1
|
Kozma MT, Ngo-Vu H, Rump MT, Bobkov YV, Ache BW, Derby CD. Single cell transcriptomes reveal expression patterns of chemoreceptor genes in olfactory sensory neurons of the Caribbean spiny lobster, Panulirus argus. BMC Genomics 2020; 21:649. [PMID: 32962631 PMCID: PMC7510291 DOI: 10.1186/s12864-020-07034-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Crustaceans express several classes of receptor genes in their antennules, which house olfactory sensory neurons (OSNs) and non-olfactory chemosensory neurons. Transcriptomics studies reveal that candidate chemoreceptor proteins include variant Ionotropic Receptors (IRs) including both co-receptor IRs and tuning IRs, Transient Receptor Potential (TRP) channels, Gustatory Receptors, epithelial sodium channels, and class A G-protein coupled receptors (GPCRs). The Caribbean spiny lobster, Panulirus argus, expresses in its antennules nearly 600 IRs, 17 TRP channels, 1 Gustatory Receptor, 7 epithelial sodium channels, 81 GPCRs, 6 G proteins, and dozens of enzymes in signaling pathways. However, the specific combinatorial expression patterns of these proteins in single sensory neurons are not known for any crustacean, limiting our understanding of how their chemosensory systems encode chemical quality. RESULTS The goal of this study was to use transcriptomics to describe expression patterns of chemoreceptor genes in OSNs of P. argus. We generated and analyzed transcriptomes from 7 single OSNs, some of which were shown to respond to a food odor, as well as an additional 7 multicell transcriptomes from preparations containing few (2-4), several (ca. 15), or many (ca. 400) OSNs. We found that each OSN expressed the same 2 co-receptor IRs (IR25a, IR93a) but not the other 2 antennular coIRs (IR8a, IR76b), 9-53 tuning IRs but only one to a few in high abundance, the same 5 TRP channels plus up to 5 additional TRPs, 12-17 GPCRs including the same 5 expressed in every single cell transcriptome, the same 3 G proteins plus others, many enzymes in the signaling pathways, but no Gustatory Receptors or epithelial sodium channels. The greatest difference in receptor expression among the OSNs was the identity of the tuning IRs. CONCLUSIONS Our results provide an initial view of the combinatorial expression patterns of receptor molecules in single OSNs in one species of decapod crustacean, including receptors directly involved in olfactory transduction and others likely involved in modulation. Our results also suggest differences in receptor expression in OSNs vs. other chemosensory neurons.
Collapse
Affiliation(s)
- Mihika T Kozma
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Hanh Ngo-Vu
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Matthew T Rump
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Yuriy V Bobkov
- Whitney Laboratory, University of Florida, St. Augustine, Florida, 32084, USA
| | - Barry W Ache
- Whitney Laboratory, University of Florida, St. Augustine, Florida, 32084, USA
| | - Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
2
|
Ukhanov K, Bobkov YV, Martens JR, Ache BW. Initial Characterization of a Subpopulation of Inherent Oscillatory Mammalian Olfactory Receptor Neurons. Chem Senses 2020; 44:583-592. [PMID: 31420672 DOI: 10.1093/chemse/bjz052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Published evidence suggests that inherent rhythmically active or "bursting" primary olfactory receptor neurons (bORNs) in crustaceans have the previously undescribed functional property of encoding olfactory information by having their rhythmicity entrained by the odor stimulus. In order to determine whether such bORN-based encoding is a fundamental feature of olfaction that extends beyond crustaceans, we patch-clamped bORN-like ORNs in mice, characterized their dynamic properties, and show they align with the dynamic properties of lobster bORNs. We then characterized bORN-like activity by imaging the olfactory epithelium of OMP-GCaMP6f mice. Next, we showed rhythmic activity is not dependent upon the endogenous OR by patching ORNs in OR/GFP mice. Lastly, we showed the properties of bORN-like ORNs characterized in mice generalize to rats. Our findings suggest encoding odor time should be viewed as a fundamental feature of olfaction with the potential to be used to navigate odor plumes in animals as diverse as crustaceans and mammals.
Collapse
Affiliation(s)
- Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Yuriy V Bobkov
- Whitney Laboratory, University of Florida, USA.,Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Barry W Ache
- Whitney Laboratory, University of Florida, USA.,Departments of Biology and Neuroscience, University of Florida, USA.,Center for Smell and Taste, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Interpreting the Spatial-Temporal Structure of Turbulent Chemical Plumes Utilized in Odor Tracking by Lobsters. FLUIDS 2020. [DOI: 10.3390/fluids5020082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Olfactory systems in animals play a major role in finding food and mates, avoiding predators, and communication. Chemical tracking in odorant plumes has typically been considered a spatial information problem where individuals navigate towards higher concentration. Recent research involving chemosensory neurons in the spiny lobster, Panulirus argus, show they possess rhythmically active or ‘bursting’ olfactory receptor neurons that respond to the intermittency in the odor signal. This suggests a possible, previously unexplored olfactory search strategy that enables lobsters to utilize the temporal variability within a turbulent plume to track the source. This study utilized computational fluid dynamics to simulate the turbulent dispersal of odorants and assess a number of search strategies thought to aid lobsters. These strategies include quantification of concentration magnitude using chemosensory antennules and leg chemosensors, simultaneous sampling of water velocities using antennule mechanosensors, and utilization of antennules to quantify intermittency of the odorant plume. Results show that lobsters can utilize intermittency in the odorant signal to track an odorant plume faster and with greater success in finding the source than utilizing concentration alone. However, the additional use of lobster leg chemosensors reduced search time compared to both antennule intermittency and concentration strategies alone by providing spatially separated odorant sensors along the body.
Collapse
|
4
|
Michaelis BT, Leathers KW, Bobkov YV, Ache BW, Principe JC, Baharloo R, Park IM, Reidenbach MA. Odor tracking in aquatic organisms: the importance of temporal and spatial intermittency of the turbulent plume. Sci Rep 2020; 10:7961. [PMID: 32409665 PMCID: PMC7224200 DOI: 10.1038/s41598-020-64766-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/20/2020] [Indexed: 12/02/2022] Open
Abstract
In aquatic and terrestrial environments, odorants are dispersed by currents that create concentration distributions that are spatially and temporally complex. Animals navigating in a plume must therefore rely upon intermittent, and time-varying information to find the source. Navigation has typically been studied as a spatial information problem, with the aim of movement towards higher mean concentrations. However, this spatial information alone, without information of the temporal dynamics of the plume, is insufficient to explain the accuracy and speed of many animals tracking odors. Recent studies have identified a subpopulation of olfactory receptor neurons (ORNs) that consist of intrinsically rhythmically active 'bursting' ORNs (bORNs) in the lobster, Panulirus argus. As a population, bORNs provide a neural mechanism dedicated to encoding the time between odor encounters. Using a numerical simulation of a large-scale plume, the lobster is used as a framework to construct a computer model to examine the utility of intermittency for orienting within a plume. Results show that plume intermittency is reliably detectable when sampling simulated odorants on the order of seconds, and provides the most information when animals search along the plume edge. Both the temporal and spatial variation in intermittency is predictably structured on scales relevant for a searching animal that encodes olfactory information utilizing bORNs, and therefore is suitable and useful as a navigational cue.
Collapse
Affiliation(s)
- Brenden T Michaelis
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Kyle W Leathers
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
| | - Yuriy V Bobkov
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Barry W Ache
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Departments of Biology and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jose C Principe
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Raheleh Baharloo
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Il Memming Park
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Matthew A Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Kamio M, Derby CD. Finding food: how marine invertebrates use chemical cues to track and select food. Nat Prod Rep 2017; 34:514-528. [DOI: 10.1039/c6np00121a] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers recent research on how marine invertebrates use chemical cues to find and select food.
Collapse
Affiliation(s)
- Michiya Kamio
- Tokyo University of Marine Science and Technology
- Tokyo 108-8477
- Japan
| | | |
Collapse
|
6
|
Ache BW, Hein AM, Bobkov YV, Principe JC. Smelling Time: A Neural Basis for Olfactory Scene Analysis. Trends Neurosci 2016; 39:649-655. [PMID: 27594700 PMCID: PMC5048551 DOI: 10.1016/j.tins.2016.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/29/2016] [Accepted: 08/14/2016] [Indexed: 11/17/2022]
Abstract
Behavioral evidence from phylogenetically diverse animals and from humans suggests that, by extracting temporal information inherent in the olfactory signal, olfaction is more involved in interpreting space and time than heretofore imagined. If this is the case, the olfactory system must have neural mechanisms capable of encoding time at intervals relevant to the turbulent odor world in which many animals live. Here, we review evidence that animals can use populations of rhythmically active or 'bursting' olfactory receptor neurons (bORNs) to extract and encode temporal information inherent in natural olfactory signals. We postulate that bORNs represent an unsuspected neural mechanism through which time can be accurately measured, and that 'smelling time' completes the requirements for true olfactory scene analysis.
Collapse
Affiliation(s)
- Barry W Ache
- Whitney Laboratory for Marine Biosciences, Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Biology, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| | - Andrew M Hein
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Yuriy V Bobkov
- Whitney Laboratory for Marine Biosciences, Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jose C Principe
- Department of Electrical and Computer Engineering and Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Park IJ, Hein AM, Bobkov YV, Reidenbach MA, Ache BW, Principe JC. Neurally Encoding Time for Olfactory Navigation. PLoS Comput Biol 2016; 12:e1004682. [PMID: 26730727 PMCID: PMC4711578 DOI: 10.1371/journal.pcbi.1004682] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022] Open
Abstract
Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal’s ability to locate the source of odor cues in realistic turbulent environments—a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing. Many animals navigate turbulent environments using odor cues, a behavior known as olfactory search. We propose a neural mechanism for olfactory search based on evidence that a functional subset of olfactory receptor neurons (ORNs) called bursting ORNs or bORNs can encode the time intervals between successive encounters with odor. We show that these time intervals are estimators of the recurrence time, an information-rich statistic of the turbulent flow. Using a computational model parameterized with data from an actual turbulent plume, we demonstrate that a searcher can locate an odor source efficiently using only input from bORNs. These findings provide scientific evidence that the most important navigational information captured by the olfactory system may come in the form of measurements of time.
Collapse
Affiliation(s)
- In Jun Park
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Andrew M. Hein
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| | - Yuriy V. Bobkov
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
- Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Matthew A. Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Barry W. Ache
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
- Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- Departments of Biology and Neuroscience, University of Florida, Gainesville, Florida, United States of America
| | - Jose C. Principe
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
8
|
Intermittency coding in the primary olfactory system: a neural substrate for olfactory scene analysis. J Neurosci 2014; 34:941-52. [PMID: 24431452 DOI: 10.1523/jneurosci.2204-13.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The spatial and temporal characteristics of the visual and acoustic sensory input are indispensable attributes for animals to perform scene analysis. In contrast, research in olfaction has focused almost exclusively on how the nervous system analyzes the quality and quantity of the sensory signal and largely ignored the spatiotemporal dimension especially in longer time scales. Yet, detailed analyses of the turbulent, intermittent structure of water- and air-borne odor plumes strongly suggest that spatio-temporal information in longer time scales can provide major cues for olfactory scene analysis for animals. We show that a bursting subset of primary olfactory receptor neurons (bORNs) in lobster has the unexpected capacity to encode the temporal properties of intermittent odor signals. Each bORN is tuned to a specific range of stimulus intervals, and collectively bORNs can instantaneously encode a wide spectrum of intermittencies. Our theory argues for the existence of a novel peripheral mechanism for encoding the temporal pattern of odor that potentially serves as a neural substrate for olfactory scene analysis.
Collapse
|
9
|
The role of coupling strength and internal delay between compartments in shaping the bursting behavior of cortical neuron. Neurol Sci 2014; 35:883-9. [DOI: 10.1007/s10072-013-1619-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/19/2013] [Indexed: 11/30/2022]
|
10
|
Tadesse T, Derby CD, Schmidt M. Mechanisms underlying odorant-induced and spontaneous calcium signals in olfactory receptor neurons of spiny lobsters, Panulirus argus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:53-76. [PMID: 24178131 DOI: 10.1007/s00359-013-0861-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 12/19/2022]
Abstract
We determined if a newly developed antennule slice preparation allows studying chemosensory properties of spiny lobster olfactory receptor neurons under in situ conditions with Ca(2+) imaging. We show that chemical stimuli reach the dendrites of olfactory receptor neurons but not their somata, and that odorant-induced Ca(2+) signals in the somata are sufficiently stable over time to allow stimulation with a substantial number of odorants. Pharmacological manipulations served to elucidate the source of odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons. Both Ca(2+) signals are primarily mediated by an influx of extracellular Ca(2+) through voltage-activated Ca(2+) channels that can be blocked by CoCl2 and the L-type Ca(2+) channel blocker verapamil. Intracellular Ca(2+) stores contribute little to odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations. The odorant-induced Ca(2+) transients as well as the spontaneous Ca(2+) oscillations depend on action potentials mediated by Na(+) channels that are largely TTX-insensitive but blocked by the local anesthetics tetracaine and lidocaine. Collectively, these results corroborate the conclusion that odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons closely reflect action potential activity associated with odorant-induced phasic-tonic responses and spontaneous bursting, respectively. Therefore, both types of Ca(2+) signals represent experimentally accessible proxies of spiking.
Collapse
Affiliation(s)
- Tizeta Tadesse
- Neuroscience Institute and Department of Biology, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302-5030, USA
| | | | | |
Collapse
|
11
|
Park IJ, Bobkov YV, Ache BW, Principe JC. Quantifying bursting neuron activity from calcium signals using blind deconvolution. J Neurosci Methods 2013; 218:196-205. [PMID: 23711821 DOI: 10.1016/j.jneumeth.2013.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 11/26/2022]
Abstract
Advances in calcium imaging have enabled studies of the dynamic activity of both individual neurons and neuronal assemblies. However, challenges, such as unknown nonlinearities in the spike-calcium relationship, noise, and the often relatively low temporal resolution of the calcium signal compared to the time-scale of spike generation, restrict the accurate estimation of action potentials from the calcium signal. Complex neuronal discharge, such as the activity demonstrated by bursting and rhythmically active neurons, represents an even greater challenge for reconstructing spike trains based on calcium signals. We propose a method using blind calcium signal deconvolution based on an information-theoretic approach. This model is meant to maximise the output entropy of a nonlinear filter where the nonlinearity is defined by the cumulative distribution function of the spike signal. We tested our maximum entropy (ME) algorithm using bursting olfactory receptor neurons (bORNs) of the lobster olfactory organ. The advantage of the ME algorithm is that the filter can be trained online based only on the statistics of the spike signal, without any assumptions regarding the unknown transfer function characterizing the relation between the spike and calcium signal. We show that the ME method is able to more accurately reconstruct the timing of the first and last spikes of a burst compared to other methods and that it improves the temporal precision fivefold compared to direct timing resolution of calcium signal.
Collapse
Affiliation(s)
- In Jun Park
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
12
|
Bobkov Y, Park I, Ukhanov K, Principe J, Ache B. Cellular basis for response diversity in the olfactory periphery. PLoS One 2012; 7:e34843. [PMID: 22514675 PMCID: PMC3325939 DOI: 10.1371/journal.pone.0034843] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
An emerging idea in olfaction is that temporal coding of odor specificity can be intrinsic to the primary olfactory receptor neurons (ORNs). As a first step towards understanding whether lobster ORNs are capable of generating odor-specific temporal activity and what mechanisms underlie any such heterogeneity in discharge pattern, we characterized different patterns of activity in lobster ORNs individually and ensemble using patch-clamp recording and calcium imaging. We demonstrate that lobster ORNs show tonic excitation, tonic inhibition, phaso-tonic excitation, and bursting, and that these patterns are faithfully reflected in the calcium signal. We then demonstrate that the various dynamic patterns of response are inherent in the cells, and that this inherent heterogeneity is largely determined by heterogeneity in the underlying intrinsic conductances.
Collapse
Affiliation(s)
- Yuriy Bobkov
- Whitney Laboratory, Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America.
| | | | | | | | | |
Collapse
|
13
|
Lei H, Reisenman CE, Wilson CH, Gabbur P, Hildebrand JG. Spiking patterns and their functional implications in the antennal lobe of the tobacco hornworm Manduca sexta. PLoS One 2011; 6:e23382. [PMID: 21897842 PMCID: PMC3163580 DOI: 10.1371/journal.pone.0023382] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/15/2011] [Indexed: 11/18/2022] Open
Abstract
Bursting as well as tonic firing patterns have been described in various sensory systems. In the olfactory system, spontaneous bursts have been observed in neurons distributed across several synaptic levels, from the periphery, to the olfactory bulb (OB) and to the olfactory cortex. Several in vitro studies indicate that spontaneous firing patterns may be viewed as “fingerprints” of different types of neurons that exhibit distinct functions in the OB. It is still not known, however, if and how neuronal burstiness is correlated with the coding of natural olfactory stimuli. We thus conducted an in vivo study to probe this question in the OB equivalent structure of insects, the antennal lobe (AL) of the tobacco hornworm Manduca sexta. We found that in the moth's AL, both projection (output) neurons (PNs) and local interneurons (LNs) are spontaneously active, but PNs tend to produce spike bursts while LNs fire more regularly. In addition, we found that the burstiness of PNs is correlated with the strength of their responses to odor stimulation – the more bursting the stronger their responses to odors. Moreover, the burstiness of PNs was also positively correlated with the spontaneous firing rate of these neurons, and pharmacological reduction of bursting resulted in a decrease of the neurons' responsiveness. These results suggest that neuronal burstiness reflects a physiological state of these neurons that is directly linked to their response characteristics.
Collapse
Affiliation(s)
- Hong Lei
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America.
| | | | | | | | | |
Collapse
|
14
|
Ukhanov K, Bobkov Y, Ache BW. Imaging ensemble activity in arthropod olfactory receptor neurons in situ. Cell Calcium 2011; 49:100-7. [PMID: 21232792 DOI: 10.1016/j.ceca.2010.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
Abstract
We show that lobster olfactory receptor neurons (ORNs), much like their vertebrate counterparts, generate a transient elevation of intracellular calcium (Ca(i)) in response to odorant activation that can be used to monitor ensemble ORN activity. This is done in antennal slice preparation in situ maintaining the polarity of the cells and the normal micro-environment of the olfactory cilia. The Ca(i) signal is ligand-specific and increases in a dose-dependent manner in response to odorant stimulation. Saturating stimulation elicits a robust increase of up to 1 μM free Ca(i) within 1-2s of stimulation. The odor-induced Ca(i) response closely follows the discharge pattern of extracellular spikes elicited by odorant application, with the maximal rise in Ca(i) matching the peak of the spike generation. The Ca(i) signal can be used to track neuronal activity in a functional subpopulation of rhythmically active ORNs and discriminate it from that of neighboring tonically active ORNs. Being able to record from many ORNs simultaneously over an extended period of time not only allows more accurate estimates of neuronal population activity but also dramatically improves the ability to identify potential new functional subpopulations of ORNs, especially those with more subtle differences in responsiveness, ligand specificity, and/or transduction mechanisms.
Collapse
Affiliation(s)
- K Ukhanov
- Whitney Laboratory, Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
15
|
Affiliation(s)
- Barry W Ache
- Center for Smell and Taste, University of Florida, Gainesville, 32610, USA.
| |
Collapse
|
16
|
Flecke C, Stengl M. Octopamine and tyramine modulate pheromone-sensitive olfactory sensilla of the hawkmoth Manduca sexta in a time-dependent manner. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:529-45. [PMID: 19301013 DOI: 10.1007/s00359-009-0429-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 02/11/2009] [Accepted: 02/22/2009] [Indexed: 10/21/2022]
Abstract
In moths octopamine improved pheromone-dependent mate search time dependently. In the nocturnal hawkmoth Manduca sexta long-term tip recordings of trichoid sensilla were performed to investigate whether biogenic amines modulate pheromone transduction time dependently. At three Zeitgebertimes octopamine, tyramine and the octopamine antagonist epinastine were applied during non-adapting pheromone-stimulation. At ZT 8-11, during the photophase, when sensilla were adapted, octopamine and to a lesser extent tyramine increased the bombykal-dependent sensillar potential amplitude and initial action potential (AP) frequency. In addition, during the photophase, when sensilla are less able to resolve pheromone pulses, octopamine rendered pheromone responses more phasic and sensitive, and raised the spontaneous AP frequency. During the late scotophase, at ZT 22-1, when the antenna appeared maximally sensitized for pheromone pulse detection and endogenous octopamine levels are high, exogenously applied octopamine was ineffective. Epinastine blocked the pheromone-dependent AP response at ZT 8-11 and slightly affected it at ZT 22-1, while it had no effect on the sensillar potential amplitude. Epinastine decreased the spontaneous AP activity during photophase and scotophase and rendered pheromone responses more tonic in the scotophase. We hypothesize that the presence of octopamine in the antenna is obligatory for the detection of intermittent pheromone pulses at all Zeitgebertimes.
Collapse
Affiliation(s)
- Christian Flecke
- Biologie, Tierphysiologie, Philipps-Universität Marburg, 35032, Marburg, Germany.
| | | |
Collapse
|
17
|
Differential expression of three T-type calcium channels in retinal bipolar cells in rats. Vis Neurosci 2009; 26:177-87. [PMID: 19275782 DOI: 10.1017/s0952523809090026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Retinal bipolar cells convey visual information from photoreceptors to retinal third-order neurons, amacrine and ganglion cells, with graded potentials through diversified cell types. To understand the possible role of voltage-dependent T-type Ca2+ currents in retinal bipolar cells, we investigated the pharmacological and biophysical properties of T-type Ca2+ currents in acutely dissociated retinal cone bipolar cells from rats using whole-cell patch-clamp recordings. We observed a broad group of cone bipolar cells with prominent T-type Ca2+ currents (T-rich) and another group with prominent L-type Ca2+ currents (L-rich). Based on the pharmacological and biophysical properties of the T-type Ca2+ currents, T-rich cone bipolar cells could be divided into three subgroups. Each subgroup appeared to express a single dominant T-type Ca2+ channel subunit. The T-type calcium currents could generate low-threshold regenerative potentials or spikes. Our results suggest that T-type Ca2+ channels may play an active and distinct signaling role in second-order neurons of the visual system, in contrast to the common signaling by L-rich bipolar cells.
Collapse
|
18
|
Pezier A, Bobkov YV, Ache BW. The Na+/Ca2+ exchanger inhibitor, KB-R7943, blocks a nonselective cation channel implicated in chemosensory transduction. J Neurophysiol 2008; 101:1151-9. [PMID: 19118110 DOI: 10.1152/jn.90903.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanism(s) of olfactory transduction in invertebrates remains to be fully understood. In lobster olfactory receptor neurons (ORNs), a nonselective sodium-gated cation (SGC) channel, a presumptive transient receptor potential (TRP)C channel homolog, plays a crucial role in olfactory transduction, at least in part by amplifying the primary transduction current. To better determine the functional role of the channel, it is important to selectively block the channel independently of other elements of the transduction cascade, causing us to search for specific pharmacological blockers of the SGC channel. Given evidence that the Na(+)/Ca(2+) exchange inhibitor, KB-R7943, blocks mammalian TRPC channels, we studied this probe as a potential blocker of the lobster SGC channel. KB-R7943 reversibly blocked the SGC current in both inside- and outside-out patch recordings in a dose- and voltage-dependent manner. KB-R7943 decreased the channel open probability without changing single channel amplitude. KB-R7943 also reversibly and in a dose-dependent manner inhibited both the odorant-evoked discharge of lobster ORNs and the odorant-evoked whole cell current. Our findings strongly imply that KB-R7943 potently blocks the lobster SGC channel and likely does so directly and not through its ability to block the Na(+)/Ca(2+) exchanger.
Collapse
Affiliation(s)
- A Pezier
- Whitney Laboratory for Marine Bioscience, Center for Smell and Taste, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | | |
Collapse
|
19
|
Carey RM, Verhagen JV, Wesson DW, Pírez N, Wachowiak M. Temporal structure of receptor neuron input to the olfactory bulb imaged in behaving rats. J Neurophysiol 2008; 101:1073-88. [PMID: 19091924 DOI: 10.1152/jn.90902.2008] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dynamics of sensory input to the nervous system play a critical role in shaping higher-level processing. In the olfactory system, the dynamics of input from olfactory receptor neurons (ORNs) are poorly characterized and depend on multiple factors, including respiration-driven airflow through the nasal cavity, odorant sorption kinetics, receptor-ligand interactions between odorant and receptor, and the electrophysiological properties of ORNs. Here, we provide a detailed characterization of the temporal organization of ORN input to the mammalian olfactory bulb (OB) during natural respiration, using calcium imaging to monitor ORN input to the OB in awake, head-fixed rats expressing odor-guided behaviors. We report several key findings. First, across a population of homotypic ORNs, each inhalation of odorant evokes a burst of action potentials having a rise time of about 80 ms and a duration of about 100 ms. This rise time indicates a relatively slow, progressive increase in ORN activation as odorant flows through the nasal cavity. Second, the dynamics of ORN input differ among glomeruli and for different odorants and concentrations, but remain reliable across successive inhalations. Third, inhalation alone (in the absence of odorant) evokes ORN input to a significant fraction of OB glomeruli. Finally, high-frequency sniffing of odorant strongly reduces the temporal coupling between ORN inputs and the respiratory cycle. These results suggest that the dynamics of sensory input to the olfactory system may play a role in coding odor information and that, in the awake animal, strategies for processing odor information may change as a function of sampling behavior.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
20
|
Shabani S, Yaldiz S, Vu L, Derby CD. Acidity enhances the effectiveness of active chemical defensive secretions of sea hares, Aplysia californica, against spiny lobsters, Panulirus interruptus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:1195-204. [PMID: 17912533 DOI: 10.1007/s00359-007-0271-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 09/01/2007] [Accepted: 09/16/2007] [Indexed: 10/22/2022]
Abstract
Sea hares such as Aplysia californica, gastropod molluscs lacking a protective shell, can release a purple cloud of chemicals when vigorously attacked by predators. This active chemical defense is composed of two glandular secretions, ink and opaline, both of which contain an array of compounds. This secretion defends sea hares against predators such as California spiny lobsters Panulirus interruptus via multiple mechanisms, one of which is phagomimicry, in which secretions containing feeding chemicals attract and distract predators toward the secretion and away from the sea hare. We show here that ink and opaline are highly acidic, both having a pH of approximately 5. We examined if the acidity of ink and opaline affects their phagomimetic properties. We tested behavioral and electrophysiological responses of chemoreceptor neurons in the olfactory and gustatory organs of P. interruptus, to ink and opaline of A. californica within their natural range of pH values, from approximately 5 to 8. Both behavioral and electrophysiological responses to ink and opaline were enhanced at low pH, and low pH alone accounted for most of this effect. Our data suggest that acidity enhances the phagomimetic chemical defense of sea hares.
Collapse
Affiliation(s)
- Shkelzen Shabani
- Department of Biology, Brains and Behavior Program, and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | |
Collapse
|