1
|
Dabala E, Guédon A, Ficheux G, Béal L, Moxham B, Plaisant O. Homologies of spinal ascending nociceptive pathways between rats and macaques: can we transpose to human? A review and analysis of the literature. Surg Radiol Anat 2023; 45:1443-1460. [PMID: 37507602 DOI: 10.1007/s00276-023-03212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
PURPOSE Due to the difficulty of using neural tracers in humans, knowledge of the nociceptive system's anatomy is mainly derived from studies in animals and mainly in rats. The aim of this study was to investigate the morphological differences of the ascending spinal nociceptive pathways between the rat and the macaque monkey; in order to evaluate the variability of this anatomy during phylogenesis, and thus to know if the anatomical description of these pathways can be transposed from the rat to the human. METHODS A review and analysis of the literature were performed. The criteria used for comparison were: origins, pathways, their terminations in target structures, and projections from target structures of ascending spinal nociceptive pathways. The monkey was used as an intermediate species for comparison because of the lack of data in humans. The hypothesis of transposition of anatomy between rat and human was considered rejected if differences were found between rat and monkey. RESULTS An anatomical difference in termination was found for the spino-annular or spino-periaqueductal grey (spino-PAG) pathway and transposition of its anatomy from rat to human was rejected. No difference was found in other pathways and the transposition of their anatomy from rat to human was therefore, not rejected. CONCLUSION This work highlights the conservation of most of the ascending spinal nociceptive pathways' anatomy between rat and monkey. Thus, the possibility for a transposition of their anatomy between rat and human is not rejected.
Collapse
Affiliation(s)
- Eric Dabala
- Department of Anatomy, Université Catholique de Lille, Lille, France.
- Université Paris Cité, Paris, France.
| | - Alexis Guédon
- Université Paris Cité, Paris, France
- Department of Interventional Neuroradiology, INSERM UMR_S 1140, Lariboisière Hospital, AP-HP Nord, Paris, France
| | - Guillaume Ficheux
- Department of Anatomy, Université Catholique de Lille, Lille, France
| | - Louis Béal
- Department of Anatomy, Université Catholique de Lille, Lille, France
| | - Bernard Moxham
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | | |
Collapse
|
2
|
Saito H, Katagiri A, Okada S, Mikuzuki L, Kubo A, Suzuki T, Ohara K, Lee J, Gionhaku N, Iinuma T, Bereiter DA, Iwata K. Ascending projections of nociceptive neurons from trigeminal subnucleus caudalis: A population approach. Exp Neurol 2017; 293:124-136. [PMID: 28366470 DOI: 10.1016/j.expneurol.2017.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022]
Abstract
Second-order neurons in trigeminal subnucleus caudalis (Vc) and upper cervical spinal cord (C1) are critical for craniofacial pain processing and project rostrally to terminate in: ventral posteromedial thalamic nucleus (VPM), medial thalamic nuclei (MTN) and parabrachial nuclei (PBN). The contribution of each region to trigeminal nociception was assessed by the number of phosphorylated extracellular signal-regulated kinase-immunoreactive (pERK-IR) neurons co-labeled with fluorogold (FG). The phenotype of pERK-IR neurons was further defined by the expression of neurokinin 1 receptor (NK1). The retrograde tracer FG was injected into VPM, MTN or PBN of the right hemisphere and after seven days, capsaicin was injected into the left upper lip in male rats. Nearly all pERK-IR neurons were found in superficial laminae of Vc-C1 ipsilateral to the capsaicin injection. Nearly all VPM and MTN FG-labeled neurons in Vc-C1 were found contralateral to the injection site, whereas FG-labeled neurons were found bilaterally after PBN injection. The percentage of FG-pERK-NK1-IR neurons was significantly greater (>10%) for PBN projection neurons than for VPM and MTN projection neurons (<3%). pERK-NK1-IR VPM projection neurons were found mainly in the middle-Vc, while pERK-NK1-immunoreactive MTN or PBN projection neurons were found in the middle-Vc and caudal Vc-C1. These results suggest that a significant percentage of capsaicin-responsive neurons in superficial laminae of Vc-C1 project directly to PBN, while neurons that project to VPM and MTN are subject to greater modulation by pERK-IR local interneurons. Furthermore, the rostrocaudal distribution differences of FG-pERK-NK1-IR neurons in Vc-C1 may reflect functional differences between these projection areas regarding craniofacial pain.
Collapse
Affiliation(s)
- Hiroto Saito
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Shinji Okada
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Lou Mikuzuki
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Tatsuro Suzuki
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Nobuhito Gionhaku
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| |
Collapse
|
3
|
Apkarian VA, Hashmi JA, Baliki MN. Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain 2010; 152:S49-S64. [PMID: 21146929 DOI: 10.1016/j.pain.2010.11.010] [Citation(s) in RCA: 501] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/09/2010] [Indexed: 12/23/2022]
Affiliation(s)
- Vania A Apkarian
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA Departments of Anesthesia and Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
4
|
Lowe AS, Beech JS, Williams SCR. Small animal, whole brain fMRI: innocuous and nociceptive forepaw stimulation. Neuroimage 2006; 35:719-28. [PMID: 17300960 DOI: 10.1016/j.neuroimage.2006.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 12/23/2022] Open
Abstract
Supra-spinal pain processing involves a number of extensive networks. An examination of these networks using small animal functional magnetic resonance imaging (fMRI) is difficult. While prior studies have successfully delineated regions consistent with known pain processing pathways, they have been restricted to acquisitions of limited spatial extent with coarse in-plane resolution to achieve a high temporal resolution. An isotropic, whole brain fMRI protocol has been developed for the examination of the supra-spinal consequences of innocuous and nociceptive electrical stimulation of the rat forepaw. Innocuous electrical stimulation of the rat forepaw delineated BOLD contrast responses consistent with known somatosensory processing pathways (contralateral primary somatosensory cortex (S1), a region consistent with secondary somatosensory cortex, the ventral posterolateral thalamic nucleus and ipsilateral cuneate nucleus), providing face validity for the technique. The putative noxious stimulus delineated additional regions consistent with the classical lateral and medial pain systems as well as secondarily associated areas: the aversion and descending inhibition systems. These included the ipsilateral inferior colliculus, anterior pretectal nucleus, mediodorsal thalamic nucleus, with regions in the pre-frontal, cingulated, ventral orbital and infra-limbic cortices, nucleus accumbens all exhibiting negative BOLD changes. Such regions are in agreement with, and extend, those previously reported. Acquisition, post-processing and analysis methodologies undertaken in this study constitute a marked extension of previous fMRI in the rat, enabling whole brain coverage at a spatial resolution sufficient to delineate regional changes in BOLD contrast consistent with somatosensory and nociceptive networks.
Collapse
Affiliation(s)
- Andrew S Lowe
- Experimental Neuroimaging Group, University Laboratory of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK.
| | | | | |
Collapse
|
5
|
Hubscher CH. Ascending spinal pathways from sexual organs: effects of chronic spinal lesions. AUTONOMIC DYSFUNCTION AFTER SPINAL CORD INJURY 2006; 152:401-14. [PMID: 16198716 DOI: 10.1016/s0079-6123(05)52027-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A recent survey of paraplegics indicates that regaining sexual function is of the highest priority for both males and females (Anderson, K.D. (2004) Targeting recovery: priorities of the spinal cord-injured population J. Newrotrauma, 21: 1371-1383). Our understanding of the neural pathways and mechanisms underlying sexual behavior and function is limited at the present time. More studies are obviously needed to direct experiments geared toward developing effective therapeutic interventions. In this chapter, a review of studies on the processing of sensory inputs from the male and female reproductive organs is presented with a review of what is known about the location of ascending spinal pathways conveying this information. The effect of spinal cord injury on sexual function and the problems that ensue are discussed.
Collapse
Affiliation(s)
- Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
6
|
Zhang X, Giesler GJ. Response characterstics of spinothalamic tract neurons that project to the posterior thalamus in rats. J Neurophysiol 2005; 93:2552-64. [PMID: 15845999 DOI: 10.1152/jn.01237.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A sizeable number of spinothalamic tract axons terminate in the posterior thalamus. The functional roles and precise areas of termination of these axons have been a subject of recent controversy. The goals of this study were to identify spinothalamic tract neurons (STT) within the cervical enlargement that project to this area, characterize their responses to mechanical and thermal stimulation of their receptive fields, and use microantidromic tracking methods to determine the nuclei in which their axons terminate. Forty-seven neurons were antidromically activated using low-amplitude (< or =30 microA) current pulses in the contralateral posterior thalamus. The 51 points at which antidromic activation thresholds were lowest were surrounded by ineffective tracks indicating that the surrounded axons terminated within the posterior thalamus. The areas of termination were located primarily in the posterior triangular, medial geniculate, posterior and posterior intralaminar, and suprageniculate nuclei. Recording points were located in the superficial and deep dorsal horn. The mean antidromic conduction velocity was 6.4 m/s, a conduction velocity slower than that of other projections to the thalamus or hypothalamus in rats. Cutaneous receptive fields appeared to be smaller than those of neurons projecting to other areas of the thalamus or to the hypothalamus. Each of the examined neurons responded exclusively or preferentially to noxious stimuli. These findings indicate that the STT carries nociceptive information to several target nuclei within the posterior thalamus. We discuss the evidence that this projection provides nociceptive information that plays an important role in fear conditioning.
Collapse
Affiliation(s)
- Xijing Zhang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
7
|
Olucha-Bordonau FE, Pérez-Villalba A, Teruel-Martí V, Ruiz-Torner A. Chemical divisions in the medial geniculate body and surrounding paralaminar nuclei of the rat: quantitative comparison of cell density, NADPH diaphorase, acetyl cholin esterase and basal expression of c-fos. J Chem Neuroanat 2005; 28:147-62. [PMID: 15482901 DOI: 10.1016/j.jchemneu.2004.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 05/12/2004] [Accepted: 06/02/2004] [Indexed: 10/26/2022]
Abstract
Quantitative methods of cell density, the intensities of both acetyl cholinesterase (AChE) and NADPH diaphorase (NADPHd), as well as the basal expression of c-fos, have been carried out in order to study the anatomical divisions of the medial geniculate body (MGB) and the group of nuclei located ventromedially to the MGB called the paralaminar complex (PL). The MGB was composed of the dorsal (MGd), and the ventral (MGv) divisions. We included the medial, or the magnocellular division (MGm), in the PL complex. MGd was composed of a dorsolateral (DL) core and a belt. The belt was composed of the suprageniculate (SG), the deep dorsal (DD), the caudo-medial (CM) and the caudo-dorsal (CD) nuclei. In the MGv, the basal expression of c-fos was the only way to trace a clear boundary between the ovoid (Ov) and the ventrolateral (VL) divisions. However, the marginal zone (MZ) was clearly and contrastingly different. The PL was considered to be composed of: the MGm, the posterior intralaminar nucleus (PIN), the peripeduncular nucleus (PP) and the nucleus subparafascicularis lateralis (SPFL). The MGm and the PIN share most of the chemical features, meanwhile both SPFL and PP displayed different patterns of NADPHd reactivity. The study of cell density on Giemsa stained sections confirmed main divisions of the area. AChE and NADPHd methods allowed the main MGB divisions to be discriminated. The differences between subdivisions were emphasized when cell density and c-fos activity were quantified in each nucleus. Each MGB division displayed a different pattern of c-fos activity under basal conditions. Thus, c-fos basal expression was a particular feature in each MGB or PL nucleus.
Collapse
Affiliation(s)
- Francisco E Olucha-Bordonau
- Dpt. Anatomia i Embriologia Humana, Fac. de Medicina i Odontologia, University València, Av. Blasco Ibáñez 15, E-46010-Valencia, Spain.
| | | | | | | |
Collapse
|
8
|
Hubscher CH, Johnson RD. Effects of Chronic Dorsal Column Lesions on Pelvic Viscerosomatic Convergent Medullary Reticular Formation Neurons. J Neurophysiol 2004; 92:3596-600. [PMID: 15282259 DOI: 10.1152/jn.00310.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single medullary reticular formation (MRF) neurons receive multiple somatovisceral convergent inputs originating from many different spinal and cranial nerves, including the pelvic nerve (PN), dorsal nerve of the penis (DNP), and the abdominal branches of the vagus. In a previous study, the input to MRF from the male genitalia was shown to be eliminated with chronic 30-day dorsal hemisection at the T8 spinal level. In this study, the effect of a smaller chronic lesion [dorsal column lesion (DCx)] on MRF neuronal responses was examined. Responses to bilateral electrical stimulation of the DNP remained. MRF neuronal responses to non-noxious (touch/stroke) levels of penile stimulation, however, were eliminated; only responses to noxious pinch remained. No differences were found for the number of neurons responding to noxious distention of the colon between the DCx and control groups. Although no differences were found across these groups for the percent MRF responses to vagal stimulation, the mean response latency for the DCx group was twice the sham-DCx/intact control group. Taken together, these results indicate that the MRF receives at least some of its input from the male genitalia via pathways located within the dorsal columns at the mid-thoracic spinal level.
Collapse
Affiliation(s)
- Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|
9
|
Webb AA, Muir GD. Course of motor recovery following ventrolateral spinal cord injury in the rat. Behav Brain Res 2004; 155:55-65. [PMID: 15325779 DOI: 10.1016/j.bbr.2004.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 04/02/2004] [Accepted: 04/02/2004] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to determine the importance of the pathways running in the ventrolateral spinal funiculus for overground locomotion in adult, freely behaving rats. Left-sided ventrolateral cervical spinal cord injury was performed in adult female Long-Evans rats. The behavioural abilities of these animals were analyzed at 2 days, and weekly for up to 5.5 weeks following spinal cord injury. Behavioural testing consisted of Von Frey filament testing, ladder walking, a paw usage task, and the assessment of ground reaction forces during unrestrained trotting. Animals with injury to the left ventrolateral cervical spinal cord did not develop enhanced sensitivity to pedal mechanical stimulation. At 2 days following injury, animals had impaired skilled locomotion as indicated by increased number of footslips during ladder walking. At 2 days, these animals also used both limbs together more often for support while rearing, while using the forelimb ipsilateral to the injury less than did uninjured animals. Ground reaction force determination revealed that animals tend to bear less weight on the forelimb and hindlimb ipsilateral to the spinal cord injury 2 days after injury. All animals recovered normal or near normal sensorimotor abilities although subtle asymmetries in ground reaction forces were detectable at 5.5 weeks following spinal cord injury. These results suggest that axons in the ventrolateral spinal funiculi contribute to limb movements during exploration and locomotion but their roles can be served by other pathways after ventrolateral spinal injury.
Collapse
Affiliation(s)
- Aubrey A Webb
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Sask., Canada S7N 5B4.
| | | |
Collapse
|
10
|
Almeida TF, Roizenblatt S, Tufik S. Afferent pain pathways: a neuroanatomical review. Brain Res 2004; 1000:40-56. [PMID: 15053950 DOI: 10.1016/j.brainres.2003.10.073] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2003] [Indexed: 01/28/2023]
Abstract
Painful experience is a complex entity made up of sensory, affective, motivational and cognitive dimensions. The neural mechanisms involved in pain perception acts in a serial and a parallel way, discriminating and locating the original stimulus and also integrating the affective feeling, involved in a special situation, with previous memories. This review examines the concepts of nociception, acute and chronic pain, and also describes the afferent pathways involved in reception, segmental processing and encephalic projection of pain stimulus. The interaction model of the cerebral cortex areas and their functional characteristics are also discussed.
Collapse
Affiliation(s)
- Tatiana F Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925. Vila Clementino, 04024-002, Sao Paulo, SP, Brazil.
| | | | | |
Collapse
|
11
|
Spike RC, Puskár Z, Andrew D, Todd AJ. A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur J Neurosci 2003; 18:2433-48. [PMID: 14622144 DOI: 10.1046/j.1460-9568.2003.02981.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the rat lumbar spinal cord the major supraspinal targets for lamina I projection neurons are the caudal ventrolateral medulla (CVLM), lateral parabrachial area (LPb) and periaqueductal grey matter (PAG). In this study we have estimated the number of lamina I neurons retrogradely labelled from each of these sites in the L4 segment, as well as the proportion that can be labelled by injecting different tracers into two separate sites. Our results suggest that this segment contains approximately 400 lamina I projection neurons on each side, and that approximately 85% of these can be labelled from either the CVLM or the LPb on the contralateral side. Around 120 lamina I cells in L4 project to the PAG, and over 90% of these cells can also be labelled from the CVLM or LPb. Most lamina I neurons projecting to CVLM or LPb are located in the contralateral dorsal horn, but in each case some cells were found to have bilateral projections. We also examined horizontal sections to investigate morphology and the expression of the neurokinin 1 (NK1) receptor in cells labelled from CVLM, LPb or PAG. There were no consistent morphological differences between these groups, however, while cells with strong or moderate NK1 receptor-immunostaining were labelled from LPb or CVLM, they seldom projected to the PAG. These results suggest that many lamina I cells project to more than one site in the brain and that those projecting to PAG may represent a distinct subclass of lamina I projection neuron.
Collapse
Affiliation(s)
- R C Spike
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | |
Collapse
|
12
|
Stern JM, Yu YL, Crockett DP. Dorsolateral columns of the spinal cord are necessary for both suckling-induced neuroendocrine reflexes and the kyphotic nursing posture in lactating rats. Brain Res 2002; 947:110-21. [PMID: 12144859 DOI: 10.1016/s0006-8993(02)02916-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Maternal behavior in rats consists of active behaviors, such as retrieval and licking of pups, and quiescent nursing, including the suckling-induced kyphotic (upright, dorsally-arched) posture. Because lesions of the dorsolateral, but not of the dorsal, columns are known to prevent the suckling-induced milk-ejection reflex, we asked whether the same is true for kyphosis as well. Bilateral lesions of the dorsolateral funiculus (DLF) or dorsal columns (DC) at spinal segments C(4-6) were made on day 5-8 postpartum; controls (CON) were subjected to a sham procedure. All aspects of maternal behavior and lactation were present in CON and DC dams soon after treatment. Among DLF dams, two had poor postural, ambulatory, and ingestive recovery that was associated with large lesions extending to the ventrolateral columns, while one with very small lesions continued to lactate. Of the remaining eight DLF dams, milk ejection was lost while recovery of retrieval and licking of pups occurred in all (between 1 and 4 days after surgery). All eight were quiescent for long periods in response to suckling but they did not display sustained kyphosis; rather, they nursed while prone or hunched over the pups, with little or no leg support, or while supine. Ventral trunk cutaneous sensitivity was present in all subjects. These data suggest that the dorsolateral funiculus relays both suckling-induced neuroendocrine and postural nursing reflexes that are mediated by separate supraspinal regions, hypothalamus and the ventrolateral sectors of the caudal periaqueductal gray, respectively.
Collapse
Affiliation(s)
- Judith M Stern
- Department of Psychology, Rutgers-The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| | | | | |
Collapse
|
13
|
Gamboa-Esteves FO, Tavares I, Almeida A, Batten TF, McWilliam PN, Lima D. Projection sites of superficial and deep spinal dorsal horn cells in the nucleus tractus solitarii of the rat. Brain Res 2001; 921:195-205. [PMID: 11720726 DOI: 10.1016/s0006-8993(01)03118-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
By using anterograde transport of biotin dextran amine injected into the cervical spinal dorsal horn, we have shown that fibres from superficial and deep dorsal horn project to the nucleus tractus solitarii via two distinct pathways. Afferent fibres from the superficial lamina (I-III) were found to course in the dorsal funiculus and terminate bilaterally in the caudal zone of the nucleus tractus solitarii (NTS), mainly within the commissural subnucleus. In contrast, afferents from the deeper dorsal horn laminae (IV-V) were found to course in the dorsolateral fasciculus and terminate ipsilaterally, mostly in the lateral areas of the caudal nucleus tractus solitarii. Similar, but more extensive patterns of labelled fibres were produced by injections into the white matter of the dorsal funiculus and dorsolateral fasciculus, respectively. These observations suggest that the caudal NTS not only serves as a location of visceral afferent convergence and integration, but may also be a receptive area for monosynaptic projections from dorsal horn neurons receiving sensory afferent inputs. Such projections may represent pathways through which NTS neurons are influenced by nociceptive and non-nociceptive information from the dorsal horn and thereby can co-ordinate the appropriate autonomic response, including adjustments in cardiorespiratory reflex output.
Collapse
Affiliation(s)
- F O Gamboa-Esteves
- Institute for Cardiovascular Research, School of Medicine, Worsley Building, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
14
|
Malick A, Strassman RM, Burstein R. Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol 2000; 84:2078-112. [PMID: 11024099 DOI: 10.1152/jn.2000.84.4.2078] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory information that arises in orofacial organs facilitates exploratory, ingestive, and defensive behaviors that are essential to overall fitness and survival. Because the hypothalamus plays an important role in the execution of these behaviors, sensory signals conveyed by the trigeminal nerve must be available to this brain structure. Recent anatomical studies have shown that a large number of neurons in the upper cervical spinal cord and caudal medulla project directly to the hypothalamus. The goal of the present study was to identify the types of information that these neurons carry to the hypothalamus and to map the route of their ascending axonal projections. Single-unit recording and antidromic microstimulation techniques were used to identify 81 hypothalamic-projecting neurons in the caudal medulla and upper cervical (C(1)) spinal cord that exhibited trigeminal receptive fields. Of the 72 neurons whose locations were identified, 54 were in laminae I-V of the dorsal horn at the level of C(1) (n = 22) or nucleus caudalis (Vc, n = 32) and were considered trigeminohypothalamic tract (THT) neurons because these regions are within the main projection territory of trigeminal primary afferent fibers. The remaining 18 neurons were in the adjacent lateral reticular formation (LRF) and were considered reticulohypothalamic tract (RHT) neurons. The receptive fields of THT neurons were restricted to the innervation territory of the trigeminal nerve and included the tongue and lips, cornea, intracranial dura, and vibrissae. Based on their responses to mechanical stimulation of cutaneous or intraoral receptive fields, the majority of THT neurons were classified as nociceptive (38% high-threshold, HT, 42% wide-dynamic-range, WDR), but in comparison to the spinohypothalamic tract (SHT), a relatively high percentage of low-threshold (LT) neurons were also found (20%). Responses to thermal stimuli were found more commonly in WDR than in HT neurons: 75% of HT and 93% of WDR neurons responded to heat, while 16% of HT and 54% of WDR neurons responded to cold. These neurons responded primarily to noxious intensities of thermal stimulation. In contrast, all LT neurons responded to innocuous and noxious intensities of both heat and cold stimuli, a phenomenon that has not been described for other populations of mechanoreceptive LT neurons at spinal or trigeminal levels. In contrast to THT neurons, RHT neurons exhibited large and complex receptive fields, which extended over both orofacial ("trigeminal") and extracephalic ("non-trigeminal") skin areas. Their responses to stimulation of trigeminal receptive fields were greater than their responses to stimulation of non-trigeminal receptive fields, and their responses to innocuous stimuli were induced only when applied to trigeminal receptive fields. As described for SHT axons, the axons of THT and RHT neurons ascended through the contralateral brain stem to the supraoptic decussation (SOD) in the lateral hypothalamus; 57% of them then crossed the midline to reach the ipsilateral hypothalamus. Collateral projections were found in the superior colliculus, substantia nigra, red nucleus, anterior pretectal nucleus, and in the lateral, perifornical, dorsomedial, suprachiasmatic, and supraoptic hypothalamic nuclei. Additional projections (which have not been described previously for SHT neurons) were found rostral to the hypothalamus in the caudate-putamen, globus pallidus, and substantia innominata. The findings that nonnociceptive signals reach the hypothalamus primarily through the direct THT route, whereas nociceptive signals reach the hypothalamus through both the direct THT and the indirect RHT routes suggest that highly prioritized painful signals are transferred in parallel channels to ensure that this critical information reaches the hypothalamus, a brain area that regulates homeostasis and other humoral responses required for the survival of the organism.
Collapse
Affiliation(s)
- A Malick
- Department of Neurobiology and the Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
15
|
Hubscher CH, Johnson RD. Effects of acute and chronic midthoracic spinal cord injury on neural circuits for male sexual function. I. Ascending pathways. J Neurophysiol 1999; 82:1381-9. [PMID: 10482756 DOI: 10.1152/jn.1999.82.3.1381] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normal male reproductive function, particularly ejaculation, requires the integrity of urogenital sensory input and its ascending spinal projections. After midthoracic chronic spinal cord injury, sexual dysfunction occurs in both rats and humans. Neurons in the medullary reticular formation (MRF) are involved in the processing of bilaterally convergent sensory inputs from multiple cutaneous, mucocutaneous, and visceral regions of the body, including the penis and male urogenital tract. A variety of acute and chronic lesions were used to determine the midthoracic location of ascending spinal pathways conveying sensory input from the penis and male urogenital tract to MRF. A total of 371 single neurons were recorded in the MRF of 34 urethan-anesthetized mature male rats. Twenty-seven rats received a chronic T8 dorsal (DHx) or lateral (LHx) hemisection or contusion (Cx) injury 30 days before the terminal electrophysiological experiments. In addition, nine dorsal nerve of the penis (DNP)-responsive MRF neurons in seven intact control animals were tested completely both before and after various select acute spinal cord lesions. The chronic lesion data indicate that low and high threshold input from the penis (mucocutaneous) and male urogenital tract (visceral) ascend bilaterally within the dorsal quadrant at T8 as opposed to high threshold input from the hindpaws (cutaneous), which ascends unilaterally in the ventrolateral quadrant (VLQ). The acute lesion data indicate that the low-threshold information conveyed from the penis and male urogenital tract ascends in the dorsal columns, as opposed to the high-threshold nociceptive inputs that ascend bilaterally in the dorsolateral quadrant (DLQ). These results, as well as previous data on ascending projections from female reproductive organs within the dorsal columns and DLQ to other caudal brain stem nuclei, provide evidence for ascending pathways conveying nociceptive information centrally via the DLQ. This spinal gray-DLQ pathway(s) conveying information from mucocutaneous/pelvic/visceral territories therefore differs from the traditionally recognized spinal gray-VLQ pathway(s), which is known to convey nociceptive information from cutaneous regions of the body.
Collapse
Affiliation(s)
- C H Hubscher
- Department of Physiological Sciences, College of Veterinary Medicine, and University of Florida Brain Institute, University of Florida, Gainesville, Florida 32610-0144, USA
| | | |
Collapse
|
16
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
17
|
Lu GW, Willis WD. Branching and/or collateral projections of spinal dorsal horn neurons. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:50-82. [PMID: 9974151 DOI: 10.1016/s0165-0173(98)00048-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Branching and/or collateral projections of spinal dorsal horn neurons is a common phenomenon. Evidence is presented for the existence of STTm/STTl, STTc/STTi, STT/SMT, STT/SRT, SCT/DCPS, SST/DCPS, SCT/SST, STT/SHT, STeT/SHT, STeTs and other doubly or multiply projecting spinal neurons that have been anatomically and physiologically identified and named based on the locations of the cells of origin and their terminations in the brain. These newly discovered spinal projection neurons are characterized by a single cell body and branched axons and/or collaterals that project to two or more target areas in the brain. These novel populations of neurons seem to be a fuzzy set of spinal projection neurons that function as an intersection set of the corresponding single projection spinal neurons and to be at an intermediate stage phylogenetically. Identification strategies are discussed, and general concluding remarks are made in this review.
Collapse
Affiliation(s)
- G W Lu
- Department of Neurobiology, Capital University of Medical Sciences, Beijing, China
| | | |
Collapse
|
18
|
Abstract
Recent studies have demonstrated that a large number of spinal cord neurons convey somatosensory and visceral nociceptive information directly from cervical, lumbar, and sacral spinal cord segments to the hypothalamus. Because sensory information from head and orofacial structures is processed by all subnuclei of the trigeminal brainstem nuclear complex (TBNC) we hypothesized that all of them contain neurons that project directly to the hypothalamus. In the present study, we used the retrograde tracer Fluoro-Gold to examine this hypothesis. Fluoro-Gold injections that filled most of the hypothalamus on one side labeled approximately 1,000 neurons (best case = 1,048, mean = 718 +/- 240) bilaterally (70% contralateral) within all trigeminal subnuclei and C1-2. Of these neurons, 86% were distributed caudal to the obex (22% in C2, 22% in C1, 23% in subnucleus caudalis, and 18% in the transition zone between subnuclei caudalis and interpolaris), and 14% rostral to the obex (6% in subnucleus interpolaris, 4% in subnucleus oralis, and 4% in subnucleus principalis). Caudal to the obex, most labeled neurons were found in laminae I-II and V and the paratrigeminal nucleus, and fewer neurons in laminae III-IV and X. The distribution of retrogradely labeled neurons in TBNC gray matter areas that receive monosynaptic input from trigeminal primary afferent fibers innervating extracranial orofacial structures (such as the cornea, nose, tongue, teeth, lips, vibrissae, and skin) and intracranial structures (such as the meninges and cerebral blood vessels) suggests that sensory and nociceptive information originating in these tissues could be transferred to the hypothalamus directly by this pathway.
Collapse
Affiliation(s)
- A Malick
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|