1
|
Cai L, Argunşah AÖ, Damilou A, Karayannis T. A nasal chemosensation-dependent critical window for somatosensory development. Science 2024; 384:652-660. [PMID: 38723089 DOI: 10.1126/science.adn5611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/05/2024] [Indexed: 05/31/2024]
Abstract
Nasal chemosensation is considered the evolutionarily oldest mammalian sense and, together with somatosensation, is crucial for neonatal well-being before auditory and visual pathways start engaging the brain. Using anatomical and functional approaches in mice, we reveal that odor-driven activity propagates to a large part of the cortex during the first postnatal week and enhances whisker-evoked activation of primary whisker somatosensory cortex (wS1). This effect disappears in adult animals, in line with the loss of excitatory connectivity from olfactory cortex to wS1. By performing neonatal odor deprivation, followed by electrophysiological and behavioral work in adult animals, we identify a key transient regulation of nasal chemosensory information necessary for the development of wS1 sensory-driven dynamics and somatosensation. Our work uncovers a cross-modal critical window for nasal chemosensation-dependent somatosensory functional maturation.
Collapse
Affiliation(s)
- Linbi Cai
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ali Özgür Argunşah
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Angeliki Damilou
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Theofanis Karayannis
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
2
|
Rocha I, González-García M, Carrillo-Franco L, Dawid-Milner MS, López-González MV. Influence of Brainstem's Area A5 on Sympathetic Outflow and Cardiorespiratory Dynamics. BIOLOGY 2024; 13:161. [PMID: 38534431 DOI: 10.3390/biology13030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Area A5 is a noradrenergic cell group in the brain stem characterised by its important role in triggering sympathetic activity, exerting a profound influence on the sympathetic outflow, which is instrumental in the modulation of cardiovascular functions, stress responses and various other physiological processes that are crucial for adaptation and survival mechanisms. Understanding the role of area A5, therefore, not only provides insights into the basic functioning of the sympathetic nervous system but also sheds light on the neuronal basis of a number of autonomic responses. In this review, we look deeper into the specifics of area A5, exploring its anatomical connections, its neurochemical properties and the mechanisms by which it influences sympathetic nervous system activity and cardiorespiratory regulation and, thus, contributes to the overall dynamics of the autonomic function in regulating body homeostasis.
Collapse
Affiliation(s)
- Isabel Rocha
- Lisbon School of Medicine and CCUL@Rise, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marta González-García
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Laura Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Marc Stefan Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Manuel Victor López-González
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| |
Collapse
|
3
|
De-Giorgio F, Bilel S, Tirri M, Arfè R, Trapella C, Camuto C, Foti F, Frisoni P, Neri M, Botrè F, Marti M. Methiopropamine and its acute behavioral effects in mice: is there a gray zone in new psychoactive substances users? Int J Legal Med 2020; 134:1695-1711. [DOI: 10.1007/s00414-020-02302-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
|
4
|
Unilateral nasal obstruction induces degeneration of fungiform and circumvallate papillae in rats. J Formos Med Assoc 2018; 117:220-226. [DOI: 10.1016/j.jfma.2017.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/26/2017] [Accepted: 04/21/2017] [Indexed: 11/21/2022] Open
|
5
|
Taxini CL, Moreira TS, Takakura AC, Bícego KC, Gargaglioni LH, Zoccal DB. Role of A5 noradrenergic neurons in the chemoreflex control of respiratory and sympathetic activities in unanesthetized conditions. Neuroscience 2017; 354:146-157. [PMID: 28461215 DOI: 10.1016/j.neuroscience.2017.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/21/2017] [Accepted: 04/21/2017] [Indexed: 01/04/2023]
Abstract
The A5 area at the ventrolateral pons contains noradrenergic neurons connected with other medullary areas involved in the cardiorespiratory control. Its contribution to the cardiorespiratory regulation was previously evidenced in anesthetized conditions. In the present study, we investigated the involvement of the A5 noradrenergic neurons to the basal and chemoreflex control of the sympathetic and respiratory activities in unanesthetized conditions. A5 noradrenergic neurons were lesioned using microinjections of anti-dopamine β-hydroxylase saporin (anti-DβH-SAP). After 7-8days, we evaluated the arterial pressure levels, heart rate and minute ventilation in freely moving adult rats (280-350g) as well as recorded from thoracic sympathetic (tSN) and phrenic nerves (PN) using the arterially perfused in situ preparation of juvenile rats (80-90g). Baseline cardiovascular, sympathetic and respiratory parameters were similar between control (n=7-8) and A5-lesioned rats (n=5-6) in both experimental preparations. In adult rats, lesions of A5 noradrenergic neurons did not modify the reflex cardiorespiratory adjustments to hypoxia (7% O2) and hypercapnia (7% CO2). In the in situ preparations, the sympatho-excitation, but not the PN reflex response, elicited by either the stimulation of peripheral chemoreceptors (ΔtSN: 110±12% vs 58±8%, P<0.01) or hypercapnia (ΔtSN: 9.5±1.4% vs 3.9±1.7%, P<0.05) was attenuated in A5-lesioned rats compared to controls. Our data demonstrated that A5 noradrenergic neurons are part of the circuitry recruited for the processing of sympathetic response to hypoxia and hypercapnia in unanesthetized conditions.
Collapse
Affiliation(s)
- Camila L Taxini
- Department of Morphology and Animal Physiology, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Kênia C Bícego
- Department of Morphology and Animal Physiology, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Morphology and Animal Physiology, São Paulo State University (UNESP), Jaboticabal, SP, Brazil.
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
6
|
Beltrán-Castillo S, Morgado-Valle C, Eugenín J. The Onset of the Fetal Respiratory Rhythm: An Emergent Property Triggered by Chemosensory Drive? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:163-192. [PMID: 29080027 DOI: 10.1007/978-3-319-62817-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanisms responsible for the onset of respiratory activity during fetal life are unknown. The onset of respiratory rhythm may be a consequence of the genetic program of each of the constituents of the respiratory network, so they start to interact and generate respiratory cycles when reaching a certain degree of maturation. Alternatively, generation of cycles might require the contribution of recently formed sensory inputs that will trigger oscillatory activity in the nascent respiratory neural network. If this hypothesis is true, then sensory input to the respiratory generator must be already formed and become functional before the onset of fetal respiration. In this review, we evaluate the timing of the onset of the respiratory rhythm in comparison to the appearance of receptors, neurotransmitter machinery, and afferent projections provided by two central chemoreceptive nuclei, the raphe and locus coeruleus nuclei.
Collapse
Affiliation(s)
- Sebastián Beltrán-Castillo
- Laboratorio de Sistemas Neurales, Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, PO 9170022, Santiago, Chile
| | - Consuelo Morgado-Valle
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Campus Xalapa, Berlin 7, Fracc., Monte Magno Animas, C.P. 91190, Xalapa, Veracruz, Mexico.
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, PO 9170022, Santiago, Chile.
| |
Collapse
|
7
|
Bellot B, Peyronnet-Roux J, Gire C, Simeoni U, Vinay L, Viemari JC. Deficits of brainstem and spinal cord functions after neonatal hypoxia-ischemia in mice. Pediatr Res 2014; 75:723-30. [PMID: 24618565 DOI: 10.1038/pr.2014.42] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/30/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND Perinatal cerebral hypoxia-ischemia (HI) can lead to severe neurodevelopmental disorders. Studies in humans and animal models mainly focused on cerebral outcomes, and little is known about the mechanisms that may affect the brainstem and the spinal cord. Dysfunctions of neuromodulatory systems, such as the serotonergic (5-HT) projections, critical for the development of neural networks, have been postulated to underlie behavioral and motor deficits, as well as metabolic changes. METHODS The aim of this study was to investigate brainstem and spinal cord functions by means of plethysmography and sensorimotor tests in a neonatal Rice-Vanucci model of HI in mice. We also evaluated bioaminergic contents in central regions dedicated to the motor control of autonomic functions. RESULTS Mice with cerebral infarct expressed motor disturbances and had a lower body weight and a decreased respiratory frequency than SHAM, suggesting defects of brainstem neural network involved in the motor control of feeding, suckling, swallowing, and respiration. Moreover, our study revealed changes of monoamine and amino acid contents in the brainstem and the spinal cord of HI mice. CONCLUSION Our results suggest that monoaminergic neuromodulation plays an important role in the physiopathology of HI brain injury that may represent a good therapeutic target.
Collapse
Affiliation(s)
- Blandine Bellot
- 1] Institut de Neurosciences de la Timone (P3M Team), UMR 7289, CNRS, Aix Marseille Université, Marseille, France [2] Pôle de Médecine et Réanimation Néonatales, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Julie Peyronnet-Roux
- Institut de Neurosciences de la Timone (P3M Team), UMR 7289, CNRS, Aix Marseille Université, Marseille, France
| | - Catherine Gire
- Pôle de Médecine et Réanimation Néonatales, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Umberto Simeoni
- 1] Pôle de Médecine et Réanimation Néonatales, Assistance Publique Hôpitaux de Marseille, Marseille, France [2] Aix Marseille Université, Marseille, France
| | - Laurent Vinay
- Institut de Neurosciences de la Timone (P3M Team), UMR 7289, CNRS, Aix Marseille Université, Marseille, France
| | - Jean-Charles Viemari
- Institut de Neurosciences de la Timone (P3M Team), UMR 7289, CNRS, Aix Marseille Université, Marseille, France
| |
Collapse
|
8
|
Bursian AV. Catecholaminergic regulation of autorhythmical viscero- and somatomotor activity in early rat ontogenesis. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Viemari JC, Garcia AJ, Doi A, Elsen G, Ramirez JM. β-Noradrenergic receptor activation specifically modulates the generation of sighs in vivo and in vitro. Front Neural Circuits 2013; 7:179. [PMID: 24273495 PMCID: PMC3824105 DOI: 10.3389/fncir.2013.00179] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/23/2013] [Indexed: 11/13/2022] Open
Abstract
The pre-Bötzinger complex (preBötC), an area that is critical for generating breathing (eupnea), gasps and sighs is continuously modulated by catecholamines. These amines and the generation of sighs have also been implicated in the regulation of arousal. Here we studied the catecholaminergic modulation of sighs not only in anesthetized freely breathing mice (in vivo), but also in medullary slice preparations that contain the preBötC and that generate fictive eupneic and sigh rhythms in vitro. We demonstrate that activating β-noradrenergic receptors (β-NR) specifically increases the frequency of sighs, while eupnea remains unaffected both in vitro and in vivo. β-NR activation specifically increased the frequency of intrinsically bursting pacemaker neurons that rely on persistent sodium current (I(Nap)). By contrast, all parameters of bursting pacemakers that rely on the non-specific cation current (I(CAN)) remained unaffected. Moreover, riluzole, which blocks bursting in I(Nap) pacemakers abolished sighs altogether, while flufenamic acid (FFA) which blocks the I(CAN) current did not alter the sigh-increasing effect caused by β-NR. Our results suggest that the selective β-NR action of sighs may result from the modulation of I(Nap) pacemaker activity and that disturbances in noradrenergic system may contribute to abnormal arousal response. The β-NR action on the preBötC may be an important mechanism in modulating behaviors that are specifically associated with sighs, such as the regulation of the early events leading to the arousal response.
Collapse
Affiliation(s)
- Jean-Charles Viemari
- Team P3M, Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix Marseille Univesité , Marseille, France
| | | | | | | | | |
Collapse
|
10
|
It takes a mouth to eat and a nose to breathe: abnormal oral respiration affects neonates' oral competence and systemic adaptation. Int J Pediatr 2012; 2012:207605. [PMID: 22811731 PMCID: PMC3397177 DOI: 10.1155/2012/207605] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/10/2012] [Indexed: 12/20/2022] Open
Abstract
Mammalian, including human, neonates are considered to be obligate nose breathers. When constrained to breathe through their mouth in response to obstructed or closed nasal passages, the effects are pervasive and profound, and sometimes last into adulthood. The present paper briefly surveys neonates' and infants' responses to this atypical mobilisation of the mouth for breathing and focuses on comparisons between human newborns and infants and the neonatal rat model. We present the effects of forced oral breathing on neonatal rats induced by experimental nasal obstruction. We assessed the multilevel consequences on physiological, structural, and behavioural variables, both during and after the obstruction episode. The effects of the compensatory mobilisation of oral resources for breathing are discussed in the light of the adaptive development of oromotor functions.
Collapse
|
11
|
Sensory Irritation Response in Rats II: Recovery and Dose-Dependence. Bull Math Biol 2012; 74:1673-90. [DOI: 10.1007/s11538-012-9730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/13/2012] [Indexed: 11/25/2022]
|
12
|
Panneton WM, Gan Q, Le J, Livergood RS, Clerc P, Juric R. Activation of brainstem neurons by underwater diving in the rat. Front Physiol 2012; 3:111. [PMID: 22563319 PMCID: PMC3342523 DOI: 10.3389/fphys.2012.00111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/04/2012] [Indexed: 01/10/2023] Open
Abstract
The mammalian diving response is a powerful autonomic adjustment to underwater submersion greatly affecting heart rate, arterial blood pressure, and ventilation. The bradycardia is mediated by the parasympathetic nervous system, arterial blood pressure is mediated via the sympathetic system and still other circuits mediate the respiratory changes. In the present study we investigate the cardiorespiratory responses and the brainstem neurons activated by voluntary diving of trained rats, and, compare them to control and swimming animals which did not dive. We show that the bradycardia and increase in arterial blood pressure induced by diving were significantly different than that induced by swimming. Neuronal activation was calculated after immunohistochemical processing of brainstem sections for Fos protein. Labeled neurons were counted in the caudal pressor area, the medullary dorsal horn, subnuclei of the nucleus tractus solitarii (NTS), the nucleus raphe pallidus (RPa), the rostroventrolateral medulla, the A5 area, the nucleus locus coeruleus, the Kölliker–Fuse area, and the external lateral and superior lateral subnuclei of the parabrachial nucleus. All these areas showed significant increases in Fos labeling when data from voluntary diving rats were compared to control rats and all but the commissural subnucleus of the NTS, A5 area, and RPa were significantly different from swimming rats. These data provide a substrate for more precise experiments to determine the role of these nuclei in the reflex circuits driving the diving response.
Collapse
Affiliation(s)
- W Michael Panneton
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
13
|
Panneton WM, Gan Q, Sun DW. Persistence of the nasotrigeminal reflex after pontomedullary transection. Respir Physiol Neurobiol 2012; 180:230-6. [PMID: 22154693 PMCID: PMC3273655 DOI: 10.1016/j.resp.2011.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/25/2022]
Abstract
Most behaviors have numerous components based on reflexes, but the neural circuits driving most reflexes rarely are documented. The nasotrigeminal reflex induced by stimulating the nasal mucosa causes an apnea, a bradycardia, and variable changes in mean arterial blood pressure (MABP). In this study we tested the nasotrigeminal reflex after transecting the brainstem at the pontomedullary junction. The nasal mucosae of anesthetized rats were stimulated with ammonia vapors and their brainstems then were transected. Complete transections alone induced an increase in resting heart rate (HR; p<0.001) and MABP (p<0.001), but no significant change in ventilation. However, the responses to nasal stimulation after transection were similar to those seen prior to transection. HR still dropped significantly (p<0.001), duration of apnea remained the same, as did changes in MABP. Results from rats whose transection were incomplete are discussed. These data implicate that the neuronal circuitry driving the nasotrigeminal reflex, and indirectly the diving response, is intrinsic to the medulla and spinal cord.
Collapse
Affiliation(s)
- W Michael Panneton
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, MO 63104-1004, United States.
| | | | | |
Collapse
|
14
|
Abstract
Until recently, single-stranded negative sense RNA viruses (ssNSVs) were one of only a few important human viral pathogens, which could not be created from cDNA. The inability to manipulate their genomes hindered their detailed genetic analysis. A key paper from Conzelmann's laboratory in 1994 changed this with the publication of a method to recover rabies virus (RABV) from cDNA. This discovery not only dramatically changed the broader field of ssNSV biology but also opened a whole new avenue for studying RABV pathogenicity, developing novel RABV vaccines as well a new generation of RABV-based vaccine vectors, and creating research tools important in neuroscience such as neuronal tracing.
Collapse
Affiliation(s)
- Emily A Gomme
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
15
|
Yokley KA, Tran H, Schlosser PM. Sensory irritation response in rats: modeling, analysis and validation. Bull Math Biol 2007; 70:555-88. [PMID: 17914657 DOI: 10.1007/s11538-007-9268-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 08/03/2007] [Indexed: 11/24/2022]
Abstract
Inhaled gases can cause respiratory depression by irritating (stimulating) nerves in the nasal cavity. Respiratory depression, in turn, decreases the rate of delivery of those gases to the stimulated nerves, potentially leading to a complex feedback response. In order to better understand how the nervous system responds to such chemicals, a mathematical model is created to describe how the presence of irritants affects respiration in the rat. The ordinary differential equation model describes the dosimetry of these reactive gases in the respiratory tract, with particular focus on the physiology of the upper respiratory tract, and on the neurological control of respiration rate due to signaling from the irritant-responsive nerves in the nasal cavity. The ventilation equation is altered to account for an apparent change in dynamics between the initial ventilation decrease and the recovery to steady state as seen in formaldehyde exposure data. Further, the model is evaluated and improved through optimization of particular parameters to describe formaldehyde-induced respiratory response data and through sensitivity analysis. The model predicts the formaldehyde data well, and hence the model is thought to be a reasonable description of the physiological system of sensory irritation. The model is also expected to translate well to other irritants.
Collapse
Affiliation(s)
- Karen A Yokley
- Center for Research in Scientific Computation and Department of Mathematics, North Carolina State University, Raleigh, NC, USA.
| | | | | |
Collapse
|
16
|
Bouvier J, Autran S, Fortin G, Champagnat J, Thoby-Brisson M. Acute role of the brain-derived neurotrophic factor (BDNF) on the respiratory neural network activity in mice in vitro. ACTA ACUST UNITED AC 2007; 100:290-6. [PMID: 17628454 DOI: 10.1016/j.jphysparis.2007.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In humans, several pathologies are associated with disturbances of the respiratory control, some of them including alteration in the brain-derived neurotrophic factor (BDNF) signalling pathway. BDNF has long been known as a neurotrophic factor involved in survival, differentiation and maintenance of neuronal populations in the peripheral and central nervous system. More recently BDNF has also been discovered to be a potent neuromodulator with acute effects on neuronal excitability and synaptic plasticity. Animals deleted for the gene encoding BDNF exhibit respiratory alteration suggesting an important but yet undefined role of the neurotrophin in respiratory rhythmogenesis either by a trophic and/or an acute action. The possibility that BDNF might exert an acute regulatory role on the rhythmic activity of the respiratory generator of the pre-Bötzinger complex has been recently examined in newborn mice in vitro. Results obtained, reviewed in the present paper, will help getting insights in respiratory rhythm regulatory mechanisms that involve BDNF signalling.
Collapse
Affiliation(s)
- Julien Bouvier
- Laboratoire de Neurobiologie Génétique et Intégrative Institut Alfred Fessard, CNRS UPR2216, 1 avenue de la terrasse, 91198 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
17
|
Bursian AV. Development of respiratory function in perinatal ontogenesis. J EVOL BIOCHEM PHYS+ 2007. [DOI: 10.1134/s0022093007010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Viemari JC, Maussion G, Bévengut M, Burnet H, Pequignot JM, Népote V, Pachnis V, Simonneau M, Hilaire G. Ret deficiency in mice impairs the development of A5 and A6 neurons and the functional maturation of the respiratory rhythm. Eur J Neurosci 2006; 22:2403-12. [PMID: 16307583 DOI: 10.1111/j.1460-9568.2005.04441.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although a normal respiratory rhythm is vital at birth, little is known about the genetic factors controlling the prenatal maturation of the respiratory network in mammals. In Phox2a mutant mice, which do not express A6 neurons, we previously hypothesized that the release of endogenous norepinephrine by A6 neurons is required for a normal respiratory rhythm to occur at birth. Here we investigated the role of the Ret gene, which encodes a transmembrane tyrosine kinase receptor, in the maturation of norepinephrine and respiratory systems. As Ret-null mutants (Ret-/-) did not survive after birth, our experiments were performed in wild-type (wt) and Ret-/- fetuses exteriorized from pregnant heterozygous mice at gestational day 18. First, in wt fetuses, quantitative in situ hybridization revealed high levels of Ret transcripts in the pontine A5 and A6 areas. Second, in Ret-/- fetuses, high-pressure liquid chromatography showed significantly reduced norepinephrine contents in the pons but not the medulla. Third, tyrosine hydroxylase immunocytochemistry revealed a significantly reduced number of pontine A5 and A6 neurons but not medullary norepinephrine neurons in Ret-/- fetuses. Finally, electrophysiological and pharmacological experiments performed on brainstem 'en bloc' preparations demonstrated impaired resting respiratory activity and abnormal responses to central hypoxia and norepinephrine application in Ret-/- fetuses. To conclude, our results show that Ret gene contributes to the prenatal maturation of A6 and A5 neurons and respiratory system. They support the hypothesis that the normal maturation of the respiratory network requires afferent activity corresponding to the A6 excitatory and A5 inhibitory input balance.
Collapse
Affiliation(s)
- J C Viemari
- FRE CNRS 2722, 280 Boulevard Sainte Marguerite, 13009 Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hunt PN, Gust J, McCabe AK, Bosma MM. Primary role of the serotonergic midline system in synchronized spontaneous activity during development of the embryonic mouse hindbrain. ACTA ACUST UNITED AC 2006; 66:1239-52. [PMID: 16902991 DOI: 10.1002/neu.20259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the developing embryonic mouse hindbrain, we have shown that previously widespread synchronized spontaneous activity at E11.5 retracts to the initiating zone of the rostral hindbrain by E13.5, and ceases completely by E14.5. We now confirm that at E11.5 and E13.5, the primary driver of spontaneous activity is serotonergic input, while other transmitters (GABA, glutamate, NE, and ATP) have only modulatory roles. Using immunocytochemistry, we also show that at E13.5, 5-HT-positive neurons in the midline extend over a larger rostro-caudal distance than at E11.5, and that in the presumptive initiating zone, cell bodies occupy a band that extends 200 microm laterally on each side of the midline, with extensive axonal processes. The 5-HT2A receptor retains expression in lateral tissue over this developmental time. We find that in addition to being sensitive to 5-HT receptor antagonists, spontaneous activity is also abolished by blockers of gap junctions, and is increased in frequency and lateral spread by application of ammonium, presumably via increased intracellular pH augmenting gap junction conductance. Thus, 5-HT neurons of the midline remain the primary drivers of spontaneous activity at several stages of development in the hindbrain, relying in part on gap junctional communication during initiation of activity.
Collapse
Affiliation(s)
- P N Hunt
- Department of Biology, University of Washington, Seattle, Washington 98195-1800, USA
| | | | | | | |
Collapse
|
20
|
Panneton WM, Gan Q, Juric R. Brainstem projections from recipient zones of the anterior ethmoidal nerve in the medullary dorsal horn. Neuroscience 2006; 141:889-906. [PMID: 16753263 DOI: 10.1016/j.neuroscience.2006.04.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 04/13/2006] [Accepted: 04/14/2006] [Indexed: 11/29/2022]
Abstract
Stimulation of the anterior ethmoidal nerve or the nasal mucosa induces cardiorespiratory responses similar to those seen in diving mammals. We have utilized the transganglionic transport of a cocktail of horseradish peroxidase conjugates and anterograde and retrograde tract tracing techniques to elucidate pathways which may be important for these responses in the rat. Label was seen throughout the trigeminal sensory complex after the horseradish peroxidase conjugates were applied to the anterior ethmoidal nerve peripherally. Reaction product was most dense in the medullary dorsal horn, especially in laminae I and II. Injections were made of biotinylated dextran amine into the recipient zones of the medullary dorsal horn from the anterior ethmoidal nerve, and the anterogradely transported label documented. Label was found in many brainstem areas, but fibers with varicosities were noted in specific subdivisions of the nucleus tractus solitarii and parabrachial nucleus, as well as parts of the caudal and rostral ventrolateral medulla and A5 (noradrenergic cell group in ventrolateral pons) area. The retrograde transport of FluoroGold into the medullary dorsal horn after injections into these areas showed most neurons in laminae I, II, and V. Label was especially dense in areas which received primary afferent fibers from the anterior ethmoidal nerve. These data identify potential neural circuits for the diving response of the rat.
Collapse
Affiliation(s)
- W M Panneton
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, 1402 S. Grand Boulevard, St. Louis, MO 63104-1004, USA.
| | - Q Gan
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, 1402 S. Grand Boulevard, St. Louis, MO 63104-1004, USA
| | - R Juric
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, 1402 S. Grand Boulevard, St. Louis, MO 63104-1004, USA
| |
Collapse
|
21
|
Kobayashi S, Onimaru H, Inoue M, Inoue T, Sasa R. Localization and properties of respiratory neurons in the rostral pons of the newborn rat. Neuroscience 2005; 134:317-25. [PMID: 15939541 DOI: 10.1016/j.neuroscience.2005.03.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 03/02/2005] [Accepted: 03/19/2005] [Indexed: 10/25/2022]
Abstract
The distribution and discharge pattern of respiratory neurons in the 'pneumotaxic center' of the rostral pons in the rat has remained unknown. We performed optical recordings and whole-cell patch clamp recordings to clarify respiratory neuron activity in the rostral pons of a brainstem-spinal cord preparation from a newborn rat. Inspiratory nerve activity was recorded in the 4th cervical nerve and used as a trigger signal for optical recordings. Respiratory neuron activity was detected in the limited region of the rostral-lateral pons. The main active region was presumed to be primarily the Kölliker-Fuse nucleus. The location of respiratory neurons was further confirmed by Lucifer Yellow staining after conducting whole-cell recordings. From a membrane potential analysis of the respiratory neurons in the rostral pons, the respiratory neurons were divided into four types: inspiratory neuron (71.9%), pre-inspiratory neuron (5.3%), post-inspiratory neuron (19.3%), and expiratory neuron (3.5%). A noticeable difference between pontine and medullary respiratory neurons was that post-inspiratory neurons were more frequently encountered in the pons. Application of a mu-opioid agonist, [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin, transformed the burst pattern of post-inspiratory neurons into that of pre-inspiratory neurons. The electrical stimulation of the sensory root of the trigeminal nerve induced three types of responses in 85% of pontine respiratory neurons: inhibitory postsynaptic potentials (42.7%), excitatory postsynaptic potentials (37.7%) and no response (15.1%). Our findings provide the first evidence in the rat for the presence of respiratory neurons in the rostral pons, with localization in the lateral region approximately overlapping with the Kölliker-Fuse nucleus.
Collapse
Affiliation(s)
- S Kobayashi
- Department of Pediatric Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
| | | | | | | | | |
Collapse
|
22
|
Janczewski WA, Feldman JL. Distinct rhythm generators for inspiration and expiration in the juvenile rat. J Physiol 2005; 570:407-20. [PMID: 16293645 PMCID: PMC1464316 DOI: 10.1113/jphysiol.2005.098848] [Citation(s) in RCA: 308] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inspiration and active expiration are commonly viewed as antagonistic phases of a unitary oscillator that generates respiratory rhythm. This view conflicts with observations we report here in juvenile rats, where by administration of fentanyl, a selective mu-opiate agonist, and induction of lung reflexes, we separately manipulated the frequency of inspirations and expirations. Moreover, completely transecting the brainstem at the caudal end of the facial nucleus abolished active expirations, while rhythmic inspirations continued. We hypothesize that inspiration and expiration are generated by coupled, anatomically separate rhythm generators, one generating active expiration located close to the facial nucleus in the region of the retrotrapezoid nucleus/parafacial respiratory group, the other generating inspiration located more caudally in the preBötzinger Complex.
Collapse
Affiliation(s)
- Wiktor A Janczewski
- Department of Neurobiology, David Geffen School of Medicine, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
23
|
Ramirez JM, Viemari JC. Determinants of inspiratory activity. Respir Physiol Neurobiol 2005; 147:145-57. [PMID: 15964786 DOI: 10.1016/j.resp.2005.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 05/06/2005] [Accepted: 05/06/2005] [Indexed: 11/24/2022]
Abstract
In vitro and in vivo studies have identified the pre-Bötzinger complex as an important kernel for the generation of inspiratory activity. The mechanisms underlying inspiratory rhythm generation involve pacemaker as well as synaptic mechanisms. In slice preparations, blockade of pacemaker properties with blockers for the persistent Na+ current, and the Ca2+-activated inward cationic current, abolishes respiratory activity. Here we show that blockade of the persistent Na+ current alone is sufficient to abolish respiratory activity in the in situ preparation. Although pacemaker neurons may be critical for establishing the basic respiratory rhythm, their rhythmic output is modulated by many elements of the respiratory network. For example, levels of synaptic inhibition control whether they burst or not, and endogenously released neuromodulators, such as serotonin and substance P modulate their intrinsic membrane currents. We hypothesize that the balance between synaptic and intrinsic pacemaker properties in the respiratory network is plastic, and that alterations of this balance may lead to dynamic reconfigurations of the respiratory network, which ultimately give rise to different activity patterns.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
24
|
Hilaire G, Viemari JC, Coulon P, Simonneau M, Bévengut M. Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents. Respir Physiol Neurobiol 2005; 143:187-97. [PMID: 15519555 DOI: 10.1016/j.resp.2004.04.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2004] [Indexed: 12/17/2022]
Abstract
The aim of the present review is to summarise available studies dealing with the respiratory control exerted by pontine noradrenergic neurones in neonatal and adult mammals. During the perinatal period, in vitro studies on neonatal rodents have shown that A5 and A6 neurones exert opposite modulations onto the respiratory rhythm generator, inhibitory and facilitatory respectively, that the anatomical support for these modulations already exists at birth, and that genetically induced alterations in the formation of A5 and A6 neurones affect the maturation of the respiratory rhythm generator, leading to lethal respiratory deficits at birth. The A5-A6 modulation of the respiratory rhythm generator is not transient, occurring solely during the perinatal period but it persists throughout life: A5 and A6 neurones display a respiratory-related activity, receive inputs from and send information to the medullary respiratory centres and contribute to the adaptation of adult breathing to physiological needs.
Collapse
Affiliation(s)
- Gérard Hilaire
- GERM (Groupe d'Etude des Réseaux Moteurs), FRE CNRS 2722, 280 Boulevard Sainte Marguerite, 13009 Marseille, France.
| | | | | | | | | |
Collapse
|