive experience remains ill understood. Methods We used functional magnetic resonance imaging in 39 healthy volunteers with varying levels of trait anxiety to assess distinct contributions of the basolateral amygdala (BLA) and centromedial amygdala to anticipation and experience of aversive events. Additionally, we examined the relationship between any identified functional subspecialization and measures of subjective reported aversion and trait anxiety. Results Our results show that the centromedial amygdala is responsive to aversive outcomes but insensitive to predictive aversive cues. In contrast, the BLA encodes an aversive prediction error that quantifies whether cues and outcomes are worse than expected. A neural representation within the BLA for distinct threat levels was mirrored in self-reported subjective anxiety across individuals. Furthermore, high trait-anxious individuals were characterized by indiscriminately heightened BLA activity in response to aversive cues, regardless of actual threat level. Conclusions Our results demonstrate that amygdala subregions are distinctly engaged in processing of aversive experience, with elevated and undifferentiated BLA responses to threat emerging as a potential neurobiological mediator of vulnerability to anxiety disorders.
Collapse
Affiliation(s)
- Jochen Michely
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom.
| | - Francesco Rigoli
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Department of Psychology, University of London, London, United Kingdom
| | - Robb B Rutledge
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Tobias U Hauser
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| |
Collapse
|