1
|
D'Elia KP, Hameedy H, Goldblatt D, Frazel P, Kriese M, Zhu Y, Hamling KR, Kawakami K, Liddelow SA, Schoppik D, Dasen JS. Determinants of motor neuron functional subtypes important for locomotor speed. Cell Rep 2023; 42:113049. [PMID: 37676768 PMCID: PMC10600875 DOI: 10.1016/j.celrep.2023.113049] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/12/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Locomotion requires precise control of the strength and speed of muscle contraction and is achieved by recruiting functionally distinct subtypes of motor neurons (MNs). MNs are essential to movement and differentially susceptible in disease, but little is known about how MNs acquire functional subtype-specific features during development. Using single-cell RNA profiling in embryonic and larval zebrafish, we identify novel and conserved molecular signatures for MN functional subtypes and identify genes expressed in both early post-mitotic and mature MNs. Assessing MN development in genetic mutants, we define a molecular program essential for MN functional subtype specification. Two evolutionarily conserved transcription factors, Prdm16 and Mecom, are both functional subtype-specific determinants integral for fast MN development. Loss of prdm16 or mecom causes fast MNs to develop transcriptional profiles and innervation similar to slow MNs. These results reveal the molecular diversity of vertebrate axial MNs and demonstrate that functional subtypes are specified through intrinsic transcriptional codes.
Collapse
Affiliation(s)
- Kristen P D'Elia
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hanna Hameedy
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dena Goldblatt
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Paul Frazel
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Mercer Kriese
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yunlu Zhu
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kyla R Hamling
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Shane A Liddelow
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - David Schoppik
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jeremy S Dasen
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Gordon T. Peripheral Nerve Regeneration and Muscle Reinnervation. Int J Mol Sci 2020; 21:ijms21228652. [PMID: 33212795 PMCID: PMC7697710 DOI: 10.3390/ijms21228652] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Injured peripheral nerves but not central nerves have the capacity to regenerate and reinnervate their target organs. After the two most severe peripheral nerve injuries of six types, crush and transection injuries, nerve fibers distal to the injury site undergo Wallerian degeneration. The denervated Schwann cells (SCs) proliferate, elongate and line the endoneurial tubes to guide and support regenerating axons. The axons emerge from the stump of the viable nerve attached to the neuronal soma. The SCs downregulate myelin-associated genes and concurrently, upregulate growth-associated genes that include neurotrophic factors as do the injured neurons. However, the gene expression is transient and progressively fails to support axon regeneration within the SC-containing endoneurial tubes. Moreover, despite some preference of regenerating motor and sensory axons to “find” their appropriate pathways, the axons fail to enter their original endoneurial tubes and to reinnervate original target organs, obstacles to functional recovery that confront nerve surgeons. Several surgical manipulations in clinical use, including nerve and tendon transfers, the potential for brief low-frequency electrical stimulation proximal to nerve repair, and local FK506 application to accelerate axon outgrowth, are encouraging as is the continuing research to elucidate the molecular basis of nerve regeneration.
Collapse
Affiliation(s)
- Tessa Gordon
- Department of Surgery, University of Toronto, Division of Plastic Reconstructive Surgery, 06.9706 Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
3
|
Medial gastrocnemius muscles fatigue but do not atrophy in paralyzed cat hindlimb after long-term spinal cord hemisection and unilateral deafferentation. Exp Neurol 2020; 327:113201. [PMID: 31953040 DOI: 10.1016/j.expneurol.2020.113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/20/2019] [Accepted: 01/13/2020] [Indexed: 11/20/2022]
Abstract
This study of medial gastrocnemius (MG) muscle and motor units (MUs) after spinal cord hemisection and deafferentation (HSDA) in adult cats, asked 1) whether the absence of muscle atrophy and unaltered contractile speed demonstrated previously in HSDA-paralyzed peroneus longus (PerL) muscles, was apparent in the unloaded HSDA-paralyzed MG muscle, and 2) how ankle unloading impacts MG muscle and MUs after dorsal root sparing (HSDA-SP) with foot placement during standing and locomotion. Chronic isometric contractile forces and speeds were maintained for up to 12 months in all conditions, but fatigability increased exponentially. MU recordings at 8-11½ months corroborated the unchanged muscle force and speed with significantly increased fatigability; normal weights of MG muscle confirmed the lack of disuse atrophy. Fast MUs transitioned from fatigue resistant and intermediate to fatigable accompanied by corresponding fiber type conversion to fast oxidative (FOG) and fast glycolytic (FG) accompanied by increased GAPDH enzyme activity in absolute terms and relative to oxidative citrate synthase enzyme activity. Myosin heavy chain composition, however, was unaffected. MG muscle behaved like the PerL muscle after HSDA with maintained muscle and MU contractile force and speed but with a dramatic increase in fatigability, irrespective of whether all the dorsal roots were transected. We conclude that reduced neuromuscular activity accounts for increased fatigability but is not, in of itself, sufficient to promote atrophy and slow to fast conversion. Position and relative movements of hindlimb muscles are likely contributors to sustained MG muscle and MU contractile force and speed after HSDA and HSDA-SP surgeries.
Collapse
|
4
|
Thomas CK, Häger CK, Klein CS. Increases in human motoneuron excitability after cervical spinal cord injury depend on the level of injury. J Neurophysiol 2016; 117:684-691. [PMID: 27852734 DOI: 10.1152/jn.00676.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/11/2016] [Indexed: 11/22/2022] Open
Abstract
After human spinal cord injury (SCI), motoneuron recruitment and firing rate during voluntary and involuntary contractions may be altered by changes in motoneuron excitability. Our aim was to compare F waves in single thenar motor units paralyzed by cervical SCI to those in uninjured controls because at the single-unit level F waves primarily reflect the intrinsic properties of the motoneuron and its initial segment. With intraneural motor axon stimulation, F waves were evident in all 4 participants with C4-level SCI, absent in 8 with C5 or C6 injury, and present in 6 of 12 Uninjured participants (P < 0.001). The percentage of units that generated F waves differed across groups (C4: 30%, C5 or C6: 0%, Uninjured: 16%; P < 0.001). Mean (±SD) proximal axon conduction velocity was slower after C4 SCI [64 ± 4 m/s (n = 6 units), Uninjured: 73 ± 8 m/s (n = 7 units); P = 0.037]. Mean distal axon conduction velocity differed by group [C4: 40 ± 8 m/s (n = 20 units), C5 or C6: 49 ± 9 m/s (n = 28), Uninjured: 60 ± 7 m/s (n = 45); P < 0.001]. Motor unit properties (EMG amplitude, twitch force) only differed after SCI (P ≤ 0.004), not by injury level. Motor units with F waves had distal conduction velocities, M-wave amplitudes, and twitch forces that spanned the respective group range, indicating that units with heterogeneous properties produced F waves. Recording unitary F waves has shown that thenar motoneurons closer to the SCI (C5 or C6) have reduced excitability whereas those further away (C4) have increased excitability, which may exacerbate muscle spasms. This difference in motoneuron excitability may be related to the extent of membrane depolarization following SCI. NEW & NOTEWORTHY Unitary F waves were common in paralyzed thenar muscles of people who had a chronic spinal cord injury (SCI) at the C4 level compared with uninjured people, but F waves did not occur in people that had SCI at the C5 or C6 level. These results highlight that intrinsic motoneuron excitability depends, in part, on how close the motoneurons are to the site of the spinal injury, which could alter the generation and strength of voluntary and involuntary muscle contractions.
Collapse
Affiliation(s)
- Christine K Thomas
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida;
| | - Charlotte K Häger
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden; and
| | - Cliff S Klein
- Guangdong Work Injury Rehabilitation Center, Guangzhou, People's Republic of China
| |
Collapse
|
5
|
Electrical Stimulation of Low-Threshold Proprioceptive Fibers in the Adult Rat Increases Density of Glutamatergic and Cholinergic Terminals on Ankle Extensor α-Motoneurons. PLoS One 2016; 11:e0161614. [PMID: 27552219 PMCID: PMC4994941 DOI: 10.1371/journal.pone.0161614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/09/2016] [Indexed: 12/18/2022] Open
Abstract
The effects of stimulation of low-threshold proprioceptive afferents in the tibial nerve on two types of excitatory inputs to α-motoneurons were tested. The first input is formed by glutamatergic Ia sensory afferents contacting monosynaptically α-motoneurons. The second one is the cholinergic input originating from V0c—interneurons, located in lamina X of the spinal cord, modulating activity of α-motoneurons via C-terminals. Our aim was to clarify whether enhancement of signaling to ankle extensor α-motoneurons, via direct electrical stimulation addressed predominantly to low-threshold proprioceptive fibers in the tibial nerve of awake rats, will affect Ia glutamatergic and cholinergic innervation of α-motoneurons of lateral gastrocnemius (LG). LG motoneurons were identified with True Blue tracer injected intramuscularly. Tibial nerve was stimulated for 7 days with continuous bursts of three pulses applied in four 20 min sessions daily. The Hoffmann reflex and motor responses recorded from the soleus muscle, LG synergist, allowed controlling stimulation. Ia terminals and C-terminals abutting on LG-labeled α-motoneurons were detected by immunofluorescence (IF) using input-specific anti- VGLUT1 and anti-VAChT antibodies, respectively. Quantitative analysis of confocal images revealed that the number of VGLUT1 IF and VAChT IF terminals contacting the soma of LG α-motoneurons increased after stimulation by 35% and by 26%, respectively, comparing to the sham-stimulated side. The aggregate volume of VGLUT1 IF and VAChT IF terminals increased by 35% and by 30%, respectively. Labeling intensity of boutons was also increased, suggesting an increase of signaling to LG α-motoneurons after stimulation. To conclude, one week of continuous burst stimulation of proprioceptive input to LG α-motoneurons is effective in enrichment of their direct glutamatergic but also indirect cholinergic inputs. The effectiveness of such and longer stimulation in models of injury is a prerequisite to propose it as a therapeutic method to improve inputs to selected group of α-motoneurons after damage.
Collapse
|
6
|
Dobrowolny G, Bernardini C, Martini M, Baranzini M, Barba M, Musarò A. Muscle Expression of SOD1(G93A) Modulates microRNA and mRNA Transcription Pattern Associated with the Myelination Process in the Spinal Cord of Transgenic Mice. Front Cell Neurosci 2015; 9:463. [PMID: 26648847 PMCID: PMC4664730 DOI: 10.3389/fncel.2015.00463] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
A crucial system severely affected in several neuromuscular diseases is the loss of effective connection between muscle and nerve, leading to a pathological non-communication between the two tissues. One of the best examples of impaired interplay between muscle and nerve is Amyotrophic Lateral Sclerosis, a neurodegenerative disease characterized by degeneration of motor neurons and muscle atrophy. Increasing evidences suggest that damage to motor neurons is enhanced by alterations in the neighboring non-neuronal cells and indicate that altered skeletal muscle might be the source of signals that impinge motor neuron activity and survival. Here we investigated whether muscle selective expression of SOD1G93A mutant gene modulates mRNAs and miRNAs expression at the level of spinal cord of MLC/SOD1G93A mice. Using a Taqman array, the Affymetrix Mouse Gene 2.0 ST approach and the MiRwalk 2.0 database, which provides information on miRNA and their predicted target genes, we revealed that muscle specific expression of SOD1G93A modulates relevant molecules of the genetic and epigenetic circuitry of myelin homeostasis in spinal cord of transgenic mice. Our study provides insights into the pathophysiological interplay between muscle and nerve and supports the hypothesis that muscle is a source of signals that can either positively or negatively affect the nervous system.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- DAHFMO-Unit of Histology and Medical Embryology, Institute Pasteur-Cenci Bolognetti, IIM, Sapienza University of Rome Rome, Italy ; Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia Rome, Italy
| | - Camilla Bernardini
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Martina Martini
- DAHFMO-Unit of Histology and Medical Embryology, Institute Pasteur-Cenci Bolognetti, IIM, Sapienza University of Rome Rome, Italy ; Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia Rome, Italy
| | - Mirko Baranzini
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Marta Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Institute Pasteur-Cenci Bolognetti, IIM, Sapienza University of Rome Rome, Italy ; Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia Rome, Italy
| |
Collapse
|
7
|
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2014; 3:1645-87. [PMID: 24265241 DOI: 10.1002/cphy.c130009] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response.
Collapse
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
8
|
Lorenz C, Jones KE. IH activity is increased in populations of slow versus fast motor axons of the rat. Front Hum Neurosci 2014; 8:766. [PMID: 25309406 PMCID: PMC4174588 DOI: 10.3389/fnhum.2014.00766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/10/2014] [Indexed: 11/25/2022] Open
Abstract
Much is known about the electrophysiological variation in motoneuron somata across different motor units. However, comparatively less is known about electrophysiological variation in motor axons and how this could impact function or electrodiagnosis in healthy or diseased states. We performed nerve excitability testing on two groups of motor axons in Sprague–Dawley rats that are known to differ significantly in their chronic daily activity patterns and in the relative proportion of motor unit types: one group innervating the soleus (“slow motor axons”) and the other group innervating the tibialis anterior (“fast motor axons”) muscles. We found that slow motor axons have significantly larger accommodation compared to fast motor axons upon application of a 100 ms hyperpolarizing conditioning stimulus that is 40% of axon threshold (Z = 3.24, p = 0.001) or 20% of axon threshold (Z = 2.67, p = 0.008). Slow motor axons had larger accommodation to hyperpolarizing currents in the current-threshold measurement (-80% Z = 3.07, p = 0.002; -90% Z = 2.98, p = 0.003). In addition, we found that slow motor axons have a significantly smaller rheobase than fast motor axons (Z = -1.99, p = 0.047) accompanied by a lower threshold in stimulus-response curves. The results provide evidence that slow motor axons have greater activity of the hyperpolarization-activated inwardly rectifying cation conductance (IH) than fast motor axons. It is possible that this difference between fast and slow axons is caused by an adaptation to their chronic differences in daily activity patterns, and that this adaptation might have a functional effect on the motor unit. Moreover, these findings indicate that slow and fast motor axons may react differently to pathological conditions.
Collapse
Affiliation(s)
- Chad Lorenz
- Faculty of Physical Education and Recreation, University of Alberta Edmonton, AB, Canada
| | - Kelvin E Jones
- Faculty of Physical Education and Recreation, University of Alberta Edmonton, AB, Canada ; Neuroscience and Mental Health Institute, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
9
|
Motoneurone afterhyperpolarisation time-course following stroke. Clin Neurophysiol 2013; 125:544-51. [PMID: 24074627 DOI: 10.1016/j.clinph.2013.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/23/2013] [Accepted: 08/26/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Our aim was to investigate any changes in the estimated time-course of the afterhyperpolarisation (AHP) in motoneurones innervating the tibialis anterior following stroke, with a secondary objective to compare the results from two different AHP estimation techniques. METHODS Motor units from tibialis anterior on the paretic and non-paretic sides of 15 subjects with chronic stroke were recorded using intramuscular electrodes during voluntary isometric contraction. Participants varied the motor unit firing rate from its lowest rate to approximately 10 Hz. The AHP duration was estimated using the interval death rate (IDR) and transition point methods. RESULTS The AHP decay time-constant was significantly different between sides (paretic: 41.7 ± 8.5 ms, non-paretic: 36.2 ± 6.4 ms). Additionally, the paretic AHP time-constant was significantly longer in participants with low motor recovery (45.9 ± 9.1 ms) than with high motor recovery (39.3 ± 10.0 ms) as measured by CMSA score. The AHP estimates from the two techniques were correlated (r=0.78). CONCLUSIONS The AHP time-course prolongation on the paretic side of people with chronic stroke is more pronounced in people with low motor recovery. SIGNIFICANCE Changes in the motoneurone AHP time course post-stroke were related to muscle function and may play a role in the commonly-observed reduction of motor unit discharge rate during voluntary contractions following stroke.
Collapse
|
10
|
Gao L, Li LH, Xing RX, Ou S, Liu GD, Wang YP, Zhang H, Gao GD, Wang TH. Gastrocnemius-derived BDNF promotes motor function recovery in spinal cord transected rats. Growth Factors 2012; 30:167-75. [PMID: 22515203 DOI: 10.3109/08977194.2012.678842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study evaluated the role of gastrocnemius-derived brain-derived neurotrophic factor (BDNF) and possible mechanism in motor improvement in T10 spinal cord transection (SCT) rats. There was complete paralysis in hindlimbs immediately after SCT, followed by partial functional restoration with time going. The level of BDNF but not its mRNA gradually increased in caudal stump after SCT, whereas a significant increase in both BDNF and its mRNA was simultaneously seen in gastrocnemius. Injection of BDNF antibody into the gastrocnemius significantly decreased hindlimb locomotor function, downregulated the level of BDNF and its mRNA together with extracellular signal-regulated kinase 1/2 (Erk1/2). Moreover, ventral root ligation led to decrease both BDNF and Erk in caudal stump, indicating BDNF transportation from gastrocnemius into the spinal cord. We concluded that gastrocnemius-derived BDNF reduced motor functional deficits in SCT rats through Erk signaling pathway. These novel findings suggested the usage of BDNF in muscle for the treatment of spinal cord injury in clinic.
Collapse
Affiliation(s)
- Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
MacDonell CW, Button DC, Beaumont E, Cormery B, Gardiner PF. Plasticity of rat motoneuron rhythmic firing properties with varying levels of afferent and descending inputs. J Neurophysiol 2011; 107:265-72. [PMID: 21957225 DOI: 10.1152/jn.00122.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hindlimb motoneuron excitability was compared among exercise-trained (E), sedentary (S), and spinal cord transected (T) Sprague-Dawley rats by examining the slope of the frequency-current (F/I) relationship with standard intracellular recording techniques in rats anesthetized with ketamine-xylazine. The T group included spinal transected and spinal isolated rats; the E animals were either spontaneously active (exercise wheel) or treadmill trained; and rats in the S group were housed in pairs. An analysis of motoneuron initial [1st interspike interval (ISI)], early (mean of 1st three ISIs), and steady-state (mean of last 3 ISIs) discharge rate slopes resulting from increasing and decreasing 500-ms injected square-wave depolarizing current pulses was used to describe rhythmic motoneuron properties. The steepest slope occurred in the S group (55.3 ± 22.2 Hz/nA), followed by the T group (35.5 ± 15.3 Hz/nA), while the flattest slope was found in the E group (25.4 ± 10.9 Hz/nA). The steepest steady-state slope occurred in the S group but was found to be similar between the T and E groups. Furthermore, a spike-frequency adaptation (SFA) index revealed a slower adaptation in motoneurons of the E animals only (∼40% lower). Finally, evidence for a secondary range of firing existed more frequently in the T group (41%) compared with the S (12%) and E (31%) groups. The lower F/I slope and lower SFA index of motoneurons for E rats may be a result of an increase in Na(+) conductance at the initial segment. The results show that motoneuronal rhythmic firing behavior is plastic, depending on the volume of daily activation and on intact descending pathways.
Collapse
Affiliation(s)
- C W MacDonell
- 404 Basic Medical Science Bldg., Spinal Cord Research Centre, Dept. of Physiology, Faculty of Medicine, Univ. of Manitoba, Winnipeg, MB, Canada R3E 3J7
| | | | | | | | | |
Collapse
|
12
|
Shields RK, Dudley-Javoroski S, Oza PD. Low-frequency H-reflex depression in trained human soleus after spinal cord injury. Neurosci Lett 2011; 499:88-92. [PMID: 21640787 DOI: 10.1016/j.neulet.2011.05.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 04/27/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
After spinal cord injury (SCI), widespread reorganization occurs within spinal reflex systems. Regular muscle activity may influence reorganization of spinal circuitry after SCI. The purpose of this study is to investigate the effects of long-term soleus training on H-reflex depression in humans after SCI. Seven subjects with acute (<7 weeks) SCI (AC group) underwent testing of H-reflex depression at several frequencies of repetitive stimulation. Eight subjects (including 3 from AC) stimulated one soleus muscle daily, leaving the other leg as an untrained within-subject control. Trained limb H-reflexes were assessed during year 1 (TR1) and year 2 (TR2) of training. Untrained limbs were tested during year 2 (UN). H-reflex amplitude was lower at 1, 2 and 5 Hz than at 0.1 or 0.2 Hz (p<0.05). The pattern of depression differed between AC and UN (p<0.05), but not between TR2 and UN (p>0.05) despite significant adaptations in torque and fatigue resistance (p<0.05). Three subjects who began training very early after SCI retained H-reflex post activation depression, suggesting that early intervention of daily muscular activity may be important.
Collapse
Affiliation(s)
- Richard K Shields
- Physical Therapy and Rehabilitation Science, The University of Iowa, Iowa City, IA, USA.
| | | | | |
Collapse
|
13
|
Lim JY, Han TR. Effect of electromyostimulation on apoptosis-related factors in denervation and reinnervation of rat skeletal muscles. Muscle Nerve 2010; 42:422-30. [PMID: 20589896 DOI: 10.1002/mus.21719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electromyostimulation (EMS) has been utilized to reduce muscle atrophy, but its effect on denervated muscles is controversial. This study was performed to determine the effect of EMS on intramuscular changes and apoptosis during denervation and reinnervation following nerve damage. Rat sciatic nerves were denervated completely (CD) or partially (PD), and EMS was applied for 2 weeks. The same numbers of cases were followed without EMS. Nerve conduction studies, muscle weights, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay to measure apoptotic changes, and Western blot were done 4, 8, and 12 weeks after injury. TUNEL-positive nuclei of CD muscles (18.6 +/- 5.5%) were more prevalent than those of PD muscles (7.5 +/- 3.3%). The EMS group showed greater muscle weight, fewer positive nuclei (4.7 +/- 1.9%), and lower BAX and Bcl-2 expression levels compared with the non-EMS group at 4 weeks after PD but not after CD. Denervated muscle atrophy delayed by EMS may be linked with enhanced anti-apoptosis under the control of apoptosis-related factors.
Collapse
Affiliation(s)
- Jae-Young Lim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | | |
Collapse
|
14
|
Chakkalakal JV, Nishimune H, Ruas JL, Spiegelman BM, Sanes JR. Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons. Development 2010; 137:3489-99. [PMID: 20843861 DOI: 10.1242/dev.053348] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian limb and trunk skeletal muscles are composed of muscle fibers that differ in contractile and molecular properties. They are commonly divided into four categories according to the myosin heavy chain that they express: I, IIA, IIX and IIB, ranging from slowest to fastest. Individual motor axons innervate tens of muscle fibers, nearly all of which are of the same type. The mechanisms accounting for this striking specificity, termed motor unit homogeneity, remain incompletely understood, in part because there have been no markers for motoneuron types. Here we show in mice that the synaptic vesicle protein SV2A is selectively localized in motor nerve terminals on slow (type I and small type IIA) muscle fibers; its close relatives, SV2B and SV2C, are present in all motor nerve terminals. SV2A is broadly expressed at birth; fast motoneurons downregulate its expression during the first postnatal week. An inducible transgene incorporating regulatory elements from the Sv2a gene permits selective labeling of slow motor units and reveals their composition. Overexpression of the transcriptional co-regulator PGC1α in muscle fibers, which converts them to a slow phenotype, leads to an increased frequency of SV2A-positive motor nerve terminals, indicating a fiber type-specific retrograde influence of muscle fibers on their innervation. This retrograde influence must be integrated with known anterograde influences in order to understand how motor units become homogeneous.
Collapse
Affiliation(s)
- Joe V Chakkalakal
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
15
|
Christie A, Kamen G. Short-term training adaptations in maximal motor unit firing rates and afterhyperpolarization duration. Muscle Nerve 2010; 41:651-60. [PMID: 19941348 DOI: 10.1002/mus.21539] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study we investigated age- and training-related adaptations in maximal motor unit firing rates and the duration of the motoneuron afterhyperpolarization (AHP) in the dorsiflexor muscles of the foot. Subjects included 30 young (21.9 +/- 3.1 years) and 30 older (72.9 +/- 4.6 years) individuals, who were randomly assigned to a control or training group. Maximal voluntary force (MVC), maximal motor unit firing rate, and motoneuron AHP duration were measured on two occasions. The training group participated in six dorsiflexor exercise training sessions between test and retest. At baseline, young subjects had higher MVC force and maximal motor unit firing rate, and shorter AHP duration, compared with older subjects. Young and older subjects in the trained group demonstrated a respective 17.4% and 19.8% increase in MVC force, a 6.8% and 24.3% increase in maximal MUFR, and a 7.4% and 14.2% decrease in AHP duration. These results indicate that age-related changes in neuromuscular function are not a necessary consequence of aging.
Collapse
Affiliation(s)
- Anita Christie
- Department of Kinesiology, University of Massachusetts, 110 Totman Building, 30 Eastman Lane, Amherst, Massachusetts 01003-9258, USA.
| | | |
Collapse
|
16
|
Nakanishi ST, Whelan PJ. Diversification of Intrinsic Motoneuron Electrical Properties During Normal Development and Botulinum Toxin–Induced Muscle Paralysis in Early Postnatal Mice. J Neurophysiol 2010; 103:2833-45. [DOI: 10.1152/jn.00022.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During early postnatal development, between birth and postnatal days 8–11, mice start to achieve weight-bearing locomotion. In association with the progression of weight-bearing locomotion there are presumed developmental changes in the intrinsic electrical properties of spinal α-motoneurons. However, these developmental changes in the properties of α-motoneuron properties have not been systematically explored in mice. Here, data are presented documenting the developmental changes of selected intrinsic motoneuron electrical properties, including statistically significant changes in action potential half-width, intrinsic excitability and diversity (quantified as coefficient of variation) of rheobase current, afterhyperpolarization half-decay time, and input resistance. In various adult mammalian preparations, the maintenance of intrinsic motoneuron electrical properties is dependent on activity and/or transmission-sensitive motoneuron–muscle interactions. In this study, we show that botulinum toxin–induced muscle paralysis led to statistically significant changes in the normal development of intrinsic motoneuron electrical properties in the postnatal mouse. This suggests that muscle activity during early neonatal life contributes to the development of normal motoneuron electrical properties.
Collapse
Affiliation(s)
- S. T. Nakanishi
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - P. J. Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Gordon T, Tyreman N, Li S, Putman C, Hegedus J. Functional over-load saves motor units in the SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2010; 37:412-22. [DOI: 10.1016/j.nbd.2009.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/23/2009] [Accepted: 10/22/2009] [Indexed: 01/26/2023] Open
|
18
|
Thomas CK, Häger-Ross CK, Klein CS. Effects of baclofen on motor units paralysed by chronic cervical spinal cord injury. Brain 2009; 133:117-25. [PMID: 19903733 DOI: 10.1093/brain/awp285] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Baclofen, a gamma-aminobutyric acid receptor(B) agonist, is used to reduce symptoms of spasticity (hyperreflexia, increases in muscle tone, involuntary muscle activity), but the long-term effects of sustained baclofen use on skeletal muscle properties are unclear. The aim of our study was to evaluate whether baclofen use and paralysis due to cervical spinal cord injury change the contractile properties of human thenar motor units more than paralysis alone. Evoked electromyographic activity and force were recorded in response to intraneural stimulation of single motor axons to thenar motor units. Data from three groups of motor units were compared: 23 paralysed units from spinal cord injured subjects who take baclofen and have done so for a median of 7 years, 25 paralysed units from spinal cord injured subjects who do not take baclofen (median: 10 years) and 45 units from uninjured control subjects. Paralysed motor unit properties were independent of injury duration and level. With paralysis and baclofen, the median motor unit tetanic forces were significantly weaker, twitch half-relaxation times longer and half maximal forces reached at lower frequencies than for units from uninjured subjects. The median values for these same parameters after paralysis alone were comparable to control data. Axon conduction velocities differed across groups and were slowest for paralysed units from subjects who were not taking baclofen and fastest for units from the uninjured. Greater motor unit weakness with long-term baclofen use and paralysis will make the whole muscle weaker and more fatigable. Significantly more paralysed motor units need to be excited during patterned electrical stimulation to produce any given force over time. The short-term benefits of baclofen on spasticity (e.g. management of muscle spasms that may otherwise hinder movement or social interactions) therefore have to be considered in relation to its possible long-term effects on muscle rehabilitation. Restoring the strength and speed of paralysed muscles to pre-injury levels may require more extensive therapy when baclofen is used chronically.
Collapse
Affiliation(s)
- Christine K Thomas
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14 Terrace, R48, Miami, FL 33136-2104, USA.
| | | | | |
Collapse
|
19
|
Webber SC, Porter MM, Gardiner PF. Modeling age-related neuromuscular changes in humans. Appl Physiol Nutr Metab 2009; 34:732-44. [PMID: 19767810 DOI: 10.1139/h09-052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With aging, motoneurons and muscle tissue undergo significant changes, which influence function in terms of strength, mobility, and overall independence. Mathematical modeling provides a practical method of studying the relationships among recruitment, rate-coding, and force output in motor units, and may be used to predict functional neuromuscular changes related to aging. For this study, the Heckman-Binder model was used to examine changes in human quadriceps motor units. Relationships among current input, firing frequency, and force output were defined for both a younger and an older individual. Included in the model were age-related effects associated with reduced muscle contractile speed; reduced muscle-fibre number, size, and specific tension; reduced gain of the frequency-current relationship; decreased size of motoneurons; and altered motor unit remodeling. Adjustment of this model to reflect age-related changes resulted in a leftward shift of the force-frequency function, lower firing frequency for any given current injected into the motoneuron, and a reduction in maximal force output. The model suggests that older individuals are capable of reaching force levels up to approximately 50% of those attained by younger individuals, with relatively similar or even slightly lower levels of current input. This could mean that the sense of effort and the contribution of factors other than degree of effort from afferent inputs to the pool, including conscious supraspinal centres, might be different in the older adult.
Collapse
Affiliation(s)
- Sandra C Webber
- Department of Physiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | |
Collapse
|
20
|
Ogborn DI, Gardiner PF. Effects of exercise and muscle type on BDNF, NT-4/5, and TrKB expression in skeletal muscle. Muscle Nerve 2009; 41:385-91. [DOI: 10.1002/mus.21503] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Button DC, Kalmar JM, Gardiner K, Marqueste T, Zhong H, Roy RR, Edgerton VR, Gardiner PF. Does elimination of afferent input modify the changes in rat motoneurone properties that occur following chronic spinal cord transection? J Physiol 2007; 586:529-44. [PMID: 18006586 DOI: 10.1113/jphysiol.2007.141499] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to determine the effects of 6-8 weeks of chronic spinal cord isolation (SI, removal of descending, ascending and afferent inputs), compared with the same duration of spinal cord transection (ST, removal of descending input only) on hindlimb motoneurone biophysical properties. Adult female Sprague-Dawley rats were placed into three groups: (1) control (no removal of inputs), (2) ST and (3) SI. The electrophysiological properties from sciatic nerve motoneurones were recorded from deeply anaesthetized rats. Motoneurones in SI rats had significantly (P < 0.01) lower rheobase currents and higher spike afterhyperpolarization amplitudes and input resistances compared with motoneurones in control rats. A higher percentage (chi2, P = 0.01) of motoneurones in SI than control rats demonstrated frequency-current (f-I) relationships consistent with activation of persistent inward currents. Motoneurone steady state f-I slopes determined by increasing steps of 500 ms current pulses were significantly lower (P < 0.02) in SI than control rats. Motoneurone spike frequency adaptation measured using 30 s square-wave current injections (1.5-3.0 nA above the estimated rhythmic firing threshold), was similar for control and SI motoneurones. Changes in motoneurone properties following SI did not differ from ST. These findings indicate that the removal of afferent and ascending inputs along with descending inputs has little additional affect on motoneurone properties than removal of descending inputs alone. This study is the first to demonstrate that intact ascending and afferent input does not modify the effects of spinal transection on basic and rhythmic firing properties of rat hindlimb motoneurones.
Collapse
Affiliation(s)
- Duane C Button
- Spinal Cord Research Centre, Department of Physiology, University of Manitoba, 730 William Avenue, 436 BMSB, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bichler EK, Carrasco DI, Rich MM, Cope TC, Pinter MJ. Rat motoneuron properties recover following reinnervation in the absence of muscle activity and evoked acetylcholine release. J Physiol 2007; 585:47-56. [PMID: 17884931 PMCID: PMC2375469 DOI: 10.1113/jphysiol.2007.135541] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Available evidence supports the idea that muscle fibres provide retrograde signals that enable the expression of adult motoneuron electrical properties but the mechanisms remain unknown. We showed recently that when acetylcholine receptors are blocked at motor endplates, the electrical properties of rat motoneurons change in a way that resembles changes observed after axotomy. This observation suggests that receptor blockade and axotomy interrupt the same signalling mechanisms but leaves open the possibility that the loss of muscle fibre activity underlies the observed effects. To address this issue, we examined the electrical properties of axotomized motoneurons following reinnervation. Ordinarily, these properties return to normal following reinnervation and re-activation of muscle, but in this study muscle fibre activity and evoked acetylcholine release were prevented during reinnervation by blocking axonal conduction. Under these conditions, the properties of motoneurons that successfully reinnervated muscle fibres recovered to normal despite the absence of muscle fibre activity and evoked release. We conclude that the expression of motoneuron electrical properties is not regulated by muscle fibre activity but rather by a retrograde signalling system coupled to activation of endplate acetylcholine receptors. Our results indicate that spontaneous release of acetylcholine from regenerated motor terminals is sufficient to operate the system.
Collapse
Affiliation(s)
- Edyta K Bichler
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
23
|
Ganji F, Behzadi G. Postnatal development of masseteric motoneurons in congenital hypothyroid rats. Brain Res 2007; 1129:81-8. [PMID: 17156759 DOI: 10.1016/j.brainres.2006.10.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/16/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
It has been known that an intact thyroid hormone is obligatory for the attainment of the normal masticatory function at the time of weaning. Following induced maternal thyroid hypo-function, the development of masseter motoneurons was determined at postnatal days 1, 7, 15 and 23 (weaning time), using retrograde transport of horseradish peroxidase (HRP) in the normal and hypothyroid pups. Based on the HRP labeling profile (strong and weak), the soma area of the masseteric labeled motoneurons was measured in each group. No significant morphological differences were observed at the end of the first week of life. On day 15, hypothyroid masseteric labeled motoneurons consisted of 76% small and 24% medium-sized neurons compared to 58% and 42% in normal pups, respectively. At the time of weaning (i.e., day 23) the number of large masseter motoneurons reached to 1/3 of normal value with few, short and disoriented dendrites in the hypothyroid pup. There was no statistically significant difference in the uptake of HRP from the neuromuscular junction. These results suggest that neonatal thyroid hormone deficiency considerably postponed the development of feeding behavior from sucking to chewing and biting.
Collapse
Affiliation(s)
- Farzaneh Ganji
- Neuroscience Research Center and Physiology Department, Faculty of Medicine, Shaheed Beheshti Medical Sciences University, Tehran, Iran
| | | |
Collapse
|
24
|
Häger-Ross CK, Klein CS, Thomas CK. Twitch and Tetanic Properties of Human Thenar Motor Units Paralyzed by Chronic Spinal Cord Injury. J Neurophysiol 2006; 96:165-74. [PMID: 16611836 DOI: 10.1152/jn.01339.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little is known about how human motor units respond to chronic paralysis. Our aim was to record surface electromyographic (EMG) signals, twitch forces, and tetanic forces from paralyzed motor units in the thenar muscles of individuals ( n = 12) with chronic (1.5–19 yr) cervical spinal cord injury (SCI). Each motor unit was activated by intraneural stimulation of its motor axon using single pulses and trains of pulses at frequencies between 5 and 100 Hz. Paralyzed motor units ( n = 48) had small EMGs and weak tetanic forces ( n = 32 units) but strong twitch forces, resulting in half-maximal force being achieved at a median of only 8 Hz. The distributions for cumulative twitch and tetanic forces also separated less for paralyzed units than for control units, indicating that increases in stimulation frequency made a smaller relative contribution to the total force output in paralyzed muscles. Paralysis also induced slowing of conduction velocities, twitch contraction times and EMG durations. However, the elevated ratios between the twitch and the tetanic forces, but not contractile speed, correlated significantly with the extent to which unit force summated in response to different frequencies of stimulation. Despite changes in the absolute values of many electrical and mechanical properties of paralyzed motor units, most of the distributions shifted uniformly relative to those of thenar units obtained from control subjects. Thus human thenar muscles paralyzed by SCI retain a population of motor units with heterogeneous contractile properties because chronic paralysis influenced all of the motor units similarly.
Collapse
Affiliation(s)
- C K Häger-Ross
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136-2104, USA
| | | | | |
Collapse
|
25
|
Button DC, Gardiner K, Marqueste T, Gardiner PF. Frequency-current relationships of rat hindlimb alpha-motoneurones. J Physiol 2006; 573:663-77. [PMID: 16613880 PMCID: PMC1779753 DOI: 10.1113/jphysiol.2006.107292] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 04/06/2006] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study was to describe the frequency-current (f-I) relationships of hindlimb alpha-motoneurones (MNs) in both anaesthetized and decerebrate rats in situ. Sprague-Dawley rats (250-350 g) were anaesthetized with ketamine and xylazine (KX) or subjected to a precollicular decerebration prior to recording electrophysiological properties from sciatic nerve MNs. Motoneurones from KX-anaesthetized rats had a significantly (P < 0.01) hyperpolarized resting membrane potential and voltage threshold (Vth), increased rheobase current, and a trend (P = 0.06) for a smaller after-hyperpolarization (AHP) amplitude compared to MNs from decerebrate rats. In response to 5 s ramp current injections, MNs could be categorized into four f-I relationship types: (1) linear; (2) adapting; (3) linear + sustained; and (4) late acceleration. Types 3 and 4 demonstrated self-sustained firing owing to activation of persistent inward current (PIC). We estimated the PIC amplitude by subtracting the current at spike derecruitment from the current at spike recruitment. Neither estimated PIC nor f-I slopes differed between fast and slow MNs (slow MNs exhibited AHP half-decay times > 20 ms) or between MNs from KX-anaesthetized and decerebrate rats. Motoneurones from KX-anaesthetized rats had significantly (P < 0.02) hyperpolarized ramp Vth values and smaller and shorter AHP amplitudes and decay times compared to MNs from decerebrate rats. Pentobarbitone decreased the estimated PIC amplitude and almost converted the f-I relationship from type 3 to type 1. In summary, MNs of animals subjected to KX anaesthesia required more current for spike initiation and rhythmic discharge but retained large PICs and self-sustained firing. The KX-anaesthestized preparation enables direct recording of PICs in MNs from intact animals.
Collapse
Affiliation(s)
- Duane C Button
- Spinal Cord Research Center, Department of Physiology, University of Manitoba, 730 William Avenue, 436 BMSB, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | | |
Collapse
|
26
|
Gardiner P, Beaumont E, Cormery B. Motoneurones "learn" and "forget" physical activity. ACTA ACUST UNITED AC 2005; 30:352-70. [PMID: 16129890 DOI: 10.1139/h05-127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In spite of our knowledge of activity related adaptations in supraspinal neurones and skeletal muscles, very little is known concerning adaptations in alpha-motoneurones to alterations in chronic activity levels. Recent evidence shows that the biophysical properties of alpha-motoneurones are plastic and adapt to both increases and decreases in chronic activation. The nature of the adaptations--in resting membrane potential, spike threshold, afterhyper-polarization amplitude,and rate of depolarization during spike generation--point to involvement of density, type, location, and/or metabolic modulation of ion conductance channels in the motoneuronal membrane. These changes will have significant effects on how motoneurones respond when activated during the generation of movements, and on the effort required to sustain activation during prolonged exercise. Since the adaptations most likely involve structural changes in the motoneurones and changes in protein synthesis, and change the output response of the cells to input, they are considered to be learning responses. Future research directions for examining this issue are outlined.
Collapse
Affiliation(s)
- Phillip Gardiner
- Spinal Cord Research Center, Dept. of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
27
|
Robinson GA, Madison RD. Manipulations of the mouse femoral nerve influence the accuracy of pathway reinnervation by motor neurons. Exp Neurol 2005; 192:39-45. [PMID: 15698617 DOI: 10.1016/j.expneurol.2004.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 10/11/2004] [Accepted: 10/20/2004] [Indexed: 12/15/2022]
Abstract
Previous studies using the femoral nerve model in both mice and rats have shown that regenerating motor axons prefer to reinnervate the terminal nerve branch to muscle versus a terminal nerve branch to skin, a process that has been termed preferential motor reinnervation (PMR). If end organ contact with muscle and skin is prevented, this preferential motor reinnervation still occurs in the rat. To better understand the process of preferential motor reinnervation in the mouse, we examined motor neuron reinnervation of muscle and cutaneous pathways without any end organ contact as well as with only cutaneous end organ contact. Surprisingly, there was no preferential motor reinnervation: Motor neurons preferred the cutaneous pathway over the muscle pathway when all end organ contact was prevented and showed an even greater preference for the cutaneous pathway when it was attached to skin.
Collapse
Affiliation(s)
- Grant A Robinson
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
28
|
Bose P, Parmer R, Reier PJ, Thompson FJ. Morphological changes of the soleus motoneuron pool in chronic midthoracic contused rats. Exp Neurol 2005; 191:13-23. [PMID: 15589508 DOI: 10.1016/j.expneurol.2004.08.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 08/10/2004] [Accepted: 08/24/2004] [Indexed: 11/23/2022]
Abstract
This study investigated the morphological features of the soleus motoneuron pool in rats with chronic (4 months), midthoracic (T8) contusions of moderate severity. Motoneurons were retrogradely labeled using unconjugated cholera toxin B (CTB) subunit solution injected directly into the soleus muscle of 10 contused and 6 age- and sex-matched, normal controls. Morphometric studies compared somal area, perimeter, diameter, dendritic length, and size distribution of labeled cells in normal and postcontusion animals. In normal animals, motoneurons with a mean of 110.4 +/- 5.2 were labeled on the toxin-injected side of the cord (left). By comparison, labeled cells with a mean of 93.0 +/- 8.4 (a 16% decrease, P = 0.006) were observed in the chronic spinal-injured animals. A significantly smaller frequency of very small (area, approximately 100 microm2) and medium (area, 545-914 microm2) neurons, and a significantly higher frequency of larger (area, >914 microm2) neurons was observed in the labeled soleus motoneuron pools of injured animals compared with the normal controls. Dendritic bundles in the contused animals were composed of thicker dendrites, were arranged in more closely aggregated bundles, and were organized in a longitudinal axis (rostrocaudal axis). Changes in soleus motoneuron dendritic morphology also included significant decrease of total number of dendrites, increased staining, hypertrophy of primary dendrites, and significant decreased primary, secondary, and tertiary branching. The changes in size distribution and dendritic morphology in the postcontusion animals possibly resulted from cell loss and transformation of medium cells to larger cells and/or injury-associated failure of medium cells to transport the immunolabel.
Collapse
Affiliation(s)
- Prodip Bose
- Department of Neuroscience, McKnight Brain Institute at the University of Florida College of Medicine, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
29
|
Robinson GA, Madison RD. Motor neurons can preferentially reinnervate cutaneous pathways. Exp Neurol 2004; 190:407-13. [PMID: 15530879 DOI: 10.1016/j.expneurol.2004.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 08/11/2004] [Accepted: 08/13/2004] [Indexed: 10/26/2022]
Abstract
Previous work in the rat femoral nerve has shown that regenerating motor neurons preferentially reinnervate a terminal nerve branch to muscle as opposed to skin. This process has been termed preferential motor reinnervation (PMR) and has been interpreted as evidence that regenerating motor axons can differentiate between Schwann cell tubes that reside in muscle versus cutaneous terminal pathways. However, much of this previous work has been confounded by motor axons having access to target muscle during the regeneration period. The present experiments prevented muscle contact by regenerating motor axons. By 8 weeks under these conditions, significantly more motor neurons reinnervated the cutaneous pathway rather than the original muscle pathway. We propose that cutaneous and muscle terminal pathways are not inherently different in terms of their ability to support regeneration of motor neurons. Rather, we suggest that it is the relative level of trophic support provided by each nerve branch that determines whether motor axons will remain in that particular branch. Within the context of the femoral nerve model, our results suggest a hierarchy of trophic support for regenerating motor axons with muscle contact being the highest, followed by the length of the terminal nerve branch and/or contact with skin.
Collapse
Affiliation(s)
- Grant A Robinson
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
30
|
Gulino R, Lombardo SA, Casabona A, Leanza G, Perciavalle V. Levels of brain-derived neurotrophic factor and neurotrophin-4 in lumbar motoneurons after low-thoracic spinal cord hemisection. Brain Res 2004; 1013:174-81. [PMID: 15193526 DOI: 10.1016/j.brainres.2004.03.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2004] [Indexed: 01/19/2023]
Abstract
Neuroplasticity represents a common phenomenon after spinal cord (SC) injury or deafferentation that compensates for the loss of modulatory inputs to the cord. Neurotrophins play a crucial role in cell survival and anatomical reorganization of damaged spinal cord, and are known to exert an activity-dependent modulation of neuroplasticity. Little is known about their role in the earliest plastic events, probably involving synaptic plasticity, which are responsible for the rapid recovery of hindlimb motility after hemisection, in the rat. In order to gain further insight, we evaluated the changes in BDNF and NT-4 expression by lumbar motoneurons after low-thoracic spinal cord hemisection. Early after lesion (30 min), the immunostaining density within lumbar motoneurons decreased markedly on both ipsilateral and contralateral sides of the spinal cord. This reduction was statistically significant and was then followed by a significant recovery along the experimental period (14 days), during which a substantial recovery of hindlimb motility was observed. Our data indicate that BDNF and NT-4 expression could be modulated by activity of spinal circuitry and further support putative involvement of the endogenous neurotrophins in mechanisms of spinal neuroplasticity.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Physiological Sciences, University of Catania, Viale Andrea Doria, 6-95125, Catania, Italy
| | | | | | | | | |
Collapse
|
31
|
Gordon T, Thomas CK, Munson JB, Stein RB. The resilience of the size principle in the organization of motor unit properties in normal and reinnervated adult skeletal muscles. Can J Physiol Pharmacol 2004; 82:645-61. [PMID: 15523522 DOI: 10.1139/y04-081] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Henneman's size principle relates the input and output properties of motoneurons and their muscle fibers to size and is the basis for size-ordered activation or recruitment of motor units during movement. After nerve injury and surgical repair, the relationship between motoneuron size and the number and size of the muscle fibers that the motoneuron reinnervates is initially lost but returns with time, irrespective of whether the muscles are self- or cross-reinnervated by the regenerated axons. Although the return of the size relationships was initially attributed to the recovery of the cross-sectional area of the reinnervated muscle fibers and their force per fiber, direct enumeration of the innervation ratio and the number of muscle fibers per motoneuron demonstrated that a size-dependent branching of axons accounts for the size relationships in normal muscle, as suggested by Henneman and his colleagues. This same size-dependent branching accounts for the rematching of motoneuron size and muscle unit size in reinnervated muscles. Experiments were carried out to determine whether the daily amount of neuromuscular activation of motor units accounts for the size-dependent organization and reorganization of motor unit properties. The normal size-dependent matching of motoneurons and their muscle units with respect to the numbers of muscle fibers per motoneuron was unaltered by synchronous activation of all of the motor units with the same daily activity. Hence, the restored size relationships and rematching of motoneuron and muscle unit properties after nerve injuries and muscle reinnervation sustain the normal gradation of muscle force during movement by size-ordered recruitment of motor units and the process of rate coding of action potentials. Dynamic modulation of size of muscle fibers and their contractile speed and endurance by neuromuscular activity allows for neuromuscular adaptation in the context of the sustained organization of the neuromuscular system according to the size principle.Key words: motor unit size, motor unit recruitment, innervation ratio, reinnervation.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Physical Therapy and Rehabilitation, Centre for Neuroscience, 525 Heritage Medical Research Center, Faculty of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| | | | | | | |
Collapse
|
32
|
Simon M, Porter R, Brown R, Coulton GR, Terenghi G. Effect of NT-4 and BDNF delivery to damaged sciatic nerves on phenotypic recovery of fast and slow muscles fibres. Eur J Neurosci 2003; 18:2460-6. [PMID: 14622146 DOI: 10.1046/j.1460-9568.2003.02978.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated whether neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF) affected the reinnervation of slow and fast motor units. Neurotrophin-impregnated or plain fibronectin (FN) conduits were inserted into a sciatic nerve gap. Fast extensor digitorum longus (EDL) and slow soleus muscles were collected 4 months postsurgery. Muscles were weighed and fibre type proportion and mean fibre diameters were derived from muscle cross-sections. All fibre types in muscles from FN animals were severely atrophied and this correlated well with type 1 fibre loss and atrophy in soleus and type 2b loss and atrophy in EDL. Treatment with NT-4 reversed soleus but not EDL mass loss above the FN group by significantly restoring type 1 muscle fibre proportion and diameters towards those of normal unoperated animals. BDNF did not increase muscle mass but did have minor effects on fibre type and diameter. Thus, NT-4 significantly improved slow motor unit recovery, and provides a basis for therapies intended to aid the functional recovery of muscles after denervating injury.
Collapse
Affiliation(s)
- Magda Simon
- Blond McIndoe Centre, Royal Free and University College Medical School, London, UK
| | | | | | | | | |
Collapse
|
33
|
Gonzalez-Forero D, de la Cruz RR, Delgado-Garcia JM, Alvarez FJ, Pastor AM. Functional alterations of cat abducens neurons after peripheral tetanus neurotoxin injection. J Neurophysiol 2003; 89:1878-90. [PMID: 12686570 DOI: 10.1152/jn.01006.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tetanus neurotoxin (TeNT) cleaves synaptobrevin, a protein involved in synaptic vesicle docking and fusion, thereby preventing neurotransmitter release and causing a functional deafferentation. We injected TeNT into the lateral rectus muscle of adult cats at 0.5 or 5 ng/kg (low and high dose, respectively). In the periphery, TeNT slightly slowed motor axon conduction velocity, and at high doses, partially blocked neuromuscular transmission. TeNT peripheral actions displayed time courses different to the more profound and longer-lasting central actions. Central effects were first observed 2 days postinjection and reversed after 1 mo. The low dose induce depression of inhibitory inputs, whereas the high dose produce depression of both inhibitory and excitatory inputs. Simultaneous recordings of eye movement and neuronal firing revealed that low-dose injections specifically reduced inhibition of firing during off-directed saccadic movements, while high-dose injections of TeNT affected both inhibitory and excitatory driven firing patterns. Motoneurons and abducens interneurons were both affected in a similar way. These alterations resulted in modifications in all discharge characteristic analyzed such as background firing, threshold for recruitment, and firing sensitivities to both eye position and velocity during spontaneous movements or vestibulo-ocular reflexes. Removal of inhibition after low-dose injections also altered firing patterns, and although firing activity increased, it did not result in muscle tetanic contractions. Removal of inhibition and excitation by high-dose injections resulted in a decrease in firing modulation with eye movements. Our findings suggest that the distinct behavior of oculomotor and spinal motor output following TeNT intoxication could be explained by their different interneuronal and proprioceptive control.
Collapse
|
34
|
Kernell D. Things we know and do not know about motoneurones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 508:187-92. [PMID: 12171109 DOI: 10.1007/978-1-4615-0713-0_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
An introductory survey is given of the cellular physiology of motoneurones (MNs). Steady driving currents, applied to individual cells through microelectrodes, may be used for determining such key parameters as the range of possible discharge rates and the shape and steepness of the curve relating discharge frequency to current intensity (f-I relation). Quantitatively, MN properties may vary considerably between animal species and between cells innervating different types of muscle fibres. Central synapses impinging upon MNs often simply provide "driving" currents, altering MN discharge rate largely in accordance with the f-I relation. In addition, metabotropic synapses may have "MN-modifying" effects, altering MN membrane and activation properties in various ways. Studies of MN firing and response patterns in normal and pathological motor behaviour is essential for evaluating the functional role of short- and long-term modifications of MN properties.
Collapse
Affiliation(s)
- Daniel Kernell
- Department of Medical Physiology, University of Groningen, The Netherlands.
| |
Collapse
|
35
|
Beaumont E, Gardiner PF. Endurance training alters the biophysical properties of hindlimb motoneurons in rats. Muscle Nerve 2003; 27:228-36. [PMID: 12548531 DOI: 10.1002/mus.10308] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of the study was to determine the effect of daily endurance treadmill training (2 h/day, 30 m/min) on motoneuron biophysical properties. Electrophysiological properties of tibial motoneurons were measured in situ in anesthetized (ketamine/xylazine) control and trained rats using sharp glass microelectrodes. Motoneurons from trained rats had significantly hyperpolarized resting membrane potentials and spike trigger levels, and faster antidromic spike rise-times. "Fast" motoneurons (after-hyperpolarization half-decay time <20 ms) in trained rats also had a significantly larger mean cell capacitance than those in control rats, suggesting that they were larger, although this had no effect on indices of excitability (rheobase, cell input resistance). Motoneurons are thus targets for activity-induced adaptations, which may have clinical significance for the role of physical activity as a therapeutic modality in cases of neurological deficit. The specific adaptations noted, which reflect alterations in ionic conductances, may serve to offset decreases in membrane excitability that occur during sustained excitation.
Collapse
Affiliation(s)
- Eric Beaumont
- Département de Kinésiologie, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
36
|
Abstract
Experimental data indicate the existence of a matching between many motoneurone characteristics and those of the corresponding innervated muscle fibres. This association between the properties of motoneurones and muscle fibres is quite important for the adequate and efficient functioning of the motor system. We present a view of motoneurones and muscle fibres as encoders and decoders of signals. An analysis of some of the encoding/decoding relations performed by motoneurones and muscle fibres in functionally relevant situations indicates that they are optimal and we indicate in the paper what performance measures are optimised. Besides its relevance in the study of motor control, the encoding/decoding framework should also be useful in the task of model validation.
Collapse
Affiliation(s)
- André F Kohn
- Laboratório de Engenharia Biomédica, Universidade de São Paulo, Escola Politécnica, Cx. P. 61548, CEP 05424-970 São Paulo, SP, Brazil.
| | | |
Collapse
|
37
|
Mousavi K, Miranda W, Parry DJ. Neurotrophic factors enhance the survival of muscle fibers in EDL, but not SOL, after neonatal nerve injury. Am J Physiol Cell Physiol 2002; 283:C950-9. [PMID: 12176751 DOI: 10.1152/ajpcell.00081.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neonatal sciatic nerve crush results in a sustained reduction of the mass of both extensor digitorum longus (EDL) and soleus (SOL) muscles in the rat. Type IIB fibers are selectively lost from EDL. We have investigated the effects of ciliary neurotrophic factor (CNTF) combined with neurotrophin (NT)-3 or NT-4 on muscle mass, as well as the number, cross-sectional area, and distribution of muscle fiber types and the number of motor neurons innervating EDL and SOL 3 mo after transient axotomy 5 days after birth. Both NT treatments prevented the axotomy-induced loss of muscle mass in both EDL and SOL and of total number of muscle fibers in EDL but not in SOL. Although IIB fiber loss was not prevented, both NT treatments resulted in altered fiber type distribution. Both NT combinations also reduced the loss of EDL motor neurons. These data suggest that a differential distribution of NT receptors on either motor neurons or muscle fibers may lead to different levels of susceptibility to neonatal axotomy.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Axotomy
- Cell Survival/drug effects
- Ciliary Neurotrophic Factor/pharmacology
- Disease Models, Animal
- Drug Therapy, Combination
- Immunohistochemistry
- Motor Neurons/drug effects
- Motor Neurons/pathology
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle Fibers, Skeletal/classification
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/innervation
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myosin Heavy Chains/biosynthesis
- Nerve Crush
- Nerve Growth Factors/pharmacology
- Neurotrophin 3/pharmacology
- Rats
- Rats, Sprague-Dawley
- Sciatic Neuropathy/drug therapy
- Sciatic Neuropathy/pathology
- Sciatic Neuropathy/physiopathology
Collapse
Affiliation(s)
- Kambiz Mousavi
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario K1H-8M5, Canada
| | | | | |
Collapse
|
38
|
Beaumont E, Gardiner P. Effects of daily spontaneous running on the electrophysiological properties of hindlimb motoneurones in rats. J Physiol 2002; 540:129-38. [PMID: 11927675 PMCID: PMC2290217 DOI: 10.1113/jphysiol.2001.013084] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
No evidence currently exists that motoneurone adaptations in electrophysiological properties can result from changes in the chronic level of neuromuscular activity. We examined, in anaesthetized (ketamine/xylazine) rats, the properties of motoneurones with axons in the tibial nerve, from rats performing daily spontaneous running exercise for 12 weeks in exercise wheels ('runners') and from rats confined to plastic cages ('controls'). Motoneurones innervating the hindlimb via the tibial nerve were impaled with sharp glass microelectrodes, and the properties of resting membrane potential, spike threshold, rheobase, input resistance, and the amplitude and time-course of the afterhyperpolarization (AHP) were measured. AHP half-decay time was used to separate motoneurones into 'fast' (AHP half-decay time < 20 ms) and 'slow' (AHP half-decay time >/= 20 ms), the proportions of which were not significantly different between controls (58 % fast) and runners (65 % fast). Two-way ANOVA and ANCOVA revealed differences between motoneurones of runners and controls which were confined to the 'slow' motoneurones. Specifically, runners had slow motoneurones with more negative resting membrane potentials and spike thresholds, larger rheobasic spike amplitudes, and larger amplitude AHPs compared to slow motoneurones of controls. These adaptations were not evident in comparing fast motoneurones from runners and controls. This is the first demonstration that physiological modifications in neuromuscular activity can influence basic motoneurone biophysical properties. The results suggest that adaptations occur in the density, localization, and/or modulation of ionic membrane channels that control these properties. These changes might help offset the depolarization of spike threshold that occurs during rhythmic firing.
Collapse
Affiliation(s)
- Eric Beaumont
- Département de kinésiologie, Université de Montréal, Québec, Canada H3C 3J7
| | | |
Collapse
|
39
|
Abstract
Spinal cord injury is associated with adaptations to the muscular, skeletal, and spinal systems. Experimental data are lacking regarding the extent to which rehabilitative methods may influence these adaptations. An understanding of the plasticity of the muscular, skeletal, and spinal systems after paralysis may be important as new rehabilitative technologies emerge in the 21st century. Moreover, individuals injured today may become poor candidates for future scientific advancements (cure) if their neuromusculoskeletal systems are irreversibly impaired. The primary purpose of this paper is to explore the physiological properties of skeletal muscle as a result of spinal cord injury; secondarily, to consider associated changes at the skeletal and spinal levels. Muscular adaptations include a transformation to faster myosin, increased contractile speeds, shift to the right on the torque-frequency curve, increased fatigue, and enhanced doublet potentiation. These muscular adaptations may be prevented in individuals with acute paralysis and partially reversed in individuals with chronic paralysis. Moreover, the muscular changes may be coordinated with motor unit and spinal circuitry adaptations. Concurrently, skeletal adaptations, as measured by bone mineral density, show extensive loss within the first six months after paralysis. The underlying science governing neuromusculoskeletal adaptations after paralysis will help guide professionals as new rehabilitation strategies evolve in the future.
Collapse
Affiliation(s)
- Richard K Shields
- Physical Therapy Graduate Program, The University of Iowa, Iowa City 52242-1008, USA.
| |
Collapse
|
40
|
Abstract
Muscle fatigue is an exercise-induced reduction in maximal voluntary muscle force. It may arise not only because of peripheral changes at the level of the muscle, but also because the central nervous system fails to drive the motoneurons adequately. Evidence for "central" fatigue and the neural mechanisms underlying it are reviewed, together with its terminology and the methods used to reveal it. Much data suggest that voluntary activation of human motoneurons and muscle fibers is suboptimal and thus maximal voluntary force is commonly less than true maximal force. Hence, maximal voluntary strength can often be below true maximal muscle force. The technique of twitch interpolation has helped to reveal the changes in drive to motoneurons during fatigue. Voluntary activation usually diminishes during maximal voluntary isometric tasks, that is central fatigue develops, and motor unit firing rates decline. Transcranial magnetic stimulation over the motor cortex during fatiguing exercise has revealed focal changes in cortical excitability and inhibitability based on electromyographic (EMG) recordings, and a decline in supraspinal "drive" based on force recordings. Some of the changes in motor cortical behavior can be dissociated from the development of this "supraspinal" fatigue. Central changes also occur at a spinal level due to the altered input from muscle spindle, tendon organ, and group III and IV muscle afferents innervating the fatiguing muscle. Some intrinsic adaptive properties of the motoneurons help to minimize fatigue. A number of other central changes occur during fatigue and affect, for example, proprioception, tremor, and postural control. Human muscle fatigue does not simply reside in the muscle.
Collapse
Affiliation(s)
- S C Gandevia
- Prince of Wales Medical Research Institute, Prince of Wales Hospital and University of New South Wales, Randwick, Sydney, Australia.
| |
Collapse
|
41
|
Gordon T, Rafuse VF. Size of myelinated nerve fibres is not increased by expansion of the peripheral field in cats. J Physiol 2001; 532:835-49. [PMID: 11313450 PMCID: PMC2278581 DOI: 10.1111/j.1469-7793.2001.0835e.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study tests the hypothesis that target size regulates the size of myelinated sensory and motor fibres in peripheral nerves. Cat medial gastrocnemius (MG) muscles were partially denervated and the size of the remaining nerve fibres that sprouted was examined 6.4 +/- 0.9 months later to determine whether nerve fibre size increased with target size. Electrophysiological and morphometric analyses were used to quantify myelinated nerve fibre size. Charge measurements from dorsal and ventral roots were used to electrophysiologically quantify the relative number of cut nerve fibres and the average size of the remaining intact sensory and motor nerve fibres. Medial gastrocnemius muscle and motor unit forces provided indirect measurements of the increase in target size. Conduction velocities and amplitude of unitary action potentials of motor nerve fibres innervating single motor units were also measured after partial denervation. Electrophysiological measurements of nerve fibre size and morphometric measurements of outer fibre perimeters and fibre areas concurred and demonstrated that myelinated nerve fibres supplying partially denervated MG muscles did not increase in size in parallel with the increase in the target size. Thus, unlike non-myelinated nerve fibres, the size of myelinated nerve fibres does not increase as target size increases. Retrograde control of size in non-myelinated but not in myelinated nerve fibres demonstrates differences in plasticity of neurons in the somatic and autonomic nervous systems.
Collapse
Affiliation(s)
- T Gordon
- Department of Pharmacology, Division of Neuroscience, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| | | |
Collapse
|
42
|
Schindler-Ivens S, Shields RK. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury. Exp Brain Res 2000; 133:233-41. [PMID: 10968224 PMCID: PMC4034370 DOI: 10.1007/s002210000377] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We measured low-frequency depression of soleus H-reflexes in individuals with acute (n=5) and chronic (n=7) spinal-cord injury and in able-bodied controls (n=7). In one acute subject, we monitored longitudinal changes in low-frequency depression of H-reflexes over 44 weeks and examined the relationship between H-reflex depression and soleus-muscle fatigue properties. Soleus H-reflexes were elicited at 0.1, 0.2, 1, 5, and 10 Hz. The mean peak-to-peak amplitude of ten reflexes at each frequency was calculated, and values obtained at each frequency were normalized to 0.1 Hz. H-reflex amplitude decreased with increasing stimulation frequency in all three groups, but H-reflex suppression was significantly larger in the able-bodied and acute groups than in the chronic group. The acute subject who was monitored longitudinally displayed reduced low-frequency depression with increasing time post injury. At 44 weeks post injury, the acute subject's H-reflex depression was similar to that of chronic subjects, and his soleus fatigue index (assessed with a modified Burke fatigue protocol) dropped substantially, consistent with transformation to faster muscle. There was a significant inverse correlation over the 44 weeks between the fatigue index and the mean normalized H-reflex amplitude at 1, 5, and 10 Hz. We conclude that: (1) the chronically paralyzed soleus muscle displays impaired low-frequency depression of H-reflexes, (2) attenuation of rate-sensitive depression in humans with spinal-cord injury occurs gradually, and (3) changes in H-reflex excitability are generally correlated with adaptation of the neuromuscular system. Possible mechanisms underlying changes in low-frequency depression and their association with neuromuscular adaptation are discussed.
Collapse
Affiliation(s)
- S Schindler-Ivens
- Physical Therapy Graduate Program, The University of Iowa, Iowa City 52242-1008, USA
| | | |
Collapse
|
43
|
Cormery B, Marini JF, Gardiner PF. Changes in electrophysiological properties of tibial motoneurones in the rat following 4 weeks of tetrodotoxin-induced paralysis. Neurosci Lett 2000; 287:21-4. [PMID: 10841981 DOI: 10.1016/s0304-3940(00)01110-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we test the hypothesis that 4 weeks tetrodotoxin (TTX) paralysis altered the passive membrane properties of rat tibial motoneurones. Impulse activity along the sciatic nerve was blocked for 4 weeks using TTX delivered by an osmotic minipump to a Silastic cuff placed around the nerve. That portion of the sample exhibiting the 20% slowest After-hyperpolarization (AHP) decay time (AHPd), and which therefore included presumptive type S motoneurons, demonstrated responses (reduced AHPd, increased rheobase and rheobase voltage), which were not evident in the rest of the sample (presumptive fast motoneurons), in which an increased AHPd, in fact, was found. The results thus support the hypothesis that retrograde signals from inactive slow and fast muscle fibers have different effects on their innervating motoneurones.
Collapse
Affiliation(s)
- B Cormery
- Département de kinésiologie, Université de Montréal, C.P. 6128, Succursale Centre-ville Montréal, H3C 3J7, Québec, Canada.
| | | | | |
Collapse
|
44
|
Ulfhake B, Bergman E, Edstrom E, Fundin BT, Johnson H, Kullberg S, Ming Y. Regulation of neurotrophin signaling in aging sensory and motoneurons: dissipation of target support? Mol Neurobiol 2000; 21:109-35. [PMID: 11379795 DOI: 10.1385/mn:21:3:109] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A hallmark of senescence is sensorimotor impairment, involving locomotion and postural control as well as fine-tuned movements. Sensory and motoneurons are not lost to any significant degree with advancing age, but do show characteristic changes in gene-expression pattern, morphology, and connectivity. This review covers recent experimental findings corroborating that alterations in trophic signaling may induce several of the phenotypic changes seen in primary sensory and motoneurons during aging. Furthermore, the data suggests that target failure, and/or breakdown of neuron-target interaction, is a critical event in the aging process of sensory and motoneurons.
Collapse
Affiliation(s)
- B Ulfhake
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
45
|
Gordon T, Tyreman N, Rafuse VF, Munson JB. Limited plasticity of adult motor units conserves recruitment order and rate coding. PROGRESS IN BRAIN RESEARCH 2000; 123:191-202. [PMID: 10635716 DOI: 10.1016/s0079-6123(08)62856-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- T Gordon
- Department of Pharmacology, University of Alberta, Edmonton, Canada.
| | | | | | | |
Collapse
|
46
|
Kernell D. Repetitive impulse firing in motoneurons: facts and perspectives. PROGRESS IN BRAIN RESEARCH 2000; 123:31-7. [PMID: 10635701 DOI: 10.1016/s0079-6123(08)62841-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- D Kernell
- Department of Medical Physiology, University of Groningen, The Netherlands.
| |
Collapse
|
47
|
Mendell LM, Munson JB. Retrograde effects on synaptic transmission at the Ia/motoneuron connection. JOURNAL OF PHYSIOLOGY, PARIS 1999; 93:297-304. [PMID: 10574119 DOI: 10.1016/s0928-4257(00)80058-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The fidelity of impulse propagation through the complex axonal tree en route to the various target cells of that fiber is an important question in neurobiology. Anatomists can trace pathways, but if impulses fail to propagate down to the terminals to release transmitter onto the target cell, there is a significant 'disconnect' between anatomy and physiology. These issues have been studied at length in the spinal cord of the cat where it has proven possible to examine the connections made by afferent fibers on motoneurons under different stimulus conditions. EPSP amplitude varies systematically during high frequency stimulation of the afferents according to the identity of the target motoneuron. This variation is a function of the state of the motoneuron's relation to its peripheral target. It changes after motoneuron axotomy and recovers with reinnervation of the periphery. Neurotrophins delivered to the axotomized motor axons fail to induce recovery. Chronic stimulation of the motor nerve alters muscle properties with coordinated changes in properties of the synapses on motoneurons innervating the stimulated muscle. We cannot yet definitively establish the mechanisms determining synaptic behavior during high frequency stimulation. However, the retrograde regulation of these properties suggests that it is an important variable and thus is worthy of intensive further study.
Collapse
Affiliation(s)
- L M Mendell
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, 11794-5230, USA
| | | |
Collapse
|
48
|
Kernell D, Bakels R, Copray JC. Discharge properties of motoneurones: how are they matched to the properties and use of their muscle units? JOURNAL OF PHYSIOLOGY, PARIS 1999; 93:87-96. [PMID: 10084712 DOI: 10.1016/s0928-4257(99)80139-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general survey is given of old as well as more recent findings concerning matches between electrophysiological properties of motoneurones and contractile properties of their muscle fibres. Mechanisms for creating and maintaining such matches are discussed. It is pointed out that it is not sufficient to describe the variation of functional motoneurone characteristics simply in terms of 'fast' or 'slow': all properties seem continuously graded and there is cytochemical evidence for several, seemingly independent parameters of functional specialisation.
Collapse
Affiliation(s)
- D Kernell
- Department of Medical Physiology, University of Groningen, The Netherlands
| | | | | |
Collapse
|
49
|
Gordon T, Tyreman N, Rafuse VF, Munson JB. Fast-to-slow conversion following chronic low-frequency activation of medial gastrocnemius muscle in cats. I. Muscle and motor unit properties. J Neurophysiol 1997; 77:2585-604. [PMID: 9163378 DOI: 10.1152/jn.1997.77.5.2585] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study of cat medial gastrocnemius (MG) muscle and motor unit (MU) properties tests the hypothesis that the normal ranges of MU contractile force, endurance, and speed are directly associated with the amount of neuromuscular activity normally experienced by each MU. We synchronously activated all MUs in the MG muscle with the same activity (20 Hz in a 50% duty cycle) and asked whether conversion of whole muscle contractile properties is associated with loss of the normal heterogeneity in MU properties. Chronically implanted cuff electrodes on the nerve to MG muscle were used for 24-h/day stimulation and for monitoring progressive changes in contractile force, endurance, and speed by periodic recording of maximal isometric twitch and tetanic contractions under halothane anesthesia. Chronic low-frequency stimulation slowed muscle contractions and made them weaker, and increased muscle endurance. The most rapid and least variable response to stimulation was a decline in force output of the muscle and constituent MUs. Fatigue resistance increased more slowly, whereas the increase in time to peak force varied most widely between animals and occurred with a longer time course than either force or endurance. Changes in contractile force, endurance, and speed of the whole MG muscle accurately reflected changes in the properties of the constituent MUs both in extent and time course. Normally there is a 100-fold range in tetanic force and a 10-fold range in fatigue indexes and twitch time to peak force. After chronic stimulation, the range in these properties was significantly reduced and, even in MU samples from single animals, the range was shown to correspond with the slow (type S) MUs of the normal MG. In no case was the range reduced to less than the type S range. The same results were obtained when the same chronic stimulation pattern of 20 Hz/50% duty cycle was imposed on paralyzed muscles after hemisection and unilateral deafferentation. The findings that the properties of MUs still varied within the normal range of type S MUs and were still heterogeneous despite a decline in the variance in any one property indicate that the neuromuscular activity can account only in part for the wide range of muscle properties. It is concluded that the normal range of properties within MU types reflects an intrinsic regulation of properties in the multinucleated muscle fibers.
Collapse
Affiliation(s)
- T Gordon
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|