1
|
PM Todd N, Govender S, Colebatch JG. Collic evoked potentials, myogenic potentials (CEMPs) and postural responses produced by brief 100 Hz vibration of the sternocleidomastoid muscle. Neurosci Lett 2022; 781:136677. [DOI: 10.1016/j.neulet.2022.136677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/13/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
2
|
Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022; 16:828532. [PMID: 35308565 PMCID: PMC8927091 DOI: 10.3389/fnsys.2022.828532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
In most vertebrates, posture and locomotion are achieved by a biomechanical apparatus whose effectors are symmetrically positioned around the main body axis. Logically, motor commands to these effectors are intrinsically adapted to such anatomical symmetry, and the underlying sensory-motor neural networks are correspondingly arranged during central nervous system (CNS) development. However, many developmental and/or life accidents may alter such neural organization and acutely generate asymmetries in motor operation that are often at least partially compensated for over time. First, we briefly present the basic sensory-motor organization of posturo-locomotor networks in vertebrates. Next, we review some aspects of neural plasticity that is implemented in response to unilateral central injury or asymmetrical sensory deprivation in order to substantially restore symmetry in the control of posturo-locomotor functions. Data are finally discussed in the context of CNS structure-function relationship.
Collapse
|
3
|
Gordy C, Straka H. Vestibular Influence on Vertebrate Skeletal Symmetry and Body Shape. Front Syst Neurosci 2021; 15:753207. [PMID: 34690711 PMCID: PMC8526847 DOI: 10.3389/fnsys.2021.753207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/17/2021] [Indexed: 11/15/2022] Open
Abstract
Vestibular endorgans in the vertebrate inner ear form the principal sensors for head orientation and motion in space. Following the evolutionary appearance of these organs in pre-vertebrate ancestors, specific sensory epithelial patches, such as the utricle, which is sensitive to linear acceleration and orientation of the head with respect to earth’s gravity, have become particularly important for constant postural stabilization. This influence operates through descending neuronal populations with evolutionarily conserved hindbrain origins that directly and indirectly control spinal motoneurons of axial and limb muscles. During embryogenesis and early post-embryonic periods, bilateral otolith signals contribute to the formation of symmetric skeletal elements through a balanced activation of axial muscles. This role has been validated by removal of otolith signals on one side during a specific developmental period in Xenopus laevis tadpoles. This intervention causes severe scoliotic deformations that remain permanent and extend into adulthood. Accordingly, the functional influence of weight-bearing otoconia, likely on utricular hair cells and resultant afferent discharge, represents a mechanism to ensure a symmetric muscle tonus essential for establishing a normal body shape. Such an impact is presumably occurring within a critical period that is curtailed by the functional completion of central vestibulo-motor circuits and by the modifiability of skeletal elements before ossification of the bones. Thus, bilateral otolith organs and their associated sensitivity to head orientation and linear accelerations are not only indispensable for real time postural stabilization during motion in space but also serve as a guidance for the ontogenetic establishment of a symmetric body.
Collapse
Affiliation(s)
- Clayton Gordy
- Department Biology II, Ludwig-Maximilians-University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
4
|
Conrad J, Habs M, Boegle R, Ertl M, Kirsch V, Stefanova-Brostek I, Eren O, Becker-Bense S, Stephan T, Wollenweber F, Duering M, Zu Eulenburg P, Dieterich M. Global multisensory reorganization after vestibular brain stem stroke. Ann Clin Transl Neurol 2020; 7:1788-1801. [PMID: 32856758 PMCID: PMC7545594 DOI: 10.1002/acn3.51161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Patients with acute central vestibular syndrome suffer from vertigo, spontaneous nystagmus, postural instability with lateral falls, and tilts of visual vertical. Usually, these symptoms compensate within months. The mechanisms of compensation in vestibular infarcts are yet unclear. This study focused on structural changes in gray and white matter volume that accompany clinical compensation. METHODS We studied patients with acute unilateral brain stem infarcts prospectively over 6 months. Structural changes were compared between the acute phase and follow-up with a group of healthy controls using voxel-based morphometry. RESULTS Restitution of vestibular function following brain stem infarcts was accompanied by downstream structural changes in multisensory cortical areas. The changes depended on the location of the infarct along the vestibular pathways in patients with pathological tilts of the SVV and on the quality of the vestibular percept (rotatory vs graviceptive) in patients with pontomedullary infarcts. Patients with pontomedullary infarcts with vertigo or spontaneous nystagmus showed volumetric increases in vestibular parietal opercular multisensory and (retro-) insular areas with right-sided preference. Compensation of graviceptive deficits was accompanied by adaptive changes in multiple multisensory vestibular areas in both hemispheres in lower brain stem infarcts and by additional changes in the motor system in upper brain stem infarcts. INTERPRETATION This study demonstrates multisensory neuroplasticity in both hemispheres along with the clinical compensation of vestibular deficits following unilateral brain stem infarcts. The data further solidify the concept of a right-hemispheric specialization for core vestibular processing. The identification of cortical structures involved in central compensation could serve as a platform to launch novel rehabilitative treatments such as transcranial stimulations.
Collapse
Affiliation(s)
- Julian Conrad
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Habs
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Munich, Germany
| | - Rainer Boegle
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany.,Graduate School of Systemic Neurosciences - GSN-LMU, LMU Munich, Munich, Germany
| | - Matthias Ertl
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany.,Department of Psychology, University of Bern, Bern, Switzerland
| | - Valerie Kirsch
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Munich, Germany.,Graduate School of Systemic Neurosciences - GSN-LMU, LMU Munich, Munich, Germany
| | | | - Ozan Eren
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Sandra Becker-Bense
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Munich, Germany
| | - Thomas Stephan
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Frank Wollenweber
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,Department of Neurology, Helios Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Zu Eulenburg
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Munich, Germany.,Graduate School of Systemic Neurosciences - GSN-LMU, LMU Munich, Munich, Germany.,Institute for Neuroradiology, University Hospital, LMU Munich, Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, Munich, Germany.,Graduate School of Systemic Neurosciences - GSN-LMU, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
5
|
Zhang M, Watanabe H, Sarkisyan D, Andersen MS, Nosova O, Galatenko V, Carvalho L, Lukoyanov N, Thelin J, Schouenborg J, Bakalkin G. Hindlimb motor responses to unilateral brain injury: spinal cord encoding and left-right asymmetry. Brain Commun 2020; 2:fcaa055. [PMID: 32954305 PMCID: PMC7425521 DOI: 10.1093/braincomms/fcaa055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/26/2022] Open
Abstract
Mechanisms of motor deficits (e.g. hemiparesis and hemiplegia) secondary to stroke and traumatic brain injury remain poorly understood. In early animal studies, a unilateral lesion to the cerebellum produced postural asymmetry with ipsilateral hindlimb flexion that was retained after complete spinal cord transection. Here we demonstrate that hindlimb postural asymmetry in rats is induced by a unilateral injury of the hindlimb sensorimotor cortex, and characterize this phenomenon as a model of spinal neuroplasticity underlying asymmetric motor deficits. After cortical lesion, the asymmetry was developed due to the contralesional hindlimb flexion and persisted after decerebration and complete spinal cord transection. The asymmetry induced by the left-side brain injury was eliminated by bilateral lumbar dorsal rhizotomy, but surprisingly, the asymmetry after the right-side brain lesion was resistant to deafferentation. Pancuronium, a curare-mimetic muscle relaxant, abolished the asymmetry after the right-side lesion suggesting its dependence on the efferent drive. The contra- and ipsilesional hindlimbs displayed different musculo-articular resistance to stretch after the left but not right-side injury. The nociceptive withdrawal reflexes evoked by electrical stimulation and recorded with EMG technique were different between the left and right hindlimbs in the spinalized decerebrate rats. On this asymmetric background, a brain injury resulted in greater reflex activation on the contra- versus ipsilesional side; the difference between the limbs was higher after the right-side brain lesion. The unilateral brain injury modified expression of neuroplasticity genes analysed as readout of plastic changes, as well as robustly impaired coordination of their expression within and between the ipsi- and contralesional halves of lumbar spinal cord; the effects were more pronounced after the left side compared to the right-side injury. Our data suggest that changes in the hindlimb posture, resistance to stretch and nociceptive withdrawal reflexes are encoded by neuroplastic processes in lumbar spinal circuits induced by a unilateral brain injury. Two mechanisms, one dependent on and one independent of afferent input may mediate asymmetric hindlimb motor responses. The latter, deafferentation resistant mechanism may be based on sustained muscle contractions which often occur in patients with central lesions and which are not evoked by afferent stimulation. The unusual feature of these mechanisms is their lateralization in the spinal cord.
Collapse
Affiliation(s)
- Mengliang Zhang
- Department of Experimental Medical Science, Neuronano Research Center, Lund University, 221 00 Lund, Sweden
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Daniil Sarkisyan
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Marlene Storm Andersen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Olga Nosova
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Vladimir Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Liliana Carvalho
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Celular, 4200-319 Porto, Portugal
| | - Nikolay Lukoyanov
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Celular, 4200-319 Porto, Portugal
| | - Jonas Thelin
- Department of Experimental Medical Science, Neuronano Research Center, Lund University, 221 00 Lund, Sweden
| | - Jens Schouenborg
- Department of Experimental Medical Science, Neuronano Research Center, Lund University, 221 00 Lund, Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
6
|
Beyeler A, Rao G, Ladepeche L, Jacques A, Simmers J, Le Ray D. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis. PLoS One 2013; 8:e71013. [PMID: 23951071 PMCID: PMC3741378 DOI: 10.1371/journal.pone.0071013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023] Open
Abstract
During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance and the restoration of functionally-effective behavior.
Collapse
Affiliation(s)
- Anna Beyeler
- Université de Bordeaux – CNRS UMR 5287 (INCIA), Bordeaux, France
| | - Guillaume Rao
- Aix-Marseille Université – CNRS UMR 7287 (ISM), Marseille, France
| | | | - André Jacques
- Aix-Marseille Université – CNRS UMR 7287 (ISM), Marseille, France
| | - John Simmers
- Université de Bordeaux – CNRS UMR 5287 (INCIA), Bordeaux, France
| | - Didier Le Ray
- Université de Bordeaux – CNRS UMR 5287 (INCIA), Bordeaux, France
- * E-mail:
| |
Collapse
|
7
|
Restricted neural plasticity in vestibulospinal pathways after unilateral labyrinthectomy as the origin for scoliotic deformations. J Neurosci 2013; 33:6845-56. [PMID: 23595743 DOI: 10.1523/jneurosci.4842-12.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Adolescent idiopathic scoliosis in humans is often associated with vestibulomotor deficits. Compatible with a vestibular origin, scoliotic deformations were provoked in adult Xenopus frogs by unilateral labyrinthectomy (UL) at larval stages. The aquatic ecophysiology and absence of body-weight-supporting limb proprioceptive signals in amphibian tadpoles as a potential sensory substitute after UL might be the cause for a persistent asymmetric descending vestibulospinal activity. Therefore, peripheral vestibular lesions in larval Xenopus were used to reveal the morphophysiological alterations at the cellular and network levels. As a result, spinal motor nerves that were modulated by the previously intact side before UL remained permanently silent during natural vestibular stimulation after the lesion. In addition, retrograde tracing of descending pathways revealed a loss of vestibular neurons on the ipsilesional side with crossed vestibulospinal projections. This loss facilitated a general mass imbalance in descending premotor activity and a permanent asymmetric motor drive to the axial musculature. Therefore, we propose that the persistent asymmetric contraction of trunk muscles exerts a constant, uncompensated differential mechanical pull on bilateral skeletal elements that enforces a distortion of the soft cartilaginous skeletal elements and bone shapes. This ultimately provokes severe scoliotic deformations during ontogenetic development similar to the human syndrome.
Collapse
|
8
|
Lambert FM, Straka H. The frog vestibular system as a model for lesion-induced plasticity: basic neural principles and implications for posture control. Front Neurol 2012; 3:42. [PMID: 22518109 PMCID: PMC3324849 DOI: 10.3389/fneur.2012.00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/05/2012] [Indexed: 11/13/2022] Open
Abstract
Studies of behavioral consequences after unilateral labyrinthectomy have a long tradition in the quest of determining rules and limitations of the central nervous system (CNS) to exert plastic changes that assist the recuperation from the loss of sensory inputs. Frogs were among the first animal models to illustrate general principles of regenerative capacity and reorganizational neural flexibility after a vestibular lesion. The continuous successful use of the latter animals is in part based on the easy access and identifiability of nerve branches to inner ear organs for surgical intervention, the possibility to employ whole brain preparations for in vitro studies and the limited degree of freedom of postural reflexes for quantification of behavioral impairments and subsequent improvements. Major discoveries that increased the knowledge of post-lesional reactive mechanisms in the CNS include alterations in vestibular commissural signal processing and activation of cooperative changes in excitatory and inhibitory inputs to disfacilitated neurons. Moreover, the observed increase of synaptic efficacy in propriospinal circuits illustrates the importance of limb proprioceptive inputs for postural recovery. Accumulated evidence suggests that the lesion-induced neural plasticity is not a goal-directed process that aims toward a meaningful restoration of vestibular reflexes but rather attempts a survival of those neurons that have lost their excitatory inputs. Accordingly, the reaction mechanism causes an improvement of some components but also a deterioration of other aspects as seen by spatio-temporally inappropriate vestibulo-motor responses, similar to the consequences of plasticity processes in various sensory systems and species. The generality of the findings indicate that frogs continue to form a highly amenable vertebrate model system for exploring molecular and physiological events during cellular and network reorganization after a loss of vestibular function.
Collapse
|
9
|
Straka H, Simmers J. Xenopus laevis: An ideal experimental model for studying the developmental dynamics of neural network assembly and sensory-motor computations. Dev Neurobiol 2012; 72:649-63. [DOI: 10.1002/dneu.20965] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Sadeghi SG, Minor LB, Cullen KE. Multimodal integration after unilateral labyrinthine lesion: single vestibular nuclei neuron responses and implications for postural compensation. J Neurophysiol 2010; 105:661-73. [PMID: 21148096 DOI: 10.1152/jn.00788.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasticity in neuronal responses is necessary for compensation following brain lesions and adaptation to new conditions and motor learning. In a previous study, we showed that compensatory changes in the vestibuloocular reflex (VOR) following unilateral vestibular loss were characterized by dynamic reweighting of inputs from vestibular and extravestibular modalities at the level of single neurons that constitute the first central stage of VOR signal processing. Here, we studied another class of neurons, i.e., the vestibular-only neurons, in the vestibular nuclei that mediate vestibulospinal reflexes and provide information for higher brain areas. We investigated changes in the relative contribution of vestibular, neck proprioceptive, and efference copy signals in the response of these neurons during compensation after contralateral vestibular loss in Macaca mulata monkeys. We show that the time course of recovery of vestibular sensitivity of neurons corresponds with that of lower extremity muscle and tendon reflexes reported in previous studies. More important, we found that information from neck proprioceptors, which did not influence neuronal responses before the lesion, were unmasked after lesion. Such inputs influenced the early stages of the compensation process evidenced by faster and more substantial recovery of the resting discharge in proprioceptive-sensitive neurons. Interestingly, unlike our previous study of VOR interneurons, the improvement in the sensitivity of the two groups of neurons did not show any difference in the early or late stages after lesion. Finally, neuronal responses during active head movements were not different before and after lesion and were attenuated relative to passive movements over the course of recovery, similar to that observed in control conditions. Comparison of compensatory changes observed in the vestibuloocular and vestibulospinal pathways provides evidence for similarities and differences between the two classes of neurons that mediate these pathways at the functional and cellular levels.
Collapse
Affiliation(s)
- Soroush G Sadeghi
- McGill University, Department of Physiology, 3655 Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
11
|
Cullen KE, Minor LB, Beraneck M, Sadeghi SG. Neural substrates underlying vestibular compensation: contribution of peripheral versus central processing. J Vestib Res 2010; 19:171-82. [PMID: 20495234 DOI: 10.3233/ves-2009-0357] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The vestibulo-ocular reflex (VOR), which functions to stabilize gaze and ensure clear vision during everyday activities, shows impressive adaptation in response to environmental requirements. In particular, the VOR exhibits remarkable recovery following the loss of unilateral labyrinthine input as a result of injury or disease. The relative simplicity of the pathways that mediate the VOR, make it an excellent model system for understanding the changes (learning) that occur in the brain following peripheral vestibular loss to yield adaptive changes. This mini review considers the findings of behavioral, single unit recording and lesion studies of VOR compensation. Recent experiments have provided evidence that the brain makes use of multiple plasticity mechanisms (i.e., changes in peripheral as well as central processing) during the course of vestibular compensation to accomplish the sensory-motor transformations required to accurately guide behavior.
Collapse
|
12
|
Barrière G, Frigon A, Leblond H, Provencher J, Rossignol S. Dual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern. J Neurophysiol 2010; 104:1119-33. [PMID: 20573971 DOI: 10.1152/jn.00255.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The recovery of voluntary quadrupedal locomotion after an incomplete spinal cord injury can involve different levels of the CNS, including the spinal locomotor circuitry. The latter conclusion was reached using a dual spinal lesion paradigm in which a low thoracic partial spinal lesion is followed, several weeks later, by a complete spinal transection (i.e., spinalization). In this dual spinal lesion paradigm, cats can express hindlimb walking 1 day after spinalization, a process that normally takes several weeks, suggesting that the locomotor circuitry within the lumbosacral spinal cord had been modified after the partial lesion. Here we detail the evolution of the kinematic locomotor pattern throughout the dual spinal lesion paradigm in five cats to gain further insight into putative neurophysiological mechanisms involved in locomotor recovery after a partial spinal lesion. All cats recovered voluntary quadrupedal locomotion with treadmill training (3-5 days/wk) over several weeks. After the partial lesion, the locomotor pattern was characterized by several left/right asymmetries in various kinematic parameters, such as homolateral and homologous interlimb coupling, cycle duration, and swing/stance durations. When no further locomotor improvement was observed, cats were spinalized. After spinalization, the hindlimb locomotor pattern rapidly reappeared, but left/right asymmetries in swing/stance durations observed after the partial lesion could disappear or reverse. It is concluded that, after a partial spinal lesion, the hindlimb locomotor pattern was actively maintained by new dynamic interactions between spinal and supraspinal levels but also by intrinsic changes within the spinal cord.
Collapse
Affiliation(s)
- Grégory Barrière
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Department of Physiology, Montreal, Canada
| | | | | | | | | |
Collapse
|
13
|
Grassi S, Frondaroli A, Dieni C, Dutia MB, Pettorossi VE. Neurosteroid modulation of neuronal excitability and synaptic transmission in the rat medial vestibular nuclei. Eur J Neurosci 2007; 26:23-32. [PMID: 17596193 DOI: 10.1111/j.1460-9568.2007.05645.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In rat brainstem slices, we investigated the influence of the neurosteroids tetrahydrodeoxycorticosterone (THDOC) and allopregnanolone (ALLO) on the synaptically driven and spontaneous activity of vestibular neurons, by analysing their effects on the amplitude of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation and on the spontaneous firing rate of MVN neurons. Furthermore, the interaction with gamma-aminobutyric acid (GABA) and glutamate receptors was analysed by using specific antagonists for GABA(A) (bicuculline), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/ kainate [2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulphonamide disodium salt (NBQX)], N-methyl-D-aspartate (NMDA) [D-(-)-2-amino-5-phosphonopentanoic acid (AP-5)] and group I metabotropic glutamate receptors (mGlu-I) [(R,S)-1-aminoindan-1,5-dicarboxylic acid (AIDA)] receptors. THDOC and ALLO evoked two opposite long-lasting effects, consisting of either a potentiation or a reduction of field potential and firing rate, which showed early and late components, occurring in conjunction or separately after neurosteroid application. The depressions depended on GABA(A) receptors, as they were abolished by bicuculline, while early potentiation involved glutamate AMPA/kainate receptors, as NBQX markedly reduced the incidence of early firing rate enhancement and, in the case of ALLO, even provoked depression. This suggests that THDOC and ALLO enhance the GABA(A) inhibitory influence on the MVN neurons and facilitate the AMPA/kainate facilitatory one. Conversely, a late potentiation effect, which was still induced after glutamate and GABA(A) receptor blockade, might involve a different mechanism. We conclude that the modulation of neuronal activity in the MVN by THDOC and ALLO, through their actions on GABA(A) and AMPA/kainate receptors, may have a physiological role in regulating the vestibular system function under normal conditions and during the stress response that accompanies many forms of vestibular dysfunction.
Collapse
Affiliation(s)
- Silvarosa Grassi
- Department of Internal Medicine, Section of Human Physiology, University of Perugia, Via del Giochetto, I-06126 Perugia, Italy.
| | | | | | | | | |
Collapse
|
14
|
Cnyrim CD, Rettinger N, Mansmann U, Brandt T, Strupp M. Central compensation of deviated subjective visual vertical in Wallenberg's syndrome. J Neurol Neurosurg Psychiatry 2007; 78:527-8. [PMID: 17435189 PMCID: PMC2117850 DOI: 10.1136/jnnp.2006.100727] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The central compensation of vestibular tonus imbalance due to unilateral peripheral vestibular lesions has been repeatedly documented. Little is known, however, about the central compensation of vestibular tonus imbalance due to central lesions. Dorsolateral medullary infarctions (Wallenberg's syndrome) typically cause a central vestibular tonus imbalance in the roll plane with deviations of perceived verticality and ipsiversive body lateropulsion. The course of normalisation of the tilts of subjective visual vertical (SVV) in 50 patients who had acute Wallenberg's syndrome were retrospectively compared with that in 50 patients with acute vestibular neuritis. The initial displacement of SVV was 9.8 degrees in Wallenberg's syndrome and 7 degrees in vestibular neuritis. The deviation of SVV significantly decreased over time within days to weeks in both groups. This finding shows that the time courses of the central compensation for dorsolateral medullary infarctions and peripheral vestibular lesions are similar.
Collapse
|
15
|
Chen Y, Chen XY, Jakeman LB, Chen L, Stokes BT, Wolpaw JR. Operant conditioning of H-reflex can correct a locomotor abnormality after spinal cord injury in rats. J Neurosci 2006; 26:12537-43. [PMID: 17135415 PMCID: PMC6674902 DOI: 10.1523/jneurosci.2198-06.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study asked whether operant conditioning of the H-reflex can modify locomotion in spinal cord-injured rats. Midthoracic transection of the right lateral column of the spinal cord produced a persistent asymmetry in the muscle activity underlying treadmill locomotion. The rats were then either exposed or not exposed to an H-reflex up-conditioning protocol that greatly increased right soleus motoneuron response to primary afferent input, and locomotion was reevaluated. H-reflex up-conditioning increased the right soleus burst and corrected the locomotor asymmetry. In contrast, the locomotor asymmetry persisted in the control rats. These results suggest that appropriately selected reflex conditioning protocols might improve function in people with partial spinal cord injuries. Such protocols might be especially useful when significant regeneration becomes possible and precise methods for reeducating the regenerated spinal cord neurons and synapses are needed for restoring effective function.
Collapse
Affiliation(s)
- Yi Chen
- Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, Albany, New York 12201, and
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio 43210
| | - Xiang Yang Chen
- Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, Albany, New York 12201, and
| | - Lyn B. Jakeman
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio 43210
| | - Lu Chen
- Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, Albany, New York 12201, and
| | - Bradford T. Stokes
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio 43210
| | - Jonathan R. Wolpaw
- Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, Albany, New York 12201, and
| |
Collapse
|
16
|
Chen XY, Carp JS, Chen L, Wolpaw JR. Sensorimotor Cortex Ablation Prevents H-Reflex Up-Conditioning and Causes a Paradoxical Response to Down-Conditioning in Rats. J Neurophysiol 2006; 96:119-27. [PMID: 16598062 DOI: 10.1152/jn.01271.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Operant conditioning of the H-reflex, a simple model for skill acquisition, requires the corticospinal tract (CST) and does not require other major descending pathways. To further explore its mechanisms, we assessed the effects of ablating contralateral sensorimotor cortex (cSMC). In 22 Sprague–Dawley rats, the hindlimb area of left cSMC was ablated. EMG electrodes were implanted in the right soleus muscle and a stimulating cuff was placed around the right posterior tibial nerve. When EMG remained in a specified range, nerve stimulation just above the M response threshold elicited the H-reflex. In control mode, no reward occurred. In conditioning mode, reward occurred if H-reflex size was above (HRup mode) or below (HRdown mode) a criterion value. After exposure to the control mode for ≥10 days, each rat was exposed for another 50 days to the control mode, the HRup mode, or the HRdown mode. In control and HRup rats, final H-reflex size was not significantly different from initial H-reflex size. In contrast, in HRdown rats, final H-reflex size was significantly increased to an average of 136% of initial size. Thus like recent CST transection, cSMC ablation greatly impaired up-conditioning. However, unlike recent CST transection, cSMC produced a paradoxical response to down-conditioning: the H-reflex actually increased. These results confirm the critical role of cSMC in H-reflex conditioning and suggest that this role extends beyond producing essential CST activity. Its interactions with ipsilateral SMC or other areas contribute to the complex pattern of spinal and supraspinal plasticity that underlies H-reflex conditioning.
Collapse
Affiliation(s)
- Xiang Yang Chen
- Wadsworth Center, Laboratory of Nervous System Disorders, New York State Department of Health and State University of New York, Albany, NY 12201-0509, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
In normal life, activity-dependent plasticity occurs in the spinal cord as well as in the brain. Like CNS plasticity elsewhere, this spinal cord plasticity can occur at many neuronal and synaptic sites and by a variety of mechanisms. Spinal cord plasticity is prominent in postnatal development and contributes to acquisition of standard behaviors such as locomotion and rapid withdrawal from pain. Later on in life, spinal cord plasticity contributes to acquisition and maintenance of specialized motor skills, and to compensation for the peripheral and central changes associated with aging, disease, and trauma. Mastery of even the simplest behaviors is accompanied by complex spinal and supraspinal plasticity. This complexity is necessary, to preserve the full roster of behaviors, and is also inevitable, due to the ubiquity of activity-dependent plasticity in the CNS. Careful investigation of spinal cord plasticity is essential for understanding motor skills; and, because of the relative simplicity and accessibility of the spinal cord, is a logical and convenient starting point for exploring skill acquisition. Appropriate induction and guidance of activity-dependent plasticity in the spinal cord is likely to be a key part of the realization of effective new rehabilitation methods for spinal cord injuries, cerebral palsy, and other chronic motor disorders.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- Wadsworth Center, Laboratory of Nervous System Disorders, New York State Department of Health and State University of New York, Albany, NY 12201, USA.
| |
Collapse
|
18
|
Straka H, Vibert N, Vidal PP, Moore LE, Dutia MB. Intrinsic membrane properties of vertebrate vestibular neurons: function, development and plasticity. Prog Neurobiol 2005; 76:349-92. [PMID: 16263204 DOI: 10.1016/j.pneurobio.2005.10.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/25/2005] [Accepted: 10/05/2005] [Indexed: 11/30/2022]
Abstract
Central vestibular neurons play an important role in the processing of body motion-related multisensory signals and their transformation into motor commands for gaze and posture control. Over recent years, medial vestibular nucleus (MVN) neurons and to a lesser extent other vestibular neurons have been extensively studied in vivo and in vitro, in a range of species. These studies have begun to reveal how their intrinsic electrophysiological properties may relate to their response patterns, discharge dynamics and computational capabilities. In vitro studies indicate that MVN neurons are of two major subtypes (A and B), which differ in their spike shape and after-hyperpolarizations. This reflects differences in particular K(+) conductances present in the two subtypes, which also affect their response dynamics with type A cells having relatively low-frequency dynamics (resembling "tonic" MVN cells in vivo) and type B cells having relatively high-frequency dynamics (resembling "kinetic" cells in vivo). The presence of more than one functional subtype of vestibular neuron seems to be a ubiquitous feature since vestibular neurons in the chick and frog also subdivide into populations with different, analogous electrophysiological properties. The ratio of type A to type B neurons appears to be plastic, and may be determined by the signal processing requirements of the vestibular system, which are species-variant. The membrane properties and discharge pattern of type A and type B MVN neurons develop largely post-natally, through the expression of the underlying ion channel conductances. The membrane properties of MVN neurons show rapid and long-lasting plastic changes after deafferentation (unilateral labyrinthectomy), which may serve to maintain their level of activity and excitability after the loss of afferent inputs.
Collapse
Affiliation(s)
- H Straka
- L.N.R.S., CNRS UMR 7060-Université René Descartes (Paris 5), Paris, France.
| | | | | | | | | |
Collapse
|
19
|
Rohregger M, Dieringer N. Postlesional vestibular reorganization improves the gain but impairs the spatial tuning of the maculo-ocular reflex in frogs. J Neurophysiol 2003; 90:3736-49. [PMID: 12890798 DOI: 10.1152/jn.00561.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ramus anterior (RA) of N.VIII was sectioned unilaterally. Two months later we analyzed in vivo responses of the ipsi- and of the contralesional abducens nerve during horizontal and vertical linear acceleration in darkness. The contralesional abducens nerve had become responsive again to linear acceleration either because of a synaptic reorganization in the vestibular nuclei on the operated side and/or because of a reinnervation of the utricular macula by regenerating afferent nerve fibers. Significant differences in the onset latencies and in the acceleration sensitivities allowed a separation of RA frogs in a group without and in a group with functional utricular reinnervation. Most important, the vector orientation for maximal abducens nerve responses was clearly altered: postlesional synaptic reorganization resulted in the emergence of abducens nerve responses to vertical linear acceleration, a response component that was barely detectable in RA frogs with utricular reinnervation and that was absent in controls. The ipsilesional abducens nerve, however, exhibited unaltered responses in either group of RA frogs. The altered spatial tuning properties of contralesional abducens nerve responses are a direct consequence of the postlesional expansion of signals from intact afferent nerve and excitatory commissural fibers onto disfacilitated 2nd-order vestibular neurons on the operated side. These results corroborate the notion that postlesional vestibular reorganization activates a basic neural reaction pattern with more beneficial results at the cellular than at the network level. However, given that the underlying mechanism is activity-related, rehabilitative training after vestibular nerve lesion can be expected to shape the ongoing reorganization.
Collapse
Affiliation(s)
- Martin Rohregger
- Department of Physiology, University of Munich, 80336 Munich, Germany
| | | |
Collapse
|
20
|
Strupp M, Arbusow V, Brandt T. Exercise and drug therapy alter recovery from labyrinth lesion in humans. Ann N Y Acad Sci 2001; 942:79-94. [PMID: 11710505 DOI: 10.1111/j.1749-6632.2001.tb03737.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute unilateral vestibular failure is characterized by rotatory vertigo, horizontal-rotatory nystagmus, and postural imbalance, all of which last from days to weeks. These signs and symptoms are caused by a vestibular tone imbalance between the two labyrinths. Recovery results from a combination of peripheral restoration of labyrinthine function (usually incomplete) and central vestibular compensation (CVC) of the vestibular tone imbalance. Acute unilateral failure is most often caused by vestibular neuritis, which is most likely due to the reactivation of a latent HSV-1 infection. Therefore, therapeutic strategies to improve the outcome of VN are theoretically based on two principles: (a) vestibular exercises and drugs to improve CVC and (b) drug treatment of the assumed viral inflammation. The following conclusions can be drawn from studies in animals and/or humans: (1) There is strong evidence that vestibular exercises may improve vestibulo-spinal compensation. These exercises should begin as early as possible after symptom onset. Moreover, slower exercises are likely to be more effective than faster exercises because slower ones seem to depend more on the vestibular system. (2) Despite extensive data from animal experiments indicating that drugs have a favorable effect on CVC, this has not been clinically proven and thus cannot be recommended yet. (3) Preliminary results of an interim analysis from an ongoing randomized, prospective study showed that methylprednisolone (plus an antiviral agent?) may be useful for improving peripheral vestibular function in vestibular neuritis.
Collapse
Affiliation(s)
- M Strupp
- Department of Neurology, University of Munich, Klinikum Grosshadern, Germany.
| | | | | |
Collapse
|
21
|
Abstract
Activity-dependent plasticity occurs in the spinal cord throughout life. Driven by input from the periphery and the brain, this plasticity plays an important role in the acquisition and maintenance of motor skills and in the effects of spinal cord injury and other central nervous system disorders. The responses of the isolated spinal cord to sensory input display sensitization, long-term potentiation, and related phenomena that contribute to chronic pain syndromes; they can also be modified by both classical and operant conditioning protocols. In animals with transected spinal cords and in humans with spinal cord injuries, treadmill training gradually modifies the spinal cord so as to improve performance. These adaptations by the isolated spinal cord are specific to the training regimen and underlie new approaches to restoring function after spinal cord injury. Descending inputs from the brain that occur during normal development, as a result of supraspinal trauma, and during skill acquisition change the spinal cord. The early development of adult spinal cord reflex patterns is driven by descending activity; disorders that disrupt descending activity later in life gradually change spinal cord reflexes. Athletic training, such as that undertaken by ballet dancers, is associated with gradual alterations in spinal reflexes that appear to contribute to skill acquisition. Operant conditioning protocols in animals and humans can produce comparable reflex changes and are associated with functional and structural plasticity in the spinal cord, including changes in motoneuron firing threshold and axonal conduction velocity, and in synaptic terminals on motoneurons. The corticospinal tract has a key role in producing this plasticity. Behavioral changes produced by practice or injury reflect the combination of plasticity at multiple spinal cord and supraspinal sites. Plasticity at multiple sites is both necessary-to insure continued performance of previously acquired behaviors-and inevitable-due to the ubiquity of the capacity for activity-dependent plasticity in the central nervous system. Appropriate induction and guidance of activity-dependent plasticity in the spinal cord is an essential component of new therapeutic approaches aimed at maximizing function after spinal cord injury or restoring function to a newly regenerated spinal cord. Because plasticity in the spinal cord contributes to skill acquisition and because the spinal cord is relatively simple and accessible, this plasticity is a logical and practical starting point for studying the acquisition and maintenance of skilled behaviors.
Collapse
Affiliation(s)
- J R Wolpaw
- Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State University of New York, Albany, New York 12201-0509, USA.
| | | |
Collapse
|
22
|
Müller J, Ebersbach G, Wissel J, Poewe W. Dynamic balance function in phasic cervical dystonia following Botulinum toxin therapy. Mov Disord 2001; 16:934-7. [PMID: 11746626 DOI: 10.1002/mds.1164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Previous research by our group revealed normal dynamic balance function in pure tonic cervical dystonia (CD) with impaired equilibrium in phasic CD patients investigated at least 3 months following Botulinum toxin (BtxA) treatment. The current study was performed to determine whether impaired dynamic equilibrium in phasic CD is influenced by symptomatic treatment with BtxA. Dynamic balance was tested in 20 patients with phasic CD on a dynamic platform with a cylindrical curved base (stabilometer) 4 weeks following BtxA treatment. Balance was assessed by the linear displacement of the platform and the maximum amplitude of platform displacement with open and closed eyes and compared with pre-BtxA data. Despite a clinically significant BtxA-induced reduction of phasic head movements, none of the platform measures improved significantly. In addition, there was no correlation between the BtxA-induced clinical improvement and changes in any of the dynamic balance measures pre- vs. post-BtxA. In conclusion, the persistent dynamic balance impairment after effective BtxA therapy may indicate that disequilibrium in phasic CD does not simply reflect disturbed vestibular input from repetitive head oscillations, but argues in favour of different sensorimotor processing in tonic and phasic CD.
Collapse
Affiliation(s)
- J Müller
- Department of Neurology, University of Innsbruck, Innsbruck, Austria.
| | | | | | | |
Collapse
|
23
|
Brandt T, Dieterich M. Perceived vertical and lateropulsion: clinical syndromes, localization, and prognosis. Neurorehabil Neural Repair 2001; 14:1-12. [PMID: 11228944 DOI: 10.1177/154596830001400101] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We present a clinical classification of central vestibular syndromes according to the three major planes of action of the vestibulo-ocular reflex: yaw, roll, and pitch. The plane-specific syndromes are determined by ocular motor, postural, and perceptual signs. Yaw plane signs are horizontal nystagmus, past pointing, rotational and lateral body falls, deviation of perceived straight-ahead to the left or right. Roll plane signs are torsional nystagmus, skew deviation, ocular torsion, tilts of head, body, and perceived vertical in a clockwise or counterclockwise direction. Pitch plane signs are upbeat/downbeat nystagmus, forward/backward tilts and falls, deviations of the perceived horizon. The thus defined vestibular syndromes allow a precise topographic analysis of brainstem lesions according to their level and side. Special emphasis is placed on the vestibular roll plane syndromes of ocular tilt reaction, lateropulsion in Wallenberg's syndrome, thalamic and cortical astasia and their association with roll plane tilt of perceived vertical. Recovery is based on a functionally significant central compensation of a vestibular tone imbalance, the mechanism of which is largely unknown. Physical therapy may facilitate this central compensation, but this has not yet been proven in prospective studies.
Collapse
Affiliation(s)
- T Brandt
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | | |
Collapse
|
24
|
Strupp M, Arbusow V, Borges Pereira C, Dieterich M, Brandt T. Subjective straight-ahead during neck muscle vibration: effects of ageing. Neuroreport 1999; 10:3191-4. [PMID: 10574558 DOI: 10.1097/00001756-199910190-00012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The subjective visual straight-ahead (SVA) was measured psychophysically before and during unilateral vibration of the posterior neck muscles in order to determine the particular contribution of neck muscle spindles to the perception of body orientation during ageing. We found a symmetrical increase of the vibration-induced displacement of the SVA with advancing age (R = +0.73, p < 0.01, n = 60) in 30 healthy subjects of different ages (range 20-81 years). These data indicate the cervical proprioceptive contribution to multisensory body orientation increases with ageing. One possible interpretation is that the sensorial weight of proprioception increases as the peripheral vestibular input decreases with advancing age, thereby substituting for the lack of vestibular function.
Collapse
Affiliation(s)
- M Strupp
- Department of Neurology, Ludwig-Maximilians University, Klinikum Grosshadern, Munich, Germany
| | | | | | | | | |
Collapse
|
25
|
Delgado-García JM. Output-to-input approach to neural plasticity in vestibular pathways. Otolaryngol Head Neck Surg 1998; 119:221-30. [PMID: 9743078 DOI: 10.1016/s0194-5998(98)70057-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Some thoughts on current interpretations of available data regarding vestibular compensation at functional, network, and neural levels are presented. Basic concepts related to neural plasticity (or elasticity) underlying motor learning and regeneration also are discussed briefly. Modifiability in vestibular pathways, at both the functional and structural levels, after peripheral and central axotomy, and subsequent to transient or permanent chemical target removal, is presented as an experimental ground to explain similarities and differences between regenerative, compensatory, and adaptive mechanisms in the mammal central nervous system.
Collapse
Affiliation(s)
- J M Delgado-García
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
26
|
Dieringer N, Straka H. Steps toward recovery of function after hemilabyrinthectomy in frogs. Otolaryngol Head Neck Surg 1998; 119:27-33. [PMID: 9674511 DOI: 10.1016/s0194-5998(98)70170-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Removal of the labyrinthine organs on one side results in a number of severe postural and dynamic reflex deficits. Over time some of these behavioral deficits normalize again. At a chronic stage the brain of frogs exhibits a number of changes in vestibular and propriospinal circuits on the operated side that were studied in vitro. The onset of changes in the vestibular nuclear complex was delayed, became evident only after head posture had recovered by more than 50%, and was independent of the presence or absence of a degeneration of vestibular nerve afferent fibers. The time course of changes measured in the isolated spinal cord paralleled the time course of normalization of head and body posture. Results obtained after selective lesions of individual labyrinthine nerve branches show that unilateral inactivation of utricular afferent inputs is a necessary and sufficient condition to provoke postural deficits and propriospinal changes similar to those after the removal of all labyrinthine organs. The presence of multiple synaptic changes at distributed anatomic sites over different periods of time suggests that different parts of the central nervous system are involved in the normalization of different manifestations of the vestibular lesion syndrome.
Collapse
Affiliation(s)
- N Dieringer
- Department of Physiology, University of Munich, Germany
| | | |
Collapse
|
27
|
Abstract
Vestibular compensation for the static and dynamic disorders induced by unilateral labyrinthectomy is a good model of plasticity in the central nervous system. After the lesion, the static deficits generally disappear in a few days, whereas recuperation of the dynamic, vestibular-related synergies is much slower and merely partial. The goal of this article is to reexamine some aspects of vestibular compensation in light of several recent findings. In the first part, we show that in vertebrates the organization of the neural networks underlying vestibular reflexes is deeply linked with the skeletal geometry of the animals. Accordingly, we propose that the neuronal mechanisms underlying vestibular compensation might be plane specific. We then deal with several issues related to the exact timing of vestibular compensation in various species. In the second part, we give several examples showing that vestibular compensation can now be studied at the molecular and cellular levels. For instance, we summarize some of our recent data, which indicate that glial cells could be strongly involved in the compensation process.
Collapse
Affiliation(s)
- P P Vidal
- Laboratoire de Physiologie de la Perception et de l'Action, CNRS-Collège de France, Paris
| | | | | | | |
Collapse
|
28
|
Watson SR, Colebatch JG. EMG responses in the soleus muscles evoked by unipolar galvanic vestibular stimulation. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1997; 105:476-83. [PMID: 9448650 DOI: 10.1016/s0924-980x(97)00044-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study compared the effects of transmastoid galvanic stimulation with unilateral galvanic stimulation of vestibular afferents. We recorded the effects on soleus EMG occurring at short (SL) and medium (ML) latency, both in normal subjects and in patients with previous unilateral vestibular neurectomy. Unipolar cathodal and anodal stimulation on the same side produced opposite effects for both SL and ML responses. Responses to unilateral cathodal or anodal stimulation were smaller, but otherwise resembled those of transmastoid stimulation with the cathode or the anode placed on the same side, respectively. Unilateral cathodal stimulation resulted in a larger SL response, which occurred at shorter latency than unilateral anodal stimulation. With unipolar stimulation on the side of previous vestibular nerve section, typical SL and ML responses were absent. With stimulation of the intact side, the patients showed smaller SL responses than normal subjects with unilateral stimulation. The larger responses to unilateral cathodal compared to unilateral anodal stimulation are consistent with previous reports that cathodal stimulation produces an increase and anodal a decrease in vestibular nerve firing. The smaller SL responses in the patients may be a consequence of central nervous system reorganization following unilateral vestibular nerve section.
Collapse
Affiliation(s)
- S R Watson
- Institute of Neurological Sciences, Prince of Wales Hospital, Randwick, NSW, Australia
| | | |
Collapse
|
29
|
Vibert N, De Waele C, Serafin M, Babalian A, Mühlethaler M, Vidal PP. The vestibular system as a model of sensorimotor transformations. A combined in vivo and in vitro approach to study the cellular mechanisms of gaze and posture stabilization in mammals. Prog Neurobiol 1997; 51:243-86. [PMID: 9089790 DOI: 10.1016/s0301-0082(96)00057-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To understand the cellular mechanisms underlying behaviours in mammals, the respective contributions of the individual properties characterizing each neuron, as opposed to the properties emerging from the organization of these neurons in functional networks, have to be evaluated. This requires the use, in the same species, of various in vivo and in vitro experimental preparations. The present review is meant to illustrate how such a combined in vivo in vitro approach can be used to investigate the vestibular-related neuronal networks involved in gaze and posture stabilization, together with their plasticity, in the adult guinea-pig. Following first a general introduction on the vestibular system, the second section describes various in vivo experiments aimed at characterizing gaze and posture stabilization in that species. The third and fourth parts of the review deal with the combined in vivo-in vitro investigations undertaken to unravel the physiological and pharmacological properties of vestibulo-ocular and vestibulo-spinal networks, together with their functional implications. In particular, we have tried to use the central vestibular neurons as examples to illustrate how the preparation of isolated whole brain can be used to bridge the gap between the results obtained through in vitro, intracellular recordings on slices and those collected in vivo, in the behaving animal.
Collapse
Affiliation(s)
- N Vibert
- Laboratoire de Physiologie de la Perception et de l' Action, CNRS-College de France, UMR C-9950, Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Vidal PP, Babalian A, de Waele C, Serafin M, Vibert N, Mühlethaler M. NMDA receptors of the vestibular nuclei neurones. Brain Res Bull 1996; 40:347-52. [PMID: 8886357 DOI: 10.1016/0361-9230(96)00123-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cloning and pharmacological studies have shown that glutamatergic receptors can be divided in two classes (refer to Table 1): ionotropic receptors including N-methyl-D-aspartate (NMDA) and non-NMDA subtypes, and the G-protein-coupled metabotropic receptors (glutamate metabotropic receptor). There are two types of non-NMDA receptors: the AMPA/low-affinity kainate receptor type (the AMPA receptors) activated by a specific agonist, the alpha-amino-3-hydroxy-5-methyl-4-iso-xalone propionate (AMPA), and the high affinity kainate receptors. The vestibular nuclei neurones are endowed with all these types of glutamatergic receptors, which fits well with the fact that various afferents, including the primary vestibular afferents, most probably use glutamate or aspartate as a neurotransmitter. This article is aimed at summarising several past studies of our group and some more recent data obtained in the in vitro whole-brain preparation concerning the NMDA receptors of the central vestibular neurones. In that process, we will detail also many valuable studies of other groups that had been devoted to the same topic.
Collapse
Affiliation(s)
- P P Vidal
- CNRS, Laboratoire de Physiologie de la Perception et de l'Action, Paris, France
| | | | | | | | | | | |
Collapse
|
31
|
Dieringer N. ‘Vestibular compensation’: Neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. Prog Neurobiol 1995. [DOI: 10.1016/0301-0082(95)80009-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|