1
|
Malewicz-Oeck NM, Zhang Z, Shimada SG, LaMotte RH. Itch and Pain Behaviors in Irritant Contact Dermatitis Produced by Sodium Lauryl Sulfate in Mice. Int J Mol Sci 2024; 25:7718. [PMID: 39062959 PMCID: PMC11276812 DOI: 10.3390/ijms25147718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Irritant contact dermatitis (ICD) is a nonspecific skin inflammation caused by irritants, leading to itch and pain. We tested whether differential responses to histamine-dependent and -independent pruritogens can be evoked in ICD induced by sodium lauryl sulfate (SLS). An ICD mouse model was established with 5% SLS in acetone versus a vehicle topically applied for 24 h to the cheek. Site-directed itch- and pain-like behaviors, occurring spontaneously and in response to mechanical, thermal, and chemical stimuli (histamine, ß-alanine, BAM8-22, and bradykinin) applied to the cheek, were recorded before (day 0) and after irritant removal (days 1, 2, 3, and 4). Skin inflammation was assessed through visual scoring, ultrasound, and measurements of skin thickness. SLS-treated mice exhibited hyperalgesia-like behavior in response to mechanical and heat stimuli on day 1 compared to the controls. SLS mice exhibited more spontaneous wipes (pain) but not scratching bouts (itch) on day 1. Pruritogen injections caused more scratching but not wiping in SLS-treated mice compared to the controls. Only bradykinin increased wiping behavior compared to saline. SLS-treated mice developed noticeable erythema, scaling, and increased skin thickness on days 1 and 2. SLS induced cutaneous inflammation and behavioral signs of spontaneous pain and itching, hyperalgesia to mechanical and heat stimuli and a chemical algogen, and enhanced itch response to pruritogens. These sensory reactions preceded the inflammation peak and lasted up to two days.
Collapse
Affiliation(s)
- Nathalie M. Malewicz-Oeck
- Clinics for Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Ruhr University Bergmannsheil Bochum, 44789 Bochum, Germany
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06510, USA
| | - Zhe Zhang
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06510, USA
| | - Steven G. Shimada
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06510, USA
| | - Robert H. LaMotte
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
2
|
Furutani K, Chen O, McGinnis A, Wang Y, Serhan CN, Hansen TV, Ji RR. Novel proresolving lipid mediator mimetic 3-oxa-PD1n-3 docosapentaenoic acid reduces acute and chronic itch by modulating excitatory and inhibitory synaptic transmission and astroglial secretion of lipocalin-2 in mice. Pain 2023; 164:1340-1354. [PMID: 36378290 PMCID: PMC10182233 DOI: 10.1097/j.pain.0000000000002824] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT Specialized proresolving mediators (SPMs) have demonstrated potent analgesic actions in animal models of pathological pain. The actions of SPMs in acute and chronic itch are currently unknown. Recently, n-3 docosapentaenoic acid (DPA) was found to be a substrate for the biosynthesis of several novel families of SPMs and 3-oxa-PD1 n-3 DPA (3-oxa-PD1) is an oxidation-resistant metabolic stable analogue of the n-3 DPA-derived protectin D1 (PD1). In this article, we demonstrate that 3-oxa-PD1 effectively reduces both acute and chronic itch in mouse models. Intrathecal injection of 3-oxa-PD1 (100 ng) reduced acute itch induced by histamine, chloroquine, or morphine. Furthermore, intrathecal 3-oxa-PD1 effectively reduced chronic itch, induced by cutaneous T-cell lymphoma (CTCL), allergic contact dermatitis with dinitrofluorobenzene, and psoriasis by imiquimod. Intratumoral injection of 3-oxa-PD1 also suppressed CTCL-induced chronic itch. Strikingly, the antipruritic effect lasted for several weeks after 1-week intrathecal 3-oxa-PD1 treatment. Whole-cell recordings revealed significant increase in excitatory postsynaptic currents in spinal dorsal horn (SDH) neurons of CTCL mice, but this increase was blocked by 3-oxa-PD1. 3-oxa-PD1 further increased inhibitory postsynaptic currents in SDH neurons of CTCL mice. Cutaneous T-cell lymphoma increased the spinal levels of lipocalin-2 (LCN2), an itch mediator produced by astrocytes. 3-oxa-PD1 suppressed LCN2 production in CTCL mice and LCN2 secretion in astrocytes. Finally, CTCL-induced anxiety was alleviated by intrathecal 3-oxa-PD1. Our findings suggest that 3-oxa-PD1 potently inhibits acute and chronic itch through the regulation of excitatory or inhibitory synaptic transmission and astroglial LCN2 production. Therefore, stable SPM analogs such as 3-oxa-PD1 could be useful to treat pruritus associated with different skin injuries.
Collapse
Affiliation(s)
- Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Yuqing Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Building for Transformative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, 02115
| | - Trond Vidar Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
3
|
Abstract
This chapter summarizes recent findings regarding the central transmission of acute and chronic itch. Itch is transduced by cutaneous pruriceptors that transmit signals to neurons in the superficial spinal cord. Spinal itch-signaling circuits utilize several neuropeptides whose receptors represent novel targets to block itch transmission. Itch is relieved by scratching, which activates spinal interneurons to inhibit itch-transmitting neurons. Spinal itch transmission is also thought to be modulated by descending pathways. Itch is transmitted rostrally via ascending pathways to activate a variety of brain regions involved in sensory discrimination of affective and motor responses to itch. The pathophysiological mechanisms of chronic itch are poorly understood but likely involve sensitization of itch-signaling pathways and/or dysfunction of itch-inhibitory circuits. Improved understanding of central itch mechanisms has identified a number of novel targets for the development of antipruritic treatment strategies.
Collapse
|
4
|
Valtcheva MV, Samineni VK, Golden JP, Gereau RW, Davidson S. Enhanced nonpeptidergic intraepidermal fiber density and an expanded subset of chloroquine-responsive trigeminal neurons in a mouse model of dry skin itch. THE JOURNAL OF PAIN 2015; 16:346-56. [PMID: 25640289 DOI: 10.1016/j.jpain.2015.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 01/08/2015] [Accepted: 01/16/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED Chronic pruritic conditions are often associated with dry skin and loss of epidermal barrier integrity. In this study, repeated application of acetone and ether followed by water (AEW) to the cheek skin of mice produced persistent scratching behavior with no increase in pain-related forelimb wiping, indicating the generation of itch without pain. Cheek skin immunohistochemistry showed a 64.5% increase in total epidermal innervation in AEW-treated mice compared to water-treated controls. This increase was independent of scratching, because mice prevented from scratching by Elizabethan collars showed similar hyperinnervation. To determine the effects of dry skin treatment on specific subsets of peripheral fibers, we examined Ret-positive, calcitonin gene-related peptide (CGRP)-positive, and glial cell line-derived neurotrophic factor family receptor α3 (GFRα3)-positive intraepidermal fiber density. AEW treatment increased Ret-positive fibers but not CGRP-positive or GFRα3-positive fibers, suggesting that a specific subset of nonpeptidergic fibers could contribute to dry skin itch. To test whether trigeminal ganglion neurons innervating the cheek exhibited altered excitability after AEW treatment, primary cultures of retrogradely labeled neurons were examined using whole-cell patch clamp electrophysiology. AEW treatment produced no differences in measures of excitability compared to water-treated controls. In contrast, a significantly higher proportion of trigeminal ganglion neurons was responsive to the nonhistaminergic pruritogen chloroquine after AEW treatment. We conclude that nonpeptidergic, Ret-positive fibers and chloroquine-sensitive neurons may contribute to dry skin pruritus. PERSPECTIVE This study examines the underlying neurobiological mechanisms of persistent dry skin itch. Our results indicate that nonpeptidergic epidermal hyperinnervation and nonhistaminergic pruritic receptors are potential targets for chronic pruritus.
Collapse
Affiliation(s)
- Manouela V Valtcheva
- Washington University Pain Center and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri; Medical Scientist Training Program, Washington University in St. Louis, St. Louis, Missouri
| | - Vijay K Samineni
- Washington University Pain Center and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Judith P Golden
- Washington University Pain Center and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri
| | - Steve Davidson
- Washington University Pain Center and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
5
|
Abstract
Protease-activated receptors (PARs) have been implicated in a variety of physiological functions, as well as somatosensation and particularly itch and pain. Considerable attention has focused on PARs following the finding they are upregulated in the skin of atopic dermatitis patients. The present review focuses on recent studies showing that PARs are critically involved in itch and sensitization of itch. PARs are expressed by diverse cell types including primary sensory neurons, keratinocytes, and immune cells and are activated by proteases that expose a tethered ligand. Endogenous proteases are also released from diverse cell types including keratinocytes and immune cells. Exogenous proteases released from certain plants and insects contacting the skin can also induce itch. Increased levels of proteases in the skin contribute to inflammation that is often accompanied by chronic itch which is not predominantly mediated by histamine. The neural pathway signaling itch induced by activation of PARs is distinct from that mediating histamine-induced itch. In addition, there is evidence that PARs play an important role in sensitization of itch signaling under conditions of chronic itch. These recent findings suggest that PARs and other molecules involved in the itch-signaling pathway are good targets to develop novel treatments for most types of chronic itch that are poorly treated with antihistamines.
Collapse
Affiliation(s)
- Tasuku Akiyama
- Department of Dermatology, Anatomy and Cell Biology/Temple Itch Center, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | | | | |
Collapse
|
6
|
Furue M, Kitahara Y, Akama H, Hojo S, Hayashi N, Nakagawa H. Safety and efficacy of topical E6005, a phosphodiesterase 4 inhibitor, in Japanese adult patients with atopic dermatitis: Results of a randomized, vehicle-controlled, multicenter clinical trial. J Dermatol 2014; 41:577-85. [DOI: 10.1111/1346-8138.12534] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/06/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Masutaka Furue
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | | | - Hideto Akama
- Japan/Asia Clinical Research; Eisai Co., Ltd.; Tokyo Japan
| | | | | | - Hidemi Nakagawa
- Department of Dermatology; The Jikei University School of Medicine; Tokyo Japan
| | | |
Collapse
|
7
|
Fu K, Qu L, Shimada SG, Nie H, LaMotte RH. Enhanced scratching elicited by a pruritogen and an algogen in a mouse model of contact hypersensitivity. Neurosci Lett 2014; 579:190-4. [PMID: 24704378 DOI: 10.1016/j.neulet.2014.03.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 02/08/2023]
Abstract
Chemical pruritogens and algogens evoke primarily itch and pain, respectively, when administered to the skin of healthy human subjects. However, the dominant sensory quality elicited by an algesic chemical stimulus may change in patients with chronic itch where bradykinin, elicits itch in addition to pain. Here we tested whether normally pruritic and algesic chemicals evoked abnormal itch- or pain-like behaviors in the mouse after the development of contact hypersensitivity (CHS), an animal model of allergic contact dermatitis. Mice previously sensitized to a hapten (squaric acid dibutylester) applied to the abdomen, exhibited spontaneous itch-like scratching and pain-like wiping directed to the site on the cheek of the CHS elicited by a subsequent challenge with the same hapten. In comparison with responses of control mice, CHS mice exhibited a significant increase in the scratching evoked by bovine adrenal medulla 8-22, a peptide that elicits a histamine-independent itch, but did not alter the scratching to histamine. Bradykinin, an algogen that elicited only wiping in control mice, additionally evoked significant scratching in CHS mice. Thus, within an area of CHS, histamine-independent itch is enhanced and chemically evoked pain is accompanied by itch.
Collapse
Affiliation(s)
- Kai Fu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Lintao Qu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Steven G Shimada
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Robert H LaMotte
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Moser HR, Giesler GJ. Characterization of pruriceptive trigeminothalamic tract neurons in rats. J Neurophysiol 2014; 111:1574-89. [PMID: 24478156 PMCID: PMC4035772 DOI: 10.1152/jn.00668.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/22/2014] [Indexed: 11/22/2022] Open
Abstract
Rodent models of facial itch and pain provide a valuable tool for distinguishing between behaviors related to each sensation. In rats, pruritogens applied to the face elicit scratching using the hindlimb while algogens elicit wiping using the forelimb. We wished to determine the role of trigeminothalamic tract (VTT) neurons in carrying information regarding facial itch and pain to the forebrain. We have characterized responses to facially applied pruritogens (serotonin, BAM8-22, chloroquine, histamine, capsaicin, and cowhage) and noxious stimuli in 104 VTT neurons recorded from anesthetized rats. Each VTT neuron had a mechanically sensitive cutaneous receptive field on the ipsilateral face. All pruriceptive VTT neurons also responded to noxious mechanical and/or thermal stimulation. Over half of VTT neurons responsive to noxious stimuli also responded to at least one pruritogen. Each tested pruritogen, with the exception of cowhage, produced an increase in discharge rate in a subset of VTT neurons. The response to each pruritogen was characterized, including maximum discharge rate, response duration, and spike timing dynamics. Pruriceptive VTT neurons were recorded from throughout superficial and deep layers of the spinal trigeminal nucleus and were shown to project via antidromic mapping to the ventroposterior medial nucleus or posterior thalamic nuclei. These results indicate that pruriceptive VTT neurons are a subset of polymodal nociceptive VTT neurons and characterize a system conducive to future experiments regarding the similarities and differences between facial itch and pain.
Collapse
Affiliation(s)
- Hannah R Moser
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
9
|
Akiyama T, Nagamine M, Carstens MI, Carstens E. Behavioral model of itch, alloknesis, pain and allodynia in the lower hindlimb and correlative responses of lumbar dorsal horn neurons in the mouse. Neuroscience 2014; 266:38-46. [PMID: 24530451 DOI: 10.1016/j.neuroscience.2014.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 12/01/2022]
Abstract
We have further developed a behavioral model of itch and pain in the lower hindlimb (calf) originally reported by LaMotte et al. (2011) that allows comparisons with responses of lumbar dorsal horn neurons to pruritic and noxious stimuli. Intradermal (id) microinjection of the pruritogens histamine, SLIGRL-NH2 (agonist of PAR-2 and MrgprC11) and chloroquine (agonist of MrgprA3) into the calf of the lower limb elicited significant biting and a small amount of licking directed to the injection site, over a 30-min time course. Following id injection of histamine, low-threshold mechanical stimuli reliably elicited discrete episodes of biting (alloknesis) over a longer time course; significantly less alloknesis was observed following id injection of SLIGRL-NH2. Capsaicin injections elicited licking but little biting. Following id injection of capsaicin, low-threshold mechanical stimuli elicited discrete hindlimb flinches (allodynia) over a prolonged (>2h) time course. In single-unit recordings from superficial lumbar dorsal horn neurons, low-threshold mechanically evoked responses were significantly enhanced, accompanied by receptive field expansion, following id injection of histamine in histamine-responsive neurons. This was not observed in histamine-insensitive neurons, or following id injection of saline or SLIGRL-NH2, regardless of whether the latter activated the neuron or not. These results suggest that itch-responsive neurons are selectively sensitized by histamine but not SLIGRL-NH2 to account for alloknesis. The presently described "calf" model appears to distinguish between itch- and pain-related behavioral responses, and provides a basis to investigate lumbar spinal neural mechanisms underlying itch, alloknesis, pain and allodynia.
Collapse
Affiliation(s)
- T Akiyama
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, USA
| | - M Nagamine
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, USA
| | - M I Carstens
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, USA
| | - E Carstens
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
10
|
Abstract
The itch-scratch reflex serves as a protective mechanism in everyday life. However, chronic persistent itching can be devastating. Despite the clinical importance of the itch sensation, its mechanism remains elusive. In the past decade, substantial progress has been made to uncover the mystery of itching. Here, we review the molecules, cells, and circuits known to mediate the itch sensation, which, coupled with advances in understanding the pathophysiology of chronic itching conditions, will hopefully contribute to the development of new anti-itch therapies.
Collapse
Affiliation(s)
- Liang Han
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
11
|
Abstract
While considerable effort has been made to investigate the neural mechanisms of pain, much less effort has been devoted to itch, at least until recently. However, itch is now gaining increasing recognition as a widespread and costly medical and socioeconomic issue. This is accompanied by increasing interest in the underlying neural mechanisms of itch, which has become a vibrant and rapidly-advancing field of research. The goal of the present forefront review is to describe the recent progress that has been made in our understanding of itch mechanisms.
Collapse
Affiliation(s)
- Tasuku Akiyama
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, United States
| | | |
Collapse
|
12
|
Activity-dependent silencing reveals functionally distinct itch-generating sensory neurons. Nat Neurosci 2013; 16:910-8. [PMID: 23685721 PMCID: PMC3695070 DOI: 10.1038/nn.3404] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/18/2013] [Indexed: 02/06/2023]
Abstract
The peripheral terminals of primary sensory neurons detect histamine and non-histamine itch-provoking ligands through molecularly distinct transduction mechanisms. It remains unclear, however, whether these distinct pruritogens activate the same or different afferent fibers. We utilized a strategy of reversibly silencing specific subsets of murine pruritogen-sensitive sensory axons by targeted delivery of a charged sodium-channel blocker and found that functional blockade of histamine itch did not affect the itch evoked by chloroquine or SLIGRL-NH2, and vice versa. Notably, blocking itch-generating fibers did not reduce pain-associated behavior. However, silencing TRPV1+ or TRPA1+ neurons allowed AITC or capsaicin respectively to evoke itch, implying that certain peripheral afferents may normally indirectly inhibit algogens from eliciting itch. These findings support the presence of functionally distinct sets of itch-generating neurons and suggest that targeted silencing of activated sensory fibers may represent a clinically useful anti-pruritic therapeutic approach for histaminergic and non-histaminergic pruritus.
Collapse
|
13
|
Liu T, Ji RR. New insights into the mechanisms of itch: are pain and itch controlled by distinct mechanisms? Pflugers Arch 2013; 465:1671-85. [PMID: 23636773 DOI: 10.1007/s00424-013-1284-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/13/2013] [Accepted: 04/14/2013] [Indexed: 12/30/2022]
Abstract
Itch and pain are closely related but distinct sensations. They share largely overlapping mediators and receptors, and itch-responding neurons are also sensitive to pain stimuli. Itch-mediating primary sensory neurons are equipped with distinct receptors and ion channels for itch transduction, including Mas-related G protein-coupled receptors (Mrgprs), protease-activated receptors, histamine receptors, bile acid receptor, toll-like receptors, and transient receptor potential subfamily V1/A1 (TRPV1/A1). Recent progress has indicated the existence of an itch-specific neuronal circuitry. The MrgprA3-expressing primary sensory neurons exclusively innervate the epidermis of skin, and their central axons connect with gastrin-releasing peptide receptor (GRPR)-expressing neurons in the superficial spinal cord. Notably, ablation of MrgprA3-expressing primary sensory neurons or GRPR-expressing spinal cord neurons results in selective reduction in itch but not pain. Chronic itch results from dysfunction of the immune and nervous system and can manifest as neural plasticity despite the fact that chronic itch is often treated by dermatologists. While differences between acute pain and acute itch are striking, chronic itch and chronic pain share many similar mechanisms, including peripheral sensitization (increased responses of primary sensory neurons to itch and pain mediators), central sensitization (hyperactivity of spinal projection neurons and excitatory interneurons), loss of inhibitory control in the spinal cord, and neuro-immune and neuro-glial interactions. Notably, painful stimuli can elicit itch in some chronic conditions (e.g., atopic dermatitis), and some drugs for treating chronic pain are also effective in chronic itch. Thus, itch and pain have more similarities in pathological and chronic conditions.
Collapse
Affiliation(s)
- Tong Liu
- Pain Signaling and Plasticity Laboratory, Department of Anesthesiology and Neurobiology, Duke University Medical Center, 595 LaSalle Street, GSRB-I, Room 1027A, DUMC 3094, Durham, NC, 27710, USA,
| | | |
Collapse
|
14
|
Akiyama T, Tominaga M, Davoodi A, Nagamine M, Blansit K, Horwitz A, Carstens MI, Carstens E. Cross-sensitization of histamine-independent itch in mouse primary sensory neurons. Neuroscience 2012; 226:305-12. [PMID: 23000623 DOI: 10.1016/j.neuroscience.2012.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/10/2012] [Accepted: 09/08/2012] [Indexed: 10/27/2022]
Abstract
Overexpression of pruritogens and their precursors may contribute to the sensitization of histamine-dependent and -independent itch-signaling pathways in chronic itch. We presently investigated self- and cross-sensitization of scratching behavior elicited by various pruritogens, and their effects on primary sensory neurons. The MrgprC11 agonist BAM8-22 exhibited self- and reciprocal cross-sensitization of scratching evoked by the protease-activated receptor-2 (PAR-2) agonist SLIGRL. The MrgprA3 agonist chloroquine unidirectionally cross-sensitized BAM8-22-evoked scratching. Histamine unidirectionally cross-sensitized scratching evoked by chloroquine and BAM8-22. SLIGRL unidirectionally cross-sensitized scratching evoked by chloroquine. Dorsal root ganglion (DRG) cells responded to various combinations of pruritogens and algogens. Neither chloroquine, BAM8-22 nor histamine had any effect on responses of DRG cell responses to subsequently applied pruritogens, implying that their behavioral self- and cross-sensitization effects are mediated indirectly. SLIGRL unilaterally cross-sensitized responses of DRG cells to chloroquine and BAM8-22, consistent with the behavioral data. These results indicate that unidirectional cross-sensitization of histamine-independent itch-signaling pathways might occur at a peripheral site through PAR-2. PAR-2 expressed in pruriceptive nerve endings is a potential target to reduce sensitization associated with chronic itch.
Collapse
Affiliation(s)
- T Akiyama
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Lightly touching normal skin near a site of itch can elicit itch sensation, a phenomenon known as alloknesis. To investigate the neural mechanisms of alloknesis, we have developed an animal model. Low-threshold mechanical stimulation of the skin normally does not elicit any response in naïve C57/BL6 mice. Following acute intradermal (id) injection of histamine in the rostral back, mechanical stimulation 7 mm from the injection site elicited discrete hindlimb scratch bouts directed toward the stimulus. This began at 10 min and peaked 20–40 min post-histamine, declining over the next hour. Histamine itself elicited bouts of scratching not associated with the mechanical stimulus, that ceased after 30 min. Histamine- and touch-evoked scratching was inhibited by the μ-opiate antagonist naltrexone. Touch-evoked scratching was observed following id 5-HT, a PAR-4 agonist and a MrgprC11 agonist BAM8-22, but not chloroquine or a PAR-2 agonist. The histamine H1 receptor antagonist terfenadine prevented scratching and alloknesis evoked by histamine, but not 5-HT, a PAR-4 agonist or a MrgprC11 agonist. In mice with experimental dry skin, there was a time-dependent increase in spontaneous and touch-evoked scratching. This animal model, which to our knowledge is previously unreported, appears to be useful to investigate neural mechanisms of itch and alloknesis.
Collapse
|
16
|
Transmitters and pathways mediating inhibition of spinal itch-signaling neurons by scratching and other counterstimuli. PLoS One 2011; 6:e22665. [PMID: 21818363 PMCID: PMC3144926 DOI: 10.1371/journal.pone.0022665] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/28/2011] [Indexed: 12/12/2022] Open
Abstract
Scratching relieves itch, but the underlying neural mechanisms are poorly understood. We presently investigated a role for the inhibitory neurotransmitters GABA and glycine in scratch-evoked inhibition of spinal itch-signaling neurons in a mouse model of chronic dry skin itch. Superficial dorsal horn neurons ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous firing that was significantly attenuated by cutaneous scratching, pinch and noxious heat. Scratch-evoked inhibition was nearly abolished by spinal delivery of the glycine antagonist, strychnine, and was markedly attenuated by respective GABAA and GABAB antagonists bicuculline and saclofen. Scratch-evoked inhibition was also significantly attenuated (but not abolished) by interruption of the upper cervical spinal cord, indicating the involvement of both segmental and suprasegmental circuits that engage glycine- and GABA-mediated inhibition of spinal itch-signaling neurons by noxious counterstimuli.
Collapse
|