1
|
Overexpression of Isl1 under the Pax2 Promoter, Leads to Impaired Sound Processing and Increased Inhibition in the Inferior Colliculus. Int J Mol Sci 2021; 22:ijms22094507. [PMID: 33925933 PMCID: PMC8123449 DOI: 10.3390/ijms22094507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
The LIM homeodomain transcription factor ISL1 is essential for the different aspects of neuronal development and maintenance. In order to study the role of ISL1 in the auditory system, we generated a transgenic mouse (Tg) expressing Isl1 under the Pax2 promoter control. We previously reported a progressive age-related decline in hearing and abnormalities in the inner ear, medial olivocochlear system, and auditory midbrain of these Tg mice. In this study, we investigated how Isl1 overexpression affects sound processing by the neurons of the inferior colliculus (IC). We recorded extracellular neuronal activity and analyzed the responses of IC neurons to broadband noise, clicks, pure tones, two-tone stimulation and frequency-modulated sounds. We found that Tg animals showed a higher inhibition as displayed by two-tone stimulation; they exhibited a wider dynamic range, lower spontaneous firing rate, longer first spike latency and, in the processing of frequency modulated sounds, showed a prevalence of high-frequency inhibition. Functional changes were accompanied by a decreased number of calretinin and parvalbumin positive neurons, and an increased expression of vesicular GABA/glycine transporter and calbindin in the IC of Tg mice, compared to wild type animals. The results further characterize abnormal sound processing in the IC of Tg mice and demonstrate that major changes occur on the side of inhibition.
Collapse
|
2
|
Dorkoski R, Hancock KE, Whaley GA, Wohl TR, Stroud NC, Day ML. Stimulus-frequency-dependent dominance of sound localization cues across the cochleotopic map of the inferior colliculus. J Neurophysiol 2020; 123:1791-1807. [PMID: 32186439 DOI: 10.1152/jn.00713.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The horizontal direction of a sound source (i.e., azimuth) is perceptually determined in a frequency-dependent manner: low- and high-frequency sounds are localized via differences in the arrival time and intensity of the sound at the two ears, respectively, called interaural time and level differences (ITDs and ILDs). In the central auditory system, these binaural cues to direction are thought to be separately encoded by neurons tuned to low and high characteristic frequencies (CFs). However, at high sound levels a neuron often responds to frequencies far from its CF, raising the possibility that individual neurons may encode the azimuths of both low- and high-frequency sounds using both binaural cues. We tested this possibility by measuring auditory-driven single-unit responses in the central nucleus of the inferior colliculus (ICC) of unanesthetized female Dutch Belted rabbits with a multitetrode drive. At 70 dB SPL, ICC neurons across the cochleotopic map transmitted information in their firing rates about the direction of both low- and high-frequency noise stimuli. We independently manipulated ITD and ILD cues in virtual acoustic space and found that sensitivity to ITD and ILD, respectively, shaped the directional sensitivity of ICC neurons to low (<1.5 kHz)- and high (>3 kHz)-pass stimuli, regardless of the neuron's CF. We also found evidence that high-CF neurons transmit information about both the fine-structure and envelope ITD of low-frequency sound. Our results indicate that at conversational sound levels the majority of the cochleotopic map is engaged in transmitting directional information, even for sources with narrowband spectra.NEW & NOTEWORTHY A "division of labor" has previously been assumed in which the directions of low- and high-frequency sound sources are thought to be encoded by neurons preferentially sensitive to low and high frequencies, respectively. Contrary to this, we found that auditory midbrain neurons encode the directions of both low- and high-frequency sounds regardless of their preferred frequencies. Neural responses were shaped by different sound localization cues depending on the stimulus spectrum-even within the same neuron.
Collapse
Affiliation(s)
- Ryan Dorkoski
- Department of Biological Sciences, Ohio University, Athens, Ohio
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, Massachusetts.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | - Gareth A Whaley
- Department of Biological Sciences, Ohio University, Athens, Ohio
| | - Timothy R Wohl
- Department of Biological Sciences, Ohio University, Athens, Ohio
| | - Noelle C Stroud
- Department of Biological Sciences, Ohio University, Athens, Ohio
| | - Mitchell L Day
- Department of Biological Sciences, Ohio University, Athens, Ohio.,Quantitative Biology Institute, Ohio University, Athens, Ohio
| |
Collapse
|
3
|
Ono M, Ito T. Inhibitory Neural Circuits in the Mammalian Auditory Midbrain. J Exp Neurosci 2018; 12:1179069518818230. [PMID: 30559596 PMCID: PMC6291857 DOI: 10.1177/1179069518818230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023] Open
Abstract
The auditory midbrain is the critical integration center in the auditory pathway of vertebrates. Synaptic inhibition plays a key role during information processing in the auditory midbrain, and these inhibitory neural circuits are seen in all vertebrates and are likely essential for hearing. Here, we review the structure and function of the inhibitory neural circuits of the auditory midbrain. First, we provide an overview on how these inhibitory circuits are organized within different clades of vertebrates. Next, we focus on recent findings in the mammalian auditory midbrain, the most studied of the vertebrates, and discuss how the mammalian auditory midbrain is functionally coordinated.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Tetsufumi Ito
- Department of Anatomy, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
4
|
Ayala YA, Pérez-González D, Malmierca MS. Stimulus-specific adaptation in the inferior colliculus: The role of excitatory, inhibitory and modulatory inputs. Biol Psychol 2016; 116:10-22. [DOI: 10.1016/j.biopsycho.2015.06.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/27/2015] [Accepted: 06/30/2015] [Indexed: 01/01/2023]
|
5
|
Smith AR, Kwon JH, Navarro M, Hurley LM. Acoustic trauma triggers upregulation of serotonin receptor genes. Hear Res 2014; 315:40-8. [PMID: 24997228 PMCID: PMC4140997 DOI: 10.1016/j.heares.2014.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/20/2014] [Accepted: 06/22/2014] [Indexed: 11/17/2022]
Abstract
Hearing loss induces plasticity in excitatory and inhibitory neurotransmitter systems in auditory brain regions. Excitatory-inhibitory balance is also influenced by a range of neuromodulatory regulatory systems, but less is known about the effects of auditory damage on these networks. In this work, we studied the effects of acoustic trauma on neuromodulatory plasticity in the auditory midbrain of CBA/J mice. Quantitative PCR was used to measure the expression of serotonergic and GABAergic receptor genes in the inferior colliculus (IC) of mice that were unmanipulated, sham controls with no hearing loss, and experimental individuals with hearing loss induced by exposure to a 116 dB, 10 kHz pure tone for 3 h. Acoustic trauma induced substantial hearing loss that was accompanied by selective upregulation of two serotonin receptor genes in the IC. The Htr1B receptor gene was upregulated tenfold following trauma relative to shams, while the Htr1A gene was upregulated threefold. In contrast, no plasticity in serotonin receptor gene expression was found in the hippocampus, a region also innervated by serotonergic projections. Analyses in the IC demonstrated that acoustic trauma also changed the coexpression of genes in relation to each other, leading to an overexpression of Htr1B compared to other genes. These data suggest that acoustic trauma induces serotonergic plasticity in the auditory system, and that this plasticity may involve comodulation of functionally-linked receptor genes.
Collapse
Affiliation(s)
- Adam R Smith
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Jae Hyun Kwon
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Marco Navarro
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Biology, Saint Louis University, Saint Louis, MO 63103, USA
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
6
|
Zhou Y, Wang X. Spatially extended forward suppression in primate auditory cortex. Eur J Neurosci 2013; 39:919-933. [PMID: 24372934 DOI: 10.1111/ejn.12460] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/22/2013] [Accepted: 11/20/2013] [Indexed: 11/26/2022]
Abstract
When auditory neurons are stimulated with a pair of sounds, the preceding sound can inhibit the neural responses to the succeeding sound. This phenomenon, referred to as 'forward suppression', has been linked to perceptual forward masking. Previous studies investigating forward suppression typically measured the interaction between masker and probe sounds using a fixed sound location. However, in natural environments, interacting sounds often come from different spatial locations. The present study investigated two questions regarding forward suppression in the primary auditory cortex and adjacent caudal field of awake marmoset monkeys. First, what is the relationship between the location of a masker and its effectiveness in inhibiting neural response to a probe? Second, does varying the location of a masker change the spectral profile of forward suppression? We found that a masker can inhibit a neuron's response to a probe located at a preferred location even when the masker is located at a non-preferred location of a neuron. This is especially so for neurons in the caudal field. Furthermore, we found that the strongest forward suppression is observed when a masker's frequency is close to the best frequency of a neuron, regardless of the location of the masker. These results reveal, for the first time, the stability of forward masking in cortical processing of multiple sounds presented from different locations. They suggest that forward suppression in the auditory cortex is spectrally specific and spatially broad with respect to the frequency and location of the masker, respectively.
Collapse
Affiliation(s)
- Yi Zhou
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | | |
Collapse
|
7
|
Venkataraman Y, Bartlett EL. Postnatal development of synaptic properties of the GABAergic projection from the inferior colliculus to the auditory thalamus. J Neurophysiol 2013; 109:2866-82. [PMID: 23536710 DOI: 10.1152/jn.00021.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of auditory temporal processing is important for processing complex sounds as well as for acquiring reading and language skills. Neuronal properties and sound processing change dramatically in auditory cortex neurons after the onset of hearing. However, the development of the auditory thalamus or medial geniculate body (MGB) has not been well studied over this critical time window. Since synaptic inhibition has been shown to be crucial for auditory temporal processing, this study examined the development of a feedforward, GABAergic connection to the MGB from the inferior colliculus (IC), which is also the source of sensory glutamatergic inputs to the MGB. IC-MGB inhibition was studied using whole cell patch-clamp recordings from rat brain slices in current-clamp and voltage-clamp modes at three age groups: a prehearing group [postnatal day (P)7-P9], an immediate posthearing group (P15-P17), and a juvenile group (P22-P32) whose neuronal properties are largely mature. Membrane properties matured substantially across the ages studied. GABAA and GABAB inhibitory postsynaptic potentials were present at all ages and were similar in amplitude. Inhibitory postsynaptic potentials became faster to single shocks, showed less depression to train stimuli at 5 and 10 Hz, and were overall more efficacious in controlling excitability with age. Overall, IC-MGB inhibition becomes faster and more precise during a time period of rapid changes across the auditory system due to the codevelopment of membrane properties and synaptic properties.
Collapse
Affiliation(s)
- Yamini Venkataraman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
8
|
Kuwada S, Bishop B, Alex C, Condit DW, Kim DO. Spatial tuning to sound-source azimuth in the inferior colliculus of unanesthetized rabbit. J Neurophysiol 2011; 106:2698-708. [PMID: 21849611 PMCID: PMC3214120 DOI: 10.1152/jn.00532.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/12/2011] [Indexed: 11/22/2022] Open
Abstract
Despite decades of research devoted to the study of inferior colliculus (IC) neurons' tuning to sound-source azimuth, there remain many unanswered questions because no previous study has examined azimuth tuning over a full range of 360° azimuths at a wide range of stimulus levels in an unanesthetized preparation. Furthermore, a comparison of azimuth tuning to binaural and contralateral ear stimulation over ranges of full azimuths and widely varying stimulus levels has not previously been reported. To fill this void, we have conducted a study of azimuth tuning in the IC of the unanesthetized rabbit over a 300° range of azimuths at stimulus levels of 10-50 dB above neural threshold to both binaural and contralateral ear stimulation using virtual auditory space stimuli. This study provides systematic evidence for neural coding of azimuth. We found the following: 1) level-tolerant azimuth tuning was observed in the top 35% regarding vector strength and in the top 15% regarding vector angle of IC neurons; 2) preserved azimuth tuning to binaural stimulation at high stimulus levels was created as a consequence of binaural facilitation in the contralateral sound field and binaural suppression in the ipsilateral sound field; 3) the direction of azimuth tuning to binaural stimulation was primarily in the contralateral sound field, and its center shifted laterally toward -90° with increasing stimulus level; 4) at 10 dB, azimuth tuning to binaural and contralateral stimulation was similar, indicating that it was mediated by monaural mechanisms; and 5) at higher stimulus levels, azimuth tuning to contralateral ear stimulation was severely degraded. These findings form a foundation for understanding neural mechanisms of localizing sound-source azimuth.
Collapse
Affiliation(s)
- Shigeyuki Kuwada
- Dept. of Neuroscience, Univ. of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | | | | | |
Collapse
|
9
|
Loftus WC, Bishop DC, Oliver DL. Differential patterns of inputs create functional zones in central nucleus of inferior colliculus. J Neurosci 2010; 30:13396-408. [PMID: 20926666 PMCID: PMC2966845 DOI: 10.1523/jneurosci.0338-10.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 07/07/2010] [Accepted: 08/04/2010] [Indexed: 11/21/2022] Open
Abstract
Distinct pathways carry monaural and binaural information from the lower auditory brainstem to the central nucleus of the inferior colliculus (ICC). Previous anatomical and physiological studies suggest that differential ascending inputs to regions of the ICC create functionally distinct zones. Here, we provide direct evidence of this relationship by combining recordings of single unit responses to sound in the ICC with focal, iontophoretic injections of the retrograde tracer Fluoro-Gold at the physiologically characterized sites. Three main patterns of anatomical inputs were observed. One pattern was identified by inputs from the cochlear nucleus and ventral nucleus of the lateral lemniscus in isolation, and these injection sites were correlated with monaural responses. The second pattern had inputs only from the ipsilateral medial and lateral superior olive, and these sites were correlated with interaural time difference (ITD)-sensitive responses to low frequency (<500 Hz). A third pattern had inputs from a variety of olivary and lemniscal sources, notably the contralateral lateral superior olive and dorsal nucleus of the lateral lemniscus. These were correlated with high-frequency ITD sensitivity to complex acoustic stimuli. These data support the notion of anatomical regions formed by specific patterns of anatomical inputs to the ICC. Such synaptic domains may represent functional zones in ICC.
Collapse
Affiliation(s)
- William C. Loftus
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401
| | - Deborah C. Bishop
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401
| | - Douglas L. Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401
| |
Collapse
|
10
|
Monaural spectral processing differs between the lateral superior olive and the inferior colliculus: physiological evidence for an acoustic chiasm. Hear Res 2010; 269:134-45. [PMID: 20600738 DOI: 10.1016/j.heares.2010.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 11/21/2022]
Abstract
Evidence suggests that the lateral superior olive (LSO) initiates an excitatory pathway specialized to process interaural level differences (ILDs), the primary cues used by mammals to localize high-frequency sounds in the horizontal plane. Type I units in the central nucleus of the inferior colliculus (ICC) of decerebrate cats exhibit monaural and binaural response properties qualitatively similar to those of LSO units, and are thus supposed to be the midbrain component of the ILD pathway. Studies have shown, however, that the responses of ICC cells do not often reflect simply the output of any single source of excitatory inputs. The goal of this study was to compare directly the monaural, spectral response properties of LSO and type I units measured in unanesthetized decerebrate cats. Compared to LSO units, type I units have narrower V-shaped excitatory tuning curves, higher spontaneous rates, lower maximum stimulus-evoked firing rates and more nonmonotonic rate-level curves for tones and noise. In addition, low-frequency type I units have lower thresholds to tones than corresponding LSO units. Taken together, these results suggest that the excitatory ILD pathway from LSO to ICC is mostly a high-frequency channel, and that additional inputs transform LSO influences in the ICC.
Collapse
|
11
|
Farazifard R, Wu SH. Metabotropic glutamate receptors modulate glutamatergic and GABAergic synaptic transmission in the central nucleus of the inferior colliculus. Brain Res 2010; 1325:28-40. [PMID: 20153735 DOI: 10.1016/j.brainres.2010.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/18/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
Abstract
Fast glutamatergic and GABAergic transmission in the central nucleus of the inferior colliculus (ICC), a major auditory midbrain structure, is mediated respectively by alpha-amino-3-hydroxy-5-methylisoxazole-4 propionic acid (AMPA) and gamma-aminobutyric acid (GABA)(A) receptors. In this study, we used whole-cell patch clamp recordings in brain slices to investigate the effects of activation of metabotropic glutamate receptors (mGluRs) on synaptic responses mediated by AMPA and GABA(A) receptors in ICC neurons of young rats. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) mediated respectively by AMPA and GABA(A) receptors were elicited by stimulation of the lateral lemniscus, the major afferent pathway to the ICC. The agonists for groups I and II mGluRs, (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD), and for group III mGluRs, L-2-amino-3-hydroxypropanoic acid 3-phosphate (L-SOP), did not affect intrinsic membrane properties of the ICC neurons. The agonist for group II mGluRs, (1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.1.0] hexane-4,6-dicarboxylic acid (LY379268), significantly reduced the AMPA receptor-mediated EPSCs and GABA(A) receptor-mediated IPSCs. The effects were reversed by the group II mGluR antagonist, (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495). The agonists for groups I and III, (RS)-3,5-dihydroxyphenylglycine (DHPG) and L-SOP, respectively, did not affect AMPA or GABA(A) receptor-mediated responses. The reduction of the synaptic responses by LY379268 was accompanied by a substantial increase in a ratio of the second to the first AMPA receptor-mediated EPSCs and GABA(A) receptor-mediated IPSCs to paired-pulse stimulation. The results suggest that group II mGluRs regulate both fast glutamatergic and GABAergic synaptic transmission in the ICC, probably through a presynaptic mechanism due to reduction of transmitter release.
Collapse
Affiliation(s)
- Rasoul Farazifard
- Institute of Neuroscience, Department of Psychology, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
12
|
Sun H, Wu SH. The physiological role of pre- and postsynaptic GABA(B) receptors in membrane excitability and synaptic transmission of neurons in the rat's dorsal cortex of the inferior colliculus. Neuroscience 2009; 160:198-211. [PMID: 19409201 DOI: 10.1016/j.neuroscience.2009.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 02/02/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
Abstract
In the inferior colliculus (IC), GABAergic inhibition mediated by GABA(A) receptors has been shown to play a significant role in regulating physiological responses, but little is known about the physiological role of GABA(B) receptors in IC neurons. In the present study, we used whole-cell patch clamp recording in vitro to investigate the effects of activation of GABA(B) receptors on membrane excitability and synaptic transmission of neurons in the rat's dorsal cortex of the inferior colliculus (ICD). Repetitive stimulation of GABAergic inputs to ICD neurons at high frequencies could elicit a slow and long-lasting postsynaptic response, which was reversibly abolished by the GABA(B) receptor antagonist, CGP 35348. The results suggest that postsynaptic GABA(B) receptors can directly mediate inhibitory synaptic transmission in ICD. The role of postsynaptic GABA(B) receptors in regulation of membrane excitability was further investigated by application of the GABA(B) receptor agonist, baclofen. Baclofen hyperpolarized the cell, reduced the membrane input resistance and firing rate, increased the threshold for generating action potentials (APs), and decreased the amplitude of the AP and its associated after-hyperpolarization. The Ca2+-mediated rebound depolarization following hyperpolarization and the depolarization hump at the beginning of membrane depolarization were also suppressed by baclofen. In voltage clamp experiments, baclofen induced inward rectifying K+ current and reduced low- and high-threshold Ca2+ currents, which may account for the suppression of membrane excitability by postsynaptic GABA(B) receptors. Application of baclofen also reduced excitatory synaptic responses mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and inhibitory synaptic responses mediated by GABA(A) receptors. Baclofen increased the ratios of 2nd/1st excitatory and inhibitory postsynaptic currents to paired-pulse stimulation of the synaptic inputs. These results suggest that fast glutamatergic and GABAergic synaptic transmission in ICD can be modulated by presynaptic GABA(B) receptors.
Collapse
Affiliation(s)
- H Sun
- Institute of Neuroscience, 335 Life Sciences Research Building, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S5B6, Canada
| | | |
Collapse
|
13
|
Agapiou JP, McAlpine D. Low-frequency envelope sensitivity produces asymmetric binaural tuning curves. J Neurophysiol 2008; 100:2381-96. [PMID: 18753329 PMCID: PMC2576218 DOI: 10.1152/jn.90393.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Neurons in the auditory midbrain are sensitive to differences in the timing of sounds at the two ears—an important sound localization cue. We used broadband noise stimuli to investigate the interaural-delay sensitivity of low-frequency neurons in two midbrain nuclei: the inferior colliculus (IC) and the dorsal nucleus of the lateral lemniscus. Noise-delay functions showed asymmetries not predicted from a linear dependence on interaural correlation: a stretching along the firing-rate dimension (rate asymmetry), and a skewing along the interaural-delay dimension (delay asymmetry). These asymmetries were produced by an envelope-sensitive component to the response that could not entirely be accounted for by monaural or binaural nonlinearities, instead indicating an enhancement of envelope sensitivity at or after the level of the superior olivary complex. In IC, the skew-like asymmetry was consistent with intermediate-type responses produced by the convergence of ipsilateral peak-type inputs and contralateral trough-type inputs. This suggests a stereotyped pattern of input to the IC. In the course of this analysis, we were also able to determine the contribution of time and phase components to neurons' internal delays. These findings have important consequences for the neural representation of interaural timing differences and interaural correlation—cues critical to the perception of acoustic space.
Collapse
Affiliation(s)
- John P Agapiou
- Ear Institute, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | | |
Collapse
|
14
|
Priebe NJ, Ferster D. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 2008; 57:482-97. [PMID: 18304479 DOI: 10.1016/j.neuron.2008.02.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ever since Hubel and Wiesel described orientation selectivity in the visual cortex, the question of how precise selectivity emerges has been marked by considerable debate. There are essentially two views of how selectivity arises. Feed-forward models rely entirely on the organization of thalamocortical inputs. Feedback models rely on lateral inhibition to refine selectivity relative to a weak bias provided by thalamocortical inputs. The debate is driven by two divergent lines of evidence. On the one hand, many response properties appear to require lateral inhibition, including precise orientation and direction selectivity and crossorientation suppression. On the other hand, intracellular recordings have failed to find consistent evidence for lateral inhibition. Here we demonstrate a resolution to this paradox. Feed-forward models incorporating the intrinsic nonlinear properties of cortical neurons and feed-forward circuits (i.e., spike threshold, contrast saturation, and spike-rate rectification) can account for properties that have previously appeared to require lateral inhibition.
Collapse
Affiliation(s)
- Nicholas J Priebe
- Section of Neurobiology, University of Texas at Austin, 1 University Station C0920, Austin, TX 78712, USA
| | | |
Collapse
|
15
|
Migani P, Bartlett C, Dunlop S, Beazley L, Rodger J. Ephrin-B2 immunoreactivity distribution in adult mouse brain. Brain Res 2007; 1182:60-72. [DOI: 10.1016/j.brainres.2007.08.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 08/29/2007] [Accepted: 08/29/2007] [Indexed: 12/30/2022]
|
16
|
Joris P, Yin TCT. A matter of time: internal delays in binaural processing. Trends Neurosci 2006; 30:70-8. [PMID: 17188761 DOI: 10.1016/j.tins.2006.12.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 10/06/2006] [Accepted: 12/13/2006] [Indexed: 11/21/2022]
Abstract
As an animal navigates its surroundings, the sounds reaching its two ears change in waveform similarity (interaural correlation) and in time of arrival (interaural time difference, ITD). Humans are exquisitely sensitive to these binaural cues, and it is generally agreed that this sensitivity involves coincidence detectors and internal delays that compensate for external acoustic delays (ITDs). Recent data show an unexpected relationship between the tuning of a neuron to frequency and to ITD, leading to several proposals for sources of internal delay and the neural coding of interaural temporal cues. We review the alternatives, and argue that an understanding of binaural mechanisms requires consideration of sensitivity not only to ITDs, but also to interaural correlation.
Collapse
Affiliation(s)
- Philip Joris
- Laboratory of Auditory Neurophysiology, University of Leuven, Campus Gasthuisberg, O&N2 Herestraat 49, Bus 1021, B-3000 Leuven, Belgium.
| | | |
Collapse
|
17
|
Siveke I, Pecka M, Seidl AH, Baudoux S, Grothe B. Binaural Response Properties of Low-Frequency Neurons in the Gerbil Dorsal Nucleus of the Lateral Lemniscus. J Neurophysiol 2006; 96:1425-40. [PMID: 16571733 DOI: 10.1152/jn.00713.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Differences in intensity and arrival time of sounds at the two ears, interaural intensity and time differences (IID, ITD), are the chief cues for sound localization. Both cues are initially processed in the superior olivary complex (SOC), which projects to the dorsal nucleus of the lateral lemniscus (DNLL) and the auditory midbrain. Here we present basic response properties of low-frequency (<2 kHz) DNLL neurons and their binaural sensitivity to ITDs and IIDs in the anesthetized gerbil. We found many neurons showing binaural properties similar to those reported for SOC neurons. IID-properties were similar to that of the contralateral lateral superior olive (LSO). A majority of cells had an ITD sensitivity resembling that of either the ipsilateral medial superior olive (MSO) or the contralateral LSO. A smaller number of cells displayed intermediate types of ITD sensitivity. In neurons with MSO-like response ITDs that evoked maximal discharges were mostly outside of the range of ITDs the gerbil naturally experiences. The maxima of the first derivative of their ITD-functions (steepest slope), however, were well within the physiological range of ITDs. This finding is consistent with the concept of a population rather than a place code for ITDs. Moreover, we describe several other binaural properties as well as physiological and anatomical evidence for a small but significant input from the contralateral MSO. The large number of ITD-sensitive low-frequency neurons implicates a substantial role for the DNLL in ITD processing and promotes this nucleus as a suitable model for further studies on ITD-coding.
Collapse
Affiliation(s)
- Ida Siveke
- Division of Neurobiology, Department Biology II, Biocenter, Ludwig-Maximilians-University of Munich, Grosshaderner Strasse 2, D-81252 Martinsried, Germany
| | | | | | | | | |
Collapse
|
18
|
Sun H, Ma CL, Kelly JB, Wu SH. GABAB receptor-mediated presynaptic inhibition of glutamatergic transmission in the inferior colliculus. Neurosci Lett 2006; 399:151-6. [PMID: 16513264 DOI: 10.1016/j.neulet.2006.01.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 01/17/2006] [Accepted: 01/24/2006] [Indexed: 10/25/2022]
Abstract
Whole-cell patch clamp recordings were made from ICC neurons in brain slices of 9-16 day old rats. Postsynaptic currents were evoked by electrical stimulation of the lemniscal inputs. Excitatory postsynaptic currents (EPSCs) were isolated pharmacologically by blocking GABA(A) and glycine receptors. EPSCs were further dissected into AMPA and NMDA receptor-mediated responses by adding the receptor antagonists, APV and CNQX, respectively. The internal solution in the recording electrodes contained CsF and TEA to block K(+) channels that might be activated by postsynaptic GABA(B) receptors. The modulatory effects of GABA(B) receptors on EPSCs in ICC neurons were examined by bath application of the GABA(B) receptor agonist, baclofen, and the antagonist, CGP 35348. The amplitudes of EPSCs in ICC neurons were reduced to 34.4+/-3.2% of the control by baclofen (5-10 microM). The suppressive effect by baclofen was concentration-dependent. The reduction of the EPSC amplitude was reversed by CGP35348. The ratio of the 2nd to 1st EPSCs evoked by paired-pulse stimulation was significantly increased after application of baclofen. These results suggest that glutamatergic excitation in the ICC can be modulated by presynaptic GABA(B) receptors. In addition, baclofen reduced NMDA EPSCs more than AMPA EPSCs. The GABA(B) receptor-mediated modulation of glutamatergic excitation in the ICC provides a likely mechanism for preventing overstimulation and/or regulating the balance of excitation and inhibition involved in processing auditory information.
Collapse
Affiliation(s)
- Hongyu Sun
- Institute of Neuroscience, Carleton University, Ottawa, Ont., Canada K1S 5B6
| | | | | | | |
Collapse
|
19
|
Ingham NJ, McAlpine D. GABAergic inhibition controls neural gain in inferior colliculus neurons sensitive to interaural time differences. J Neurosci 2006; 25:6187-98. [PMID: 15987948 PMCID: PMC6725068 DOI: 10.1523/jneurosci.0146-05.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the role of GABAergic inhibition on the responses of inferior colliculus (IC) neurons sensitive to interaural time differences (ITDs) in anesthetized guinea pigs. Responses to static and dynamic ITDs were obtained before, during, and after recovery from ionotophoretic application of GABA, or antagonists to the GABA(A) receptor gabazine and bicuculline. For most neurons, a linear relationship was observed between discharge rates evoked by a particular ITD during drug application and control discharge rates. Blocking GABAergic inhibition, or adding exogenous GABA, scaled IC discharge rates in a multiplicative (divisive) and/or additive (subtractive) manner. When the influence of iontophoresed GABA antagonists or exogenous GABA on discharge rates was accounted for, GABAergic inhibition was found to have no effect on the ITD tuning properties of IC neurons. The tuning sharpness of ITD functions, the ITD that evoked 50% response magnitude, and the relative symmetry of ITD functions around their peak response were unaffected by blockade of inhibition or addition of tonic inhibition. However, the ability of neurons to discriminate between ITDs by virtue of differences in their discharge rate was altered by blocking or adding GABA. We propose that inhibition in the IC is involved in the control of the neural gain of the output of IC neurons rather than the regulation of ITD tuning. This gain control appears to arise from a combination of additive and multiplicative processes, and may involve mechanisms such as shunting inhibition or changes in the efficacy of inhibitory and excitatory inputs.
Collapse
Affiliation(s)
- Neil J Ingham
- The Ear Institute and Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|