1
|
Chaudhari KS, Tiwari RR, Chaudhari SS, Joshi SV, Singh HB. Withania somnifera as an Adjunctive Treatment for Refractory Restless Legs Syndrome in Parkinson's Disease: A Case Report. Cureus 2021; 13:e20775. [PMID: 35111460 PMCID: PMC8793665 DOI: 10.7759/cureus.20775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 11/30/2022] Open
Abstract
Non-motor symptoms of Parkinson's disease (PD), such as insomnia and restless legs syndrome (RLS), tend to worsen and become refractory as neurodegeneration progresses. We report the case of a 72-year-old female with a six-year history of PD and two-and-half-year history of insomnia and refractory RLS. We added a neuroprotective agent, Withania somnifera, to the existing treatment regimen for her insomnia. Besides the partial remission of her insomnia and motor symptoms of PD, there was a complete reversal of the RLS symptoms. Withania somnifera has been shown to improve PD symptoms by preventing oxidative damage of the nigrostriatal dopaminergic neurons and improving dopamine levels in the midbrain and corpus striatum. Our case provides the first-time evidence where Withania somnifera added for insomnia caused a complete remission of refractory RLS, possibly due to its anti-apoptotic and pro-dopaminergic actions. Withania somnifera could prove beneficial in cases where the disease advances but further addition of dopamine agonists for refractory RLS is not possible due to the risk of dopamine augmentation.
Collapse
Affiliation(s)
- Kaustubh S Chaudhari
- Department of Internal Medicine, Dr. V.M. Government Medical College, Solapur, IND
| | - Rakesh R Tiwari
- Department of Samhita Siddhanta, Smt. K.G. Mittal Punarvasu Ayurvedic College, Mumbai, IND
| | | | - Swati V Joshi
- Department of Internal Medicine, Dr. V.M. Government Medical College, Solapur, IND
| | - Harish B Singh
- Department of Kayachikitsa, Smt. K.G. Mittal Punarvasu Ayurvedic College, Mumbai, IND
| |
Collapse
|
2
|
Lanza G, Ferri R. The neurophysiology of hyperarousal in restless legs syndrome: Hints for a role of glutamate/GABA. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 84:101-119. [PMID: 31229167 DOI: 10.1016/bs.apha.2018.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Restless legs syndrome (RLS) is a common sensory-motor circadian disorder, whose basic components include urge to move the legs, unpleasant sensory experience, and periodic leg movements during sleep, all associated with an enhancement of the individual's arousal state. Brain iron deficiency (BID) is considered to be a key initial pathobiological factor, based on alterations of iron acquisition by the brain, also moderated by genetic factors. In addition to the well-known dopaminergic involvement in RLS, previous studies pointed out that BID brings also a hyperglutamatergic state that influences a dysfunctional cortico-striatal-thalamic-cortical circuit in genetically vulnerable individuals. However, the enhancement of arousal mechanisms in RLS may also be explained by functional changes of the ascending arousal systems and by deficitary GABA-mediated inhibitory control. Very recently, it was also suggested that BID induces a hypoadenosinergic state in RLS, thus possibly providing a link for a putative unified pathophysiological mechanism accounting for both hyperarousal and sensory-motor signs. Consequently, RLS might be viewed as a multitransmitter neurochemical disorder, globally resulting in enhanced excitability and decreased inhibition. In this framework, understanding the complex interaction of different neuronal circuits in generating the symptoms of RLS is mandatory both for a better diagnostic refinement and for an innovative therapeutic support. Notably, multiple neurotransmission dysfunction, either primary or triggered by BID, may also bridge the gap between RLS and other chronic pain disorders. This chapter summarizes the current experimental and clinical findings into a heuristic model of the electrophysiology and neurochemistry underlying RLS.
Collapse
|
3
|
Vanini G. Sleep Deprivation and Recovery Sleep Prior to a Noxious Inflammatory Insult Influence Characteristics and Duration of Pain. Sleep 2016; 39:133-42. [PMID: 26237772 DOI: 10.5665/sleep.5334] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/28/2015] [Indexed: 12/26/2022] Open
Abstract
STUDY OBJECTIVES Insufficient sleep and chronic pain are public health epidemics. Sleep loss worsens pain and predicts the development of chronic pain. Whether previous, acute sleep loss and recovery sleep determine pain levels and duration remains poorly understood. This study tested whether acute sleep deprivation and recovery sleep prior to formalin injection alter post-injection pain levels and duration. METHODS Male Sprague-Dawley rats (n = 48) underwent sleep deprivation or ad libitum sleep for 9 hours. Thereafter, rats received a subcutaneous injection of formalin or saline into a hind paw. In the recovery sleep group, rats were allowed 24 h between sleep deprivation and the injection of formalin. Mechanical and thermal nociception were assessed using the von Frey test and Hargreaves' method. Nociceptive measures were performed at 1, 3, 7, 10, 14, 17 and 21 days post-injection. RESULTS Formalin caused bilateral mechanical hypersensitivity (allodynia) that persisted for up to 21 days post-injection. Sleep deprivation significantly enhanced bilateral allodynia. There was a synergistic interaction when sleep deprivation preceded a formalin injection. Rats allowed a recovery sleep period prior to formalin injection developed allodynia only in the injected limb, with higher mechanical thresholds (less allodynia) and a shorter recovery period. There were no persistent changes in thermal nociception. CONCLUSION The data suggest that acute sleep loss preceding an inflammatory insult enhances pain and can contribute to chronic pain. The results encourage studies in a model of surgical pain to test whether enhancing sleep reduces pain levels and duration.
Collapse
Affiliation(s)
- Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
4
|
Caggiano V, Sur M, Bizzi E. Rostro-caudal inhibition of hindlimb movements in the spinal cord of mice. PLoS One 2014; 9:e100865. [PMID: 24963653 PMCID: PMC4071039 DOI: 10.1371/journal.pone.0100865] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/31/2014] [Indexed: 11/18/2022] Open
Abstract
Inhibitory neurons in the adult mammalian spinal cord are known to locally modulate afferent feedback - from muscle proprioceptors and from skin receptors - to pattern motor activity for locomotion and postural control. Here, using optogenetic tools, we explored how the same population of inhibitory interneurons globally affects hindlimb movements in the spinal cord of both anesthetized and freely moving mice. Activation of inhibitory interneurons up to the middle/lower spinal cord i.e. T8–T9, were able to completely and globally suppress all ipsilateral hindlimb movements. Furthermore, the same population of interneurons - which inhibited movements - did not significantly change the sensory and proprioceptive information from the affected limbs to the cortex. These results suggest a rostro-caudal organization of inhibition in the spinal cord motor output without modulation of ascending sensory pathways.
Collapse
Affiliation(s)
- Vittorio Caggiano
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- * E-mail: (VC); (EB)
| | - Mirganka Sur
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Emilio Bizzi
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- * E-mail: (VC); (EB)
| |
Collapse
|
5
|
Krenzer M, Lu J, Mayer G, Oertel W. From bench to bed: putative animal models of REM sleep behavior disorder (RBD). J Neural Transm (Vienna) 2013; 120:683-8. [PMID: 23338670 DOI: 10.1007/s00702-012-0965-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/19/2012] [Indexed: 11/25/2022]
Abstract
REM behavior disorder (RBD) is a parasomnia characterized by REM sleep without atonia, leading to abnormal and potentially injurious behavior during REM sleep. It is considered one of the most specific predictors of neurodegenerative disorders, such as Parkinson's disease. In this paper, we provide an overview of animal models contributing to our current understanding of REM-associated atonia, and, as a consequence, the pathophysiology of RBD. The generator of REM-associated atonia is located in glutamatergic neurons of the pontine sublaterodorsal nucleus (SLD), as shown in cats, rats and mice. These findings are supported by clinical cases of patients with lesions of the homologous structure in humans. Glutamatergic SLD neurons, presumably in conjunction with others, project to (a) the ventromedial medulla, where they either directly target inhibitory interneurons to alpha motor neurons or are relayed, and (b) the spinal cord directly. At the spinal level, alpha motor neurons are inhibited by GABAergic and glycinergic interneurons. Our current understanding is that lesions of the glutamatergic SLD are the key factor for REM sleep behavior disorder. However, open questions remain, e.g. other features of RBD (such as the typically aggressive dream content) or the frequent progression from idiopathic RBD to neurodegenerative disorders, to name only a few. In order to elucidate these questions, a constant interaction between basic and clinical researchers is required, which might, ultimately, create an early therapeutic window for neurodegenerative disorders.
Collapse
Affiliation(s)
- Martina Krenzer
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany.
| | | | | | | |
Collapse
|
6
|
Zeitzer JM. Control of sleep and wakefulness in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:137-54. [PMID: 23899597 DOI: 10.1016/b978-0-12-396971-2.00006-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sleep and wake are actively promoted states of consciousness that are dependent on a network of state-modulating neurons arising from both the brain stem and hypothalamus. This network helps to coordinate the occurrence of a sleep state in billions of cortical neurons. In many neurological diseases, there is a specific disruption to one of the components of this network. Under conditions of such disruptions, we often gain an improved understanding of the underlying function of the specific component under nonpathological conditions. The loss or dysfunction of one of the hypothalamic or brain stem regions that are responsible for promotion of sleep or wake can lead to disruptions in sleep and wake states that are often subtle, but sometime quite pronounced and of significant medical importance. By understanding the neural substrate and its pathophysiology, one can more appropriately target therapies that might help the specific sleep disruption. This chapter reviews what is currently understood about the neurobiological underpinnings of sleep and wake regulation and how various pathologies evoke changes in these regulatory mechanisms.
Collapse
Affiliation(s)
- Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| |
Collapse
|
7
|
Hondo M, Furutani N, Yamasaki M, Watanabe M, Sakurai T. Orexin neurons receive glycinergic innervations. PLoS One 2011; 6:e25076. [PMID: 21949857 PMCID: PMC3174993 DOI: 10.1371/journal.pone.0025076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022] Open
Abstract
Glycine, a nonessential amino-acid that acts as an inhibitory neurotransmitter in the central nervous system, is currently used as a dietary supplement to improve the quality of sleep, but its mechanism of action is poorly understood. We confirmed the effects of glycine on sleep/wakefulness behavior in mice when administered peripherally. Glycine administration increased non-rapid eye movement (NREM) sleep time and decreased the amount and mean episode duration of wakefulness when administered in the dark period. Since peripheral administration of glycine induced fragmentation of sleep/wakefulness states, which is a characteristic of orexin deficiency, we examined the effects of glycine on orexin neurons. The number of Fos-positive orexin neurons markedly decreased after intraperitoneal administration of glycine to mice. To examine whether glycine acts directly on orexin neurons, we examined the effects of glycine on orexin neurons by patch-clamp electrophysiology. Glycine directly induced hyperpolarization and cessation of firing of orexin neurons. These responses were inhibited by a specific glycine receptor antagonist, strychnine. Triple-labeling immunofluorescent analysis showed close apposition of glycine transporter 2 (GlyT2)-immunoreactive glycinergic fibers onto orexin-immunoreactive neurons. Immunoelectron microscopic analysis revealed that GlyT2-immunoreactive terminals made symmetrical synaptic contacts with somata and dendrites of orexin neurons. Double-labeling immunoelectron microscopy demonstrated that glycine receptor alpha subunits were localized in the postsynaptic membrane of symmetrical inhibitory synapses on orexin neurons. Considering the importance of glycinergic regulation during REM sleep, our observations suggest that glycine injection might affect the activity of orexin neurons, and that glycinergic inhibition of orexin neurons might play a role in physiological sleep regulation.
Collapse
Affiliation(s)
- Mari Hondo
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Naoki Furutani
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Miwako Yamasaki
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahiko Watanabe
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
8
|
Schwarz PB, Peever JH. Dopamine triggers skeletal muscle tone by activating D1-like receptors on somatic motoneurons. J Neurophysiol 2011; 106:1299-309. [PMID: 21653722 DOI: 10.1152/jn.00230.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dopamine system plays an integral role in motor physiology. Dopamine controls movement by modulation of higher-order motor centers (e.g., basal ganglia) but may also regulate movement by directly controlling motoneuron function. Even though dopamine cells synapse onto motoneurons, which themselves express dopamine receptors, it is unknown whether dopamine modulates skeletal muscle activity. Therefore, we aimed to determine whether changes in dopaminergic neurotransmission at a somatic motor pool affect motor outflow to skeletal muscles. We used microinjection, neuropharmacology, electrophysiology, and histology to determine whether manipulation of D(1)- and D(2)-like receptors on trigeminal motoneurons affects masseter and/or tensor palatini muscle tone in anesthetized rats. We found that apomorphine (a dopamine analog) activated trigeminal motoneurons and triggered a potent increase in both masseter and tensor palatini tone. This excitatory effect is mediated by D(1)-like receptors because specific D(1)-like receptor activation strengthened muscle tone and blockade of these receptors prevented dopamine-driven activation of motoneurons. Blockade of D(1)-like receptors alone had no detectable effect on basal masseter/tensor palatini tone, indicating the absence of a functional dopamine drive onto trigeminal motoneurons, at least during isoflurane anesthesia. Finally, we showed that D(2)-like receptors do not affect either trigeminal motoneuron function or masseter/tensor palatini muscle tone. Our results provide the first demonstration that dopamine can directly control movement by manipulating somatic motoneuron behavior and skeletal muscle tone.
Collapse
Affiliation(s)
- Peter B Schwarz
- Systems Neurobiology Laboratory, Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON M5S 3G5, Canada
| | | |
Collapse
|
9
|
Murillo-Rodríguez E, Palomero-Rivero M, Millán-Aldaco D, Mechoulam R, Drucker-Colín R. Effects on sleep and dopamine levels of microdialysis perfusion of cannabidiol into the lateral hypothalamus of rats. Life Sci 2011; 88:504-11. [DOI: 10.1016/j.lfs.2011.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/09/2010] [Accepted: 12/27/2010] [Indexed: 01/08/2023]
|
10
|
Thorpe AJ, Clair A, Hochman S, Clemens S. Possible Sites of Therapeutic Action in Restless Legs Syndrome: Focus on Dopamine and α 2δ Ligands. Eur Neurol 2011; 66:18-29. [DOI: 10.1159/000328431] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/11/2011] [Indexed: 01/01/2023]
|
11
|
Morales FR, Silveira V, Damián A, Higgie R, Pose I. The possible additional role of the cystic fibrosis transmembrane regulator to motoneuron inhibition produced by glycine effects. Neuroscience 2010; 177:138-47. [PMID: 21185916 DOI: 10.1016/j.neuroscience.2010.12.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/29/2010] [Accepted: 12/19/2010] [Indexed: 11/17/2022]
Abstract
In the present work we study the contribution of the chloride channel of the Cystic Fibrosis Transmembrane Regulator (CFTR) in the postsynaptic inhibition of somatic motoneurons during rapid-eye-movement (REM) sleep atonia. Postsynaptic inhibition of motoneurons is partially responsible for the atonia that occurs during REM sleep. Disfacilitation is an additional mechanism that lowers motoneuron excitability in this state. Postsynaptic inhibition is mediated by the release of glycine from synaptic terminals on motoneurons, and by GABA that plays a complementary role to that of glycine. In this work we look in brain stem motoneurons of neonatal rats at a mechanism unrelated to the actions of glycine, GABA or to disfacilitation which depends on the chloride channel of the CFTR. We studied the presence of CFTR by immunocytochemistry. In electrophysiological experiments utilizing whole cell recordings in in vitro slices we examined the consequences of blocking this chloride channel. The effects on motoneurons of the application of glycine, of the application of glibenclamide (a CFTR blocker) and again of glycine during the effects of glibenclamide were studied. Glycine produced an hyperpolarization, a decrease in motoneuron excitability and a decrease in input resistance, all characteristic changes of the postsynaptic inhibition produced by this neurotransmitter. Glibenclamide produced an increase in input resistance and in motoneurons' repetitive discharge as well as a shift in the equilibrium potential for chloride ions as indicated by the displacement of the reversal potential for glycinergic actions. In motoneurons treated with glibenclamide, glycine produced postsynaptic inhibition but this effect was smaller when compared to that elicited by glycine in control conditions. The fact that blocking of the CFTR-chloride channel in brain stem motoneurons influences glycinergic inhibition suggests that this channel may play a complementary role in the glycinergic inhibition that occurs during REM sleep.
Collapse
Affiliation(s)
- F R Morales
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, General Flores 2125, Montevideo 11800, Uruguay.
| | | | | | | | | |
Collapse
|
12
|
Lai YY, Kodama T, Schenkel E, Siegel JM. Behavioral response and transmitter release during atonia elicited by medial medullary stimulation. J Neurophysiol 2010; 104:2024-33. [PMID: 20668280 DOI: 10.1152/jn.00528.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the medial medulla is responsible for rapid eye movement (REM) sleep atonia and cataplexy. Dysfunction can cause REM sleep behavior disorder and other motor pathologies. Here we report the behavioral effects of stimulation of the nucleus gigantocellularis (NGC) and nucleus magnocellularis (NMC) in unrestrained cats. In waking, 62% of the medial medullary stimulation sites suppressed muscle tone. In contrast, stimulation at all sites, including sites where stimulation produced no change or increased muscle tone in waking, produced decreased muscle tone during slow-wave sleep. In the decerebrate cat electrical stimulation of the NGC increased glycine and decreased norepinephrine (NE) release in the lumbar ventral horn, with no change in γ-aminobutyric acid (GABA) or serotonin (5-HT) release. Stimulation of the NMC increased both glycine and GABA release and also decreased both NE and 5-HT release in the ventral horn. Glutamate levels in the ventral horn were not changed by either NGC or NMC stimulation. We conclude that NGC and NMC play neurochemically distinct but synergistic roles in the modulation of motor activity across the sleep-wake cycle via a combination of increased release of glycine and GABA and decreased release of 5-HT and NE. Stimulation of the medial medulla that elicited muscle tone suppression also triggered rapid eye movements, but never produced the phasic twitches that characterize REM sleep, indicating that the twitching and rapid eye movement generators of REM sleep have separate brain stem substrates.
Collapse
Affiliation(s)
- Yuan-Yang Lai
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System Sepulveda, North Hills, CA 91343, USA.
| | | | | | | |
Collapse
|
13
|
Anaclet C, Pedersen NP, Fuller PM, Lu J. Brainstem circuitry regulating phasic activation of trigeminal motoneurons during REM sleep. PLoS One 2010; 5:e8788. [PMID: 20098748 PMCID: PMC2808333 DOI: 10.1371/journal.pone.0008788] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 12/23/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rapid eye movement sleep (REMS) is characterized by activation of the cortical and hippocampal electroencephalogram (EEG) and atonia of non-respiratory muscles with superimposed phasic activity or twitching, particularly of cranial muscles such as those of the eye, tongue, face and jaw. While phasic activity is a characteristic feature of REMS, the neural substrates driving this activity remain unresolved. Here we investigated the neural circuits underlying masseter (jaw) phasic activity during REMS. The trigeminal motor nucleus (Mo5), which controls masseter motor function, receives glutamatergic inputs mainly from the parvocellular reticular formation (PCRt), but also from the adjacent paramedian reticular area (PMnR). On the other hand, the Mo5 and PCRt do not receive direct input from the sublaterodorsal (SLD) nucleus, a brainstem region critical for REMS atonia of postural muscles. We hypothesized that the PCRt-PMnR, but not the SLD, regulates masseter phasic activity during REMS. METHODOLOGY/PRINCIPAL FINDINGS To test our hypothesis, we measured masseter electromyogram (EMG), neck muscle EMG, electrooculogram (EOG) and EEG in rats with cell-body specific lesions of the SLD, PMnR, and PCRt. Bilateral lesions of the PMnR and rostral PCRt (rPCRt), but not the caudal PCRt or SLD, reduced and eliminated REMS phasic activity of the masseter, respectively. Lesions of the PMnR and rPCRt did not, however, alter the neck EMG or EOG. To determine if rPCRt neurons use glutamate to control masseter phasic movements, we selectively blocked glutamate release by rPCRt neurons using a Cre-lox mouse system. Genetic disruption of glutamate neurotransmission by rPCRt neurons blocked masseter phasic activity during REMS. CONCLUSIONS/SIGNIFICANCE These results indicate that (1) premotor glutamatergic neurons in the medullary rPCRt and PMnR are involved in generating phasic activity in the masseter muscles, but not phasic eye movements, during REMS; and (2) separate brainstem neural circuits control postural and cranial muscle phasic activity during REMS.
Collapse
Affiliation(s)
- Christelle Anaclet
- Division of Sleep Medicine, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nigel P. Pedersen
- Division of Sleep Medicine, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Patrick M. Fuller
- Division of Sleep Medicine, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jun Lu
- Division of Sleep Medicine, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Soja PJ. Glycine-mediated postsynaptic inhibition is responsible for REM sleep atonia. Sleep 2009; 31:1483-6. [PMID: 19014067 DOI: 10.1093/sleep/31.11.1483] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Peter J Soja
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver BC, Canada.
| |
Collapse
|
15
|
Hochman S. Depression of Spinal Sensory Transmission During REM Sleep: Dopaminergic Involvement and Insights Into Restless Legs Syndrome. Focus on “State-Dependent Changes in Glutamate, Glycine, GABA, and Dopamine Levels in Cat Lumbar Spinal Cord”. J Neurophysiol 2008; 100:549-50. [DOI: 10.1152/jn.90510.2008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|