1
|
Kang Y, Toyoda H, Saito M. Search for unknown neural link between the masticatory and cognitive brain systems to clarify the involvement of its impairment in the pathogenesis of Alzheimer's disease. Front Cell Neurosci 2024; 18:1425645. [PMID: 38994328 PMCID: PMC11236757 DOI: 10.3389/fncel.2024.1425645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Brain degenerations in sporadic Alzheimer's disease (AD) are observed earliest in the locus coeruleus (LC), a population of noradrenergic neurons, in which hyperphosphorylated tau protein expression and β-amyloid (Aβ) accumulation begin. Along with this, similar changes occur in the basal forebrain cholinergic neurons, such as the nucleus basalis of Meynert. Neuronal degeneration of the two neuronal nuclei leads to a decrease in neurotrophic factors such as brain-derived neurotrophic factor (BDNF) in the hippocampus and cerebral cortex, which results in the accumulation of Aβ and hyperphosphorylated tau protein and ultimately causes neuronal cell death in those cortices. On the other hand, a large number of epidemiological studies have shown that tooth loss or masticatory dysfunction is a risk factor for dementia including AD, and numerous studies using experimental animals have also shown that masticatory dysfunction causes brain degeneration in the basal forebrain, hippocampus, and cerebral cortex similar to those observed in human AD, and that learning and memory functions are impaired accordingly. However, it remains unclear how masticatory dysfunction can induce such brain degeneration similar to AD, and the neural mechanism linking the trigeminal nervous system responsible for mastication and the cognitive and memory brain system remains unknown. In this review paper, we provide clues to the search for such "missing link" by discussing the embryological, anatomical, and physiological relationship between LC and its laterally adjoining mesencephalic trigeminal nucleus which plays a central role in the masticatory functions.
Collapse
Affiliation(s)
- Youngnam Kang
- Department of Behavioral Physiology, Osaka University Graduate School of Human Sciences, Osaka, Japan
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mitsuru Saito
- Department of Oral Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
2
|
Kang Y, Saito M, Toyoda H. Molecular, Morphological and Electrophysiological Differences between Alpha and Gamma Motoneurons with Special Reference to the Trigeminal Motor Nucleus of Rat. Int J Mol Sci 2024; 25:5266. [PMID: 38791305 PMCID: PMC11121624 DOI: 10.3390/ijms25105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The muscle contraction during voluntary movement is controlled by activities of alpha- and gamma-motoneurons (αMNs and γMNs, respectively). In spite of the recent advances in research on molecular markers that can distinguish between αMNs and γMNs, electrophysiological membrane properties and firing patterns of γMNs have remained unknown, while those of αMNs have been clarified in detail. Because of the larger size of αMNs compared to γMNs, blindly or even visually recorded MNs were mostly αMNs, as demonstrated with molecular markers recently. Subsequently, the research on αMNs has made great progress in classifying their subtypes based on the molecular markers and electrophysiological membrane properties, whereas only a few studies demonstrated the electrophysiological membrane properties of γMNs. In this review article, we provide an overview of the recent advances in research on the classification of αMNs and γMNs based on molecular markers and electrophysiological membrane properties, and discuss their functional implication and significance in motor control.
Collapse
Affiliation(s)
- Youngnam Kang
- Department of Behavioral Physiology, Graduate School of Human Sciences, Osaka University, Osaka 565-0871, Japan
| | - Mitsuru Saito
- Department of Oral Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima 890-8544, Japan;
| | - Hiroki Toyoda
- Department of Oral Physiology, Graduate School of Dentistry, The University of Osaka, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Toyoda H, Fujinami Y, Saito M, Maeda Y, Kang Y. Increased vertical dimension of occlusion for varying periods differentially impairs learning and memory in guinea pigs. Behav Brain Res 2023; 452:114547. [PMID: 37331607 DOI: 10.1016/j.bbr.2023.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
There is an increasing number of studies showing that occlusal dysfunction impairs learning and memory. We previously demonstrated that the brain has a mechanism to calibrate between the activities of spindle afferents and periodontal-mechanoreceptor afferents for controlling the chewing movement, and the accurate calibration can be done only at the proper vertical dimension of occlusion (VDO). Then, the chewing at an inappropriate VDO may induce a severe mental stress due to a mal-calibration. However, it is not clear how the impairment of learning/memory progresses over the period of stress induced by occlusal dysfunction. We investigated by passive avoidance test how the behavior and learning/memory are altered in guinea pigs in which the VDO was raised by 2-3 mm over the period up to 8 weeks. We found that the guinea pigs reared under the raised occlusal-condition (ROC) for 1 week showed a very high sensitivity to electrical stimulation whereas this did not cause the memory consolidation in the 1st-day retention trial, suggesting that such hypersensitivity rather hampered the fear learning. In the guinea pigs reared under the ROC for 2 and 8 weeks, the learning ability was not largely affected and memory consolidation occurred similarly whereas the memory retention deteriorated more severely in the latter guinea pigs than in the former ones. In the guinea pigs reared under the ROC for 3 and 4 weeks, learning was severely impaired, and memory consolidation did not occur. These results suggest that the occlusal dysfunction for varying periods differentially impairs learning and memory.
Collapse
Affiliation(s)
- Hiroki Toyoda
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Yozo Fujinami
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Mitsuru Saito
- Department of Oral Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yoshinobu Maeda
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Youngnam Kang
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; Department of Behavioral Sciences, Graduate School of Human Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Tanaka Y, Sato H, Toyoda H, Saito M, Maeda Y, Kang Y. The mechanism for regulating the isometric contraction of masseter muscles is involved in determining the vertical dimension of occlusion. J Neurophysiol 2023; 129:211-219. [PMID: 36541608 DOI: 10.1152/jn.00301.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously demonstrated that accurate regulation of isometric contraction (IC) of jaw-closing muscles to counteract the ramp load applied to the jaw in the jaw-opening direction is achieved through the calibration between the two sensations arising from muscle spindles (MSs) and periodontal mechanoreceptors (PMRs). However, it remains unclear whether this calibration mechanism accurately works at any jaw positions, i.e., any vertical dimensions of occlusion (VDO). In the present study, we examined the effects of altering VDO on the IC of the masseter muscles in complete dentulous and edentulous subjects. At a VDO higher than the original VDO (O-VDO), the root mean square (RMS) of masseter EMG activity increased more steeply with a load increase, resulting in an over-counteraction. The regression coefficient of the load-RMS relationship significantly increased as the VDO was increased, suggesting that the overestimation became more pronounced with the VDO increases. Consistently also in the edentulous subjects, at a higher VDO than the O-VDO, a steeper increase in the RMS emerged with a delay in response to the same ramp load whereas a similar steeper increase was seen surprisingly even at a lower VDO. Thus, the edentulous subjects displayed a delayed overestimation of the ramp load presumably due to less and slowly sensitive mucous membrane mechanoreceptor (MMR) in alveolar ridge compared with the PMR. Taken together, the accurate calibration between the two sensations arising from MSs and PMRs/MMRs can be done only at the O-VDO, suggesting that the O-VDO is the best calibration point for performing accurate IC.NEW & NOTEWORTHY Since 1934, the vertical dimension of occlusion (VDO) in edentulous individuals has been anatomically determined mostly by referring to the resting jaw position. However, such a static method is not always accurate. Considering the dynamic nature of clenching/mastication, it is desirable to determine VDO dynamically. We demonstrate that VDO can be accurately determined by measuring masseter EMG during the voluntary isometric contraction of jaw-closing muscles exerted against the ramp load in the jaw-opening direction.
Collapse
Affiliation(s)
- Yuto Tanaka
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Special Care Dentistry, Osaka Dental University Hospital, Osaka, Japan
| | - Hajime Sato
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Hiroki Toyoda
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Mitsuru Saito
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Oral Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshinobu Maeda
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Youngnam Kang
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Division of Behavioral Physiology, Department of Behavioral Sciences, Osaka University Graduate School of Human Sciences, Suita, Japan
| |
Collapse
|
5
|
Park W, Lee J, Lee H, Hong G, Park HY, Park J. Analysis of physiological tremors during different intensities of armcurl exercises using wearable three-axis accelerometers in healthy young men: a pilot study. Phys Act Nutr 2022; 26:32-40. [PMID: 36775649 PMCID: PMC9925111 DOI: 10.20463/pan.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/02/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The purpose of this pilot study was to determine whether physiological tremors (PTs) assessed using an accelerometer could be used to evaluate resistance exercise intensity. METHODS Twenty healthy young men with no prior experience of resistance exercise were recruited. Different intensities (resting, 30%, 50%, and 70% of their predetermined one-repetition maximum (1-RM)) of arm-curl exercise were used to elicit PT. The total work was held equally by varying the number of repetitions, with five sets for each intensity. Sessions of varying intensities were performed randomly with a washout period of at least a week. PT responses were recorded during exercise using accelerometers (3-axis) attached to the wrist and ear. Electromyography (EMG) data were obtained from the biceps brachii muscle during exercise. PT and EMG data were expressed as the average root mean square index. RESULTS The EMG amplitude increased significantly as exercise intensity increased. Furthermore, PT amplitude significantly increased as exercise intensity increased. Moreover, the Borg rating of perceived exertion (RPE) and lactic acid levels increased significantly. The wrist PT was related to ear PT, EMG, RPE, and lactic acid levels. Additionally, ear PT was associated with EMG, RPE, and lactic acid levels. CONCLUSION This pilot study identified changes in PT during resistance exercise at different intensities. We suggest that the use of PT analyses during these exercises provides a more intuitive delineation of resistance exercise intensity and fatigue.
Collapse
Affiliation(s)
- Wonil Park
- Department of Physical Education, Korea University, Seoul, Republic of Korea
| | - Jaesung Lee
- Department of Physical Education, Korea University, Seoul, Republic of Korea
| | - Hyunseob Lee
- Department of Physical Education, Korea University, Seoul, Republic of Korea
| | - Gyuseog Hong
- Convergence Center, LG Electronics, Seoul, Republic of Korea
| | - Hun-Young Park
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea,Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul, Republic of Korea
| | - Jonghoon Park
- Department of Physical Education, Korea University, Seoul, Republic of Korea,Corresponding author : Jonghoon Park, Ph.D. Department of Physical Education, Korea University, 145 Anam-Ro, Seongbuk-Gu, 02841, Seoul, Republic of Korea Tel: +82-01-8520-9714 E-mail:
| |
Collapse
|
6
|
Tanaka Y, Yoshida T, Ono Y, Maeda Y. The effect of occlusal splints on the mechanical stress on teeth as measured by intraoral sensors. J Oral Sci 2020; 63:41-45. [PMID: 33239484 DOI: 10.2334/josnusd.20-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE Whether it is possible to prevent mechanical stress on teeth via an occlusal splint remains to be clarified. This study aimed to assess the same by simultaneously recording the occlusal pressure and strain on the teeth in humans. METHODS Eleven participants (five women and six men; mean age 25.7 years) were enrolled in this study. Hard and soft oral appliances were fabricated for the maxillary arch of each participant. The strain on the four target teeth (right maxillary and mandibular first premolars, and first molars) and occlusal pressure were concurrently measured, while the participants performed maximum voluntary teeth clenching under each condition (hard, soft, or no occlusal splint). RESULTS Compared to the absence of an occlusal splint, hard occlusal splints generated less strain on molar teeth but more strain on premolar teeth, while soft occlusal splints did not lower the strain on all target teeth significantly. CONCLUSION Considering the limitations of this study, hard occlusal splints should be used for the protection of molar teeth but for premolar teeth caution is required and depends on the case. On the other hand, soft occlusal splints may not have any benefit for the protection of either type of teeth for patients exhibiting excessive occlusal pressure.
Collapse
Affiliation(s)
- Yuto Tanaka
- Department of Special Care Dentistry, Osaka Dental University Hospital
| | - Toru Yoshida
- Department of Prosthodontics, Gerodontology, and Oral Rehabilitation, Osaka University Graduate School of Dentistry
| | - Yoshiaki Ono
- Department of Special Care Dentistry, Osaka Dental University Hospital
| | - Yoshinobu Maeda
- Department of Prosthodontics, Gerodontology, and Oral Rehabilitation, Osaka University Graduate School of Dentistry
| |
Collapse
|
7
|
Park SK, Hong JH, Jung JK, Ko HG, Bae YC. Vesicular Glutamate Transporter 1 (VGLUT1)- and VGLUT2-containing Terminals on the Rat Jaw-closing γ-Motoneurons. Exp Neurobiol 2019; 28:451-457. [PMID: 31495074 PMCID: PMC6751869 DOI: 10.5607/en.2019.28.4.451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/22/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Currently, compared to jaw-closing (JC) α-motoneurons, the information on the distribution and morphology of glutamatergic synapses on the jaw-closing (JC) γ-motoneurons, which may help elucidate the mechanism of isometric contraction of the JC muscle, is very limited. This study investigated the distribution and ultrastructural features of vesicular glutamate transporter 1 (VGLUT1)- and VGLUT2-immunopositive (+) axon terminals (boutons) on JC γ-motoneurons by retrograde tracing with horseradish peroxidase, electron microscopic immunocytochemistry, and quantitative analysis. About 35% of the boutons on identified JC γ-motoneurons were VGLUT+, and of those, 99% were VGLUT2+. The fraction of VGLUT1+ boutons of all boutons and the percentage of membrane of JC γ-motoneurons covered by these boutons were significantly lower than those for the JC α-motoneurons, revealed in our previous work. The bouton volume, mitochondrial volume, and active zone area of the VGLUT2+ boutons on the JC γ-motoneurons were uniformly small. These findings suggest that the JC γ-motoneurons, in contrast to the JC α-motoneurons, receive generally weak glutamatergic synaptic input almost exclusively from VGLUT2+ premotoneurons that form direct synapse with motoneurons.
Collapse
Affiliation(s)
- Sook Kyung Park
- Department of Anatomy and Neurobiology, Kyungpook National University, Daegu 41940, Korea
| | - Jae Hyun Hong
- Department of Anatomy and Neurobiology, Kyungpook National University, Daegu 41940, Korea
| | - Jae Kwang Jung
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, Kyungpook National University, Daegu 41940, Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
8
|
Vibratory stimulus to the masseter muscle impairs the oral fine motor control during biting tasks. J Prosthodont Res 2019; 63:354-360. [DOI: 10.1016/j.jpor.2018.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/20/2022]
|
9
|
Qiao Y, Cong M, Li J, Li H, Li Z. The effects of neuregulin-1β on intrafusal muscle fiber formation in neuromuscular coculture of dorsal root ganglion explants and skeletal muscle cells. Skelet Muscle 2018; 8:29. [PMID: 30219099 PMCID: PMC6139134 DOI: 10.1186/s13395-018-0175-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 01/24/2023] Open
Abstract
Background The formation of intrafusal muscle (IM) fibers and their contact with afferent proprioceptive axons is critical for construction, function, and maintenance of the stretch reflex. Many factors affect the formation of IM fibers. Finding new factors and mechanisms of IM fiber formation is essential for the reconstruction of stretch reflex arc after injury. Methods We established a coculture system of organotypic dorsal root ganglion (DRG) explants and dissociated skeletal muscle (SKM) cells. The formation of IM fibers was observed in this coculture system after neuregulin-1β (NRG-1β) incubation. Results We found that NRG-1β promoted outgrowth of neurites and migration of neurons from the organotypic DRG explants and that this correlated with an induction of growth-associated protein 43 (GAP-43) expression. NRG-1β also increased the amount of nuclear bag fibers and nuclear chain fibers by elevating the proportion of tyrosine kinase receptor C (TrkC) phenotypic DRG neurons. In addition, we found that the effects of NRG-1β could be blocked by inhibiting ERK1/2, PI3K/Akt, and JAK2/STAT3 signaling pathways. Conclusion These data imply that NRG-1β promoted neurite outgrowth and neuronal migration from the organotypic DRG explants and that this correlated with an induction of GAP-43 expression. The modulating effects of NRG-1β on TrkC DRG neuronal phenotype may link to promote IM fiber formation. The effects produced by NRG-1β in this neuromuscular coculture system provide new data for the therapeutic potential on IM fiber formation after muscle injury. Electronic supplementary material The online version of this article (10.1186/s13395-018-0175-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Qiao
- Department of Anatomy, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Department of Orthopaedics, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Menglin Cong
- Department of Orthopaedics, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Jianmin Li
- Department of Orthopaedics, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Hao Li
- Department of Orthopaedics, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Zhenzhong Li
- Department of Anatomy, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
10
|
Simione M, Green JR. An exploratory investigation of the effects of whole-head vibration on jaw movements. Exp Brain Res 2018; 236:897-906. [PMID: 29362829 PMCID: PMC6581192 DOI: 10.1007/s00221-018-5183-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/16/2018] [Indexed: 11/29/2022]
Abstract
The perturbing effects of vibration applied to head and body structures are known to destabilize motor control and elicit corrective responses. Although such vibration response testing may be informative for identifying sensorimotor deficits, the effect of whole-head vibration has not been tested on oromotor control. The purpose of this study was to determine how jaw movements respond to the perturbing effects of whole-head vibration during jaw motor tasks. Ten healthy adults completed speech, chewing, and two syllable repetition tasks with and without whole-head vibration. Jaw movements were recorded using 3D optical motion capture. The results showed that the direction and magnitude of the response were dependent on the task. The two syllable repetition tasks responded to vibration, although the direction of the effect differed for the two tasks. Specifically, during vibration, jaw movements became slower and smaller during the syllable repetition task that imposed speed and spatial precision demands, whereas jaw movements became faster and larger during the syllable repetition task that only imposed speed demands. In contrast, jaw movements were unaffected by the vibration during speech and chewing. These findings suggest that the response to vibration may be dependent on spatiotemporal demands, the availability of residual afferent information, and robust feedforward models.
Collapse
Affiliation(s)
- Meg Simione
- Department of Pediatrics, MassGeneral Hospital for Children, Boston, USA
| | - Jordan R Green
- Speech and Feeding Disorders Lab, MGH Institute of Health Professions, 36 1st Avenue, Boston, MA, 02129, USA.
| |
Collapse
|
11
|
Nishimura K, Ohta M, Saito M, Morita-Isogai Y, Sato H, Kuramoto E, Yin DX, Maeda Y, Kaneko T, Yamashiro T, Takada K, Oh SB, Toyoda H, Kang Y. Electrophysiological and Morphological Properties of α and γ Motoneurons in the Rat Trigeminal Motor Nucleus. Front Cell Neurosci 2018; 12:9. [PMID: 29416504 PMCID: PMC5787551 DOI: 10.3389/fncel.2018.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
The muscle contraction during voluntary movement is regulated by activities of α- and γ-motoneurons (αMNs and γMNs, respectively). The tension of jaw-closing muscles can be finely tuned over a wide range. This excellent function is likely to be achieved by the specific populations of αMNs innervating jaw-closing muscles. Indeed, we have recently demonstrated that in the rat dorsolateral trigeminal motor nucleus (dl-TMN), the size distribution of αMNs was bimodal and the population of smaller αMNs showed a size distribution similar to that of γMNs, by immunohistochemically identifying αMNs and γMNs based on the expressions of estrogen-related receptor gamma (Err3) and neuronal DNA binding protein NeuN together with ChAT. This finding suggests the presence of αMNs as small as γMNs. However, differences in the electrophysiological membrane properties between αMNs and γMNs remain unknown also in the dl-TMN. Therefore, in the present study, we studied the electrophysiological membrane properties of MNs in the dl-TMN of infant rats at postnatal days 7–12 together with their morphological properties using whole-cell current-clamp recordings followed by immunohistochemical staining with an anti-NeuN and anti-ChAT antibodies. We found that the ChAT-positive and NeuN-positive αMNs were divided into two subclasses: the first one had a larger cell body and displayed a 4-aminopyridine (4-AP)-sensitive current while the second one had a smaller cell body and displayed a less prominent 4-AP-sensitive current and a low-threshold spike, suitable for their orderly recruitment. We finally found that γMNs showing ChAT-positive and NeuN-negative immunoreactivities had smaller cell bodies and displayed an afterdepolarization mediated by flufenamate-sensitive cation current. It is suggested that these electrophysiological and morphological features of MNs in the dl-TMN are well correlated with the precise control of occlusion.
Collapse
Affiliation(s)
- Kayo Nishimura
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Masahiro Ohta
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Removable Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Mitsuru Saito
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Oral Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yukako Morita-Isogai
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Hajime Sato
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dong Xu Yin
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yoshinobu Maeda
- Department of Removable Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kenji Takada
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Hiroki Toyoda
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Youngnam Kang
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
12
|
A distinct functional distribution of α and γ motoneurons in the rat trigeminal motor nucleus. Brain Struct Funct 2017; 222:3231-3239. [PMID: 28326439 DOI: 10.1007/s00429-017-1400-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/05/2017] [Indexed: 10/19/2022]
Abstract
Gamma-motoneurons (γMNs) play a crucial role in regulating isometric muscle contraction. The slow jaw-closing during mastication is one of the most functional isometric contractions, which is developed by the rank-order recruitment of alpha-motoneurons (αMNs) in a manner that reflects the size distribution of αMNs. In a mouse spinal motor nucleus, there are two populations of small and large MNs; the former was identified as a population of γMNs based on the positive expression of the transcription factor estrogen-related receptor 3 (Err3) and negative expression of the neuronal DNA-binding protein NeuN, and the latter as that of αMNs based on the opposite pattern of immunoreactivity. However, the differential identification of αMNs and γMNs in the trigeminal motor nucleus (TMN) remains an assumption based on the size of cell bodies that were retrogradely stained with HRP. We here examined the size distributions of αMNs and γMNs in the dorsolateral TMN (dl-TMN) by performing immunohistochemistry using anti-Err3 and anti-NeuN antibodies. The dl-TMN was identified by immunopositivity for vesicular glutamate transporter-1. Immunostaining for choline acetyltransferase and Err3/NeuN revealed that the dl-TMN is composed of 65% αMNs and 35% γMNs. The size distribution of αMNs was bimodal, while that of γMNs was almost the same as that of the population of small αMNs, suggesting the presence of αMNs as small as γMNs. Consistent with the size concept of motor units, the presence of smaller jaw-closing αMNs was coherent with the inclusion of jaw-closing muscle fibers with smaller diameters compared to limb muscle fibers.
Collapse
|
13
|
Frayne E, Coulson S, Adams R, Croxson G, Waddington G. Proprioceptive ability at the lips and jaw measured using the same psychophysical discrimination task. Exp Brain Res 2016; 234:1679-87. [PMID: 26860522 DOI: 10.1007/s00221-016-4573-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 01/22/2016] [Indexed: 12/30/2022]
Abstract
In the human face, the muscles and joints that generate movement have different properties. Whereas the jaw is a conventional condyle joint, the facial musculature has neither distinct origin nor insertion points, and the muscles do not contain muscle spindle proprioceptors. This current study aims to compare the proprioceptive ability at the orofacial muscles with that of the temporomandibular joint (TMJ) in 21 neuro-typical people aged between 18 and 65 years. A novel psychophysical task was devised for use with both structures that involved a fixed 30.5 mm start separation followed by closure onto stimuli of 5, 6, 7, 8 mm diameter. The mean proprioceptive score when using the lips was 0.84 compared to 0.79 at the jaw (p < 0.001), and response error was lower by 0.1 mm. The greater accuracy in discrimination of lip movement is significant because, unlike the muscles controlling the TMJ, the orbicularis oris muscle controlling the lips inserts on to connective tissue and other muscle, and contains no muscle spindles, implying a different more effective, proprioceptive mechanism. Additionally, unlike the lack of correlation previously observed between joints in the upper and lower limbs, at the face the scores from performing the task with the two different structures were significantly correlated (r = 0.5, p = 0.018). These data extend the understanding of proprioception being correlated for the same left and right joints and correlated within the same structure (e.g. ankle dorsiflexion and inversion), to include use-dependant proprioception, with performance in different structures being correlated through extended coordinated use. At the lips and jaw, it is likely that this arises from extensive coordinated use. This informs clinical assessment and suggests a potential for coordinated post-injury training of the lips and jaw, as well as having the potential to predict premorbid function via measurement of the uninjured structure, when monitoring progress and setting clinical rehabilitation goals.
Collapse
Affiliation(s)
- Ellie Frayne
- Faculty of Health Sciences, Cumberland Campus, University of Sydney, 75 East St, Lidcombe, Sydney, NSW, 2141, Australia.
| | - Susan Coulson
- Faculty of Health Sciences, Cumberland Campus, University of Sydney, 75 East St, Lidcombe, Sydney, NSW, 2141, Australia
| | - Roger Adams
- Faculty of Health Sciences, Cumberland Campus, University of Sydney, 75 East St, Lidcombe, Sydney, NSW, 2141, Australia
| | - Glen Croxson
- Faculty of Medicine, Central Clinical School, RPA Hospital, University of Sydney, Missenden Road, Camperdown, NSW, Australia
| | - Gordon Waddington
- University of Canberra, Building 12 D, Canberra, ACT, 2600, Australia
| |
Collapse
|
14
|
Tanaka Y, Yamada T, Maeda Y, Ikebe K. Markerless three-dimensional tracking of masticatory movement. J Biomech 2016; 49:442-9. [PMID: 26827172 DOI: 10.1016/j.jbiomech.2016.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/28/2015] [Accepted: 01/09/2016] [Indexed: 10/22/2022]
Abstract
Conventional methods for measuring mandibular movement are expensive and require headgear and a marker attached to the mandibular incisors. These make assessment of normal chewing difficult. The aim of the present study was to test the validity of a markerless three-dimensional system for tracking masticatory movement by comparing it with a conventional method using an incisal marker. The study investigated 100 chewing cycles in 10 participants. The jaw tracking system consisted of a camera capable of recording depth and red, green, and blue data simultaneously, a laptop computer, and data analysis software. Depth data for each participant's face, tracked in real time, produced a computed 3D mask. The most prominent point of the soft tissue under the lip was defined as the chin point. A dental clasp cemented to the labial surface of the mandibular incisors was defined as the incisal point. The movement of these two measuring points was simultaneously recorded during mastication of chewing gum for 20s. To conduct the same analysis on each cycle from the two measuring points, all cycles were normalized by dividing by the corresponding vertical displacement because of their size variation. The findings showed excellent intramethod correlation for normalized horizontal displacement at every level (>0.9; except for 2 out of 19 levels; 0.896 and 0.898), and a lack of proportional bias. These findings suggest a correlation between the chewing cycles from two measuring points, the incisor and the chin, further suggesting the feasibility of a markerless system for tracking masticatory movement.
Collapse
Affiliation(s)
- Yuto Tanaka
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takafumi Yamada
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshinobu Maeda
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazunori Ikebe
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Luo Y, Svensson P, Jensen JD, Jensen T, Neumann B, Arendt-Nielsen L, Wang K. Jaw-stretch reflex is weaker in patients after orthognathic surgery. Arch Oral Biol 2014; 59:1321-7. [PMID: 25173665 DOI: 10.1016/j.archoralbio.2014.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVES The jaw-stretch reflex (JSR) was studied in both patients and healthy participants in order to investigate the possible long-term impact of orthognathic surgery on the motor function of the masticatory system. DESIGN JSR was measured in patients before surgery (PC), 1year after surgery (PS) and in healthy controls (HC) (N=31 in each group). JSR was evoked by a standardized stretch device and recorded bilaterally from masseter and anterior temporalis muscles using surface electromyography (EMG). RESULTS The peak-to-peak amplitude (which was normalized to pre-stimulus EMG activity) of JSRs in PC and PS were significantly smaller than in HC (P<0.001; P<0.001). The onset latency in PS was significantly longer compared with HC (P<0.05). The duration of JSR in PS was significantly longer than in HC and PC (P<0.001; P<0.05). CONCLUSION Patients with dentofacial deformities are characterized by reduced JSR amplitude. The delayed onset and elongated duration of JSR might be potential indicators of a long-term surgical impact on the motor function of the masticatory system.
Collapse
Affiliation(s)
- Yi Luo
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Fredrik Bajers Vej 7 D2, 9220 Aalborg, Denmark
| | - Peter Svensson
- Section of Clinical Oral Physiology, School of Dentistry, University of Aarhus, Vennelyst Boulevard 9, DK-8000 Aarhus C, Denmark; Center of Functionally Integrative Neuroscience (CFIN), MindLab, Aarhus University Hospital, 44 Norrebrogade, Aarhus, Denmark
| | | | - Thomas Jensen
- Department of Oral & Maxillofacial Surgery, Aalborg Hospital, Aalborg, Denmark
| | - Bjarne Neumann
- Department of Oral & Maxillofacial Surgery, Aalborg Hospital, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Fredrik Bajers Vej 7 D2, 9220 Aalborg, Denmark
| | - Kelun Wang
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Fredrik Bajers Vej 7 D2, 9220 Aalborg, Denmark; Department of Oral & Maxillofacial Surgery, Aalborg Hospital, Aalborg, Denmark.
| |
Collapse
|
16
|
Sato H, Kawano T, Saito M, Toyoda H, Maeda Y, Türker KS, Kang Y. Teeth clenching reduces arm abduction force. Exp Brain Res 2014; 232:2281-91. [DOI: 10.1007/s00221-014-3919-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/15/2014] [Indexed: 12/19/2022]
|
17
|
Botulinum neurotoxin treatment improves force regulation in writer's cramp. Parkinsonism Relat Disord 2013; 19:611-6. [PMID: 23507416 DOI: 10.1016/j.parkreldis.2013.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 02/05/2013] [Accepted: 02/22/2013] [Indexed: 11/23/2022]
Abstract
Writer's cramp patients show poor force regulation during handwriting, but also in other experimental tasks requiring fine motor control. Botulinum neurotoxin (BoNT) treatment is clinically effective in a substantial portion of writer's cramp patients, but the full mechanism of action remains enigmatic. BoNT possibly influences α- and γ-motoneurons through chemodenervation not only of extra-, but also intrafusal muscle fibres and might thus influence muscle spindle afferents. Hence, BoNT weakens injected muscles, but may also modulate sensory aspects of force control. Ten patients and 18 controls pressed their index finger on a force sensor tracking two visual targets: The first target consisted of five plateaus with successively higher force levels and alternated with ascending ramps. In the second target condition the same successive plateaus were to be reached by abrupt jumps. The generated force displayed as a time dependant curve. Root mean square of the difference between target and produced force level was calculated for each plateau/ramp/jump. Patients were treated with BoNT at week 4 and measured at baseline, weeks 2, 4, 6 and 8. Disturbed force regulation in patients for the plateaus and the second jump at baseline resolved after BoNT treatment, and the root mean square of force deviation decreased for the ramps. Fine force control was within the 95% confidence interval of the control group after treatment. In conclusion, force regulation was disturbed in patients and improved after BoNT treatment. This is not compatible with a simple muscle weakening and might thus reflect improved sensorimotor integration.
Collapse
|