1
|
Matsuda N, Abe MO. Attenuation of implicit motor learning with consecutive exposure to visual errors. IBRO Neurosci Rep 2024; 17:32-37. [PMID: 38910907 PMCID: PMC11190668 DOI: 10.1016/j.ibneur.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Visual errors induced by movement drive implicit corrections of that movement. When similar errors are experienced consecutively, does sensitivity to the error remain consistent each time? This study aimed to investigate the modulation of implicit error sensitivity through continuous exposure to the same errors. In the reaching task using visual error-clamp feedback, participants were presented with the same error in direction and magnitude for four consecutive trials. We found that implicit error sensitivity decreased after exposure to the second error. These results indicate that when visual errors occur consecutively, the sensorimotor system exhibits different responses, even for identical errors. The continuity of errors may be a factor that modulates error sensitivity.
Collapse
Affiliation(s)
- Naoyoshi Matsuda
- Graduate School of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0811, Japan
| | - Masaki O. Abe
- Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0811, Japan
| |
Collapse
|
2
|
Oliveira CM, Hayiou-Thomas ME, Henderson LM. Reliability of the serial reaction time task: If at first you don't succeed, try, try, try again. Q J Exp Psychol (Hove) 2024; 77:2256-2282. [PMID: 38311604 PMCID: PMC11529135 DOI: 10.1177/17470218241232347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 02/06/2024]
Abstract
Procedural memory is involved in the acquisition and control of skills and habits that underlie rule and procedural learning, including the acquisition of grammar and phonology. The serial reaction time task (SRTT), commonly used to assess procedural learning, has been shown to have poor stability (test-retest reliability). We investigated factors that may affect the stability of the SRTT in adults. Experiment 1 examined whether the similarity of sequences learned in two sessions would impact stability: test-retest correlations were low regardless of sequence similarity (r < .31). Experiment 2 added a third session to examine whether individual differences in learning would stabilise with further training. There was a small (but nonsignificant) improvement in stability for later sessions (Sessions 1 and 2: r = .42; Sessions 2 and 3: r = .60). Stability of procedural learning on the SRTT remained suboptimal in all conditions, posing a serious obstacle to the use of this task as a sensitive predictor of individual differences and ultimately theoretical advance.
Collapse
|
3
|
Kóbor A, Janacsek K, Hermann P, Zavecz Z, Varga V, Csépe V, Vidnyánszky Z, Kovács G, Nemeth D. Finding Pattern in the Noise: Persistent Implicit Statistical Knowledge Impacts the Processing of Unpredictable Stimuli. J Cogn Neurosci 2024; 36:1239-1264. [PMID: 38683699 DOI: 10.1162/jocn_a_02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Humans can extract statistical regularities of the environment to predict upcoming events. Previous research recognized that implicitly acquired statistical knowledge remained persistent and continued to influence behavior even when the regularities were no longer present in the environment. Here, in an fMRI experiment, we investigated how the persistence of statistical knowledge is represented in the brain. Participants (n = 32) completed a visual, four-choice, RT task consisting of statistical regularities. Two types of blocks constantly alternated with one another throughout the task: predictable statistical regularities in one block type and unpredictable ones in the other. Participants were unaware of the statistical regularities and their changing distribution across the blocks. Yet, they acquired the statistical regularities and showed significant statistical knowledge at the behavioral level not only in the predictable blocks but also in the unpredictable ones, albeit to a smaller extent. Brain activity in a range of cortical and subcortical areas, including early visual cortex, the insula, the right inferior frontal gyrus, and the right globus pallidus/putamen contributed to the acquisition of statistical regularities. The right insula, inferior frontal gyrus, and hippocampus as well as the bilateral angular gyrus seemed to play a role in maintaining this statistical knowledge. The results altogether suggest that statistical knowledge could be exploited in a relevant, predictable context as well as transmitted to and retrieved in an irrelevant context without a predictable structure.
Collapse
Affiliation(s)
- Andrea Kóbor
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | - Karolina Janacsek
- Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, University of Greenwich, United Kingdom
- ELTE Eötvös Loránd University, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | | | - Vera Varga
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
- University of Pannonia, Hungary
| | - Valéria Csépe
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
- University of Pannonia, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | | | - Dezso Nemeth
- INSERM, CRNL U1028 UMR5292, France
- ELTE Eötvös Loránd University & HUN-REN Research Centre for Natural Sciences, Hungary
- University of Atlántico Medio, Spain
| |
Collapse
|
4
|
Avraham G, Ivry RB. Interference underlies attenuation upon relearning in sensorimotor adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596118. [PMID: 38853972 PMCID: PMC11160603 DOI: 10.1101/2024.05.27.596118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Savings refers to the gain in performance upon relearning a task. In sensorimotor adaptation, savings is tested by having participants adapt to perturbed feedback and, following a washout block during which the system resets to baseline, presenting the same perturbation again. While savings has been observed with these tasks, we have shown that the contribution from implicit sensorimotor adaptation, a process that uses sensory prediction errors to recalibrate the sensorimotor map, is actually attenuated upon relearning (Avraham et al., 2021). In the present study, we test the hypothesis that this attenuation is due to interference arising from the washout block, and more generally, from experience with a different relationship between the movement and the feedback. In standard adaptation studies, removing the perturbation at the start of the washout block results in a salient error signal in the opposite direction to that observed during learning. As a starting point, we replicated the finding that implicit adaptation is attenuated following a washout period in which the feedback now signals a salient opposite error. When we eliminated visual feedback during washout, implicit adaptation was no longer attenuated upon relearning, consistent with the interference hypothesis. Next, we eliminated the salient error during washout by gradually decreasing the perturbation, creating a scenario in which the perceived errors fell within the range associated with motor noise. Nonetheless, attenuation was still prominent. Inspired by this observation, we tested participants with an extended experience with veridical feedback during an initial baseline phase and found that this was sufficient to cause robust attenuation of implicit adaptation during the first exposure to the perturbation. This effect was context-specific: It did not generalize to movements that were not associated with the interfering feedback. Taken together, these results show that the implicit sensorimotor adaptation system is highly sensitive to memory interference from a recent experience with a discrepant action-outcome contingency.
Collapse
Affiliation(s)
- Guy Avraham
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Chen C, Lee VG. Stability of individual differences in implicitly guided attention. Q J Exp Psychol (Hove) 2024; 77:1332-1351. [PMID: 37572022 DOI: 10.1177/17470218231196463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Daily activities often occur in familiar environments, affording us an opportunity to learn. Laboratory studies have shown that people readily acquire an implicit spatial preference for locations that frequently contained a search target in the past. These studies, however, have focused on group characteristics, downplaying the significance of individual differences. In a pre-registered study, we examined the stability of individual differences in two variants of an implicit location probability learning (LPL) task. We tested the possibility that individual differences were stable in variants that shared the same search process, but not in variants involving different search processes. In Experiment 1, participants performed alternating blocks of T-among-Ls and 5-among-2s search tasks. Unbeknownst to them, the search target appeared disproportionately often in one region of space; the high-probability regions differed between the two tasks. LPL transferred between the two tasks. In addition, individuals who showed greater LPL in the T-task also did so in the 5-task and vice versa. In Experiment 2, participants searched for either a camouflaged-T against background noise or a well-segmented T among well-segmented Ls. These two tasks produced task-specific learning that did not transfer between tasks. Moreover, individual differences in learning did not correlate between tasks. Thus, LPL is associated with stable individual differences across variants, but only when the variants share common search processes.
Collapse
Affiliation(s)
- Chen Chen
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Vanessa G Lee
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Wang Y, Huynh AT, Bao S, Buchanan JJ, Wright DL, Lei Y. Memory consolidation of sequence learning and dynamic adaptation during wakefulness. Cereb Cortex 2024; 34:bhad507. [PMID: 38185987 DOI: 10.1093/cercor/bhad507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Motor learning involves acquiring new movement sequences and adapting motor commands to novel conditions. Labile motor memories, acquired through sequence learning and dynamic adaptation, undergo a consolidation process during wakefulness after initial training. This process stabilizes the new memories, leading to long-term memory formation. However, it remains unclear if the consolidation processes underlying sequence learning and dynamic adaptation are independent and if distinct neural regions underpin memory consolidation associated with sequence learning and dynamic adaptation. Here, we first demonstrated that the initially labile memories formed during sequence learning and dynamic adaptation were stabilized against interference through time-dependent consolidation processes occurring during wakefulness. Furthermore, we found that sequence learning memory was not disrupted when immediately followed by dynamic adaptation and vice versa, indicating distinct mechanisms for sequence learning and dynamic adaptation consolidation. Finally, by applying patterned transcranial magnetic stimulation to selectively disrupt the activity in the primary motor (M1) or sensory (S1) cortices immediately after sequence learning or dynamic adaptation, we found that sequence learning consolidation depended on M1 but not S1, while dynamic adaptation consolidation relied on S1 but not M1. For the first time in a single experimental framework, this study revealed distinct neural underpinnings for sequence learning and dynamic adaptation consolidation during wakefulness, with significant implications for motor skill enhancement and rehabilitation.
Collapse
Affiliation(s)
- Yiyu Wang
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Angelina T Huynh
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Shancheng Bao
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - John J Buchanan
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - David L Wright
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Yuming Lei
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
7
|
Farkas BC, Krajcsi A, Janacsek K, Nemeth D. The complexity of measuring reliability in learning tasks: An illustration using the Alternating Serial Reaction Time Task. Behav Res Methods 2024; 56:301-317. [PMID: 36604378 PMCID: PMC10794483 DOI: 10.3758/s13428-022-02038-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 01/07/2023]
Abstract
Despite the fact that reliability estimation is crucial for robust inference, it is underutilized in neuroscience and cognitive psychology. Appreciating reliability can help researchers increase statistical power, effect sizes, and reproducibility, decrease the impact of measurement error, and inform methodological choices. However, accurately calculating reliability for many experimental learning tasks is challenging. In this study, we highlight a number of these issues, and estimate multiple metrics of internal consistency and split-half reliability of a widely used learning task on a large sample of 180 subjects. We show how pre-processing choices, task length, and sample size can affect reliability and its estimation. Our results show that the Alternating Serial Reaction Time Task has respectable reliability, especially when learning scores are calculated based on reaction times and two-stage averaging. We also show that a task length of 25 blocks can be sufficient to meet the usual thresholds for minimally acceptable reliability. We further illustrate how relying on a single point estimate of reliability can be misleading, and the calculation of multiple metrics, along with their uncertainties, can lead to a more complete characterization of the psychometric properties of tasks.
Collapse
Affiliation(s)
- Bence C Farkas
- Université Paris-Saclay, UVSQ, Inserm, CESP, 94807, Villejuif, France
- Institut du Psychotraumatisme de l'Enfant et de l'Adolescent, Conseil Départemental Yvelines et Hauts-de-Seine, CH Versailles, 78000, Versailles, France
- Centre de recherche en épidémiologie et en santé des populations, Inserm U1018, Université Paris-Saclay, Université Versailles Saint-Quentin, Paris, France
| | - Attila Krajcsi
- Department of Cognitive Psychology, Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H-1064, Hungary
| | - Karolina Janacsek
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, Old Royal Naval College, Park Row, 150 Dreadnought, London, SE10 9LS, UK.
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H-1064, Hungary.
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, Budapest, H-1064, Hungary.
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H, Budapest, -1117, Hungary.
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université de Lyon 1, Université de Lyon, Lyon, France.
| |
Collapse
|
8
|
Voegtle A, Terlutter C, Nikolai K, Farahat A, Hinrichs H, Sweeney-Reed CM. Suppression of Motor Sequence Learning and Execution Through Anodal Cerebellar Transcranial Electrical Stimulation. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1152-1165. [PMID: 36239839 PMCID: PMC10657296 DOI: 10.1007/s12311-022-01487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Cerebellum (CB) and primary motor cortex (M1) have been associated with motor learning, with different putative roles. Modulation of task performance through application of transcranial direct current stimulation (TDCS) to brain structures provides causal evidence for their engagement in the task. Studies evaluating and comparing TDCS to these structures have provided conflicting results, however, likely due to varying paradigms and stimulation parameters. Here we applied TDCS to CB and M1 within the same experimental design, to enable direct comparison of their roles in motor sequence learning. We examined the effects of anodal TDCS during motor sequence learning in 60 healthy participants, randomly allocated to CB-TDCS, M1-TDCS, or Sham stimulation groups during a serial reaction time task. Key to the design was an equal number of repeated and random sequences. Reaction times (RTs) to implicitly learned and random sequences were compared between groups using ANOVAs and post hoc t-tests. A speed-accuracy trade-off was excluded by analogous analysis of accuracy scores. An interaction was observed between whether responses were to learned or random sequences and the stimulation group. Post hoc analyses revealed a preferential slowing of RTs to implicitly learned sequences in the group receiving CB-TDCS. Our findings provide evidence that CB function can be modulated through transcranial application of a weak electrical current, that the CB and M1 cortex perform separable functions in the task, and that the CB plays a specific role in motor sequence learning during implicit motor sequence learning.
Collapse
Affiliation(s)
- Angela Voegtle
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Clara Terlutter
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Katharina Nikolai
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Amr Farahat
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Ernst Strüngmann Institute for Neuroscience in Cooperation With Max Planck Society, Deutschordenstr. 46, 60528, Frankfurt, Frankfurt am Main, Germany
| | - Hermann Hinrichs
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Department of Neurology, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences - CBBS, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Catherine M Sweeney-Reed
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences - CBBS, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
9
|
Lee OS. Implicit Statistical Learning in L2 Sentence Processing: Individual Cognitive Differences. JOURNAL OF PSYCHOLINGUISTIC RESEARCH 2023; 52:1037-1060. [PMID: 37016091 DOI: 10.1007/s10936-023-09957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
This study investigates whether statistical learning ability, conceptualized as a cognitive ability to learn regularities implicitly, is a good predictor for L2 learners' online language processing performance. Native-English-speaking adults, as a control group, and native-Korean-speaking adult L2 learners of English participated. They completed: (a) an artificial grammar learning task containing nonadjacent dependencies in sequences of non-words, to test statistical learning ability; and (b) a self-paced English reading task containing relative clauses (RC) in which the "filler" and the "gap" formed a long-distance dependency, to test language processing. Both tasks' stimuli were presented element-by-element to mimic the incremental nature of online language processing. The results for the L1 group show that higher accuracy scores on the artificial grammar learning task did not predict higher sentence comprehension scores. The results for the L2 group, however, show a marginally significant correlation between accuracy scores on the artificial grammar learning task and sentence comprehension scores. For both groups, the reading time difference between grammatical and ungrammatical items in the artificial grammar learning task did predict the speed of reading times for items with RCs with a long-distance dependency in the sentence processing task: Larger differences in RTs in the artificial grammar task correlated with slower reading at the critical region of English RCs. These findings suggest a similar mechanism for online first and second language processing of core syntactic phenomena and for statistical learning ability that involves implicitly tracking distributional relations across elements.
Collapse
Affiliation(s)
- On-Soon Lee
- Institute of General Edcation, Sunchon National University, 255 Jungang-ro, Sunchoen-si, Jellanam-do, Korea.
| |
Collapse
|
10
|
Matsuda N, Abe MO. Implicit motor adaptation driven by intermittent and invariant errors. Exp Brain Res 2023:10.1007/s00221-023-06667-w. [PMID: 37468766 DOI: 10.1007/s00221-023-06667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Our movements and movement outcomes are disturbed by environmental changes, leading to errors. During ongoing environmental changes, people should correct their movement using sensory feedback. However, when the changes are momentary, corrections based on sensory feedback are undesirable. Previous studies have suggested that implicit motor adaptation takes place despite the realization that the presented visual feedback should be ignored. Although these studies created experimental situations in which participants had to continuously ignore the presented visual feedback, in daily lives, people intermittently encounter opportunities to ignore sensory feedback. In this study, by intermittently presenting visual error clamp feedback, always offset from a target by 16° counterclockwise, regardless of the actual movement in a reaching experiment, we provided intermittent opportunities to ignore the visual feedback. We found that in the trials conducted immediately after presenting the visual error clamp feedback, reaching movements shifted in the direction opposite to the feedback, which is a hallmark of implicit motor adaptation. Moreover, the magnitude of the shift was significantly correlated with the rate of motor adaptation to gradual changes in the environment. Therefore, the results suggest that people unintentionally react to momentary environmental changes, which should be ignored. In addition, the sensitivity to momentary changes is greater in people who can quickly adapt to gradual environmental changes.
Collapse
Affiliation(s)
- Naoyoshi Matsuda
- Graduate School of Education, Hokkaido University, Sapporo, Japan
| | - Masaki O Abe
- Faculty of Education, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
11
|
Oliveira CM, Hayiou-Thomas ME, Henderson LM. The reliability of the serial reaction time task: meta-analysis of test-retest correlations. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221542. [PMID: 37476512 PMCID: PMC10354485 DOI: 10.1098/rsos.221542] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
The Serial Reaction Time task, one of the most widely used tasks to index procedural memory, has been increasingly employed in individual differences research examining the role of procedural memory in language and other cognitive abilities. Yet, despite consistently producing robust procedural learning effects at the group level (i.e. faster responses to sequenced/probable trials versus random/improbable trials), these effects have recently been found to have poor reliability. In this meta-analysis (N = 7), comprising 719 participants (M = 20.81, s.d. = 7.13), we confirm this 'reliability paradox'. The overall retest reliability of the robust procedural learning effect elicited by the SRTT was found to be well below acceptable psychometric standards (r < 0.40). However, split-half reliability within a session is better, with an overall estimate of 0.66. There were no significant effects of sampling (participants' age), methodology (e.g. number of trials, sequence type) and analytical decisions (whether all trials were included when computing the procedural learning scores; using different indexes of procedural learning). Thus, despite producing robust effects at the group-level, until we have a better understanding of the factors that improve the reliability of this task using the SRTT for individual differences research should be done with caution.
Collapse
Affiliation(s)
- Cátia M. Oliveira
- Department of Psychology, University of York, York, North Yorkshire, UK
| | | | - Lisa M. Henderson
- Department of Psychology, University of York, York, North Yorkshire, UK
| |
Collapse
|
12
|
Takacs A, Beste C. A neurophysiological perspective on the integration between incidental learning and cognitive control. Commun Biol 2023; 6:329. [PMID: 36973381 PMCID: PMC10042851 DOI: 10.1038/s42003-023-04692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractAdaptive behaviour requires interaction between neurocognitive systems. Yet, the possibility of concurrent cognitive control and incidental sequence learning remains contentious. We designed an experimental procedure of cognitive conflict monitoring that follows a pre-defined sequence unknown to participants, in which either statistical or rule-based regularities were manipulated. We show that participants learnt the statistical differences in the sequence when stimulus conflict was high. Neurophysiological (EEG) analyses confirmed but also specified the behavioural results: the nature of conflict, the type of sequence learning, and the stage of information processing jointly determine whether cognitive conflict and sequence learning support or compete with each other. Especially statistical learning has the potential to modulate conflict monitoring. Cognitive conflict and incidental sequence learning can engage in cooperative fashion when behavioural adaptation is challenging. Three replication and follow-up experiments provide insights into the generalizability of these results and suggest that the interaction of learning and cognitive control is dependent on the multifactorial aspects of adapting to a dynamic environment. The study indicates that connecting the fields of cognitive control and incidental learning is advantageous to achieve a synergistic view of adaptive behaviour.
Collapse
|
13
|
Matsuda N, Abe MO. Error Size Shape Relationships between Motor Variability and Implicit Motor Adaptation. BIOLOGY 2023; 12:biology12030404. [PMID: 36979096 PMCID: PMC10045141 DOI: 10.3390/biology12030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Previous studies have demonstrated the effects of motor variability on motor adaptation. However, their findings have been inconsistent, suggesting that various factors affect the relationship between motor variability and adaptation. This study focused on the size of errors driving motor adaptation as one of the factors and examined the relationship between different error sizes. Thirty-one healthy young adults participated in a visuomotor task in which they made fast-reaching movements toward a target. Motor variability was measured in the baseline phase when a veridical feedback cursor was presented. In the adaptation phase, the feedback cursor was sometimes not reflected in the hand position and deviated from the target by 0°, 3°, 6°, or 12° counterclockwise or clockwise (i.e., error-clamp feedback). Movements during trials following trials with error-clamp feedback were measured to quantify implicit adaptation. Implicit adaptation was driven by errors presented through error-clamp feedback. Moreover, motor variability significantly correlated with implicit adaptation driven by a 12° error. The results suggested that motor variability accelerates implicit adaptation when a larger error occurs. As such a trend was not observed when smaller errors occurred, the relationship between motor variability and motor adaptation might have been affected by the error size driving implicit adaptation.
Collapse
Affiliation(s)
- Naoyoshi Matsuda
- Graduate School of Education, Hokkaido University, Sapporo 060-0811, Japan
- Correspondence: (N.M.); (M.O.A.); Tel.: +81-11-706-5442 (M.O.A.)
| | - Masaki O. Abe
- Faculty of Education, Hokkaido University, Sapporo 060-0811, Japan
- Correspondence: (N.M.); (M.O.A.); Tel.: +81-11-706-5442 (M.O.A.)
| |
Collapse
|
14
|
Kiss M, Nemeth D, Janacsek K. Do temporal factors affect whether our performance accurately reflects our underlying knowledge? The effects of stimulus presentation rates on the performance versus competence dissociation. Cortex 2022; 157:65-80. [PMID: 36274443 DOI: 10.1016/j.cortex.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/05/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022]
Abstract
Ample evidence shows that the momentary performance can dissociate from the underlying knowledge (competence). Under what circumstances such dissociation occurs, however, remains unclear. Here we tested how temporal factors, and more specifically, the elapsed time between subsequent events affects the dissociation between performance and competence by systematically manipulating the stimulus presentation rates during and after learning. Participants completed a probabilistic sequence learning task with a fast (120 msec) or a slow (850 msec) response-to-stimulus-interval (RSI) during the Learning phase and they were tested with both RSIs 24 h later (Testing phase). We also tested whether they gained explicit knowledge about the sequence or their knowledge remained implicit. Our results revealed higher reaction time learning scores when tested with the fast RSI, irrespective of the RSI during learning, suggesting that faster presentation rates can help better express the acquired knowledge, leading to increased performance measures. For accuracy, participants showed higher learning scores when tested with the same presentation rate as the one that they encountered during learning. The acquired knowledge remained implicit in both groups, suggesting that the observed findings were not confounded by differences in awareness gained in the two groups. Overall, our study highlights that the momentary performance does not always accurately reflect the underlying knowledge, and temporal factors seem to influence this dissociation. Our findings have theoretical, methodological, and translational implications that likely extend beyond learning and memory to other functions and domains as well, including aspects of decision-making, perception, theory of mind, and language.
Collapse
Affiliation(s)
- Mariann Kiss
- Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary; Lyon Neuroscience Research Center (CRNL), Université Claude Bernard Lyon 1, Lyon, France.
| | - Karolina Janacsek
- Centre for Thinking and Learning, Institute of Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
15
|
Terzic L, Voegtle A, Farahat A, Hartong N, Galazky I, Nasuto SJ, Andrade ADO, Knight RT, Ivry RB, Voges J, Buentjen L, Sweeney‐Reed CM. Deep brain stimulation of the ventrointermediate nucleus of the thalamus to treat essential tremor improves motor sequence learning. Hum Brain Mapp 2022; 43:4791-4799. [PMID: 35792001 PMCID: PMC9491285 DOI: 10.1002/hbm.25989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/06/2022] Open
Abstract
The network of brain structures engaged in motor sequence learning comprises the same structures as those involved in tremor, including basal ganglia, cerebellum, thalamus, and motor cortex. Deep brain stimulation (DBS) of the ventrointermediate nucleus of the thalamus (VIM) reduces tremor, but the effects on motor sequence learning are unknown. We investigated whether VIM stimulation has an impact on motor sequence learning and hypothesized that stimulation effects depend on the laterality of electrode location. Twenty patients (age: 38-81 years; 12 female) with VIM electrodes implanted to treat essential tremor (ET) successfully performed a serial reaction time task, varying whether the stimuli followed a repeating pattern or were selected at random, during which VIM-DBS was either on or off. Analyses of variance were applied to evaluate motor sequence learning performance according to reaction times (RTs) and accuracy. An interaction was observed between whether the sequence was repeated or random and whether VIM-DBS was on or off (F[1,18] = 7.89, p = .012). Motor sequence learning, reflected by reduced RTs for repeated sequences, was greater with DBS on than off (T[19] = 2.34, p = .031). Stimulation location correlated with the degree of motor learning, with greater motor learning when stimulation targeted the lateral VIM (n = 23, ρ = 0.46; p = .027). These results demonstrate the beneficial effects of VIM-DBS on motor sequence learning in ET patients, particularly with lateral VIM electrode location, and provide evidence for a role for the VIM in motor sequence learning.
Collapse
Affiliation(s)
- Laila Terzic
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Angela Voegtle
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Amr Farahat
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
| | - Nanna Hartong
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Imke Galazky
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Slawomir J. Nasuto
- Biomedical Sciences and Biomedical Engineering Division, School of Biological SciencesUniversity of ReadingReadingUK
| | - Adriano de Oliveira Andrade
- Faculty of Electrical Engineering, Center for Innovation and Technology Assessment in Health, Postgraduate Program in Electrical and Biomedical EngineeringFederal University of UberlândiaUberlândiaBrazil
| | - Robert T. Knight
- Helen Wills Neuroscience InstituteUniversity of California—BerkeleyBerkeleyCaliforniaUSA
- Department of PsychologyUniversity of California—BerkeleyBerkeleyCaliforniaUSA
| | - Richard B. Ivry
- Department of PsychologyUniversity of California—BerkeleyBerkeleyCaliforniaUSA
| | - Jürgen Voges
- Department of Stereotactic NeurosurgeryOtto von Guericke University MagdeburgMagdeburgGermany
| | - Lars Buentjen
- Department of Stereotactic NeurosurgeryOtto von Guericke University MagdeburgMagdeburgGermany
| | - Catherine M. Sweeney‐Reed
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke University MagdeburgMagdeburgGermany
| |
Collapse
|
16
|
Pili-Moss D. Long-term memory predictors of adult language learning at the interface between syntactic form and meaning. PLoS One 2022; 17:e0275061. [PMID: 36190977 PMCID: PMC9529097 DOI: 10.1371/journal.pone.0275061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/09/2022] [Indexed: 11/04/2022] Open
Abstract
Recent neurocognitive models of second language learning have posited specific roles for declarative and procedural memory in the processing of novel linguistic stimuli. Pursuing this line of investigation, the present exploratory study examined the role of declarative and procedural memory abilities in the early stages of adult comprehension of sentences in a miniature language with natural language characteristics (BrocantoJ). Thirty-six native Italian young adults were aurally exposed to BrocantoJ in the context of a computer game over three sessions on consecutive days. Following vocabulary training and passive exposure, participants were asked to perform game moves described by aural sentences in the language. Game trials differed with respect to the information the visual context offered. In part of the trials processing of relationships between grammatical properties of the language (word order and morphological case marking) and noun semantics (thematic role) was necessary in order reach an accurate outcome, whereas in others nongrammatical contextual cues were sufficient. Declarative and procedural learning abilities were respectively indexed by visual and verbal declarative memory measures and by a measure of visual implicit sequence learning. Overall, the results indicated a substantial role of declarative learning ability in the early stages of sentence comprehension, thus confirming theoretical predictions and the findings of previous similar studies in miniature artificial language paradigms. However, for trials that specifically probed the learning of relationships between morphosyntax and semantics, a positive interaction between declarative and procedural learning ability also emerged, indicating the cooperative engagement of both types of learning abilities in the processing of relationships between ruled-based grammar and interpretation in the early stages of exposure to a new language in adults.
Collapse
Affiliation(s)
- Diana Pili-Moss
- Institute of English Studies, Faculty of Education, Leuphana Universität, Lüneburg, Germany
| |
Collapse
|
17
|
Kitchen NM, Kim KS, Wang PZ, Hermosillo RJ, Max L. Individual sensorimotor adaptation characteristics are independent across orofacial speech movements and limb reaching movements. J Neurophysiol 2022; 128:696-710. [PMID: 35946809 PMCID: PMC9484989 DOI: 10.1152/jn.00167.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Sensorimotor adaptation is critical for human motor control but shows considerable interindividual variability. Efforts are underway to identify factors accounting for individual differences in specific adaptation tasks. However, a fundamental question has remained unaddressed: Is an individual's capability for adaptation effector system specific or does it reflect a generalized adaptation ability? We therefore tested the same participants in analogous adaptation paradigms focusing on distinct sensorimotor systems: speaking with perturbed auditory feedback and reaching with perturbed visual feedback. Each task was completed once with the perturbation introduced gradually (ramped up over 60 trials) and, on a different day, once with the perturbation introduced suddenly. Consistent with studies of each system separately, visuomotor reach adaptation was more complete than auditory-motor speech adaptation (80% vs. 29% of the perturbation). Adaptation was not significantly correlated between the speech and reach tasks. Moreover, considered within tasks, 1) adaptation extent was correlated between the gradual and sudden conditions for reaching but not for speaking, 2) adaptation extent was correlated with additional measures of performance (e.g., trial duration, within-trial corrections) only for reaching and not for speaking, and 3) fitting individual participant adaptation profiles with exponential rather than linear functions offered a larger benefit [lower root mean square error (RMSE)] for the reach task than for the speech task. Combined, results suggest that the ability for sensorimotor adaptation relies on neural plasticity mechanisms that are effector system specific rather than generalized. This finding has important implications for ongoing efforts seeking to identify cognitive, behavioral, and neurochemical predictors of individual sensorimotor adaptation.NEW & NOTEWORTHY This study provides the first detailed demonstration that individual sensorimotor adaptation characteristics are independent across articulatory speech movements and limb reaching movements. Thus, individual sensorimotor learning abilities are effector system specific rather than generalized. Findings regarding one effector system do not necessarily apply to other systems, different underlying mechanisms may be involved, and implications for clinical rehabilitation or performance training also cannot be generalized.
Collapse
Affiliation(s)
- Nick M Kitchen
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Kwang S Kim
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Prince Z Wang
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Robert J Hermosillo
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Ludo Max
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
- Haskins Laboratories, New Haven, Connecticut
| |
Collapse
|
18
|
Ranganathan R, Cone S, Fox B. Predicting individual differences in motor learning: a critical review. Neurosci Biobehav Rev 2022; 141:104852. [PMID: 36058405 DOI: 10.1016/j.neubiorev.2022.104852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/02/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
The ability to predict individual differences in motor learning has significant implications from both theoretical and applied perspectives. However, there is high variability in the methodological and analytical strategies employed as evidence for such predictions. Here, we critically examine the evidence for predictions of individual differences in motor learning by reviewing the literature from a 20-year period (2000-2020). Specifically, we examined four factors: (i) the predictor and predicted variables used, (ii) the strength of the prediction and associated sample size, (iii) the timescale over which the prediction was made, and (iv) the type of motor task used. Overall, the results highlight several issues that raise concerns about the quality of the evidence for such predictions. First, there was a large variation in both predictor and predicted variables, suggesting the presence of a large number of researcher degrees of freedom. Second, sample sizes tended to be small, and the strength of the correlation showed an inverse relation with sample size. Third, the timescale of most predictions was very short, mostly constrained to a single day. Last, most studies were largely restricted to two experimental paradigms - adaptation and sequence learning. Based on these issues, we highlight recommendations for future studies to improve the quality of evidence for predicting individual differences in motor learning.
Collapse
Affiliation(s)
- Rajiv Ranganathan
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA; Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Simon Cone
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Brian Fox
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
19
|
de Brouwer AJ, Areshenkoff CN, Rashid MR, Flanagan JR, Poppenk J, Gallivan JP. Human Variation in Error-Based and Reinforcement Motor Learning Is Associated With Entorhinal Volume. Cereb Cortex 2022; 32:3423-3440. [PMID: 34963128 PMCID: PMC9376876 DOI: 10.1093/cercor/bhab424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
Error-based and reward-based processes are critical for motor learning and are thought to be mediated via distinct neural pathways. However, recent behavioral work in humans suggests that both learning processes can be bolstered by the use of cognitive strategies, which may mediate individual differences in motor learning ability. It has been speculated that medial temporal lobe regions, which have been shown to support motor sequence learning, also support the use of cognitive strategies in error-based and reinforcement motor learning. However, direct evidence in support of this idea remains sparse. Here we first show that better overall learning during error-based visuomotor adaptation is associated with better overall learning during the reward-based shaping of reaching movements. Given the cognitive contribution to learning in both of these tasks, these results support the notion that strategic processes, associated with better performance, drive intersubject variation in both error-based and reinforcement motor learning. Furthermore, we show that entorhinal cortex volume is larger in better learning individuals-characterized across both motor learning tasks-compared with their poorer learning counterparts. These results suggest that individual differences in learning performance during error and reinforcement learning are related to neuroanatomical differences in entorhinal cortex.
Collapse
Affiliation(s)
- Anouk J de Brouwer
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Corson N Areshenkoff
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Mohammad R Rashid
- School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Jordan Poppenk
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
- School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
20
|
Cornelis C, De Picker LJ, Coppens V, Morsel A, Timmers M, Dumont G, Sabbe BGC, Morrens M, Hulstijn W. Impaired Sensorimotor Adaption in Schizophrenia in Comparison to Age-Matched and Elderly Controls. Neuropsychobiology 2022; 81:127-140. [PMID: 34731860 DOI: 10.1159/000518867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 08/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The "cognitive dysmetria hypothesis" of schizophrenia proposes a disrupted communication between the cerebellum and cerebral cortex, resulting in sensorimotor and cognitive symptoms. Sensorimotor adaptation relies strongly on the function of the cerebellum. OBJECTIVES This study investigated whether sensorimotor adaptation is reduced in schizophrenia compared with age-matched and elderly healthy controls. METHODS Twenty-nine stably treated patients with schizophrenia, 30 age-matched, and 30 elderly controls were tested in three motor adaptation tasks in which visual movement feedback was unexpectedly altered. In the "rotation adaptation task" the perturbation consisted of a rotation (30° clockwise), in the "gain adaptation task" the extent of the movement feedback was reduced (by a factor of 0.7) and in the "vertical reversal task," up- and downward pen movements were reversed by 180°. RESULTS Patients with schizophrenia adapted to the perturbations, but their movement times and errors were substantially larger than controls. Unexpectedly, the magnitude of adaptation was significantly smaller in schizophrenia than elderly participants. The impairment already occurred during the first adaptation trials, pointing to a decline in explicit strategy use. Additionally, post-adaptation aftereffects provided strong evidence for impaired implicit adaptation learning. Both negative and positive schizophrenia symptom severities were correlated with indices of the amount of adaptation and its aftereffects. CONCLUSIONS Both explicit and implicit components of sensorimotor adaptation learning were reduced in patients with schizophrenia, adding to the evidence for a role of the cerebellum in the pathophysiology of schizophrenia. Elderly individuals outperformed schizophrenia patients in the adaptation learning tasks.
Collapse
Affiliation(s)
- Claudia Cornelis
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,Psychiatric Center Multiversum, Mortsel, Belgium
| | - Livia J De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Psychiatric Center Duffel, Duffel, Belgium
| | - Violette Coppens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
| | - Anne Morsel
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
| | - Maarten Timmers
- Janssen Pharmaceutica N.V, Janssen Research and Development, Beerse, Belgium
| | - Glenn Dumont
- AMC, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bernard G C Sabbe
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Psychiatric Center Duffel, Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,University Psychiatric Center Duffel, Duffel, Belgium
| | - Wouter Hulstijn
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.,Psychiatric Center Multiversum, Mortsel, Belgium.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Sequence Learning in an Online Serial Reaction Time Task: The Effect of Task Instructions. JOURNAL OF MOTOR LEARNING AND DEVELOPMENT 2022. [DOI: 10.1123/jmld.2021-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The serial reaction time task (SRTT) is commonly used to study motor learning and memory. The task is traditionally administered in a lab setting with participants responding via button box or keyboard to targets on a screen. By comparing response times of sequential versus random trials and accuracy across sequential trials, different forms of learning can be studied. The present study utilized an online version of the SRTT to study the effects of instructions on learning. Participants were randomly assigned to an explicit learning condition (with instructions to learn the visual sequence and associated tone) or an implicit learning condition (without instructions). Stimuli in both learning conditions were presented in two phases: auditory and visual (training phase), followed by auditory only (testing phase). Results indicated that learning occurred in both training and testing phases, as shown by a significant decrease in response times. There was no significant main effect of learning condition (explicit or implicit) on sequence learning. This suggests that providing explicit instructions does not seem to influence sequence learning in the SRTT learning paradigm. Future online studies utilizing the SRTT should explore varying task instructions in a parametric manner to better understand cognitive processes that underlie sequence learning.
Collapse
|
22
|
Moore RT, Cluff T. Individual Differences in Sensorimotor Adaptation Are Conserved Over Time and Across Force-Field Tasks. Front Hum Neurosci 2021; 15:692181. [PMID: 34916916 PMCID: PMC8669441 DOI: 10.3389/fnhum.2021.692181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Sensorimotor adaptation enables the nervous system to modify actions for different conditions and environments. Many studies have investigated factors that influence adaptation at the group level. There is growing recognition that individuals vary in their ability to adapt motor skills and that a better understanding of individual differences in adaptation may inform how motor skills are taught and rehabilitated. Here we examined individual differences in the adaptation of upper-limb reaching movements. We quantified the extent to which participants adapted their movements to a velocity-dependent force field during an initial session, at 24 h, and again 1-week later. Participants (n = 28) displayed savings, which was expressed as greater initial adaptation when re-exposed to the force field. Individual differences in adaptation across various stages of the experiment displayed weak-strong reliability, such that individuals who adapted to a greater extent in the initial session tended to do so when re-exposed to the force field. Our second experiment investigated if individual differences in adaptation are also present when participants adapt to different force fields or a force field and visuomotor rotation. Separate groups of participants adapted to position- and velocity-dependent force fields (Experiment 2a; n = 20) or a velocity-dependent force field and visuomotor rotation in a single session (Experiment 2b; n = 20). Participants who adapted to a greater extent to velocity-dependent forces tended to show a greater extent of adaptation when exposed to position-dependent forces. In contrast, correlations were weak between various stages of adaptation to the force-field and visuomotor rotation. Collectively, our study reveals individual differences in adaptation that are reliable across repeated exposure to the same force field and present when adapting to different force fields.
Collapse
Affiliation(s)
- Robert T Moore
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tyler Cluff
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Farkas BC, Tóth-Fáber E, Janacsek K, Nemeth D. A Process-Oriented View of Procedural Memory Can Help Better Understand Tourette's Syndrome. Front Hum Neurosci 2021; 15:683885. [PMID: 34955784 PMCID: PMC8707288 DOI: 10.3389/fnhum.2021.683885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Tourette's syndrome (TS) is a neurodevelopmental disorder characterized by repetitive movements and vocalizations, also known as tics. The phenomenology of tics and the underlying neurobiology of the disorder have suggested that the altered functioning of the procedural memory system might contribute to its etiology. However, contrary to the robust findings of impaired procedural memory in neurodevelopmental disorders of language, results from TS have been somewhat mixed. We review the previous studies in the field and note that they have reported normal, impaired, and even enhanced procedural performance. These mixed findings may be at least partially be explained by the diversity of the samples in both age and tic severity, the vast array of tasks used, the low sample sizes, and the possible confounding effects of other cognitive functions, such as executive functions, working memory or attention. However, we propose that another often overlooked factor could also contribute to the mixed findings, namely the multiprocess nature of the procedural system itself. We propose that a process-oriented view of procedural memory functions could serve as a theoretical framework to help integrate these varied findings. We discuss evidence suggesting heterogeneity in the neural regions and their functional contributions to procedural memory. Our process-oriented framework can help to deepen our understanding of the complex profile of procedural functioning in TS and atypical development in general.
Collapse
Affiliation(s)
- Bence Cs. Farkas
- LNC, Département d’Études Cognitives, École Normale Supérieure, INSERM, PSL Research University, Paris, France
| | - Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
24
|
Vékony T, Ambrus GG, Janacsek K, Nemeth D. Cautious or causal? Key implicit sequence learning paradigms should not be overlooked when assessing the role of DLPFC (Commentary on Prutean et al.). Cortex 2021; 148:222-226. [PMID: 34789384 DOI: 10.1016/j.cortex.2021.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022]
Abstract
The role of the dorsolateral prefrontal cortex (DLPFC) in implicit sequence/statistical learning has received considerable attention in recent cognitive neuroscience research. Studies have used non-invasive brain stimulation methods to test whether the DLPFC plays a role in the incidental acquisition and expression of implicit sequence learning. In a recent study, Prutean et al. has concluded that stimulating the left or the right DLPFC might not affect the expression of implicit sequence learning measured by the Serial Reaction Time (SRT) task. The authors speculated that the previous results revealing improved implicit sequence learning following DLPFC stimulation might have been found because explicit awareness accumulated with the use of Alternating Serial Reaction Time (ASRT) task. Our response presents solid evidence that the ASRT task measures implicit sequence learning that remains unconscious both at the judgment and structural level. Therefore, contrary to the conclusion of Prutean et al., we argue that the DLPFC could have a crucial effect on implicit sequence learning that may be task-dependent. We suggest that future research should focus on the specific cognitive processes that may be differentially involved in the SRT versus ASRT tasks, and test what the role of the DLPFC is in those specific cognitive processes.
Collapse
Affiliation(s)
- Teodóra Vékony
- Lyon Neuroscience Research Center (CRNL), Université Claude Bernard Lyon 1, Lyon, France
| | | | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary; Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom
| | - Dezso Nemeth
- Lyon Neuroscience Research Center (CRNL), Université Claude Bernard Lyon 1, Lyon, France; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
25
|
Perception and control: individual difference in the sense of agency is associated with learnability in sensorimotor adaptation. Sci Rep 2021; 11:20542. [PMID: 34654878 PMCID: PMC8519916 DOI: 10.1038/s41598-021-99969-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/24/2021] [Indexed: 11/08/2022] Open
Abstract
Adaptive motor learning refers to the ability to adjust to novel disturbances in the environment as a way of minimizing sensorimotor errors. It is known that such processes show large individual differences and are linked to multiple perceptual and cognitive processes. On the other hand, the sense of agency refers to the subjective feeling of control during voluntary motor control. Is the sense of agency just a by-product of the control outcome, or is it actually important for motor control and learning? To answer this question, this study takes an approach based on individual differences to investigate the relationship between the sense of agency and learnability in sensorimotor adaptation. Specifically, we use an adaptive motor learning task to measure individual differences in the efficiency of motor learning. Regarding the sense of agency, we measure the perceptual sensitivity of detecting an increase or a decrease in control when the actual level of control gradually increases or decreases, respectively. The results of structure equation modelling reveal a significant influence of perceptual sensitivity to increased control on motor learning efficiency. On the other hand, the link between perceptual sensitivity to decreased control and motor learning is nonsignificant. The results show that the sense of agency in detecting increased control is associated with the actual ability of sensorimotor adaptation: people who are more sensitive in detecting their control in the environment can also more quickly adjust their behaviors to novel disturbances to acquire better control, compared to people who have a less sensitive sense of agency. Finally, the results also reveal that the processes of increasing control and decreasing control may be partially independent.
Collapse
|
26
|
Abstract
Compared to blocked practice, interleaved practice of different tasks leads to superior long-term retention despite poorer initial acquisition performance. This phenomenon, the contextual interference effect, is well documented in various domains but it is not yet clear if it persists in the absence of explicit knowledge in terms of fine motor sequence learning. Additionally, while there is some evidence that interleaved practice leads to improved transfer of learning to similar actions, transfer of implicit motor sequence learning has not been explored. The present studies used a serial reaction time task where participants practiced three different eight-item sequences that were either interleaved or blocked on Day 1 (training) and Day 2 (testing). In Experiment 1, the retention of the three training sequences was tested on Day 2 and in Experiment 2, three novel sequences were performed on Day 2 to measure transfer. We assessed whether subjects were aware of the sequences to determine whether the benefit of interleaved practice extends to implicitly learned sequences. Even for participants who reported no awareness of the sequences, interleaving led to a benefit for both retention and transfer compared to participants who practiced blocked sequences. Those who trained with blocked sequences were left unprepared for interleaved sequences at test, while those who trained with interleaved sequences were unaffected by testing condition, revealing that learning resulting from blocked practice may be less flexible and more vulnerable to testing conditions. These results indicate that the benefit of interleaved practice extends to implicit motor sequence learning and transfer.
Collapse
Affiliation(s)
- Julia M Schorn
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Barbara J Knowlton
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
27
|
Tóth-Fáber E, Tárnok Z, Takács Á, Janacsek K, Németh D. Access to Procedural Memories After One Year: Evidence for Robust Memory Consolidation in Tourette Syndrome. Front Hum Neurosci 2021; 15:715254. [PMID: 34475817 PMCID: PMC8407083 DOI: 10.3389/fnhum.2021.715254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Tourette syndrome is a childhood-onset neurodevelopmental disorder characterized by motor and vocal tics. On the neural level, tics are thought to be related to the disturbances of the cortico-basal ganglia-thalamo-cortical loops, which also play an important role in procedural learning. Several studies have investigated the acquisition of procedural information and the access to established procedural information in TS. Based on these, the notion of procedural hyperfunctioning, i.e., enhanced procedural learning, has been proposed. However, one neglected area is the retention of acquired procedural information, especially following a long-term offline period. Here, we investigated the 5-hour and 1-year consolidation of two aspects of procedural memory, namely serial-order and probability-based information. Nineteen children with TS between the ages of 10 and 15 as well as 19 typically developing gender- and age-matched controls were tested on a visuomotor four-choice reaction time task that enables the simultaneous assessment of the two aspects. They were retested on the same task 5 hours and 1 year later without any practice in the offline periods. Both groups successfully acquired and retained the probability-based information both when tested 5 hours and then 1 year later, with comparable performance between the TS and control groups. Children with TS did not acquire the serial-order information during the learning phase; hence, retention could not be reliably tested. Our study showed evidence for short-term and long-term retention of one aspect of procedural memory, namely probability-based information in TS, whereas learning of serial-order information might be impaired in this disorder.
Collapse
Affiliation(s)
- Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zsanett Tárnok
- Vadaskert Child and Adolescent Psychiatry Hospital, Budapest, Hungary
| | - Ádám Takács
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom
| | - Dezső Németh
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université de Lyon, Lyon, France
| |
Collapse
|
28
|
Implicit Visuomotor Adaptation Remains Limited after Several Days of Training. eNeuro 2021; 8:ENEURO.0312-20.2021. [PMID: 34301722 PMCID: PMC8362683 DOI: 10.1523/eneuro.0312-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022] Open
Abstract
Learning in sensorimotor adaptation tasks has been viewed as an implicit learning phenomenon. The implicit process affords recalibration of existing motor skills so that the system can adjust to changes in the body or environment without relearning from scratch. However, recent findings suggest that the implicit process is heavily constrained, calling into question its utility in motor learning and the theoretical framework of sensorimotor adaptation paradigms. These inferences have been based mainly on results from single bouts of training, where explicit compensation strategies, such as explicitly re-aiming the intended movement direction, contribute a significant proportion of adaptive learning. It is possible, however, that the implicit process supersedes explicit compensation strategies over repeated practice sessions. We tested this by dissociating the contributions of explicit re-aiming strategies and the implicit process in human participants over five consecutive days of training. Despite a substantially longer duration of training, the implicit process still plateaued at a value far short of complete learning and, as has been observed in previous studies, was inappropriate for a mirror-reversal task. Notably, we find significant between subject differences that call into question traditional interpretation of these group-level results.
Collapse
|
29
|
The S-Shaped Performance Curve Prevails in Practicing Juggling. JOURNAL OF MOTOR LEARNING AND DEVELOPMENT 2021. [DOI: 10.1123/jmld.2020-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of performance, such as learning a new motor skill, can be represented in a performance curve. The shape of the performance curve is both of theoretical and practical relevance. Here, the author studied the interday performance of juggling over a period of 17 days in 112 college students. The results showed that 60% of participants followed an S-shaped performance curve with the inflection date on the 11th day, followed by a decelerated (20%), accelerated (14%), and linear curve (6%). As expected, except on Day 1, male participants performed at least 33% better than female participants on each practice day. Also as expected, learning performance was found to depend on the type of performance curve with the best learning performance exhibited by the linear group. The results further revealed that pooling all participants’ performance together without considering the percentage of each underlying type of performance curve would lead to biased, nonrepresentative results. Given the variety of the observed performance curves and the dominance of the S-shaped performance curve among them, coaches should continuously monitor the shape of an individual’s performance curve.
Collapse
|
30
|
Liu Y, Jiang W, Bi Y, Wei K. Sensorimotor knowledge from task-irrelevant feedback contributes to motor learning. J Neurophysiol 2021; 126:723-735. [PMID: 34259029 DOI: 10.1152/jn.00174.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to task-irrelevant feedback leads to perceptual learning, but its effect on motor learning has been understudied. Here, we asked human participants to reach a visual target with a hand-controlled cursor while observing another cursor moving independently in a different direction. Although the task-irrelevant feedback did not change the main task's performance, it elicited robust savings in subsequent adaptation to classical visuomotor rotation perturbation. We demonstrated that the saving effect resulted from a faster formation of strategic learning through a series of experiments, not from gains in the implicit learning process. Furthermore, the saving effect was robust against drastic changes in stimulus features (i.e., rotation size or direction) or task types (i.e., for motor adaptation and skill learning). However, the effect was absent when the task-irrelevant feedback did not carry the visuomotor relationship embedded in visuomotor rotation. Thus, though previous research on perceptual learning has related task-irrelevant feedback to changes in early sensory processes, our findings support its role in acquiring abstract sensorimotor knowledge during motor learning. Motor learning studies have traditionally focused on task-relevant feedback, but our study extends the scope of feedback processes and sheds new light on the dichotomy of explicit and implicit learning in motor adaptation and motor structure learning.NEW & NOTEWORTHY When the motor system faces perturbations, such as fatigue or new environmental changes, it adapts to these changes by voluntarily selecting new action plans or implicitly fine-tuning the control. We show that the action selection part can be enhanced without practice or explicit instruction. We further demonstrate that this enhancement is probably linked to the acquisition of abstract knowledge about the to-be-adapted novel visual feedback. Our findings draw an interesting parallel between motor and perceptual learning by showing that top-down information affects both types of procedural learning.
Collapse
Affiliation(s)
- Yajie Liu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Wanying Jiang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yuqing Bi
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Kunlin Wei
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
31
|
Kimura T, Nakano W. Does a Cognitive Task Promote Implicit or Explicit Motor Learning? J Mot Behav 2021; 55:619-631. [PMID: 34121633 DOI: 10.1080/00222895.2021.1918053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
This study examined whether use of an N-back task could promote implicit and explicit motor learning. In Experiment 1, 30 healthy adults were assigned to an N-back task group (NTG) or a control task group (CG). All participants performed the serial reaction time task (SRTT) and generation task after either the N-back or control tasks. The results did not reveal whether the N-back task promoted implicit or explicit motor learning because participants in the NTG noticed a hidden loop in the SRTT and this "awareness" made it difficult to interpret the results in Experiment 1. In Experiment 2, we examined whether the N-back task promoted explicit motor learning only using a modified SRTT. Thirty healthy adults were assigned to the NTG or the CG. On day 1, all participants performed the modified SRTT after either the N-back or control tasks. On day 7, all participants repeated the modified SRTT. As a result, the performance on the modified SRTT was faster in the NTG than in the CG on days 1 and 7. In summary, although the N-back task might promote explicit motor learning, the present study could not clearly conclude whether the N-back task promoted implicit and explicit motor learning.
Collapse
Affiliation(s)
- Takehide Kimura
- Department of Physical Therapy, Faculty of Health Sciences, Tsukuba International University, Tsuchiura, Ibaraki, Japan
| | - Wataru Nakano
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, 1-30 Shizuoka, Shizuoka, Japan
| |
Collapse
|
32
|
Fleury L, Panico F, Foncelle A, Revol P, Delporte L, Jacquin-Courtois S, Collet C, Rossetti Y. Non-invasive brain stimulation shows possible cerebellar contribution in transfer of prism adaptation after-effects from pointing to throwing movements. Brain Cogn 2021; 151:105735. [PMID: 33945939 DOI: 10.1016/j.bandc.2021.105735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022]
Abstract
Whether sensorimotor adaptation can be generalized from one context to others represents a crucial interest in the field of neurological rehabilitation. Nonetheless, the mechanisms underlying transfer to another task remain unclear. Prism Adaptation (PA) is a useful method employed both to study short-term plasticity and for rehabilitation. Neuro-imaging and neuro-stimulation studies show that the cerebellum plays a substantial role in online control, strategic control (rapid error reduction), and realignment (after-effects) in PA. However, the contribution of the cerebellum to transfer is still unknown. The aim of this study was to test whether interfering with the activity of the cerebellum affected transfer of prism after-effects from a pointing to a throwing task. For this purpose, we delivered cathodal cerebellar transcranial Direct Current Stimulation (tDCS) to healthy participants during PA while a control group received cerebellar Sham Stimulation. We assessed longitudinal evolutions of pointing and throwing errors and pointing trajectories orientations during pre-tests, exposure and post-tests. Results revealed that participants who received active cerebellar stimulation showed (1) altered error reduction and pointing trajectories during the first trials of exposure; (2) increased magnitude but reduced robustness of pointing after-effects; and, crucially, (3) slightly altered transfer of after-effects to the throwing task. Therefore, the present study confirmed that cathodal cerebellar tDCS interferes with processes at work during PA and provides evidence for a possible contribution of the cerebellum in after-effects transfer.
Collapse
Affiliation(s)
- Lisa Fleury
- Lyon Neuroscience Research Center (CRNL), Trajectoires team, INSERM UMR-S U1028, CNRS UMS 5292, 69500 Bron, France; University of Claude, Bernard Lyon 1, 69100 Villeurbanne, France; Inter-University Laboratory of Human Movement Biology (LIBM), EA 7424, 69100 Villeurbanne, France
| | - Francesco Panico
- Department of Psychology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Alexandre Foncelle
- Lyon Neuroscience Research Center (CRNL), Trajectoires team, INSERM UMR-S U1028, CNRS UMS 5292, 69500 Bron, France
| | - Patrice Revol
- Lyon Neuroscience Research Center (CRNL), Trajectoires team, INSERM UMR-S U1028, CNRS UMS 5292, 69500 Bron, France; "Mouvement et Handicap" platform, Hôpital Henry Gabrielle & Hôpital Neurologique, Hospices Civils de Lyon, 69500 Bron, France
| | - Ludovic Delporte
- Lyon Neuroscience Research Center (CRNL), Trajectoires team, INSERM UMR-S U1028, CNRS UMS 5292, 69500 Bron, France; "Mouvement et Handicap" platform, Hôpital Henry Gabrielle & Hôpital Neurologique, Hospices Civils de Lyon, 69500 Bron, France
| | - Sophie Jacquin-Courtois
- Lyon Neuroscience Research Center (CRNL), Trajectoires team, INSERM UMR-S U1028, CNRS UMS 5292, 69500 Bron, France; "Mouvement et Handicap" platform, Hôpital Henry Gabrielle & Hôpital Neurologique, Hospices Civils de Lyon, 69500 Bron, France
| | - Christian Collet
- University of Claude, Bernard Lyon 1, 69100 Villeurbanne, France; Inter-University Laboratory of Human Movement Biology (LIBM), EA 7424, 69100 Villeurbanne, France
| | - Yves Rossetti
- Lyon Neuroscience Research Center (CRNL), Trajectoires team, INSERM UMR-S U1028, CNRS UMS 5292, 69500 Bron, France; "Mouvement et Handicap" platform, Hôpital Henry Gabrielle & Hôpital Neurologique, Hospices Civils de Lyon, 69500 Bron, France
| |
Collapse
|
33
|
Kimura T, Nakano W. Enhancement of prefrontal area excitability induced by a cognitive task: Impact on subsequence visuomotor task performance. Neurobiol Learn Mem 2021; 181:107436. [PMID: 33831512 DOI: 10.1016/j.nlm.2021.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 11/19/2022]
Abstract
Cognitive tasks may have the potential to improve visuomotor task performance; however, the reason for this is unclear. If this can be clarified, it may be possible to develop clinically valuable outcomes, such as promotion of motor learning though cognitive tasks. The present study aimed to investigate whether changes in prefrontal area excitability induced by cognitive tasks, especially within the dorsolateral prefrontal cortex (DLPFC), influenced the speed of improvement during visuomotor task performance. Twenty young healthy adults were recruited. The serial reaction time task (SRTT) was used to assess visuomotor task performance. Cognitive tasks included an adjusted N-back task, a non-adjusted N-back task, and a control task, which were evaluated on different days. Additionally, we measured cerebral hemodynamic activity using near-infrared spectroscopy while each cognitive task was being performed. We observed that the adjusted N-back task significantly enhanced the speed of improvement during the SRTT performance compared to the control task. However, there was no relationship between the speed of improvement during the SRTT performance and changes in prefrontal area excitability induced by the cognitive tasks. Our findings contribute towards developing an effective method that uses cognitive tasks to promote visuomotor learning.
Collapse
Affiliation(s)
- Takehide Kimura
- Department of Physical Therapy, Faculty of Health Sciences, Tsukuba International University, 6-8-33 Manabe, Tsuchiura, Ibaraki, Japan.
| | - Wataru Nakano
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, 1-30 Mizuochityou, Aoi-ku, Shizuoka, Shizuoka, Japan
| |
Collapse
|
34
|
Kóbor A, Kardos Z, Horváth K, Janacsek K, Takács Á, Csépe V, Nemeth D. Implicit anticipation of probabilistic regularities: Larger CNV emerges for unpredictable events. Neuropsychologia 2021; 156:107826. [PMID: 33716039 DOI: 10.1016/j.neuropsychologia.2021.107826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 01/28/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022]
Abstract
Anticipation of upcoming events plays a crucial role in automatic behaviors. It is, however, still unclear whether the event-related brain potential (ERP) markers of anticipation could track the implicit acquisition of probabilistic regularities that can be considered as building blocks of automatic behaviors. Therefore, in a four-choice reaction time (RT) task performed by young adults (N = 36), the contingent negative variation (CNV) as an ERP marker of anticipation was measured from the onset of a cue stimulus until the presentation of a target stimulus. Due to the probability structure of the task, target stimuli were either predictable or unpredictable, but this was unknown to participants. The cue did not contain predictive information on the upcoming target. Results showed that the CNV amplitude during response preparation was larger before the unpredictable than before the predictable target stimuli. In addition, although RTs increased, the P3 amplitude decreased for the unpredictable as compared with the predictable target stimuli, possibly due to the stronger response preparation that preceded stimulus presentation. These results suggest that enhanced attentional resources are allocated to the implicit anticipation and processing of unpredictable events. This might originate from the formation of internal models on the probabilistic regularities of the stimulus stream, which primarily facilitates the processing of predictable events. Overall, we provide ERP evidence that supports the role of implicit anticipation and predictive processes in the acquisition of probabilistic regularities.
Collapse
Affiliation(s)
- Andrea Kóbor
- Brain Imaging Centre, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary.
| | - Zsófia Kardos
- Brain Imaging Centre, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary; Department of Cognitive Science, Budapest University of Technology and Economics, Egry József utca 1, H-1111, Budapest, Hungary
| | - Kata Horváth
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, H-1064, Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, H-1064, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, H-1064, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary; Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, Old Royal Naval College, Park Row, 150 Dreadnought, SE10 9LS, London, United Kingdom
| | - Ádám Takács
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Valéria Csépe
- Brain Imaging Centre, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary; Faculty of Modern Philology and Social Sciences, University of Pannonia, Egyetem utca 10, H-8200, Veszprém, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, H-1064, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary; Lyon Neuroscience Research Center (CRNL), Université de Lyon, Centre Hospitalier Le Vinatier, Bâtiment 462, Neurocampus 95 Boulevard Pinel, 69675, Bron, Lyon, France.
| |
Collapse
|
35
|
Tsay JS, Kim HE, Parvin DE, Stover AR, Ivry RB. Individual differences in proprioception predict the extent of implicit sensorimotor adaptation. J Neurophysiol 2021; 125:1307-1321. [PMID: 33656948 DOI: 10.1152/jn.00585.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have revealed an upper bound in motor adaptation, beyond which other learning systems may be recruited. The factors determining this upper bound are poorly understood. The multisensory integration hypothesis states that this limit arises from opposing responses to visual and proprioceptive feedback. As individuals adapt to a visual perturbation, they experience an increasing proprioceptive error in the opposite direction, and the upper bound is the point where these two error signals reach an equilibrium. Assuming that visual and proprioceptive feedback are weighted according to their variability, there should be a correlation between proprioceptive variability and the limits of adaptation. Alternatively, the proprioceptive realignment hypothesis states that the upper bound arises when the (visually biased) sensed hand position realigns with the expected sensed position (target). When a visuo-proprioceptive discrepancy is introduced, the sensed hand position is biased toward the visual cursor, and the adaptive system counteracts this discrepancy by driving the hand away from the target. This hypothesis predicts a correlation between the size of the proprioceptive shift and the upper bound of adaptation. We tested these two hypotheses by considering natural variation in proprioception and motor adaptation across individuals. We observed a modest, yet reliable correlation between the upper bound of adaptation with both proprioceptive measures (variability and shift). Although the results do not clearly favor one hypothesis over the other, they underscore the critical role of proprioception in sensorimotor adaptation.NEW & NOTEWORTHY Although the sensorimotor system uses sensory feedback to remain calibrated, this learning process is constrained, limited by the maximum degree of plasticity. The factors determining this limit remain elusive. Guided by two hypotheses, we show that individual differences in the upper bound of adaptation in response to a visual perturbation can be predicted by the bias and variability in proprioception. These results underscore the critical, but often neglected role of proprioception in human motor learning.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, University of California, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Hyosub E Kim
- Department of Physical Therapy, University of Delaware, Newark, Delaware
| | - Darius E Parvin
- Department of Psychology, University of California, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Alissa R Stover
- Department of Psychology, University of California, Berkeley, California
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, California.,Department of Physical Therapy, University of Delaware, Newark, Delaware
| |
Collapse
|
36
|
Avraham G, Morehead JR, Kim HE, Ivry RB. Reexposure to a sensorimotor perturbation produces opposite effects on explicit and implicit learning processes. PLoS Biol 2021; 19:e3001147. [PMID: 33667219 PMCID: PMC7968744 DOI: 10.1371/journal.pbio.3001147] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/17/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022] Open
Abstract
The motor system demonstrates an exquisite ability to adapt to changes in the environment and to quickly reset when these changes prove transient. If similar environmental changes are encountered in the future, learning may be faster, a phenomenon known as savings. In studies of sensorimotor learning, a central component of savings is attributed to the explicit recall of the task structure and appropriate compensatory strategies. Whether implicit adaptation also contributes to savings remains subject to debate. We tackled this question by measuring, in parallel, explicit and implicit adaptive responses in a visuomotor rotation task, employing a protocol that typically elicits savings. While the initial rate of learning was faster in the second exposure to the perturbation, an analysis decomposing the 2 processes showed the benefit to be solely associated with explicit re-aiming. Surprisingly, we found a significant decrease after relearning in aftereffect magnitudes during no-feedback trials, a direct measure of implicit adaptation. In a second experiment, we isolated implicit adaptation using clamped visual feedback, a method known to eliminate the contribution of explicit learning processes. Consistent with the results of the first experiment, participants exhibited a marked reduction in the adaptation function, as well as an attenuated aftereffect when relearning from the clamped feedback. Motivated by these results, we reanalyzed data from prior studies and observed a consistent, yet unappreciated pattern of attenuation of implicit adaptation during relearning. These results indicate that explicit and implicit sensorimotor processes exhibit opposite effects upon relearning: Explicit learning shows savings, while implicit adaptation becomes attenuated.
Collapse
Affiliation(s)
- Guy Avraham
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - J. Ryan Morehead
- School of Psychology, University of Leeds, Leeds, United Kingdom
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Hyosub E. Kim
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Richard B. Ivry
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
37
|
Yadav G, Mutha PK. Symmetric interlimb transfer of newly acquired skilled movements. J Neurophysiol 2020; 124:1364-1376. [PMID: 32902352 DOI: 10.1152/jn.00777.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we aimed to examine features of interlimb generalization or "transfer" of newly acquired motor skills, with a broader goal of better understanding the mechanisms mediating skill learning. Right-handed participants (n = 36) learned a motor task that required them to make very rapid but accurate reaches to one of eight randomly presented targets, thus bettering the typical speed-accuracy tradeoff. Subjects were divided into an "RL" group that first trained with the right arm and was then tested on the left and an "LR" group that trained with the left arm and was subsequently tested on the right. We found significant interlimb transfer in both groups. Remarkably, we also observed that participants learned faster with their left arm compared with the right. We hypothesized that this could be due to a previously suggested left arm/right hemisphere advantage for movements under variable task conditions. To corroborate this, we recruited two additional groups of participants (n = 22) that practiced the same task under a single target condition. This removal of task level variability eliminated learning rate differences between the arms, yet interlimb transfer remained robust and symmetric, as in the first experiment. Additionally, the strategy used to reduce errors during learning, albeit heterogeneous across subjects particularly in our second experiment, was adopted by the untrained arm. These findings may be best explained as the outcome of the operation of cognitive strategies during the early stages of motor skill learning.NEW & NOTEWORTHY How newly acquired motor skills generalize across effectors is not well understood. Here, we show that newly learned skilled actions transfer symmetrically across the arms and that task-level variability influences learning rate but not transfer magnitude or direction. Interestingly, strategies developed during learning with one arm transfer to the untrained arm. This likely reflects the outcome of learning driven by cognitive mechanisms during the initial stages of motor skill acquisition.
Collapse
Affiliation(s)
- Goldy Yadav
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Pratik K Mutha
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India.,Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| |
Collapse
|
38
|
Kim HE, Avraham G, Ivry RB. The Psychology of Reaching: Action Selection, Movement Implementation, and Sensorimotor Learning. Annu Rev Psychol 2020; 72:61-95. [PMID: 32976728 DOI: 10.1146/annurev-psych-010419-051053] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of motor planning and learning in humans has undergone a dramatic transformation in the 20 years since this journal's last review of this topic. The behavioral analysis of movement, the foundational approach for psychology, has been complemented by ideas from control theory, computer science, statistics, and, most notably, neuroscience. The result of this interdisciplinary approach has been a focus on the computational level of analysis, leading to the development of mechanistic models at the psychological level to explain how humans plan, execute, and consolidate skilled reaching movements. This review emphasizes new perspectives on action selection and motor planning, research that stands in contrast to the previously dominant representation-based perspective of motor programming, as well as an emerging literature highlighting the convergent operation of multiple processes in sensorimotor learning.
Collapse
Affiliation(s)
- Hyosub E Kim
- Departments of Physical Therapy, Psychological and Brain Sciences, and Biomedical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Guy Avraham
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA;
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
39
|
Prior cortical activity differences during an action observation plus motor imagery task related to motor adaptation performance of a coordinated multi-limb complex task. Cogn Neurodyn 2020; 14:769-779. [PMID: 33101530 DOI: 10.1007/s11571-020-09633-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Motor adaptation is the ability to develop new motor skills that makes performing a consolidated motor task under different psychophysical conditions possible. There exists a proven relationship between prior brain activity at rest and motor adaptation. However, the brain activity at rest is highly variable both between and within subjects. Here we hypothesize that the cortical activity during the original task to be later adapted is a more reliable and stronger determinant of motor adaptation. Consequently, we present a study to find cortical areas whose activity, both at rest and during first-person virtual reality simulation of bicycle riding, characterizes the subjects who did and did not adapt to ride a reverse steering bicycle, a complex motor adaptation task involving all limbs and balance. The results showed that cortical activity differences during the simulated task were higher, more significant, spatially larger, and spectrally wider than at rest for good performers. In this sense, the activity of the left anterior insula, left dorsolateral and ventrolateral inferior prefrontal areas, and left inferior premotor cortex (action understanding hub of the mirror neuron circuit) during simulated bicycle riding are the areas with the most descriptive power for the ability of adapting the motor task. Trials registration Trial was registered with the NIH Clinical Trials Registry (clinicaltrials.gov), with the registration number NCT02999516 (21/12/2016).
Collapse
|
40
|
Tal A, Vakil E. How sequence learning unfolds: Insights from anticipatory eye movements. Cognition 2020; 201:104291. [PMID: 32497894 DOI: 10.1016/j.cognition.2020.104291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 11/21/2022]
Abstract
The acquisition of sequential knowledge is pivotal in forming skilled behavior. Despite extensive research of sequence learning, much remains unknown regarding what knowledge participants learn in such studies, and how that knowledge takes form over time. By tracking eye-movements made before stimuli appear on screen during a serial reaction time (SRT) task, we devised a method for assessing learning at the individual participant level in an item-based resolution. Our method enables uncovering what participants actually learn about the sequence presented to them, and when. Results demonstrate that learning is more heterogeneous than previously thought, driven by learning both of chunks and of statistics embedded in the sequence. Also, learning develops rapidly, but in a fragmented and non-sequential manner, eventually encompassing only a subset of available regularities. The tools developed in this work may aid in further dissociating processes and mechanisms underlying sequence learning and its impairments, in normal and in clinical populations.
Collapse
Affiliation(s)
- Amir Tal
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | - Eli Vakil
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel; Department of Psychology, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
41
|
Sozzi S, Nardone A, Schieppati M. Adaptation of balancing behaviour during continuous perturbations of stance. Supra-postural visual tasks and platform translation frequency modulate adaptation rate. PLoS One 2020; 15:e0236702. [PMID: 32735602 PMCID: PMC7394407 DOI: 10.1371/journal.pone.0236702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/13/2020] [Indexed: 01/01/2023] Open
Abstract
When humans are administered continuous and predictable perturbations of stance, an adaptation period precedes the steady state of balancing behaviour. Little information is available on the modulation of adaptation by vision and perturbation frequency. Moreover, performance of supra-postural tasks may modulate adaptation in as yet unidentified ways. Our purpose was to identify differences in adaptation associated to distinct visual tasks and perturbation frequencies. Twenty non-disabled adult volunteers stood on a platform translating 10 cm in antero-posterior (AP) direction at low (LF, 0.18 Hz) and high frequency (HF, 0.56 Hz) with eyes open (EO) and closed (EC). Additional conditions were reading a text fixed to platform (EO-TP) and reading a text stationary on ground (EO-TG). Peak-to-peak (PP) displacement amplitude and AP position of head and pelvis markers were computed for each of 27 continuous perturbation cycles. The time constant and extent of head and pelvis adaptation and the cross-correlation coefficients between head and pelvis were compared across visual conditions and frequencies. Head and pelvis mean positions in space varied little across conditions and perturbation cycles but the mean head PP displacements changed over time. On average, at LF, the PP displacement of the head and pelvis increased progressively. Adaptation was rapid or ineffective with EO, but slower with EO-TG, EO-TP, EC. At HF, the head PP displacement amplitude decreased progressively with fast adaptation rates, while the pelvis adaptation was not apparent. The results show that visual tasks can modulate the adaptation rate, highlight the effect of the perturbation frequency on adaptation and provide evidence of priority assigned to pelvis stabilization over visual tasks at HF. The effects of perturbation frequency and optic flow and their interaction with other sensory inputs and cognitive tasks on the adaptation strategies should be investigated in impaired individuals and considered in the design of rehabilitation protocols.
Collapse
Affiliation(s)
- Stefania Sozzi
- Centro Studi Attività Motorie, ICS Maugeri SPA SB, IRCCS, Institute of Pavia, Pavia, Italy
| | - Antonio Nardone
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
- Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, IRCCS Institute of Pavia, Pavia, Italy
- * E-mail:
| | | |
Collapse
|
42
|
"Two sides of the same coin": constant motor learning speeds up, whereas variable motor learning stabilizes, speed-accuracy movements. Eur J Appl Physiol 2020; 120:1027-1039. [PMID: 32172292 DOI: 10.1007/s00421-020-04342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE The aim of this study was to determine the time course of the trade-off between speed and accuracy, intraindividual variability, and movement transfer and retention (4 weeks after learning) of speed-accuracy tasks. METHODS The participants in this study were healthy adults randomly divided into three groups (control versus constant versus variable). They were aged 19-24 years, and 30 (15 men and 15 women) were in each group. Participants had to perform various tasks with the right dominant hand: (a) simple reaction test; (b) maximal velocity measurement; and (c) a speed-accuracy task. RESULTS During constant and variable learning, the trade-off in a speed-accuracy task in specific situations shifted toward improved motor planning and motor execution speed, and to reduced intraindividual variability. However, during variable learning, the maximal velocity and variability of motor planning time did not change. Constant learning effectively transferred into variable tasks in terms of reaction time, average velocity and maximal velocity, and these effects were greater than those associated with variable learning. However, the effects of constant learning did not transfer fully into the performance variability of variable movements. Variable learning effectively transferred into constant tasks for the coefficient of variation of the path of movement, average velocity, maximal velocity and reaction time. The retention effect depended neither on learning nor task specificity (constant versus variable tasks). CONCLUSION Constant learning speeds up but does not stabilize speed-accuracy movements in variable tasks; whereas, variable learning stabilizes but does not speed up speed-accuracy movements in constant tasks.
Collapse
|
43
|
Di Plinio S, Arnò S, Perrucci MG, Ebisch SJH. The evolving sense of agency: Context recency and quality modulate the interaction between prospective and retrospective processes. Conscious Cogn 2020; 80:102903. [PMID: 32145388 DOI: 10.1016/j.concog.2020.102903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
Humans acquire a sense of agency through their interactions with the world and their sensory consequences. Previous studies have highlighted stable agency-related phenomena like intentional binding, which depend on both prospective, context-dependent and retrospective, outcome-dependent processes. In the current study, we investigated the interaction between prospective and retrospective processes underlying the adaptation of an ongoing sense of agency. The results showed that prospective intentional binding developed during a temporal window of up to 20 prior events was independent of the nature of the ongoing event. By contrast, the characteristics of the ongoing event retrospectively influenced prospective intentional binding developed during a temporal window narrower than 6 prior events. These findings characterize the interaction between prospective and retrospective mechanisms as a fundamental process to continuously update the sense of agency through sensorimotor learning. High psychosis-like experience traits weakened this interaction, suggesting that reduced adaption to the context contributes to altered self-experience.
Collapse
Affiliation(s)
- Simone Di Plinio
- Department of Neuroscience Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti 66100, Italy.
| | - Simone Arnò
- Department of Psychological Sciences, G d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti 66100, Italy; Institute for Advanced Biomedical Technologies (ITAB), G d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Sjoerd J H Ebisch
- Department of Neuroscience Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti 66100, Italy; Institute for Advanced Biomedical Technologies (ITAB), G d'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
44
|
Koch FS, Sundqvist A, Thornberg UB, Nyberg S, Lum JA, Ullman MT, Barr R, Rudner M, Heimann M. Procedural memory in infancy: Evidence from implicit sequence learning in an eye-tracking paradigm. J Exp Child Psychol 2020; 191:104733. [DOI: 10.1016/j.jecp.2019.104733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
|
45
|
A positive influence of basal ganglia iron concentration on implicit sequence learning. Brain Struct Funct 2020; 225:735-749. [PMID: 32055981 PMCID: PMC7046582 DOI: 10.1007/s00429-020-02032-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Iron homeostasis is important for maintaining normal physiological brain functioning. In two independent samples, we investigate the link between iron concentration in the basal ganglia (BG) and implicit sequence learning (ISL). In Study 1, we used quantitative susceptibility mapping and task-related fMRI to examine associations among regional iron concentration measurements, brain activation, and ISL in younger and older adults. In Study 2, we examined the link between brain iron and ISL using a metric derived from fMRI in an age-homogenous sample of older adults. Three main findings were obtained. First, BG iron concentration was positively related to ISL in both studies. Second, ISL was robust for both younger and older adults, and performance-related activation was found in fronto-striatal regions across both age groups. Third, BG iron was positively linked to task-related BOLD signal in fronto-striatal regions. This is the first study investigating the relationship among brain iron accumulation, functional brain activation, and ISL, and the results suggest that higher brain iron concentration may be linked to better neurocognitive functioning in this particular task.
Collapse
|
46
|
Medimorec S, Milin P, Divjak D. Working memory affects anticipatory behavior during implicit pattern learning. PSYCHOLOGICAL RESEARCH 2019; 85:291-301. [PMID: 31562540 DOI: 10.1007/s00426-019-01251-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
We investigated the relation between implicit sequence learning and individual differences in working memory (WM) capacity. Participants performed an oculomotor version of the serial reaction time (SRT) task and three computerized WM tasks. Implicit learning was measured using anticipation measures only, as they represent strong indicators of learning. Our results demonstrate that anticipatory behavior in the SRT task changes as a function of WM capacity, such that it increases with decreased WM capacity. On the other hand, WM capacity did not affect the overall number of correct anticipations in the task. In addition, we report a positive relation between WM capacity and the number of consecutive correct anticipations (or chunks), and a negative relation between WM capacity and the overall number of errors, indicating different learning strategies during implicit sequence learning. The results of the current study are theoretically important, because they demonstrate that individual differences in WM capacity could account for differences in learning processes, and ultimately change individuals' anticipatory behavior, even when learning is implicit, without intention and awareness.
Collapse
Affiliation(s)
- Srdan Medimorec
- Department of Modern Languages, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Petar Milin
- Department of Modern Languages, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Dagmar Divjak
- Department of Modern Languages, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
47
|
Szegedi-Hallgató E, Janacsek K, Nemeth D. Different levels of statistical learning - Hidden potentials of sequence learning tasks. PLoS One 2019; 14:e0221966. [PMID: 31536512 PMCID: PMC6752858 DOI: 10.1371/journal.pone.0221966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/18/2019] [Indexed: 11/23/2022] Open
Abstract
In this paper, we reexamined the typical analysis methods of a visuomotor sequence learning task, namely the ASRT task (J. H. Howard & Howard, 1997). We pointed out that the current analysis of data could be improved by paying more attention to pre-existing biases (i.e. by eliminating artifacts by using new filters) and by introducing a new data grouping that is more in line with the task's inherent statistical structure. These suggestions result in more types of learning scores that can be quantified and also in purer measures. Importantly, the filtering method proposed in this paper also results in higher individual variability, possibly indicating that it had been masked previously with the usual methods. The implications of our findings relate to other sequence learning tasks as well, and opens up opportunities to study different types of implicit learning phenomena.
Collapse
Affiliation(s)
- Emese Szegedi-Hallgató
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, Faculty of Humanities, University of Szeged, Szeged, Hungary
- Prevention of Mental Illnesses Interdisciplinary Research Group, University of Szeged, Szeged, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center, Université de Lyon, Lyon, France
| |
Collapse
|
48
|
Juhasz D, Nemeth D, Janacsek K. Is there more room to improve? The lifespan trajectory of procedural learning and its relationship to the between- and within-group differences in average response times. PLoS One 2019; 14:e0215116. [PMID: 31314804 PMCID: PMC6636713 DOI: 10.1371/journal.pone.0215116] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022] Open
Abstract
Characterizing the developmental trajectories of cognitive functions such as learning, memory and decision making across the lifespan faces fundamental challenges. Cognitive functions typically encompass several processes that can be differentially affected by age. Methodological issues also arise when comparisons are made across age groups that differ in basic performance measures, such as in average response times (RTs). Here we focus on procedural learning–a fundamental cognitive function that underlies the acquisition of cognitive, social, and motor skills–and demonstrate how disentangling subprocesses of learning and controlling for differences in average RTs can reveal different developmental trajectories across the human lifespan. Two hundred-seventy participants aged between 7 and 85 years performed a probabilistic sequence learning task that enabled us to separately measure two processes of procedural learning, namely general skill learning and statistical learning. Using raw RT measures, in between-group comparisons, we found a U-shaped trajectory with children and older adults exhibiting greater general skill learning compared to adolescents and younger adults. However, when we controlled for differences in average RTs (either by using ratio scores or focusing on a subsample of participants with similar average speed), only children (but not older adults) demonstrated superior general skill learning consistently across analyses. Testing the relationship between average RTs and general skill learning within age groups shed light on further age-related differences, suggesting that general skill learning measures are more affected by average speed in some age groups. Consistent with previous studies of learning probabilistic regularities, statistical learning showed a gradual decline across the lifespan, and learning performance seemed to be independent of average speed, regardless of the age group. Overall, our results suggest that children are superior learners in various aspects of procedural learning, including both general skill and statistical learning. Our study also highlights the importance to test, and control for, the effect of average speed on other RT measures of cognitive functions, which can fundamentally affect the interpretation of group differences in developmental, aging and clinical psychology and neuroscience studies.
Collapse
Affiliation(s)
- Dora Juhasz
- Doctoral School of Education, University of Szeged, Szeged, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center (CRNL), Université Claude Bernard Lyon 1, Lyon, France
- * E-mail: (KJ); (DN)
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail: (KJ); (DN)
| |
Collapse
|
49
|
Kalra PB, Gabrieli JDE, Finn AS. Evidence of stable individual differences in implicit learning. Cognition 2019; 190:199-211. [PMID: 31103837 DOI: 10.1016/j.cognition.2019.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/15/2022]
Abstract
There is a fundamental psychological and neuropsychological distinction between explicit and implicit memory, and it has been proposed that whereas there are stable trait individual differences in explicit memory ability, there are not such differences across people for implicit learning. There is, however, little evidence about whether or not there are stable trait differences in implicit learning. Here we performed a test-retest reliability study with healthy young adults in which they performed four implicit learning tasks (artificial grammar learning, probabilistic classification, serial response, and implicit category learning) twice, about a week apart. We found medium (by Cohen's guidelines) test-retest reliability for three of the tasks: probabilistic classification, serial response, and implicit category learning, suggesting that differences in implicit learning ability are more stable than originally thought. In addition, implicit learning on all tasks was unrelated to explicit measures: we did not find any correlation between implicit learning measures and independent measures of IQ, working memory, or explicit learning ability. These findings indicate that implicit learning, like explicit learning, varies reliably across individuals.
Collapse
Affiliation(s)
- Priya B Kalra
- Waisman Center, University of Wisconsin-Madison, United States.
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, United States
| | - Amy S Finn
- Department of Psychology, University of Toronto, Canada
| |
Collapse
|
50
|
Simor P, Zavecz Z, Horváth K, Éltető N, Török C, Pesthy O, Gombos F, Janacsek K, Nemeth D. Deconstructing Procedural Memory: Different Learning Trajectories and Consolidation of Sequence and Statistical Learning. Front Psychol 2019; 9:2708. [PMID: 30687169 PMCID: PMC6333905 DOI: 10.3389/fpsyg.2018.02708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Procedural learning is a fundamental cognitive function that facilitates efficient processing of and automatic responses to complex environmental stimuli. Here, we examined training-dependent and off-line changes of two sub-processes of procedural learning: namely, sequence learning and statistical learning. Whereas sequence learning requires the acquisition of order-based relationships between the elements of a sequence, statistical learning is based on the acquisition of probabilistic associations between elements. Seventy-eight healthy young adults (58 females and 20 males) completed the modified version of the Alternating Serial Reaction Time task that was designed to measure Sequence and Statistical Learning simultaneously. After training, participants were randomly assigned to one of three conditions: active wakefulness, quiet rest, or daytime sleep. We examined off-line changes in Sequence and Statistical Learning as well as further improvements after extended practice. Performance in Sequence Learning increased during training, while Statistical Learning plateaued relatively rapidly. After the off-line period, both the acquired sequence and statistical knowledge was preserved, irrespective of the vigilance state (awake, quiet rest or sleep). Sequence Learning further improved during extended practice, while Statistical Learning did not. Moreover, within the sleep group, cortical oscillations and sleep spindle parameters showed differential associations with Sequence and Statistical Learning. Our findings can contribute to a deeper understanding of the dynamic changes of multiple parallel learning and consolidation processes that occur during procedural memory formation.
Collapse
Affiliation(s)
- Peter Simor
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Zsofia Zavecz
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Horváth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Noémi Éltető
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Csenge Török
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya Pesthy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
- MTA-PPKE Adolescent Development Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center (CRNL), Université de Lyon, Lyon, France
| |
Collapse
|