1
|
Scherer JS, Sandbote K, Schultze BL, Kretzberg J. Synaptic input and temperature influence sensory coding in a mechanoreceptor. Front Cell Neurosci 2023; 17:1233730. [PMID: 37771930 PMCID: PMC10522859 DOI: 10.3389/fncel.2023.1233730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Many neurons possess more than one spike initiation zone (SIZ), which adds to their computational power and functional flexibility. Integrating inputs from different origins is especially relevant for sensory neurons that rely on relative spike timing for encoding sensory information. Yet, it is poorly understood if and how the propagation of spikes generated at one SIZ in response to sensory stimulation is affected by synaptic inputs triggering activity of other SIZ, and by environmental factors like temperature. The mechanosensory Touch (T) cell in the medicinal leech is an ideal model system to study these potential interactions because it allows intracellular recording and stimulation of its soma while simultaneously touching the skin in a body-wall preparation. The T cell reliably elicits spikes in response to somatic depolarization, as well as to tactile skin stimulation. Latencies of spikes elicited in the skin vary across cells, depending on the touch location relative to the cell's receptive field. However, repetitive stimulation reveals that tactilely elicited spikes are more precisely timed than spikes triggered by somatic current injection. When the soma is hyperpolarized to mimic inhibitory synaptic input, first spike latencies of tactilely induced spikes increase. If spikes from both SIZ follow shortly after each other, the arrival time of the second spike at the soma can be delayed. Although the latency of spikes increases by the same factor when the temperature decreases, the effect is considerably stronger for the longer absolute latencies of spikes propagating from the skin to the soma. We therefore conclude that the propagation time of spikes from the skin is modulated by internal factors like synaptic inputs, and by external factors like temperature. Moreover, fewer spikes are detected when spikes from both origins are expected to arrive at the soma in temporal proximity. Hence, the leech T cell might be a key for understanding how the interaction of multiple SIZ impacts temporal and rate coding of sensory information, and how cold-blooded animals can produce adequate behavioral responses to sensory stimuli based on temperature-dependent relative spike timing.
Collapse
Affiliation(s)
- Jens-Steffen Scherer
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Kevin Sandbote
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Bjarne L. Schultze
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Department of Neuroscience, Cluster of Excellence Hearing4all, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Hoynoski J, Dohn J, Franzen AD, Burrell BD. Repetitive nociceptive stimulation elicits complex behavioral changes in Hirudo: evidence of arousal and motivational adaptations. J Exp Biol 2023; 226:jeb245895. [PMID: 37497630 PMCID: PMC10445732 DOI: 10.1242/jeb.245895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Appropriate responses to real or potential damaging stimuli to the body (nociception) are critical to an animal's short- and long-term survival. The initial goal of this study was to examine habituation of withdrawal reflexes (whole-body and local shortening) to repeated mechanical nociceptive stimuli (needle pokes) in the medicinal leech, Hirudo verbana, and assess whether injury altered habituation to these nociceptive stimuli. While repeated needle pokes did reduce shortening in H. verbana, a second set of behavior changes was observed. Specifically, animals began to evade subsequent stimuli by either hiding their posterior sucker underneath adjacent body segments or engaging in locomotion (crawling). Animals differed in terms of how quickly they adopted evasion behaviors during repeated stimulation, exhibiting a multi-modal distribution for early, intermediate and late evaders. Prior injury had a profound effect on this transition, decreasing the time frame in which animals began to carry out evasion and increasing the magnitude of these evasion behaviors (more locomotory evasion). The data indicate the presence in Hirudo of a complex and adaptive defensive arousal process to avoid noxious stimuli that is influenced by differences in internal states, prior experience with injury of the stimulated areas, and possibly learning-based processes.
Collapse
Affiliation(s)
- Jessica Hoynoski
- Division of Basic Biomedical Sciences, Center for Brain and Behavioral Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - John Dohn
- Division of Basic Biomedical Sciences, Center for Brain and Behavioral Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Avery D. Franzen
- Division of Basic Biomedical Sciences, Center for Brain and Behavioral Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Brian D. Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavioral Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
3
|
Meiser S, Ashida G, Kretzberg J. Non-synaptic Plasticity in Leech Touch Cells. Front Physiol 2019; 10:1444. [PMID: 31827443 PMCID: PMC6890822 DOI: 10.3389/fphys.2019.01444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/08/2019] [Indexed: 01/06/2023] Open
Abstract
The role of Na+/K+-pumps in activity-dependent synaptic plasticity has been described in both vertebrates and invertebrates. Here, we provide evidence that the Na+/K+-pump is also involved in activity-dependent non-synaptic cellular plasticity in leech sensory neurons. We show that the resting membrane potential (RMP) of T cells hyperpolarizes in response to repeated somatic current injection, while at the same time their spike count (SC) and the input resistance (IR) increase. Our Hodgkin–Huxley-type neuron model, adjusted to physiological T cell properties, suggests that repetitive action potential discharges lead to increased Na+/K+-pump activity, which then hyperpolarizes the RMP. In consequence, a slow, non-inactivating current decreases, which is presumably mediated by voltage-dependent, low-threshold potassium channels. Closing of these putative M-type channels due to hyperpolarization of the resting potential increases the IR of the cell, leading to a larger number of spikes. By this mechanism, the response behavior switches from rapidly to slowly adapting spiking. These changes in spiking behavior also effect other T cells on the same side of the ganglion, which are connected via a combination of electrical and chemical synapses. An increased SC in the presynaptic T cell results in larger postsynaptic responses (PRs) in the other T cells. However, when the number of elicited presynaptic spikes is kept constant, the PR does not change. These results suggest that T cells change their responses in an activity-dependent manner through non-synaptic rather than synaptic plasticity. These changes might act as a gain-control mechanism. Depending on the previous activity, this gain could scale the relative impacts of synaptic inputs from other mechanoreceptors, versus the spike responses to tactile skin stimulation. This multi-tasking ability, and its flexible adaptation to previous activity, might make the T cell a key player in a preparatory network, enabling the leech to perform fast behavioral reactions to skin stimulation.
Collapse
Affiliation(s)
- Sonja Meiser
- Computational Neuroscience, Department of Neuroscience, Faculty VI, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Go Ashida
- Computational Neuroscience, Department of Neuroscience, Faculty VI, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, Department of Neuroscience, Faculty VI, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Computational Neuroscience, Department of Neuroscience, Faculty VI, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, Department of Neuroscience, Faculty VI, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Mazzochette EA, Nekimken AL, Loizeau F, Whitworth J, Huynh B, Goodman MB, Pruitt BL. The tactile receptive fields of freely moving Caenorhabditis elegans nematodes. Integr Biol (Camb) 2018; 10:450-463. [PMID: 30027970 PMCID: PMC6168290 DOI: 10.1039/c8ib00045j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sensory neurons embedded in skin are responsible for the sense of touch. In humans and other mammals, touch sensation depends on thousands of diverse somatosensory neurons. By contrast, Caenorhabditis elegans nematodes have six gentle touch receptor neurons linked to simple behaviors. The classical touch assay uses an eyebrow hair to stimulate freely moving C. elegans, evoking evasive behavioral responses. This assay has led to the discovery of genes required for touch sensation, but does not provide control over stimulus strength or position. Here, we present an integrated system for performing automated, quantitative touch assays that circumvents these limitations and incorporates automated measurements of behavioral responses. The Highly Automated Worm Kicker (HAWK) unites a microfabricated silicon force sensor holding a glass bead forming the contact surface and video analysis with real-time force and position control. Using this system, we stimulated animals along the anterior-posterior axis and compared responses in wild-type and spc-1(dn) transgenic animals, which have a touch defect due to expression of a dominant-negative α-spectrin protein fragment. As expected from prior studies, delivering large stimuli anterior and posterior to the mid-point of the body evoked a reversal and a speed-up, respectively. The probability of evoking a response of either kind depended on stimulus strength and location; once initiated, the magnitude and quality of both reversal and speed-up behavioral responses were uncorrelated with stimulus location, strength, or the absence or presence of the spc-1(dn) transgene. Wild-type animals failed to respond when the stimulus was applied near the mid-point. These results show that stimulus strength and location govern the activation of a characteristic motor program and that the C. elegans body surface consists of two receptive fields separated by a gap.
Collapse
Affiliation(s)
- E A Mazzochette
- Department of Electrical Engineering, Stanford University, 94305, USA
| | - A L Nekimken
- Department of Mechanical Engineering, Stanford University, 94305, USA. and Department of Molecular and Cellular Physiology, Stanford University, 94305, USA
| | - F Loizeau
- Department of Mechanical Engineering, Stanford University, 94305, USA.
| | - J Whitworth
- Department of Mechanical Engineering, Stanford University, 94305, USA.
| | - B Huynh
- Department of Mechanical Engineering, Stanford University, 94305, USA.
| | - M B Goodman
- Department of Mechanical Engineering, Stanford University, 94305, USA. and Department of Molecular and Cellular Physiology, Stanford University, 94305, USA
| | - B L Pruitt
- Department of Mechanical Engineering, Stanford University, 94305, USA. and Department of Molecular and Cellular Physiology, Stanford University, 94305, USA and Department of Bioengineering, Stanford University, 94305, USA and Department of Mechanical Engineering, University of California, Santa Barbara, 93106, USA.
| |
Collapse
|
5
|
Fathiazar E, Hilgen G, Kretzberg J. Higher Network Activity Induced by Tactile Compared to Electrical Stimulation of Leech Mechanoreceptors. Front Physiol 2018; 9:173. [PMID: 29563881 PMCID: PMC5845893 DOI: 10.3389/fphys.2018.00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/20/2018] [Indexed: 11/29/2022] Open
Abstract
The tiny ensemble of neurons in the leech ganglion can discriminate the locations of touch stimuli on the skin as precisely as a human fingertip. The leech uses this ability to locally bend the body-wall away from the stimulus. It is assumed that a three-layered feedforward network of pressure mechanoreceptors, interneurons, and motor neurons controls this behavior. Most previous studies identified and characterized the local bend network based on electrical stimulation of a single pressure mechanoreceptor, which was sufficient to trigger the local bend response. Recent studies showed, however, that up to six mechanoreceptors of three types innervating the stimulated patch of skin carry information about both touch intensity and location simultaneously. Therefore, we hypothesized that interneurons involved in the local bend network might require the temporally concerted inputs from the population of mechanoreceptors representing tactile stimuli, to decode the tactile information and to provide appropriate synaptic inputs to the motor neurons. We examined the influence of current injection into a single mechanoreceptor on activity of postsynaptic interneurons in the network and compared it to responses of interneurons to skin stimulation with different pressure intensities. We used voltage-sensitive dye imaging to monitor the graded membrane potential changes of all visible cells on the ventral side of the ganglion. Our results showed that stimulation of a single mechanoreceptor activates several local bend interneurons, consistent with previous intracellular studies. Tactile skin stimulation, however, evoked a more pronounced, longer-lasting, stimulus intensity-dependent network dynamics involving more interneurons. We concluded that the underlying local bend network enables a non-linear processing of tactile information provided by population of mechanoreceptors. This task requires a more complex network structure than previously assumed, probably containing polysynaptic interneuron connections and feedback loops. This small, experimentally well-accessible neuronal system highlights the general importance of selecting adequate sensory stimulation to investigate the network dynamics in the context of natural behavior.
Collapse
Affiliation(s)
- Elham Fathiazar
- Computational Neuroscience, Department of Neuroscience, FK VI, University of Oldenburg, Oldenburg, Germany
| | - Gerrit Hilgen
- Computational Neuroscience, Department of Neuroscience, FK VI, University of Oldenburg, Oldenburg, Germany.,Faculty of Medical Sciences, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jutta Kretzberg
- Computational Neuroscience, Department of Neuroscience, FK VI, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Pirschel F, Hilgen G, Kretzberg J. Effects of Touch Location and Intensity on Interneurons of the Leech Local Bend Network. Sci Rep 2018; 8:3046. [PMID: 29445203 PMCID: PMC5813025 DOI: 10.1038/s41598-018-21272-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/24/2018] [Indexed: 11/09/2022] Open
Abstract
Touch triggers highly precise behavioural responses in the leech. The underlying network of this so-called local bend reflex consists of three layers of individually characterised neurons. While the population of mechanosensory cells provide multiplexed information about the stimulus, not much is known about how interneurons process this information. Here, we analyse the responses of two local bend interneurons (cell 157 and 159) to a mechanical stimulation of the skin and show their response characteristics to naturalistic stimuli. Intracellular dye-fills combined with structural imaging revealed that these interneurons are synaptically coupled to all three types of mechanosensory cells (T, P, and N cells). Since tactile stimulation of the skin evokes spikes in one to two cells of each of the latter types, interneurons combine inputs from up to six mechanosensory cells. We find that properties of touch location and intensity can be estimated reliably and accurately based on the graded interneuron responses. Connections to several mechanosensory cell types and specific response characteristics of the interneuron types indicate specialised filter and integration properties within this small neuronal network, thus providing evidence for more complex signal processing than previously thought.
Collapse
Affiliation(s)
- Friederice Pirschel
- Computational Neuroscience, Department for Neuroscience, University of Oldenburg, Oldenburg, Germany. .,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
| | - Gerrit Hilgen
- Computational Neuroscience, Department for Neuroscience, University of Oldenburg, Oldenburg, Germany.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jutta Kretzberg
- Computational Neuroscience, Department for Neuroscience, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
7
|
Summers T, Hanten B, Peterson W, Burrell B. Endocannabinoids Have Opposing Effects On Behavioral Responses To Nociceptive And Non-nociceptive Stimuli. Sci Rep 2017; 7:5793. [PMID: 28724917 PMCID: PMC5517658 DOI: 10.1038/s41598-017-06114-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/08/2017] [Indexed: 11/09/2022] Open
Abstract
The endocannabinoid system is thought to modulate nociceptive signaling making it a potential therapeutic target for treating pain. However, there is evidence that endocannabinoids have both pro- and anti-nociceptive effects. In previous studies using Hirudo verbana (the medicinal leech), endocannabinoids were found to depress nociceptive synapses, but enhance non-nociceptive synapses. Here we examined whether endocannabinoids have similar bidirectional effects on behavioral responses to nociceptive vs. non-nociceptive stimuli in vivo. Hirudo were injected with either the 2-arachidonoylglycerol (2-AG) or anandamide and tested for changes in response to nociceptive and non-nociceptive stimuli. Both endocannabinoids enhanced responses to non-nociceptive stimuli and reduced responses to nociceptive stimuli. These pro- and anti-nociceptive effects were blocked by co-injection of a TRPV channel inhibitor, which are thought to function as an endocannabinoid receptor. In experiments to determine the effects of endocannabinoids on animals that had undergone injury-induced sensitization, 2-AG and anandamide diminished sensitization to nociceptive stimuli although the effects of 2-AG were longer lasting. Sensitized responses to non-nociceptive stimuli were unaffected 2-AG or anandamide. These results provide evidence that endocannabinoids can have opposing effects on nociceptive vs. non-nociceptive pathways and suggest that cannabinoid-based therapies may be more appropriate for treating pain disorders in which hyperalgesia and not allodynia is the primary symptom.
Collapse
Affiliation(s)
- Torrie Summers
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.,Riot Games, Santa Monica, CA, USA
| | - Brandon Hanten
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Warren Peterson
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Brian Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
8
|
Kretzberg J, Pirschel F, Fathiazar E, Hilgen G. Encoding of Tactile Stimuli by Mechanoreceptors and Interneurons of the Medicinal Leech. Front Physiol 2016; 7:506. [PMID: 27840612 PMCID: PMC5083904 DOI: 10.3389/fphys.2016.00506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/14/2016] [Indexed: 12/29/2022] Open
Abstract
For many animals processing of tactile information is a crucial task in behavioral contexts like exploration, foraging, and stimulus avoidance. The leech, having infrequent access to food, developed an energy efficient reaction to tactile stimuli, avoiding unnecessary muscle movements: The local bend behavior moves only a small part of the body wall away from an object touching the skin, while the rest of the animal remains stationary. Amazingly, the precision of this localized behavioral response is similar to the spatial discrimination threshold of the human fingertip, although the leech skin is innervated by an order of magnitude fewer mechanoreceptors and each midbody ganglion contains only 400 individually identified neurons in total. Prior studies suggested that this behavior is controlled by a three-layered feed-forward network, consisting of four mechanoreceptors (P cells), approximately 20 interneurons and 10 individually characterized motor neurons, all of which encode tactile stimulus location by overlapping, symmetrical tuning curves. Additionally, encoding of mechanical force was attributed to three types of mechanoreceptors reacting to distinct intensity ranges: T cells for touch, P cells for pressure, and N cells for strong, noxious skin stimulation. In this study, we provide evidences that tactile stimulus encoding in the leech is more complex than previously thought. Combined electrophysiological, anatomical, and voltage sensitive dye approaches indicate that P and T cells both play a major role in tactile information processing resulting in local bending. Our results indicate that tactile encoding neither relies on distinct force intensity ranges of different cell types, nor location encoding is restricted to spike count tuning. Instead, we propose that P and T cells form a mixed type population, which simultaneously employs temporal response features and spike counts for multiplexed encoding of touch location and force intensity. This hypothesis is supported by our finding that previously identified local bend interneurons receive input from both P and T cells. Some of these interneurons seem to integrate mechanoreceptor inputs, while others appear to use temporal response cues, presumably acting as coincidence detectors. Further voltage sensitive dye studies can test these hypotheses how a tiny nervous system performs highly precise stimulus processing.
Collapse
Affiliation(s)
- Jutta Kretzberg
- Computational Neuroscience, Department of Neuroscience, University of OldenburgOldenburg, Germany; Cluster of Excellence Hearing4all, University of OldenburgOldenburg, Germany
| | - Friederice Pirschel
- Computational Neuroscience, Department of Neuroscience, University of OldenburgOldenburg, Germany; Department of Organismal Biology and Anatomy, University of ChicagoChicago, IL, USA
| | - Elham Fathiazar
- Computational Neuroscience, Department of Neuroscience, University of Oldenburg Oldenburg, Germany
| | - Gerrit Hilgen
- Computational Neuroscience, Department of Neuroscience, University of OldenburgOldenburg, Germany; Faculty of Medical Sciences, Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
| |
Collapse
|
9
|
Multiplexed Population Coding of Stimulus Properties by Leech Mechanosensory Cells. J Neurosci 2016; 36:3636-47. [PMID: 27030751 DOI: 10.1523/jneurosci.1753-15.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 02/10/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Sensory coding has long been discussed in terms of a dichotomy between spike timing and rate coding. However, recent studies found that in primate mechanoperception and other sensory systems, spike rates and timing of cell populations complement each other. They simultaneously carry information about different stimulus properties in a multiplexed way. Here, we present evidence for multiplexed encoding of tactile skin stimulation in the tiny population of leech mechanoreceptors, consisting of only 10 cells of two types with overlapping receptive fields. Each mechanoreceptor neuron of the leech varies spike count and response latency to both touch intensity and location, leading to ambiguous responses to different stimuli. Nevertheless, three different stimulus estimation techniques consistently reveal that the neuronal population allows reliable decoding of both stimulus properties. For the two mechanoreceptor types, the transient responses of T (touch) cells and the sustained responses of P (pressure) cells, the relative timing of the first spikes of two mechanoreceptors encodes stimulus location, whereas summed spike counts represent touch intensity. Differences between the cell types become evident in responses to combined stimulus properties. The best estimation performance for stimulus location is obtained from the relative first spike timing of the faster and temporally more precise T cells. Simultaneously, the sustained responses of P cells indicate touch intensity by summed spike counts and stimulus duration by the duration of spike responses. The striking similarities of these results with previous findings on primate mechanosensory afferents suggest multiplexed population coding as a general principle of somatosensation. SIGNIFICANCE STATEMENT Multiplexing, the simultaneous encoding of different stimulus properties by distinct neuronal response features, has recently been suggested as a mechanism used in several sensory systems, including primate somatosensation. While a rigorous experimental verification of the multiplexing hypothesis is difficult to accomplish in a complex vertebrate system, it is feasible for a small population of individually characterized leech neurons. Monitoring the responses of all four mechanoreceptors innervating a patch of skin revealed striking similarities between touch encoding in the primate and the leech: summed spike counts represent stimulus intensity, whereas relative timing of first spikes encodes stimulus location. These findings suggest that multiplexed population coding is a general mechanism of touch encoding common to species as different as man and worm.
Collapse
|
10
|
Abstract
The "local bend response" of the medicinal leech (Hirudo verbana) is a stimulus-response pathway that enables the animal to bend away from a pressure stimulus applied anywhere along its body. The neuronal circuitry that supports this behavior has been well described, and its responses to individual stimuli are understood in quantitative detail. We probed the local bend system with pairs of electrical stimuli to sensory neurons that could not logically be interpreted as a single touch to the body wall and used multiple suction electrodes to record simultaneously the responses in large numbers of motor neurons. In all cases, responses lasted much longer than the stimuli that triggered them, implying the presence of some form of positive feedback loop to sustain the response. When stimuli were delivered simultaneously, the resulting motor neuron output could be described as an evenly weighted linear combination of the responses to the constituent stimuli. However, when stimuli were delivered sequentially, the second stimulus had greater impact on the motor neuron output, implying that the positive feedback in the system is not strong enough to render it immune to further input.
Collapse
|
11
|
Jellies J. Which way is up? Asymmetric spectral input along the dorsal-ventral axis influences postural responses in an amphibious annelid. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:923-38. [PMID: 25152938 DOI: 10.1007/s00359-014-0935-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/14/2014] [Indexed: 11/24/2022]
Abstract
Medicinal leeches are predatory annelids that exhibit countershading and reside in aquatic environments where light levels might be variable. They also leave the water and must contend with terrestrial environments. Yet, leeches generally maintain a dorsal upward position despite lacking statocysts. Leeches respond visually to both green and near-ultraviolet (UV) light. I used LEDs to test the hypothesis that ventral, but not dorsal UV would evoke compensatory movements to orient the body. Untethered leeches were tested using LEDs emitting at red (632 nm), green (513 nm), blue (455 nm) and UV (372 nm). UV light evoked responses in 100 % of trials and the leeches often rotated the ventral surface away from it. Visible light evoked no or modest responses (12-15 % of trials) and no body rotation. Electrophysiological recordings showed that ventral sensilla responded best to UV, dorsal sensilla to green. Additionally, a higher order interneuron that is engaged in a variety of parallel networks responded vigorously to UV presented ventrally, and both the visible and UV responses exhibited pronounced light adaptation. These results strongly support the suggestion that a dorsal light reflex in the leech uses spectral comparisons across the dorsal-ventral axis rather than, or in addition to, luminance.
Collapse
Affiliation(s)
- John Jellies
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA,
| |
Collapse
|
12
|
Pirschel F, Kretzberg J. Coding of touch properties by three types of mechanosensory cells of the leech hirudo medicinalis. BMC Neurosci 2013. [PMCID: PMC3704412 DOI: 10.1186/1471-2202-14-s1-p224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
13
|
Pirschel F, Kretzberg J. Encoding of touch location and intensity by neurons of the medicinal leech Hirudo medicinalis. BMC Neurosci 2012. [PMCID: PMC3403453 DOI: 10.1186/1471-2202-13-s1-p103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
14
|
Pirschel F, Kretzberg J. Encoding of tactile stimulus parameters by mechanosensory P cells of the medicinal leech Hirudo medicinalis. BMC Neurosci 2011. [PMCID: PMC3240279 DOI: 10.1186/1471-2202-12-s1-p180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Abstract
Electrical and chemical synapses provide two distinct modes of direct communication between neurons, and the embryonic development of the two is typically not simultaneous. Instead, in both vertebrates and invertebrates, gap junction-based electrical synapses arise before chemical synaptogenesis, and the early circuits composed of gap junction-based electrical synapses resemble those produced later by chemical synapses. This developmental sequence from electrical to chemical synapses has led to the hypothesis that, in developing neuronal circuits, electrical junctions are necessary forerunners of chemical synapses. Up to now, it has been difficult to test this hypothesis directly, but we can identify individual neurons in the leech nervous system from before the time when synapses are first forming, so we could test the hypothesis. Using RNA interference, we transiently reduced gap junction expression in individual identified neurons during the 2-4 d when chemical synapses normally form. We found that the expected chemical synapses failed to form on schedule, and they were still missing months later when the nervous system was fully mature. We conclude that the formation of gap junctions between leech neurons is a necessary step in the formation of chemical synaptic junctions, confirming the predicted relation between electrical synapses and chemical synaptogenesis.
Collapse
|
16
|
van Griethuijsen LI, Trimmer BA. Caterpillar crawling over irregular terrain: anticipation and local sensing. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:397-406. [DOI: 10.1007/s00359-010-0525-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/10/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
|
17
|
Baltzley MJ, Gaudry Q, Kristan WB. Species-specific behavioral patterns correlate with differences in synaptic connections between homologous mechanosensory neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:181-97. [PMID: 20135128 PMCID: PMC2825318 DOI: 10.1007/s00359-010-0503-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/02/2010] [Accepted: 01/04/2010] [Indexed: 11/29/2022]
Abstract
We characterized the behavioral responses of two leech species, Hirudo verbana and Erpobdella obscura, to mechanical skin stimulation and examined the interactions between the pressure mechanosensory neurons (P cells) that innervate the skin. To quantify behavioral responses, we stimulated both intact leeches and isolated body wall preparations from the two species. In response to mechanical stimulation, Hirudo showed local bending behavior, in which the body wall shortened only on the side of the stimulation. Erpobdella, in contrast, contracted both sides of the body in response to touch. To investigate the neuronal basis for this behavioral difference, we studied the interactions between P cells. Each midbody ganglion has four P cells; each cell innervates a different quadrant of the body wall. Consistent with local bending, activating any one P cell in Hirudo elicited polysynaptic inhibitory potentials in the other P cells. In contrast, the P cells in Erpobdella had excitatory polysynaptic connections, consistent with the segment-wide contraction observed in this species. In addition, activating individual P cells caused asymmetrical body wall contractions in Hirudo and symmetrical body wall contractions in Erpobdella. These results suggest that the different behavioral responses in Erpobdella and Hirudo are partly mediated by interactions among mechanosensory cells.
Collapse
Affiliation(s)
- Michael J Baltzley
- Division of Biological Sciences, University of California, San Diego, 3119 Pacific Hall, 9500 Gilman Drive, #0357, La Jolla, CA 92093-0357, USA.
| | | | | |
Collapse
|
18
|
Widespread inhibition proportional to excitation controls the gain of a leech behavioral circuit. Neuron 2008; 57:276-289. [PMID: 18215624 DOI: 10.1016/j.neuron.2007.11.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 08/22/2007] [Accepted: 11/28/2007] [Indexed: 11/21/2022]
Abstract
Changing gain in a neuronal system has important functional consequences, but the underlying mechanisms have been elusive. Models have suggested a variety of neuronal and systems properties to accomplish gain control. Here, we show that the gain of the neuronal network underlying local bending behavior in leeches depends on widespread inhibition. Using behavioral analysis, intracellular recordings, and voltage-sensitive dye imaging, we compared the effects of blocking just the known lateral inhibition with blocking all GABAergic inhibition. This revealed an additional source of inhibition, which was widespread and increased in proportion to increasing stimulus intensity. In a model of the input/output functions of the three-layered local bending network, we showed that inhibiting all interneurons in proportion to the stimulus strength produces the experimentally observed change in gain. This relatively simple mechanism for controlling behavioral gain could be prevalent in vertebrate as well as invertebrate nervous systems.
Collapse
|
19
|
Mesce KA, Esch T, Kristan WB. Cellular substrates of action selection: a cluster of higher-order descending neurons shapes body posture and locomotion. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:469-81. [PMID: 18297289 DOI: 10.1007/s00359-008-0319-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/04/2008] [Accepted: 02/07/2008] [Indexed: 12/16/2022]
Abstract
The selection of distinct movements involved in various body postures and locomotion is often dependent on higher-order descending neurons. To study how such cells select different actions, we used a nearly-intact leech preparation (Hirudo sp.) in which cephalic projection interneurons were recorded and stimulated while the leech generated overt behaviors. Two long-distance projecting neurons were identified in the sub-packet of the third neuromere (R3b) of the subesophageal ganglion. These interneurons, named R3b2 and R3b3, produced changes in whole-body posture, crawling and swimming. Cell R3b2 reliably caused the body to become turgid, to hyper-elongate, and to thrash cyclically. Such robust activity resembled struggling behavior exhibited by intact leeches when grasped. The neighboring cell R3b3 elicited body elongation accompanied by a static whole-body bend to the left or right. R3b3 activity was context-dependent, oscillated in phase with crawling, reset the crawl rhythm, and terminated swimming. Both neuronal types responded to multi-modal sensory stimulation delivered to various rostral and caudal regions of the body. Our study illustrates the need to study behavioral selection with a neuroethological approach, and provides a cellular substrate for the motor action-selection cluster proposed for the vertebrate brainstem.
Collapse
Affiliation(s)
- Karen A Mesce
- Departments of Entomology and Neuroscience, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave, St Paul, MN 55108, USA.
| | | | | |
Collapse
|
20
|
Abstract
Spike times encode stimulus values in many sensory systems, but it is generally unknown whether such temporal variations are decoded (i.e., whether they influence downstream networks that control behavior). In the present study, we directly address this decoding problem by quantifying both sensory encoding and decoding in the leech. By mechanically stimulating the leech body wall while recording from mechanoreceptors, we show that pairs of leech sensory neurons with overlapping receptive fields encode touch location by their relative latencies, number of spikes, and instantaneous firing rates, with relative latency being the most accurate indicator of touch location. We then show that the relative latency and count are decoded by manipulating these variables in sensory neuron pairs while simultaneously monitoring the resulting behavior. Although both variables are important determinants of leech behavior, the decoding mechanisms are more sensitive to changes in relative spike count than changes in relative latency.
Collapse
|
21
|
Kristan WB, Calabrese RL, Friesen WO. Neuronal control of leech behavior. Prog Neurobiol 2005; 76:279-327. [PMID: 16260077 DOI: 10.1016/j.pneurobio.2005.09.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 08/23/2005] [Accepted: 09/26/2005] [Indexed: 11/27/2022]
Abstract
The medicinal leech has served as an important experimental preparation for neuroscience research since the late 19th century. Initial anatomical and developmental studies dating back more than 100 years ago were followed by behavioral and electrophysiological investigations in the first half of the 20th century. More recently, intense studies of the neuronal mechanisms underlying leech movements have resulted in detailed descriptions of six behaviors described in this review; namely, heartbeat, local bending, shortening, swimming, crawling, and feeding. Neuroethological studies in leeches are particularly tractable because the CNS is distributed and metameric, with only 400 identifiable, mostly paired neurons in segmental ganglia. An interesting, yet limited, set of discrete movements allows students of leech behavior not only to describe the underlying neuronal circuits, but also interactions among circuits and behaviors. This review provides descriptions of six behaviors including their origins within neuronal circuits, their modification by feedback loops and neuromodulators, and interactions between circuits underlying with these behaviors.
Collapse
Affiliation(s)
- William B Kristan
- Section of Neurobiology, Division of Biological Sciences, 9500 Gilman Dr., University of California, San Diego, La Jolla, CA 92093-0357, USA
| | | | | |
Collapse
|