1
|
Oleisky ER, Stanhope ME, Hull JJ, Dickinson PS. Isoforms of the neuropeptide myosuppressin differentially modulate the cardiac neuromuscular system of the American lobster, Homarus americanus. J Neurophysiol 2022; 127:702-713. [PMID: 35044860 PMCID: PMC8897000 DOI: 10.1152/jn.00338.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Post-translational modifications (PTMs) diversify peptide structure and allow for greater flexibility within signaling networks. The cardiac neuromuscular system of the American lobster, Homarus americanus, consists of a central pattern generator, the cardiac ganglion (CG), and peripheral cardiac muscle. Together, these components produce flexible output in response to peptidergic modulation. Here, we examined the role of PTMs in determining the effects of a cardioactive neuropeptide, myosuppressin (pQDLDHVFLRFamide), on the whole heart, the neuromuscular junction/muscle, the isolated CG, and the neurons of the CG. Mature myosuppressin and non-cyclized myosuppressin (QDLDHVFLRFamide) elicited similar and significant changes in whole heart contraction amplitude and frequency, stimulated muscle contraction amplitude, and the bursting pattern of the intact and ligatured neurons of the ganglion. In the whole heart, non-amidated myosuppressin (pQDLDHVFLRFG) elicited only a small decrease in frequency and amplitude. In the absence of motor neuron input, non-amidated myosuppressin did not cause any significant changes in the amplitude of stimulated contractions. In the intact CG, non-amidated myosuppressin elicited a small but significant decrease in burst duration. Further analysis revealed a correlation between the extent of modulation elicited by non-amidated myosuppressin in the whole heart and the isolated, intact CG. When the neurons of the CG were physically decoupled, non-amidated myosuppressin elicited highly variable responses. Taken together, these data suggest that amidation, but not cyclization, is critical in enabling this peptide to exert its effects on the cardiac neuromuscular system.
Collapse
Affiliation(s)
- Emily R Oleisky
- Department of Biology, Bowdoin College, Brunswick, ME, United States
| | | | | | - Patsy S Dickinson
- Department of Biology, Bowdoin College, Brunswick, ME, United States
| |
Collapse
|
2
|
Wenning A, Chang YR, Norris BJ, Calabrese RL. The neuromuscular transform in a single segment of a segmented heart tube. J Neurophysiol 2020; 124:914-929. [PMID: 32755357 DOI: 10.1152/jn.00640.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leech hearts are hybrids; they are myogenic but need entrainment by a heartbeat central pattern generator (CPG) to execute functional constriction patterns. Leech hearts are modular: two lateral segmented heart tubes running the length of the animal. Moving blood through the segmented heart tubes of leeches requires sequential constrictions, timed by a heartbeat CPG and relayed to each heart segment by likewise segmental motor neurons. The heartbeat CPG produces bilaterally asymmetric coordinations: rear-to-front peristaltic on one side and nearly synchronous on the other, periodically switching sides. We examined the neuromuscular transform of isolated heart segments in response to electrical nerve stimulation to identify the range of parameters (burst duration, intraburst pulse frequency, period) allowing the heart to constrict continuously and reliably. Constriction amplitudes increased with increasing intraburst frequencies and decreased with decreasing burst durations. Similar amplitudes were achieved with longer burst durations combined with lower frequencies or with shorter burst durations combined with higher frequencies. Long burst durations delayed relaxation, leading to summation and tetanus. The time, and its variability, between stimulus onset and time to constriction onset or to peak decreased with increasing frequency. Data previously obtained in vivo showed that the heart excitatory motor neurons fired longer bursts at lower frequencies at long periods moving to shorter bursts with higher intraburst frequencies as the period shortened. In this scenario, active constriction started earlier and the time to reach full systole shortened, allowing more time for relaxation. Relaxation time before the next motor neuron burst appears critical for maintaining constriction amplitude.NEW & NOTEWORTHY Moving blood through the segmented heart tubes of leeches requires sequential constrictions driven by motor neurons controlled by a central pattern generator. In a single heart segment, we varied stimuli to explore the neuromuscular transform. Decreasing the cycle period, e.g., to increase volume pumped over time, without altering motor burst duration and intraburst spike frequency shortens relaxation time and decreases amplitude. The likely strategy to preserve constriction amplitude is to shorten burst duration while increasing spike frequency.
Collapse
Affiliation(s)
- Angela Wenning
- Department of Biology, Emory University, Atlanta, Georgia
| | | | - Brian J Norris
- Department of Biology, Emory University, Atlanta, Georgia.,Department of Biological Sciences, California State University, San Marcos, California
| | | |
Collapse
|
3
|
Oleisky ER, Stanhope ME, Hull JJ, Christie AE, Dickinson PS. Differential neuropeptide modulation of premotor and motor neurons in the lobster cardiac ganglion. J Neurophysiol 2020; 124:1241-1256. [PMID: 32755328 PMCID: PMC7654637 DOI: 10.1152/jn.00089.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The American lobster, Homarus americanus, cardiac neuromuscular system is controlled by the cardiac ganglion (CG), a central pattern generator consisting of four premotor and five motor neurons. Here, we show that the premotor and motor neurons can establish independent bursting patterns when decoupled by a physical ligature. We also show that mRNA encoding myosuppressin, a cardioactive neuropeptide, is produced within the CG. We thus asked whether myosuppressin modulates the decoupled premotor and motor neurons, and if so, how this modulation might underlie the role(s) that these neurons play in myosuppressin's effects on ganglionic output. Although myosuppressin exerted dose-dependent effects on burst frequency and duration in both premotor and motor neurons in the intact CG, its effects on the ligatured ganglion were more complex, with different effects and thresholds on the two types of neurons. These data suggest that the motor neurons are more important in determining the changes in frequency of the CG elicited by low concentrations of myosuppressin, whereas the premotor neurons have a greater impact on changes elicited in burst duration. A single putative myosuppressin receptor (MSR-I) was previously described from the Homarus nervous system. We identified four additional putative MSRs (MSR-II-V) and investigated their individual distributions in the CG premotor and motor neurons using RT-PCR. Transcripts for only three receptors (MSR-II-IV) were amplified from the CG. Potential differential distributions of the receptors were observed between the premotor and motor neurons; these differences may contribute to the distinct physiological responses of the two neuron types to myosuppressin.NEW & NOTEWORTHY Premotor and motor neurons of the Homarus americanus cardiac ganglion (CG) are normally electrically and chemically coupled, and generate rhythmic bursting that drives cardiac contractions; we show that they can establish independent bursting patterns when physically decoupled by a ligature. The neuropeptide myosuppressin modulates different aspects of the bursting pattern in these neuron types to determine the overall modulation of the intact CG. Differential distribution of myosuppressin receptors may underlie the observed responses to myosuppressin.
Collapse
Affiliation(s)
| | | | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, Arizona
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
| | | |
Collapse
|
4
|
Synaptic Strengths Dominate Phasing of Motor Circuit: Intrinsic Conductances of Neuron Types Need Not Vary across Animals. eNeuro 2019; 6:ENEURO.0417-18.2019. [PMID: 31270128 PMCID: PMC6709225 DOI: 10.1523/eneuro.0417-18.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 11/21/2022] Open
Abstract
Identified neurons and the networks they compose produce stereotypical, albeit individually unique, activity across members of a species. We propose, for a motor circuit driven by a central pattern generator (CPG), that the uniqueness derives mainly from differences in synaptic strength rather than from differences in intrinsic membrane conductances. We studied a dataset of recordings from six leech (Hirudo sp.) heartbeat control networks, containing complete spiking activity patterns from inhibitory premotor interneurons, motor output spike patterns, and synaptic strength patterns to investigate the source of uniqueness. We used a conductance-based multicompartmental motor neuron model to construct a bilateral motor circuit model, and controlled it by playing recorded input spike trains from premotor interneurons to generate output inhibitory synaptic patterns similar to experimental measurements. By generating different synaptic conductance parameter sets of this circuit model, we found that relative premotor synaptic strengths impinging onto motor neurons must be different across individuals to produce animal-specific output burst phasing. Obtaining unique outputs from each individual’s circuit model did not require different intrinsic ionic conductance parameters. Furthermore, changing intrinsic conductances failed to compensate for modified synaptic strength patterns. Thus, the pattern of synaptic strengths of motor neuron inputs is critical for the phasing of this motor circuit and can explain individual differences. When intrinsic conductances were allowed to vary, they exhibited the same conductance correlations across individuals, suggesting a motor neuron “type” required for proper network function. Our results are general and may translate to other systems and neuronal networks that control output phasing.
Collapse
|
5
|
Schulz DJ, Lane BJ. Homeostatic plasticity of excitability in crustacean central pattern generator networks. Curr Opin Neurobiol 2017; 43:7-14. [PMID: 27721084 PMCID: PMC5382137 DOI: 10.1016/j.conb.2016.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 08/24/2016] [Accepted: 09/24/2016] [Indexed: 12/14/2022]
Abstract
Plasticity of excitability can come in two general forms: changes in excitability that alter neuronal output (e.g. long-term potentiation of intrinsic excitability) or excitability changes that stabilize neuronal output (homeostatic plasticity). Here we discuss the latter form of plasticity in the context of the crustacean stomatogastric nervous system, and a second central pattern generator circuit, the cardiac ganglion. We discuss this plasticity at three levels: rapid homeostatic changes in membrane conductance, longer-term effects of neuromodulation on excitability, and the impacts of activity-dependent feedback on steady-state channel mRNA levels. We then conclude with thoughts on the implications of plasticity of excitability for variability of conductance levels across populations of motor neurons.
Collapse
Affiliation(s)
- David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211 USA.
| | - Brian J Lane
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
6
|
Otopalik AG, Sutton AC, Banghart M, Marder E. When complex neuronal structures may not matter. eLife 2017; 6. [PMID: 28165322 PMCID: PMC5323043 DOI: 10.7554/elife.23508] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
Much work has explored animal-to-animal variability and compensation in ion channel expression. Yet, little is known regarding the physiological consequences of morphological variability. We quantify animal-to-animal variability in cable lengths (CV = 0.4) and branching patterns in the Gastric Mill (GM) neuron, an identified neuron type with highly-conserved physiological properties in the crustacean stomatogastric ganglion (STG) of Cancer borealis. We examined passive GM electrotonic structure by measuring the amplitudes and apparent reversal potentials (Erevs) of inhibitory responses evoked with focal glutamate photo-uncaging in the presence of TTX. Apparent Erevs were relatively invariant across sites (mean CV ± SD = 0.04 ± 0.01; 7–20 sites in each of 10 neurons), which ranged between 100–800 µm from the somatic recording site. Thus, GM neurons are remarkably electrotonically compact (estimated λ > 1.5 mm). Electrotonically compact structures, in consort with graded transmission, provide an elegant solution to observed morphological variability in the STG. DOI:http://dx.doi.org/10.7554/eLife.23508.001
Collapse
Affiliation(s)
- Adriane G Otopalik
- Volen Center, Biology Department, Brandeis University, Waltham, United States
| | - Alexander C Sutton
- Volen Center, Biology Department, Brandeis University, Waltham, United States
| | - Matthew Banghart
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Eve Marder
- Volen Center, Biology Department, Brandeis University, Waltham, United States
| |
Collapse
|
7
|
Northcutt AJ, Lett KM, Garcia VB, Diester CM, Lane BJ, Marder E, Schulz DJ. Deep sequencing of transcriptomes from the nervous systems of two decapod crustaceans to characterize genes important for neural circuit function and modulation. BMC Genomics 2016; 17:868. [PMID: 27809760 PMCID: PMC5096308 DOI: 10.1186/s12864-016-3215-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Crustaceans have been studied extensively as model systems for nervous system function from single neuron properties to behavior. However, lack of molecular sequence information and tools have slowed the adoption of these physiological systems as molecular model systems. In this study, we sequenced and performed de novo assembly for the nervous system transcriptomes of two decapod crustaceans: the Jonah crab (Cancer borealis) and the American lobster (Homarus americanus). RESULTS Forty-two thousand, seven hundred sixty-six and sixty thousand, two hundred seventy-three contigs were assembled from C. borealis and H. americanus respectively, representing 9,489 and 11,061 unique coding sequences. From these transcripts, genes associated with neural function were identified and manually curated to produce a characterization of multiple gene families important for nervous system function. This included genes for 34 distinct ion channel types, 17 biogenic amine and 5 GABA receptors, 28 major transmitter receptor subtypes including glutamate and acetylcholine receptors, and 6 gap junction proteins - the Innexins. CONCLUSION With this resource, crustacean model systems are better poised for incorporation of modern genomic and molecular biology technologies to further enhance the interrogation of fundamentals of nervous system function.
Collapse
Affiliation(s)
- Adam J. Northcutt
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Kawasi M. Lett
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Virginia B. Garcia
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Clare M. Diester
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Brian J. Lane
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA USA
| | - David J. Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO USA
| |
Collapse
|
8
|
Devenyi RA, Sobie EA. There and back again: Iterating between population-based modeling and experiments reveals surprising regulation of calcium transients in rat cardiac myocytes. J Mol Cell Cardiol 2016; 96:38-48. [PMID: 26235057 PMCID: PMC4733425 DOI: 10.1016/j.yjmcc.2015.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/08/2015] [Accepted: 07/22/2015] [Indexed: 01/17/2023]
Abstract
While many ion channels and transporters involved in cardiac cellular physiology have been identified and described, the relative importance of each in determining emergent cellular behaviors remains unclear. Here we address this issue with a novel approach that combines population-based mathematical modeling with experimental tests to systematically quantify the relative contributions of different ion channels and transporters to the amplitude of the cellular Ca(2+) transient. Sensitivity analysis of a mathematical model of the rat ventricular cardiomyocyte quantified the response of cell behaviors to changes in the level of each ion channel and transporter, and experimental tests of these predictions were performed to validate or invalidate the predictions. The model analysis found that partial inhibition of the transient outward current in rat ventricular epicardial myocytes was predicted to have a greater impact on Ca(2+) transient amplitude than either: (1) inhibition of the same current in endocardial myocytes, or (2) comparable inhibition of the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA). Experimental tests confirmed the model predictions qualitatively but showed some quantitative disagreement. This guided us to recalibrate the model by adjusting the relative importance of several Ca(2+) fluxes, thereby improving the consistency with experimental data and producing a more predictive model. Analysis of human cardiomyocyte models suggests that the relative importance of outward currents to Ca(2+) transporters is generalizable to human atrial cardiomyocytes, but not ventricular cardiomyocytes. Overall, our novel approach of combining population-based mathematical modeling with experimental tests has yielded new insight into the relative importance of different determinants of cell behavior.
Collapse
Affiliation(s)
- Ryan A Devenyi
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, USA
| | - Eric A Sobie
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, USA.
| |
Collapse
|
9
|
Fletcher P, Bertram R, Tabak J. From global to local: exploring the relationship between parameters and behaviors in models of electrical excitability. J Comput Neurosci 2016; 40:331-45. [PMID: 27033230 DOI: 10.1007/s10827-016-0600-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 01/25/2023]
Abstract
Models of electrical activity in excitable cells involve nonlinear interactions between many ionic currents. Changing parameters in these models can produce a variety of activity patterns with sometimes unexpected effects. Further more, introducing new currents will have different effects depending on the initial parameter set. In this study we combined global sampling of parameter space and local analysis of representative parameter sets in a pituitary cell model to understand the effects of adding K (+) conductances, which mediate some effects of hormone action on these cells. Global sampling ensured that the effects of introducing K (+) conductances were captured across a wide variety of contexts of model parameters. For each type of K (+) conductance we determined the types of behavioral transition that it evoked. Some transitions were counterintuitive, and may have been missed without the use of global sampling. In general, the wide range of transitions that occurred when the same current was applied to the model cell at different locations in parameter space highlight the challenge of making accurate model predictions in light of cell-to-cell heterogeneity. Finally, we used bifurcation analysis and fast/slow analysis to investigate why specific transitions occur in representative individual models. This approach relies on the use of a graphics processing unit (GPU) to quickly map parameter space to model behavior and identify parameter sets for further analysis. Acceleration with modern low-cost GPUs is particularly well suited to exploring the moderate-sized (5-20) parameter spaces of excitable cell and signaling models.
Collapse
Affiliation(s)
- Patrick Fletcher
- Currently at the Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard Bertram
- Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA.
| | - Joel Tabak
- Currently at the University of Exeter Medical School, Biomedical Neuroscience Research Group, EX4 4PS, Exeter, UK
| |
Collapse
|
10
|
Cullins MJ, Shaw KM, Gill JP, Chiel HJ. Motor neuronal activity varies least among individuals when it matters most for behavior. J Neurophysiol 2014; 113:981-1000. [PMID: 25411463 DOI: 10.1152/jn.00729.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
How does motor neuronal variability affect behavior? To explore this question, we quantified activity of multiple individual identified motor neurons mediating biting and swallowing in intact, behaving Aplysia californica by recording from the protractor muscle and the three nerves containing the majority of motor neurons controlling the feeding musculature. We measured multiple motor components: duration of the activity of identified motor neurons as well as their relative timing. At the same time, we measured behavioral efficacy: amplitude of grasping movement during biting and amplitude of net inward food movement during swallowing. We observed that the total duration of the behaviors varied: Within animals, biting duration shortened from the first to the second and third bites; between animals, biting and swallowing durations varied. To study other sources of variation, motor components were divided by behavior duration (i.e., normalized). Even after normalization, distributions of motor component durations could distinguish animals as unique individuals. However, the degree to which a motor component varied among individuals depended on the role of that motor component in a behavior. Motor neuronal activity that was essential for the expression of biting or swallowing was similar among animals, whereas motor neuronal activity that was not essential for that behavior varied more from individual to individual. These results suggest that motor neuronal activity that matters most for the expression of a particular behavior may vary least from individual to individual. Shaping individual variability to ensure behavioral efficacy may be a general principle for the operation of motor systems.
Collapse
Affiliation(s)
- Miranda J Cullins
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Kendrick M Shaw
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Jeffrey P Gill
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Hillel J Chiel
- Departments of Biology, Neurosciences, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
11
|
Golowasch J. Ionic Current Variability and Functional Stability in the Nervous System. Bioscience 2014; 64:570-580. [PMID: 26069342 DOI: 10.1093/biosci/biu070] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Identified neurons in different animals express ionic currents at highly variable levels (population variability). If neuronal identity is associated with stereotypical function, as is the case in genetically identical neurons or in unambiguously identified individual neurons, this variability poses a conundrum: How is activity the same if the components that generate it-ionic current levels-are different? In some cases, ionic current variability across similar neurons generates an output gradient. However, many neurons produce very similar output activity, despite substantial variability in ionic conductances. It appears that, in many such cells, conductance levels of one ionic current vary in proportion to the conductance levels of another current. As a result, in a population of neurons, these conductances appear to be correlated. Here, I review theoretical and experimental work that suggests that neuronal ionic current correlation can reduce the global ionic current variability and can contribute to functional stability.
Collapse
Affiliation(s)
- Jorge Golowasch
- Federated Department of Biological Sciences, at the New Jersey Institute of Technology and Rutgers University, in Newark
| |
Collapse
|
12
|
The neuromuscular transform of the lobster cardiac system explains the opposing effects of a neuromodulator on muscle output. J Neurosci 2013; 33:16565-75. [PMID: 24133260 DOI: 10.1523/jneurosci.2903-13.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Motor neuron activity is transformed into muscle movement through a cascade of complex molecular and biomechanical events. This nonlinear mapping of neural inputs to motor behaviors is called the neuromuscular transform (NMT). We examined the NMT in the cardiac system of the lobster Homarus americanus by stimulating a cardiac motor nerve with rhythmic bursts of action potentials and measuring muscle movements in response to different stimulation patterns. The NMT was similar across preparations, which suggested that it could be used to predict muscle movement from spontaneous neural activity in the intact heart. We assessed this possibility across semi-intact heart preparations in two separate analyses. First, we performed a linear regression analysis across 122 preparations in physiological saline to predict muscle movements from neural activity. Under these conditions, the NMT was predictive of contraction duty cycle but was unable to predict contraction amplitude, likely as a result of uncontrolled interanimal variability. Second, we assessed the ability of the NMT to predict changes in motor output induced by the neuropeptide C-type allatostatin. Wiwatpanit et al. (2012) showed that bath application of C-type allatostatin produced either increases or decreases in the amplitude of the lobster heart contractions. We show that an important component of these preparation-dependent effects can arise from quantifiable differences in the basal state of each preparation and the nonlinear form of the NMT. These results illustrate how properly characterizing the relationships between neural activity and measurable physiological outputs can provide insight into seemingly idiosyncratic effects of neuromodulators across individuals.
Collapse
|