1
|
Hoshal BD, Holmes CM, Bojanek K, Salisbury JM, Berry MJ, Marre O, Palmer SE. Stimulus-invariant aspects of the retinal code drive discriminability of natural scenes. Proc Natl Acad Sci U S A 2024; 121:e2313676121. [PMID: 39700141 DOI: 10.1073/pnas.2313676121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/11/2024] [Indexed: 12/21/2024] Open
Abstract
Everything that the brain sees must first be encoded by the retina, which maintains a reliable representation of the visual world in many different, complex natural scenes while also adapting to stimulus changes. This study quantifies whether and how the brain selectively encodes stimulus features about scene identity in complex naturalistic environments. While a wealth of previous work has dug into the static and dynamic features of the population code in retinal ganglion cells (RGCs), less is known about how populations form both flexible and reliable encoding in natural moving scenes. We record from the larval salamander retina responding to five different natural movies, over many repeats, and use these data to characterize the population code in terms of single-cell fluctuations in rate and pairwise couplings between cells. Decomposing the population code into independent and cell-cell interactions reveals how broad scene structure is encoded in the retinal output. while the single-cell activity adapts to different stimuli, the population structure captured in the sparse, strong couplings is consistent across natural movies as well as synthetic stimuli. We show that these interactions contribute to encoding scene identity. We also demonstrate that this structure likely arises in part from shared bipolar cell input as well as from gap junctions between RGCs and amacrine cells.
Collapse
Affiliation(s)
- Benjamin D Hoshal
- Committee on Computational Neuroscience, Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | | | - Kyle Bojanek
- Committee on Computational Neuroscience, Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | - Jared M Salisbury
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
- Department of Physics, University of Chicago, Chicago, IL 60637
| | - Michael J Berry
- Princeton Neuroscience Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Olivier Marre
- Institut de la Vision, Sorbonne Université, INSERM, Paris 75012, France
| | - Stephanie E Palmer
- Committee on Computational Neuroscience, Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
- Department of Physics, University of Chicago, Chicago, IL 60637
- Center for the Physics of Biological Function, Department of Physics, Princeton University, Princeton, NJ 08540
| |
Collapse
|
2
|
Shah NP, Phillips AJ, Madugula S, Lotlikar A, Gogliettino AR, Hays MR, Grosberg L, Brown J, Dusi A, Tandon P, Hottowy P, Dabrowski W, Sher A, Litke AM, Mitra S, Chichilnisky EJ. Precise control of neural activity using dynamically optimized electrical stimulation. eLife 2024; 13:e83424. [PMID: 39508555 PMCID: PMC11542921 DOI: 10.7554/elife.83424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 07/15/2024] [Indexed: 11/15/2024] Open
Abstract
Neural implants have the potential to restore lost sensory function by electrically evoking the complex naturalistic activity patterns of neural populations. However, it can be difficult to predict and control evoked neural responses to simultaneous multi-electrode stimulation due to nonlinearity of the responses. We present a solution to this problem and demonstrate its utility in the context of a bidirectional retinal implant for restoring vision. A dynamically optimized stimulation approach encodes incoming visual stimuli into a rapid, greedily chosen, temporally dithered and spatially multiplexed sequence of simple stimulation patterns. Stimuli are selected to optimize the reconstruction of the visual stimulus from the evoked responses. Temporal dithering exploits the slow time scales of downstream neural processing, and spatial multiplexing exploits the independence of responses generated by distant electrodes. The approach was evaluated using an experimental laboratory prototype of a retinal implant: large-scale, high-resolution multi-electrode stimulation and recording of macaque and rat retinal ganglion cells ex vivo. The dynamically optimized stimulation approach substantially enhanced performance compared to existing approaches based on static mapping between visual stimulus intensity and current amplitude. The modular framework enabled parallel extensions to naturalistic viewing conditions, incorporation of perceptual similarity measures, and efficient implementation for an implantable device. A direct closed-loop test of the approach supported its potential use in vision restoration.
Collapse
Affiliation(s)
- Nishal Pradeepbhai Shah
- Department of Electrical EngineeringStanfordUnited States
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | - AJ Phillips
- Department of Electrical EngineeringStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | - Sasidhar Madugula
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | | | - Alex R Gogliettino
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
- Neurosciences PhD ProgramStanfordUnited States
| | - Madeline Rose Hays
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
- Department of BioengineeringStanfordUnited States
| | - Lauren Grosberg
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | - Jeff Brown
- Department of Electrical EngineeringStanfordUnited States
| | - Aditya Dusi
- Department of Electrical EngineeringStanfordUnited States
| | - Pulkit Tandon
- Department of Electrical EngineeringStanfordUnited States
| | - Pawel Hottowy
- AGH University of Science and Technology, Faculty of Physics and Applied Computer ScienceKrakowPoland
| | - Wladyslaw Dabrowski
- AGH University of Science and Technology, Faculty of Physics and Applied Computer ScienceKrakowPoland
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CASanta CruzUnited States
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CASanta CruzUnited States
| | | | - EJ Chichilnisky
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
- Department of OphthalmologyStanfordUnited States
| |
Collapse
|
3
|
Erbslöh A, Buron L, Ur-Rehman Z, Musall S, Hrycak C, Löhler P, Klaes C, Seidl K, Schiele G. Technical survey of end-to-end signal processing in BCIs using invasive MEAs. J Neural Eng 2024; 21:051003. [PMID: 39326451 DOI: 10.1088/1741-2552/ad8031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Modern brain-computer interfaces and neural implants allow interaction between the tissue, the user and the environment, where people suffer from neurodegenerative diseases or injuries.This interaction can be achieved by using penetrating/invasive microelectrodes for extracellular recordings and stimulation, such as Utah or Michigan arrays. The application-specific signal processing of the extracellular recording enables the detection of interactions and enables user interaction. For example, it allows to read out movement intentions from recordings of brain signals for controlling a prosthesis or an exoskeleton. To enable this, computationally complex algorithms are used in research that cannot be executed on-chip or on embedded systems. Therefore, an optimization of the end-to-end processing pipeline, from the signal condition on the electrode array over the analog pre-processing to spike-sorting and finally the neural decoding process, is necessary for hardware inference in order to enable a local signal processing in real-time and to enable a compact system for achieving a high comfort level. This paper presents a survey of system architectures and algorithms for end-to-end signal processing pipelines of neural activity on the hardware of such neural devices, including (i) on-chip signal pre-processing, (ii) spike-sorting on-chip or on embedded hardware and (iii) neural decoding on workstations. A particular focus for the hardware implementation is on low-power electronic design and artifact-robust algorithms with low computational effort and very short latency. For this, current challenges and possible solutions with support of novel machine learning techniques are presented in brief. In addition, we describe our future vision for next-generation BCIs.
Collapse
Affiliation(s)
| | - Leo Buron
- University of Duisburg-Essen, Duisburg, Germany
| | | | | | | | | | | | - Karsten Seidl
- University of Duisburg-Essen, Duisburg, Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, Germany
| | | |
Collapse
|
4
|
Zhang Y, Lyu H, Hurwitz C, Wang S, Findling C, Hubert F, Pouget A, Varol E, Paninski L. Exploiting correlations across trials and behavioral sessions to improve neural decoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613047. [PMID: 39314484 PMCID: PMC11419137 DOI: 10.1101/2024.09.14.613047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Traditional neural decoders model the relationship between neural activity and behavior within individual trials of a single experimental session, neglecting correlations across trials and sessions. However, animals exhibit similar neural activities when performing the same behavioral task, and their behaviors are influenced by past experiences from previous trials. To exploit these informative correlations in large datasets, we introduce two complementary models: a multi-session reduced-rank model that shares similar behaviorally-relevant statistical structure in neural activity across sessions to improve decoding, and a multi-session state-space model that shares similar behavioral statistical structure across trials and sessions. Applied across 433 sessions spanning 270 brain regions in the International Brain Laboratory public mouse Neuropixels dataset, our decoders demonstrate improved decoding accuracy for four distinct behaviors compared to traditional approaches. Unlike existing deep learning approaches, our models are interpretable and efficient, uncovering latent behavioral dynamics that govern animal decision-making, quantifying single-neuron contributions to decoding behaviors, and identifying different activation timescales of neural activity across the brain. Code: https://github.com/yzhang511/neural_decoding.
Collapse
Affiliation(s)
- Yizi Zhang
- Department of Statistics, Columbia University, New York, New York, United States of America
| | - Hanrui Lyu
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| | - Cole Hurwitz
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| | - Shuqi Wang
- Department of Computer Science, École Polytechnique Fédérale de Lausanne, Écublens, Vaud, Switzerland
| | - Charles Findling
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Felix Hubert
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Alexandre Pouget
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | | | - Erdem Varol
- Department of Computer Science and Engineering, New York University, New York, New York, United States of America
| | - Liam Paninski
- Department of Statistics, Columbia University, New York, New York, United States of America
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| |
Collapse
|
5
|
Wu EG, Brackbill N, Rhoades C, Kling A, Gogliettino AR, Shah NP, Sher A, Litke AM, Simoncelli EP, Chichilnisky EJ. Fixational eye movements enhance the precision of visual information transmitted by the primate retina. Nat Commun 2024; 15:7964. [PMID: 39261491 PMCID: PMC11390888 DOI: 10.1038/s41467-024-52304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Fixational eye movements alter the number and timing of spikes transmitted from the retina to the brain, but whether these changes enhance or degrade the retinal signal is unclear. To quantify this, we developed a Bayesian method for reconstructing natural images from the recorded spikes of hundreds of retinal ganglion cells (RGCs) in the macaque retina (male), combining a likelihood model for RGC light responses with the natural image prior implicitly embedded in an artificial neural network optimized for denoising. The method matched or surpassed the performance of previous reconstruction algorithms, and provides an interpretable framework for characterizing the retinal signal. Reconstructions were improved with artificial stimulus jitter that emulated fixational eye movements, even when the eye movement trajectory was assumed to be unknown and had to be inferred from retinal spikes. Reconstructions were degraded by small artificial perturbations of spike times, revealing more precise temporal encoding than suggested by previous studies. Finally, reconstructions were substantially degraded when derived from a model that ignored cell-to-cell interactions, indicating the importance of stimulus-evoked correlations. Thus, fixational eye movements enhance the precision of the retinal representation.
Collapse
Affiliation(s)
- Eric G Wu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Nora Brackbill
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Colleen Rhoades
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alexandra Kling
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, 94305, CA, USA
| | - Alex R Gogliettino
- Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, 94305, CA, USA
- Neurosciences PhD Program, Stanford University, Stanford, CA, USA
| | - Nishal P Shah
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Eero P Simoncelli
- Flatiron Institute, Simons Foundation, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - E J Chichilnisky
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Ophthalmology, Stanford University, Stanford, CA, USA.
- Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, 94305, CA, USA.
| |
Collapse
|
6
|
Wu EG, Brackbill N, Rhoades C, Kling A, Gogliettino AR, Shah NP, Sher A, Litke AM, Simoncelli EP, Chichilnisky E. Fixational Eye Movements Enhance the Precision of Visual Information Transmitted by the Primate Retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.12.552902. [PMID: 37645934 PMCID: PMC10462030 DOI: 10.1101/2023.08.12.552902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Fixational eye movements alter the number and timing of spikes transmitted from the retina to the brain, but whether these changes enhance or degrade the retinal signal is unclear. To quantify this, we developed a Bayesian method for reconstructing natural images from the recorded spikes of hundreds of retinal ganglion cells (RGCs) in the macaque retina (male), combining a likelihood model for RGC light responses with the natural image prior implicitly embedded in an artificial neural network optimized for denoising. The method matched or surpassed the performance of previous reconstruction algorithms, and provides an interpretable framework for characterizing the retinal signal. Reconstructions were improved with artificial stimulus jitter that emulated fixational eye movements, even when the eye movement trajectory was assumed to be unknown and had to be inferred from retinal spikes. Reconstructions were degraded by small artificial perturbations of spike times, revealing more precise temporal encoding than suggested by previous studies. Finally, reconstructions were substantially degraded when derived from a model that ignored cell-to-cell interactions, indicating the importance of stimulus-evoked correlations. Thus, fixational eye movements enhance the precision of the retinal representation.
Collapse
Affiliation(s)
- Eric G. Wu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Nora Brackbill
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Colleen Rhoades
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alexandra Kling
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, 94305, CA, USA
| | - Alex R. Gogliettino
- Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, 94305, CA, USA
- Neurosciences PhD Program, Stanford University, Stanford, CA, USA
| | - Nishal P. Shah
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alan M. Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Eero P. Simoncelli
- Flatiron Institute, Simons Foundation, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - E.J. Chichilnisky
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, 94305, CA, USA
| |
Collapse
|
7
|
Hoshal BD, Holmes CM, Bojanek K, Salisbury J, Berry MJ, Marre O, Palmer SE. Stimulus invariant aspects of the retinal code drive discriminability of natural scenes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.08.552526. [PMID: 37609259 PMCID: PMC10441377 DOI: 10.1101/2023.08.08.552526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Everything that the brain sees must first be encoded by the retina, which maintains a reliable representation of the visual world in many different, complex natural scenes while also adapting to stimulus changes. This study quantifies whether and how the brain selectively encodes stimulus features about scene identity in complex naturalistic environments. While a wealth of previous work has dug into the static and dynamic features of the population code in retinal ganglion cells, less is known about how populations form both flexible and reliable encoding in natural moving scenes. We record from the larval salamander retina responding to five different natural movies, over many repeats, and use these data to characterize the population code in terms of single-cell fluctuations in rate and pairwise couplings between cells. Decomposing the population code into independent and cell-cell interactions reveals how broad scene structure is encoded in the retinal output. while the single-cell activity adapts to different stimuli, the population structure captured in the sparse, strong couplings is consistent across natural movies as well as synthetic stimuli. We show that these interactions contribute to encoding scene identity. We also demonstrate that this structure likely arises in part from shared bipolar cell input as well as from gap junctions between retinal ganglion cells and amacrine cells.
Collapse
|
8
|
Shi N, Miao Y, Huang C, Li X, Song Y, Chen X, Wang Y, Gao X. Estimating and approaching the maximum information rate of noninvasive visual brain-computer interface. Neuroimage 2024; 289:120548. [PMID: 38382863 DOI: 10.1016/j.neuroimage.2024.120548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
An essential priority of visual brain-computer interfaces (BCIs) is to enhance the information transfer rate (ITR) to achieve high-speed communication. Despite notable progress, noninvasive visual BCIs have encountered a plateau in ITRs, leaving it uncertain whether higher ITRs are achievable. In this study, we used information theory to study the characteristics and capacity of the visual-evoked channel, which leads us to investigate whether and how we can decode higher information rates in a visual BCI system. Using information theory, we estimate the upper and lower bounds of the information rate with the white noise (WN) stimulus. Consequently, we found out that the information rate is determined by the signal-to-noise ratio (SNR) in the frequency domain, which reflects the spectrum resources of the channel. Based on this discovery, we propose a broadband WN BCI by implementing stimuli on a broader frequency band than the steady-state visual evoked potentials (SSVEPs)-based BCI. Through validation, the broadband BCI outperforms the SSVEP BCI by an impressive 7 bps, setting a record of 50 bps. The integration of information theory and the decoding analysis presented in this study offers valuable insights applicable to general sensory-evoked BCIs, providing a potential direction of next-generation human-machine interaction systems.
Collapse
Affiliation(s)
- Nanlin Shi
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yining Miao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Changxing Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiang Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yonghao Song
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical, Sciences and Peking Union Medical College, Street, Tianjin 300192, China
| | - Yijun Wang
- Key Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Gogliettino AR, Cooler S, Vilkhu RS, Brackbill NJ, Rhoades C, Wu EG, Kling A, Sher A, Litke AM, Chichilnisky EJ. Modeling responses of macaque and human retinal ganglion cells to natural images using a convolutional neural network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586353. [PMID: 38585930 PMCID: PMC10996505 DOI: 10.1101/2024.03.22.586353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Linear-nonlinear (LN) cascade models provide a simple way to capture retinal ganglion cell (RGC) responses to artificial stimuli such as white noise, but their ability to model responses to natural images is limited. Recently, convolutional neural network (CNN) models have been shown to produce light response predictions that were substantially more accurate than those of a LN model. However, this modeling approach has not yet been applied to responses of macaque or human RGCs to natural images. Here, we train and test a CNN model on responses to natural images of the four numerically dominant RGC types in the macaque and human retina - ON parasol, OFF parasol, ON midget and OFF midget cells. Compared with the LN model, the CNN model provided substantially more accurate response predictions. Linear reconstructions of the visual stimulus were more accurate for CNN compared to LN model-generated responses, relative to reconstructions obtained from the recorded data. These findings demonstrate the effectiveness of a CNN model in capturing light responses of major RGC types in the macaque and human retinas in natural conditions.
Collapse
|
10
|
Weng G, Clark K, Akbarian A, Noudoost B, Nategh N. Time-varying generalized linear models: characterizing and decoding neuronal dynamics in higher visual areas. Front Comput Neurosci 2024; 18:1273053. [PMID: 38348287 PMCID: PMC10859875 DOI: 10.3389/fncom.2024.1273053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
To create a behaviorally relevant representation of the visual world, neurons in higher visual areas exhibit dynamic response changes to account for the time-varying interactions between external (e.g., visual input) and internal (e.g., reward value) factors. The resulting high-dimensional representational space poses challenges for precisely quantifying individual factors' contributions to the representation and readout of sensory information during a behavior. The widely used point process generalized linear model (GLM) approach provides a powerful framework for a quantitative description of neuronal processing as a function of various sensory and non-sensory inputs (encoding) as well as linking particular response components to particular behaviors (decoding), at the level of single trials and individual neurons. However, most existing variations of GLMs assume the neural systems to be time-invariant, making them inadequate for modeling nonstationary characteristics of neuronal sensitivity in higher visual areas. In this review, we summarize some of the existing GLM variations, with a focus on time-varying extensions. We highlight their applications to understanding neural representations in higher visual areas and decoding transient neuronal sensitivity as well as linking physiology to behavior through manipulation of model components. This time-varying class of statistical models provide valuable insights into the neural basis of various visual behaviors in higher visual areas and hold significant potential for uncovering the fundamental computational principles that govern neuronal processing underlying various behaviors in different regions of the brain.
Collapse
Affiliation(s)
- Geyu Weng
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Amir Akbarian
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Neda Nategh
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Du Z, Gupta M, Xu F, Zhang K, Zhang J, Zhou Y, Liu Y, Wang Z, Wrachtrup J, Wong N, Li C, Chu Z. Widefield Diamond Quantum Sensing with Neuromorphic Vision Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304355. [PMID: 37939304 PMCID: PMC10787069 DOI: 10.1002/advs.202304355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/04/2023] [Indexed: 11/10/2023]
Abstract
Despite increasing interest in developing ultrasensitive widefield diamond magnetometry for various applications, achieving high temporal resolution and sensitivity simultaneously remains a key challenge. This is largely due to the transfer and processing of massive amounts of data from the frame-based sensor to capture the widefield fluorescence intensity of spin defects in diamonds. In this study, a neuromorphic vision sensor to encode the changes of fluorescence intensity into spikes in the optically detected magnetic resonance (ODMR) measurements is adopted, closely resembling the operation of the human vision system, which leads to highly compressed data volume and reduced latency. It also results in a vast dynamic range, high temporal resolution, and exceptional signal-to-background ratio. After a thorough theoretical evaluation, the experiment with an off-the-shelf event camera demonstrated a 13× improvement in temporal resolution with comparable precision of detecting ODMR resonance frequencies compared with the state-of-the-art highly specialized frame-based approach. It is successfully deploy this technology in monitoring dynamically modulated laser heating of gold nanoparticles coated on a diamond surface, a recognizably difficult task using existing approaches. The current development provides new insights for high-precision and low-latency widefield quantum sensing, with possibilities for integration with emerging memory devices to realize more intelligent quantum sensors.
Collapse
Affiliation(s)
- Zhiyuan Du
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Madhav Gupta
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Feng Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Kai Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Jiahua Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Yiyao Liu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
| | - Zhenyu Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
- Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Jörg Wrachtrup
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569, Stuttgart, Germany
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Ngai Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Can Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong, 999077, P. R. China
| |
Collapse
|
12
|
Boissonnet T, Tripodi M, Asari H. Awake responses suggest inefficient dense coding in the mouse retina. eLife 2023; 12:e78005. [PMID: 37922200 PMCID: PMC10624425 DOI: 10.7554/elife.78005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/28/2023] [Indexed: 11/05/2023] Open
Abstract
The structure and function of the vertebrate retina have been extensively studied across species with an isolated, ex vivo preparation. Retinal function in vivo, however, remains elusive, especially in awake animals. Here, we performed single-unit extracellular recordings in the optic tract of head-fixed mice to compare the output of awake, anesthetized, and ex vivo retinas. While the visual response properties were overall similar across conditions, we found that awake retinal output had in general (1) faster kinetics with less variability in the response latencies; (2) a larger dynamic range; and (3) higher firing activity, by ~20 Hz on average, for both baseline and visually evoked responses. Our modeling analyses further showed that such awake response patterns convey comparable total information but less efficiently, and allow for a linear population decoder to perform significantly better than the anesthetized or ex vivo responses. These results highlight distinct retinal behavior in awake states, in particular suggesting that the retina employs dense coding in vivo, rather than sparse efficient coding as has been often assumed from ex vivo studies.
Collapse
Affiliation(s)
- Tom Boissonnet
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
- Collaboration for joint PhD degree between EMBL and Université Grenoble Alpes, Grenoble Institut des NeurosciencesLa TroncheFrance
| | - Matteo Tripodi
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
| | - Hiroki Asari
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology LaboratoryMonterotondoItaly
| |
Collapse
|
13
|
Marquez MM, Chacron MJ. Serotonin increases population coding of behaviorally relevant stimuli by enhancing responses of ON but not OFF-type sensory neurons. Heliyon 2023; 9:e18315. [PMID: 37539191 PMCID: PMC10395545 DOI: 10.1016/j.heliyon.2023.e18315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
How neural populations encode sensory input to generate behavioral responses remains a central problem in systems neuroscience. Here we investigated how neuromodulation influences population coding of behaviorally relevant stimuli to give rise to behavior in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus. We performed multi-unit recordings from ON and OFF sensory pyramidal cells in response to stimuli whose amplitude (i.e., envelope) varied in time, before and after electrical stimulation of the raphe nuclei. Overall, raphe stimulation increased population coding by ON- but not by OFF-type cells, despite both cell types showing similar sensitivities to the stimulus at the single neuron level. Surprisingly, only changes in population coding by ON-type cells were correlated with changes in behavioral responses. Taken together, our results show that neuromodulation differentially affects ON vs. OFF-type cells in order to enhance perception of behaviorally relevant sensory input.
Collapse
|
14
|
Madugula SS, Vilkhu R, Shah NP, Grosberg LE, Kling A, Gogliettino AR, Nguyen H, Hottowy P, Sher A, Litke AM, Chichilnisky EJ. Inference of Electrical Stimulation Sensitivity from Recorded Activity of Primate Retinal Ganglion Cells. J Neurosci 2023; 43:4808-4820. [PMID: 37268418 PMCID: PMC10312054 DOI: 10.1523/jneurosci.1023-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023] Open
Abstract
High-fidelity electronic implants can in principle restore the function of neural circuits by precisely activating neurons via extracellular stimulation. However, direct characterization of the individual electrical sensitivity of a large population of target neurons, to precisely control their activity, can be difficult or impossible. A potential solution is to leverage biophysical principles to infer sensitivity to electrical stimulation from features of spontaneous electrical activity, which can be recorded relatively easily. Here, this approach is developed and its potential value for vision restoration is tested quantitatively using large-scale multielectrode stimulation and recording from retinal ganglion cells (RGCs) of male and female macaque monkeys ex vivo Electrodes recording larger spikes from a given cell exhibited lower stimulation thresholds across cell types, retinas, and eccentricities, with systematic and distinct trends for somas and axons. Thresholds for somatic stimulation increased with distance from the axon initial segment. The dependence of spike probability on injected current was inversely related to threshold, and was substantially steeper for axonal than somatic compartments, which could be identified by their recorded electrical signatures. Dendritic stimulation was largely ineffective for eliciting spikes. These trends were quantitatively reproduced with biophysical simulations. Results from human RGCs were broadly similar. The inference of stimulation sensitivity from recorded electrical features was tested in a data-driven simulation of visual reconstruction, revealing that the approach could significantly improve the function of future high-fidelity retinal implants.SIGNIFICANCE STATEMENT This study demonstrates that individual in situ primate retinal ganglion cells of different types respond to artificially generated, external electrical fields in a systematic manner, in accordance with theoretical predictions, that allows for prediction of electrical stimulus sensitivity from recorded spontaneous activity. It also provides evidence that such an approach could be immensely helpful in the calibration of clinical retinal implants.
Collapse
Affiliation(s)
- Sasidhar S Madugula
- Neurosciences PhD Program, Stanford University, Stanford, California 94305
- School of Medicine, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| | - Ramandeep Vilkhu
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
| | - Nishal P Shah
- Department of Neurosurgery, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| | - Lauren E Grosberg
- Department of Neurosurgery, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Facebook Reality Labs, Facebook, Mountain View, California 94040
| | - Alexandra Kling
- Department of Neurosurgery, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| | - Alex R Gogliettino
- Neurosciences PhD Program, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| | - Huy Nguyen
- Department of Neurosurgery, Stanford University, Stanford, California 94305
| | - Paweł Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland 30-059
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, California 95064
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, California 95064
| | - E J Chichilnisky
- Department of Neurosurgery, Stanford University, Stanford, California 94305
- Department of Ophthalmology, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| |
Collapse
|
15
|
Gogliettino AR, Madugula SS, Grosberg LE, Vilkhu RS, Brown J, Nguyen H, Kling A, Hottowy P, Dąbrowski W, Sher A, Litke AM, Chichilnisky EJ. High-Fidelity Reproduction of Visual Signals by Electrical Stimulation in the Central Primate Retina. J Neurosci 2023; 43:4625-4641. [PMID: 37188516 PMCID: PMC10286946 DOI: 10.1523/jneurosci.1091-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
Electrical stimulation of retinal ganglion cells (RGCs) with electronic implants provides rudimentary artificial vision to people blinded by retinal degeneration. However, current devices stimulate indiscriminately and therefore cannot reproduce the intricate neural code of the retina. Recent work has demonstrated more precise activation of RGCs using focal electrical stimulation with multielectrode arrays in the peripheral macaque retina, but it is unclear how effective this can be in the central retina, which is required for high-resolution vision. This work probes the neural code and effectiveness of focal epiretinal stimulation in the central macaque retina, using large-scale electrical recording and stimulation ex vivo The functional organization, light response properties, and electrical properties of the major RGC types in the central retina were mostly similar to the peripheral retina, with some notable differences in density, kinetics, linearity, spiking statistics, and correlations. The major RGC types could be distinguished by their intrinsic electrical properties. Electrical stimulation targeting parasol cells revealed similar activation thresholds and reduced axon bundle activation in the central retina, but lower stimulation selectivity. Quantitative evaluation of the potential for image reconstruction from electrically evoked parasol cell signals revealed higher overall expected image quality in the central retina. An exploration of inadvertent midget cell activation suggested that it could contribute high spatial frequency noise to the visual signal carried by parasol cells. These results support the possibility of reproducing high-acuity visual signals in the central retina with an epiretinal implant.SIGNIFICANCE STATEMENT Artificial restoration of vision with retinal implants is a major treatment for blindness. However, present-day implants do not provide high-resolution visual perception, in part because they do not reproduce the natural neural code of the retina. Here, we demonstrate the level of visual signal reproduction that is possible with a future implant by examining how accurately responses to electrical stimulation of parasol retinal ganglion cells can convey visual signals. Although the precision of electrical stimulation in the central retina was diminished relative to the peripheral retina, the quality of expected visual signal reconstruction in parasol cells was greater. These findings suggest that visual signals could be restored with high fidelity in the central retina using a future retinal implant.
Collapse
Affiliation(s)
- Alex R Gogliettino
- Neurosciences PhD Program, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| | - Sasidhar S Madugula
- Neurosciences PhD Program, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Stanford School of Medicine, Stanford University, Stanford, California 94305
| | - Lauren E Grosberg
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
| | - Ramandeep S Vilkhu
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
| | - Jeff Brown
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
| | - Huy Nguyen
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| | - Alexandra Kling
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
| | - Paweł Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Władysław Dąbrowski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064
| | - E J Chichilnisky
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
- Department of Ophthalmology, Stanford University, Stanford, California 94305
| |
Collapse
|
16
|
Leclère T, Johannesen PT, Wijetillake A, Segovia-Martínez M, Lopez-Poveda EA. A computational modelling framework for assessing information transmission with cochlear implants. Hear Res 2023; 432:108744. [PMID: 37004271 DOI: 10.1016/j.heares.2023.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Computational models are useful tools to investigate scientific questions that would be complicated to address using an experimental approach. In the context of cochlear-implants (CIs), being able to simulate the neural activity evoked by these devices could help in understanding their limitations to provide natural hearing. Here, we present a computational modelling framework to quantify the transmission of information from sound to spikes in the auditory nerve of a CI user. The framework includes a model to simulate the electrical current waveform sensed by each auditory nerve fiber (electrode-neuron interface), followed by a model to simulate the timing at which a nerve fiber spikes in response to a current waveform (auditory nerve fiber model). Information theory is then applied to determine the amount of information transmitted from a suitable reference signal (e.g., the acoustic stimulus) to a simulated population of auditory nerve fibers. As a use case example, the framework is applied to simulate published data on modulation detection by CI users obtained using direct stimulation via a single electrode. Current spread as well as the number of fibers were varied independently to illustrate the framework capabilities. Simulations reasonably matched experimental data and suggested that the encoded modulation information is proportional to the total neural response. They also suggested that amplitude modulation is well encoded in the auditory nerve for modulation rates up to 1000 Hz and that the variability in modulation sensitivity across CI users is partly because different CI users use different references for detecting modulation.
Collapse
Affiliation(s)
- Thibaud Leclère
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca 37007, Spain
| | - Peter T Johannesen
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca 37007, Spain
| | | | | | - Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca 37007, Spain; Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca 37007, Spain.
| |
Collapse
|
17
|
Mitchell-Heggs R, Prado S, Gava GP, Go MA, Schultz SR. Neural manifold analysis of brain circuit dynamics in health and disease. J Comput Neurosci 2023; 51:1-21. [PMID: 36522604 PMCID: PMC9840597 DOI: 10.1007/s10827-022-00839-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/30/2022] [Accepted: 10/29/2022] [Indexed: 12/23/2022]
Abstract
Recent developments in experimental neuroscience make it possible to simultaneously record the activity of thousands of neurons. However, the development of analysis approaches for such large-scale neural recordings have been slower than those applicable to single-cell experiments. One approach that has gained recent popularity is neural manifold learning. This approach takes advantage of the fact that often, even though neural datasets may be very high dimensional, the dynamics of neural activity tends to traverse a much lower-dimensional space. The topological structures formed by these low-dimensional neural subspaces are referred to as "neural manifolds", and may potentially provide insight linking neural circuit dynamics with cognitive function and behavioral performance. In this paper we review a number of linear and non-linear approaches to neural manifold learning, including principal component analysis (PCA), multi-dimensional scaling (MDS), Isomap, locally linear embedding (LLE), Laplacian eigenmaps (LEM), t-SNE, and uniform manifold approximation and projection (UMAP). We outline these methods under a common mathematical nomenclature, and compare their advantages and disadvantages with respect to their use for neural data analysis. We apply them to a number of datasets from published literature, comparing the manifolds that result from their application to hippocampal place cells, motor cortical neurons during a reaching task, and prefrontal cortical neurons during a multi-behavior task. We find that in many circumstances linear algorithms produce similar results to non-linear methods, although in particular cases where the behavioral complexity is greater, non-linear methods tend to find lower-dimensional manifolds, at the possible expense of interpretability. We demonstrate that these methods are applicable to the study of neurological disorders through simulation of a mouse model of Alzheimer's Disease, and speculate that neural manifold analysis may help us to understand the circuit-level consequences of molecular and cellular neuropathology.
Collapse
Affiliation(s)
- Rufus Mitchell-Heggs
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, EH8 9XD United Kingdom
| | - Seigfred Prado
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ United Kingdom
- Department of Electronics Engineering, University of Santo Tomas, Manila, Philippines
| | - Giuseppe P. Gava
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ United Kingdom
| | - Mary Ann Go
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ United Kingdom
| | - Simon R. Schultz
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, SW7 2AZ United Kingdom
| |
Collapse
|
18
|
Asahina T, Shimba K, Kotani K, Jimbo Y. Improving the accuracy of decoding monkey brain-machine interface data by estimating the state of unobserved cell assemblies. J Neurosci Methods 2023; 385:109764. [PMID: 36476748 DOI: 10.1016/j.jneumeth.2022.109764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The brain-machine interface is a technology that has been used for improving the quality of life of individuals with physical disabilities and also healthy individuals. It is important to improve the methods used for decoding the brain-machine interface data as the accuracy and speed of movements achieved using the existing technology are not comparable to the normal body. COMPARISON WITH THE EXISTING METHOD Decoding of brain-machine interface data using the proposed method resulted in improved decoding accuracy compared to the existing method. CONCLUSIONS The results demonstrated the usefulness of cell assembly state estimation method for decoding the brain-machine interface data. NEW METHOD We incorporated a novel method of estimating cell assembly states using spike trains with the existing decoding method that used only firing rate data. Synaptic connectivity pattern was used as feature values in addition to firing rate. Publicly available monkey brain-machine interface datasets were used in the study. RESULTS As long as the decoding was successful, the root mean square error of the proposed method was significantly smaller than the existing method. Artificial neural netowork-based decoding method resulted in more stable decoding, and also improved the decoding accuracy due to incorporation of synaptic connectivity pattern.
Collapse
Affiliation(s)
- Takahiro Asahina
- School of Engineering, The University of Tokyo, Tokyo, Japan; Japan Society for the Promotion of Science, Japan.
| | - Kenta Shimba
- School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Kotani
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yasuhiko Jimbo
- School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Babino D, Benster T, Laprell L, Van Gelder RN. Assessment of Murine Retinal Acuity Ex Vivo Using Multielectrode Array Recordings. Transl Vis Sci Technol 2023; 12:4. [PMID: 36598460 PMCID: PMC9832724 DOI: 10.1167/tvst.12.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/22/2022] [Indexed: 01/05/2023] Open
Abstract
Purpose Visual acuity, measured by resolution of optotypes on a standard eye chart, is a critical clinical test for function of the visual system in humans. Behavioral tests in animals can be used to estimate visual acuity. However, such tests may be limited in the study of mutants or after synthetic vision restoration techniques. Because the total response of the retina to a visual scene is encoded in spiking patterns of retinal ganglion cells, it should be possible to estimate visual acuity in vitro from the retina by analyzing retinal ganglion cell output in response to test stimuli. Methods We created a method, EyeCandy, that combines a visual stimulus-generating engine with analysis of multielectrode array retinal recordings via a machine learning approach to measure murine retinal acuity in vitro. Visual stimuli included static checkerboards, drifting gratings, and letter optotypes. Results In retinas from wild-type C57Bl/6 mice, retinal acuity measurement for a drifting grating was 0.4 cycles per degree. In contrast, retinas from adult rd1 mice with outer retinal degeneration showed no detectable acuity. A comparison of acuities among different regions of the retina revealed substantial variation, with the inferior-nasal quadrant having highest RA. Letter classification accuracy of a projected Early Treatment Diabetic Retinopathy eye chart reached 99% accuracy for logMAR 3.0 letters. EyeCandy measured a restored RA of 0.05 and 0.08 cycles per degree for static and dynamic stimuli respectively from the retina of the rd1 mouse treated with the azobenzene photoswitch BENAQ. Conclusions Machine learning may be used to estimate retinal acuity. Translational Relevance The use of ex vivo retinal acuity measurement may allow determination of effects of mutations, drugs, injury, or other manipulations on retinal visual function.
Collapse
Affiliation(s)
- Darwin Babino
- Departments of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
| | - Tyler Benster
- Departments of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
- Neurosciences Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Laprell
- Departments of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
| | - Russell N. Van Gelder
- Departments of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
- Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
- Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
20
|
Modeling temporal information encoding by the population of fibers in the healthy and synaptopathic auditory nerve. Hear Res 2022; 426:108621. [PMID: 36182814 DOI: 10.1016/j.heares.2022.108621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022]
Abstract
We report a theoretical study aimed at investigating the impact of cochlear synapse loss (synaptopathy) on the encoding of the envelope (ENV) and temporal fine structure (TFS) of sounds by the population of auditory nerve fibers. A computational model was used to simulate auditory-nerve spike trains evoked by sinusoidally amplitude-modulated (AM) tones at 10 Hz with various carrier frequencies and levels. The model included 16 cochlear channels with characteristic frequencies (CFs) from 250 Hz to 8 kHz. Each channel was innervated by 3, 4 and 10 fibers with low (LSR), medium (MSR), and high spontaneous rates (HSR), respectively. For each channel, spike trains were collapsed into three separate 'population' post-stimulus time histograms (PSTHs), one per fiber type. Information theory was applied to reconstruct the stimulus waveform, ENV, and TFS from one or more PSTHs in a mathematically optimal way. The quality of the reconstruction was regarded as an estimate of the information present in the used PSTHs. Various synaptopathy scenarios were simulated by removing fibers of specific types and/or cochlear regions before stimulus reconstruction. We found that the TFS was predominantly encoded by HSR fibers at all stimulus carrier frequencies and levels. The encoding of the ENV was more complex. At lower levels, the ENV was predominantly encoded by HSR fibers with CFs near the stimulus carrier frequency. At higher levels, the ENV was equally well or better encoded by HSR fibers with CFs different from the AM carrier frequency as by LSR fibers with CFs at the carrier frequency. Altogether, findings suggest that a healthy population of HSR fibers (i.e., including fibers with CFs around and remote from the AM carrier frequency) might be sufficient to encode the ENV and TFS over a wide range of stimulus levels. Findings are discussed regarding their relevance for diagnosing synaptopathy using non-invasive ENV- and TFS-based measures.
Collapse
|
21
|
Zhang YJ, Yu ZF, Liu JK, Huang TJ. Neural Decoding of Visual Information Across Different Neural Recording Modalities and Approaches. MACHINE INTELLIGENCE RESEARCH 2022. [PMCID: PMC9283560 DOI: 10.1007/s11633-022-1335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vision plays a peculiar role in intelligence. Visual information, forming a large part of the sensory information, is fed into the human brain to formulate various types of cognition and behaviours that make humans become intelligent agents. Recent advances have led to the development of brain-inspired algorithms and models for machine vision. One of the key components of these methods is the utilization of the computational principles underlying biological neurons. Additionally, advanced experimental neuroscience techniques have generated different types of neural signals that carry essential visual information. Thus, there is a high demand for mapping out functional models for reading out visual information from neural signals. Here, we briefly review recent progress on this issue with a focus on how machine learning techniques can help in the development of models for contending various types of neural signals, from fine-scale neural spikes and single-cell calcium imaging to coarse-scale electroencephalography (EEG) and functional magnetic resonance imaging recordings of brain signals.
Collapse
|
22
|
Knoll G, Lindner B. Information transmission in recurrent networks: Consequences of network noise for synchronous and asynchronous signal encoding. Phys Rev E 2022; 105:044411. [PMID: 35590546 DOI: 10.1103/physreve.105.044411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/04/2022] [Indexed: 06/15/2023]
Abstract
Information about natural time-dependent stimuli encoded by the sensory periphery or communication between cortical networks may span a large frequency range or be localized to a smaller frequency band. Biological systems have been shown to multiplex such disparate broadband and narrow-band signals and then discriminate them in later populations by employing either an integration (low-pass) or coincidence detection (bandpass) encoding strategy. Analytical expressions have been developed for both encoding methods in feedforward populations of uncoupled neurons and confirm that the integration of a population's output low-pass filters the information, whereas synchronous output encodes less information overall and retains signal information in a selected frequency band. The present study extends the theory to recurrent networks and shows that recurrence may sharpen the synchronous bandpass filter. The frequency of the pass band is significantly influenced by the synaptic strengths, especially for inhibition-dominated networks. Synchronous information transfer is also increased when network models take into account heterogeneity that arises from the stochastic distribution of the synaptic weights.
Collapse
Affiliation(s)
- Gregory Knoll
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany and Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany and Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| |
Collapse
|
23
|
She X, Berger TW, Song D. A Double-Layer Multi-Resolution Classification Model for Decoding Spatiotemporal Patterns of Spikes With Small Sample Size. Neural Comput 2021; 34:219-254. [PMID: 34758485 DOI: 10.1162/neco_a_01459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/19/2021] [Indexed: 11/04/2022]
Abstract
We build a double-layer, multiple temporal-resolution classification model for decoding single-trial spatiotemporal patterns of spikes. The model takes spiking activities as input signals and binary behavioral or cognitive variables as output signals and represents the input-output mapping with a double-layer ensemble classifier. In the first layer, to solve the underdetermined problem caused by the small sample size and the very high dimensionality of input signals, B-spline functional expansion and L1-regularized logistic classifiers are used to reduce dimensionality and yield sparse model estimations. A wide range of temporal resolutions of neural features is included by using a large number of classifiers with different numbers of B-spline knots. Each classifier serves as a base learner to classify spatiotemporal patterns into the probability of the output label with a single temporal resolution. A bootstrap aggregating strategy is used to reduce the estimation variances of these classifiers. In the second layer, another L1-regularized logistic classifier takes outputs of first-layer classifiers as inputs to generate the final output predictions. This classifier serves as a meta-learner that fuses multiple temporal resolutions to classify spatiotemporal patterns of spikes into binary output labels. We test this decoding model with both synthetic and experimental data recorded from rats and human subjects performing memory-dependent behavioral tasks. Results show that this method can effectively avoid overfitting and yield accurate prediction of output labels with small sample size. The double-layer, multi-resolution classifier consistently outperforms the best single-layer, single-resolution classifier by extracting and utilizing multi-resolution spatiotemporal features of spike patterns in the classification.
Collapse
Affiliation(s)
- Xiwei She
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, U.S.A.
| | - Theodore W Berger
- Department of Biomedical Engineering and Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, U.S.A.
| | - Dong Song
- Department of Biomedical Engineering and Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, U.S.A.
| |
Collapse
|
24
|
Chandrasekaran S, Fifer M, Bickel S, Osborn L, Herrero J, Christie B, Xu J, Murphy RKJ, Singh S, Glasser MF, Collinger JL, Gaunt R, Mehta AD, Schwartz A, Bouton CE. Historical perspectives, challenges, and future directions of implantable brain-computer interfaces for sensorimotor applications. Bioelectron Med 2021; 7:14. [PMID: 34548098 PMCID: PMC8456563 DOI: 10.1186/s42234-021-00076-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022] Open
Abstract
Almost 100 years ago experiments involving electrically stimulating and recording from the brain and the body launched new discoveries and debates on how electricity, movement, and thoughts are related. Decades later the development of brain-computer interface technology began, which now targets a wide range of applications. Potential uses include augmentative communication for locked-in patients and restoring sensorimotor function in those who are battling disease or have suffered traumatic injury. Technical and surgical challenges still surround the development of brain-computer technology, however, before it can be widely deployed. In this review we explore these challenges, historical perspectives, and the remarkable achievements of clinical study participants who have bravely forged new paths for future beneficiaries.
Collapse
Affiliation(s)
- Santosh Chandrasekaran
- Neural Bypass and Brain Computer Interface Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Matthew Fifer
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Stephan Bickel
- The Human Brain Mapping Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Neurosurgery, Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Luke Osborn
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Jose Herrero
- The Human Brain Mapping Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Breanne Christie
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Junqian Xu
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Rory K J Murphy
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Sandeep Singh
- Good Shepherd Rehabilitation Hospital, Allentown, PA, USA
| | - Matthew F Glasser
- Departments of Radiology and Neuroscience, Washington University in St Louis, Saint Louis, MO, USA
| | - Jennifer L Collinger
- Rehabilitation Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Gaunt
- Rehabilitation Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ashesh D Mehta
- The Human Brain Mapping Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Neurosurgery, Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Andrew Schwartz
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chad E Bouton
- Neural Bypass and Brain Computer Interface Laboratory, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| |
Collapse
|
25
|
Divergence in Population Coding for Space between Dorsal and Ventral CA1. eNeuro 2021; 8:ENEURO.0211-21.2021. [PMID: 34433573 PMCID: PMC8425966 DOI: 10.1523/eneuro.0211-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Molecular, anatomic, and behavioral studies show that the hippocampus is structurally and functionally heterogeneous, with dorsal hippocampus implicated in mnemonic processes and spatial navigation and ventral hippocampus involved in affective processes. By performing electrophysiological recordings of large neuronal populations in dorsal and ventral CA1 in head-fixed mice navigating a virtual environment, we found that this diversity resulted in different strategies for population coding of space. Populations of neurons in dorsal CA1 showed more complex patterns of activity, which resulted in a higher dimensionality of neural representations that translated to more information being encoded, as compared ensembles in vCA1. Furthermore, a pairwise maximum entropy model was better at predicting the structure of these global patterns of activity in ventral CA1 as compared with dorsal CA1. Taken together, the different coding strategies we uncovered likely emerge from anatomic and physiological differences along the longitudinal axis of hippocampus and that may, in turn, underpin the divergent ethological roles of dorsal and ventral CA1.
Collapse
|
26
|
Hallinen KM, Dempsey R, Scholz M, Yu X, Linder A, Randi F, Sharma AK, Shaevitz JW, Leifer AM. Decoding locomotion from population neural activity in moving C. elegans. eLife 2021; 10:66135. [PMID: 34323218 PMCID: PMC8439659 DOI: 10.7554/elife.66135] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
We investigated the neural representation of locomotion in the nematode C. elegans by recording population calcium activity during movement. We report that population activity more accurately decodes locomotion than any single neuron. Relevant signals are distributed across neurons with diverse tunings to locomotion. Two largely distinct subpopulations are informative for decoding velocity and curvature, and different neurons’ activities contribute features relevant for different aspects of a behavior or different instances of a behavioral motif. To validate our measurements, we labeled neurons AVAL and AVAR and found that their activity exhibited expected transients during backward locomotion. Finally, we compared population activity during movement and immobilization. Immobilization alters the correlation structure of neural activity and its dynamics. Some neurons positively correlated with AVA during movement become negatively correlated during immobilization and vice versa. This work provides needed experimental measurements that inform and constrain ongoing efforts to understand population dynamics underlying locomotion in C. elegans.
Collapse
Affiliation(s)
- Kelsey M Hallinen
- Department of Physics, Princeton University, Princeton, United States
| | - Ross Dempsey
- Department of Physics, Princeton University, Princeton, United States
| | - Monika Scholz
- Department of Physics, Princeton University, Princeton, United States
| | - Xinwei Yu
- Department of Physics, Princeton University, Princeton, United States
| | - Ashley Linder
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Francesco Randi
- Department of Physics, Princeton University, Princeton, United States
| | - Anuj K Sharma
- Department of Physics, Princeton University, Princeton, United States
| | - Joshua W Shaevitz
- Department of Physics, Princeton University, Princeton, United States.,Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, United States
| | - Andrew M Leifer
- Department of Physics, Princeton University, Princeton, United States.,Princeton Neuroscience Institute, Princeton University, Princeton, United States
| |
Collapse
|
27
|
Kim YJ, Brackbill N, Batty E, Lee J, Mitelut C, Tong W, Chichilnisky EJ, Paninski L. Nonlinear Decoding of Natural Images From Large-Scale Primate Retinal Ganglion Recordings. Neural Comput 2021; 33:1719-1750. [PMID: 34411268 DOI: 10.1162/neco_a_01395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/25/2021] [Indexed: 11/04/2022]
Abstract
Decoding sensory stimuli from neural activity can provide insight into how the nervous system might interpret the physical environment, and facilitates the development of brain-machine interfaces. Nevertheless, the neural decoding problem remains a significant open challenge. Here, we present an efficient nonlinear decoding approach for inferring natural scene stimuli from the spiking activities of retinal ganglion cells (RGCs). Our approach uses neural networks to improve on existing decoders in both accuracy and scalability. Trained and validated on real retinal spike data from more than 1000 simultaneously recorded macaque RGC units, the decoder demonstrates the necessity of nonlinear computations for accurate decoding of the fine structures of visual stimuli. Specifically, high-pass spatial features of natural images can only be decoded using nonlinear techniques, while low-pass features can be extracted equally well by linear and nonlinear methods. Together, these results advance the state of the art in decoding natural stimuli from large populations of neurons.
Collapse
|
28
|
Röth K, Shao S, Gjorgjieva J. Efficient population coding depends on stimulus convergence and source of noise. PLoS Comput Biol 2021; 17:e1008897. [PMID: 33901195 PMCID: PMC8075262 DOI: 10.1371/journal.pcbi.1008897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/19/2021] [Indexed: 11/30/2022] Open
Abstract
Sensory organs transmit information to downstream brain circuits using a neural code comprised of spikes from multiple neurons. According to the prominent efficient coding framework, the properties of sensory populations have evolved to encode maximum information about stimuli given biophysical constraints. How information coding depends on the way sensory signals from multiple channels converge downstream is still unknown, especially in the presence of noise which corrupts the signal at different points along the pathway. Here, we calculated the optimal information transfer of a population of nonlinear neurons under two scenarios. First, a lumped-coding channel where the information from different inputs converges to a single channel, thus reducing the number of neurons. Second, an independent-coding channel when different inputs contribute independent information without convergence. In each case, we investigated information loss when the sensory signal was corrupted by two sources of noise. We determined critical noise levels at which the optimal number of distinct thresholds of individual neurons in the population changes. Comparing our system to classical physical systems, these changes correspond to first- or second-order phase transitions for the lumped- or the independent-coding channel, respectively. We relate our theoretical predictions to coding in a population of auditory nerve fibers recorded experimentally, and find signatures of efficient coding. Our results yield important insights into the diverse coding strategies used by neural populations to optimally integrate sensory stimuli in the presence of distinct sources of noise.
Collapse
Affiliation(s)
- Kai Röth
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Shuai Shao
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
- Donders Institute and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Julijana Gjorgjieva
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
29
|
Kang JH, Jang YJ, Kim T, Lee BC, Lee SH, Im M. Electric Stimulation Elicits Heterogeneous Responses in ON but Not OFF Retinal Ganglion Cells to Transmit Rich Neural Information. IEEE Trans Neural Syst Rehabil Eng 2021; 29:300-309. [PMID: 33395394 DOI: 10.1109/tnsre.2020.3048973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Retinal implants electrically stimulate surviving retinal neurons to restore vision in people blinded by outer retinal degeneration. Although the healthy retina is known to transmit a vast amount of visual information to the brain, it has not been studied whether prosthetic vision contains a similar amount of information. Here, we assessed the neural information transmitted by population responses arising in brisk transient (BT) and brisk sustained (BS) subtypes of ON and OFF retinal ganglion cells (RGCs) in the rabbit retina. To correlate the response heterogeneity and the information transmission, we first quantified the cell-to-cell heterogeneity by calculating the spike time tiling coefficient (STTC) across spiking patterns of RGCs in each type. Then, we computed the neural information encoded by the RGC population in a given type. In responses to light stimulation, spiking activities were more heterogeneous in OFF than ON RGCs (STTCAVG = 0.36, 0.45, 0.77 and 0.55 for OFF BT, OFF BS, ON BT, and ON BS, respectively). Interestingly, however, in responses to electric stimulation, both BT and BS subtypes of OFF RGCs showed remarkably homogeneous spiking patterns across cells (STTCAVG = 0.93 and 0.82 for BT and BS, respectively), whereas the two subtypes of ON RGCs showed slightly increased populational heterogeneity compared to light-evoked responses (STTCAVG = 0.71 and 0.63 for BT and BS, respectively). Consequently, the neural information encoded by the electrically-evoked responses of a population of 15 RGCs was substantially lower in the OFF than the ON pathway: OFF BT and BS cells transmit only ~23% and ~53% of the neural information transmitted by their ON counterparts. Together with previously-reported natural spiking activities in ON RGCs, the higher neural information may make ON responses more recognizable, eliciting the biased percepts of bright phosphenes.
Collapse
|
30
|
Threshold vision under full-field stimulation: Revisiting the minimum number of quanta necessary to evoke a visual sensation. Vision Res 2020; 180:1-10. [PMID: 33359896 DOI: 10.1016/j.visres.2020.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
At the absolute threshold of vision, Hecht, Shlaer and Pirenne estimate that 5-14 photons are absorbed within a retinal area containing ~500 rods. Other estimates of scotopic threshold vision based on stimuli with different durations and focal areas range up to ~100,000 photons. Given that rod density varies with retinal eccentricity and the magnitude of the intrinsic noise increases with increasing stimulus area and duration, here we determine whether the scotopic threshold estimates with focal stimuli can be extended to full-field stimulation and whether summation explains inter-study differences. We show that full-field threshold vision (~1018 mm2, 10 ms duration) is more sensitive than at absolute threshold, requiring the absorption of ~1000 photons across ~91.96 million rods. A summation model is presented integrating our and published data and using a nominal exposure duration, criterion frequency of seeing, rod density, and retinal area that largely explains the inter-study differences and allows estimation of rods per photon ratio for any stimulus size and duration. The highest signal to noise ratio is defined by a peak rod convergence estimated at 53:4:1:2 (rods:rod bipolar cells:AII amacrine cells:retinal ganglion cells), in line with macaque anatomical estimates that show AII amacrine cells form the bottleneck in the rod pathway to set the scotopic visual limit. Our model estimations that the rods per photon ratio under full-field stimulation is ~3000X higher than at absolute threshold are in accordance with visual summation effects and provide an alternative approach for understanding the limits of scotopic vision.
Collapse
|
31
|
Brackbill N, Rhoades C, Kling A, Shah NP, Sher A, Litke AM, Chichilnisky EJ. Reconstruction of natural images from responses of primate retinal ganglion cells. eLife 2020; 9:e58516. [PMID: 33146609 PMCID: PMC7752138 DOI: 10.7554/elife.58516] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/02/2020] [Indexed: 11/23/2022] Open
Abstract
The visual message conveyed by a retinal ganglion cell (RGC) is often summarized by its spatial receptive field, but in principle also depends on the responses of other RGCs and natural image statistics. This possibility was explored by linear reconstruction of natural images from responses of the four numerically-dominant macaque RGC types. Reconstructions were highly consistent across retinas. The optimal reconstruction filter for each RGC - its visual message - reflected natural image statistics, and resembled the receptive field only when nearby, same-type cells were included. ON and OFF cells conveyed largely independent, complementary representations, and parasol and midget cells conveyed distinct features. Correlated activity and nonlinearities had statistically significant but minor effects on reconstruction. Simulated reconstructions, using linear-nonlinear cascade models of RGC light responses that incorporated measured spatial properties and nonlinearities, produced similar results. Spatiotemporal reconstructions exhibited similar spatial properties, suggesting that the results are relevant for natural vision.
Collapse
Affiliation(s)
- Nora Brackbill
- Department of Physics, Stanford UniversityStanfordUnited States
| | - Colleen Rhoades
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Alexandra Kling
- Department of Neurosurgery, Stanford School of MedicineStanfordUnited States
- Department of Ophthalmology, Stanford UniversityStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | - Nishal P Shah
- Department of Electrical Engineering, Stanford UniversityStanfordUnited States
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa CruzSanta CruzUnited States
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa CruzSanta CruzUnited States
| | - EJ Chichilnisky
- Department of Neurosurgery, Stanford School of MedicineStanfordUnited States
- Department of Ophthalmology, Stanford UniversityStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| |
Collapse
|
32
|
Shah NP, Chichilnisky EJ. Computational challenges and opportunities for a bi-directional artificial retina. J Neural Eng 2020; 17:055002. [PMID: 33089827 DOI: 10.1088/1741-2552/aba8b1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A future artificial retina that can restore high acuity vision in blind people will rely on the capability to both read (observe) and write (control) the spiking activity of neurons using an adaptive, bi-directional and high-resolution device. Although current research is focused on overcoming the technical challenges of building and implanting such a device, exploiting its capabilities to achieve more acute visual perception will also require substantial computational advances. Using high-density large-scale recording and stimulation in the primate retina with an ex vivo multi-electrode array lab prototype, we frame several of the major computational problems, and describe current progress and future opportunities in solving them. First, we identify cell types and locations from spontaneous activity in the blind retina, and then efficiently estimate their visual response properties by using a low-dimensional manifold of inter-retina variability learned from a large experimental dataset. Second, we estimate retinal responses to a large collection of relevant electrical stimuli by passing current patterns through an electrode array, spike sorting the resulting recordings and using the results to develop a model of evoked responses. Third, we reproduce the desired responses for a given visual target by temporally dithering a diverse collection of electrical stimuli within the integration time of the visual system. Together, these novel approaches may substantially enhance artificial vision in a next-generation device.
Collapse
Affiliation(s)
- Nishal P Shah
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, United States of America. Department of Neurosurgery, Stanford University, Stanford, CA, United States of America. Author to whom any correspondence should be addressed
| | | |
Collapse
|
33
|
Modeling a population of retinal ganglion cells with restricted Boltzmann machines. Sci Rep 2020; 10:16549. [PMID: 33024225 PMCID: PMC7538558 DOI: 10.1038/s41598-020-73691-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
Abstract
The retina is a complex circuit of the central nervous system whose aim is to encode visual stimuli prior the higher order processing performed in the visual cortex. Due to the importance of its role, modeling the retina to advance in interpreting its spiking activity output is a well studied problem. In particular, it has been shown that latent variable models can be used to model the joint distribution of Retinal Ganglion Cells (RGCs). In this work, we validate the applicability of Restricted Boltzmann Machines to model the spiking activity responses of a large a population of RGCs recorded with high-resolution electrode arrays. In particular, we show that latent variables can encode modes in the RGC activity distribution that are closely related to the visual stimuli. In contrast to previous work, we further validate our findings by comparing results associated with recordings from retinas under normal and altered encoding conditions obtained by pharmacological manipulation. In these conditions, we observe that the model reflects well-known physiological behaviors of the retina. Finally, we show that we can also discover temporal patterns, associated with distinct dynamics of the stimuli.
Collapse
|
34
|
Rozenblit F, Gollisch T. What the salamander eye has been telling the vision scientist's brain. Semin Cell Dev Biol 2020; 106:61-71. [PMID: 32359891 PMCID: PMC7493835 DOI: 10.1016/j.semcdb.2020.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022]
Abstract
Salamanders have been habitual residents of research laboratories for more than a century, and their history in science is tightly interwoven with vision research. Nevertheless, many vision scientists - even those working with salamanders - may be unaware of how much our knowledge about vision, and particularly the retina, has been shaped by studying salamanders. In this review, we take a tour through the salamander history in vision science, highlighting the main contributions of salamanders to our understanding of the vertebrate retina. We further point out specificities of the salamander visual system and discuss the perspectives of this animal system for future vision research.
Collapse
Affiliation(s)
- Fernando Rozenblit
- Department of Ophthalmology, University Medical Center Göttingen, 37073, Göttingen, Germany; Bernstein Center for Computational Neuroscience Göttingen, 37077, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, 37073, Göttingen, Germany; Bernstein Center for Computational Neuroscience Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
35
|
Ruda K, Zylberberg J, Field GD. Ignoring correlated activity causes a failure of retinal population codes. Nat Commun 2020; 11:4605. [PMID: 32929073 PMCID: PMC7490269 DOI: 10.1038/s41467-020-18436-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022] Open
Abstract
From starlight to sunlight, adaptation alters retinal output, changing both the signal and noise among populations of retinal ganglion cells (RGCs). Here we determine how these light level-dependent changes impact decoding of retinal output, testing the importance of accounting for RGC noise correlations to optimally read out retinal activity. We find that at moonlight conditions, correlated noise is greater and assuming independent noise severely diminishes decoding performance. In fact, assuming independence among a local population of RGCs produces worse decoding than using a single RGC, demonstrating a failure of population codes when correlated noise is substantial and ignored. We generalize these results with a simple model to determine what conditions dictate this failure of population processing. This work elucidates the circumstances in which accounting for noise correlations is necessary to take advantage of population-level codes and shows that sensory adaptation can strongly impact decoding requirements on downstream brain areas. To see during day and night, the retina adapts to a trillion-fold change in light intensity. The authors show that an accurate read-out of retinal signals over this intensity range requires that brain circuits account for changing noise correlations across populations of retinal neurons.
Collapse
Affiliation(s)
- Kiersten Ruda
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Joel Zylberberg
- Department of Physics and Center for Vision Research, York University, Toronto, Ontario, Canada
| | - Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
36
|
Cafaro J, Zylberberg J, Field GD. Global Motion Processing by Populations of Direction-Selective Retinal Ganglion Cells. J Neurosci 2020; 40:5807-5819. [PMID: 32561674 PMCID: PMC7380974 DOI: 10.1523/jneurosci.0564-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022] Open
Abstract
Simple stimuli have been critical to understanding neural population codes in sensory systems. Yet it remains necessary to determine the extent to which this understanding generalizes to more complex conditions. To examine this problem, we measured how populations of direction-selective ganglion cells (DSGCs) from the retinas of male and female mice respond to a global motion stimulus with its direction and speed changing dynamically. We then examined the encoding and decoding of motion direction in both individual and populations of DSGCs. Individual cells integrated global motion over ∼200 ms, and responses were tuned to direction. However, responses were sparse and broadly tuned, which severely limited decoding performance from small DSGC populations. In contrast, larger populations compensated for response sparsity, enabling decoding with high temporal precision (<100 ms). At these timescales, correlated spiking was minimal and had little impact on decoding performance, unlike results obtained using simpler local motion stimuli decoded over longer timescales. We use these data to define different DSGC population decoding regimes that use or mitigate correlated spiking to achieve high-spatial versus high-temporal resolution.SIGNIFICANCE STATEMENT ON-OFF direction-selective ganglion cells (ooDSGCs) in the mammalian retina are typically thought to signal local motion to the brain. However, several recent studies suggest they may signal global motion. Here we analyze the fidelity of encoding and decoding global motion in a natural scene across large populations of ooDSGCs. We show that large populations of DSGCs are capable of signaling rapid changes in global motion.
Collapse
Affiliation(s)
- Jon Cafaro
- Department of Neurobiology, Duke University, Durham, North Carolina, 27710
| | - Joel Zylberberg
- Department of Physics and Astronomy, York University, Toronto, Ontario, M3J 1P3
| | - Greg D Field
- Department of Neurobiology, Duke University, Durham, North Carolina, 27710
| |
Collapse
|
37
|
Bostner Ž, Knoll G, Lindner B. Information filtering by coincidence detection of synchronous population output: analytical approaches to the coherence function of a two-stage neural system. BIOLOGICAL CYBERNETICS 2020; 114:403-418. [PMID: 32583370 PMCID: PMC7326833 DOI: 10.1007/s00422-020-00838-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Information about time-dependent sensory stimuli is encoded in the activity of neural populations; distinct aspects of the stimulus are read out by different types of neurons: while overall information is perceived by integrator cells, so-called coincidence detector cells are driven mainly by the synchronous activity in the population that encodes predominantly high-frequency content of the input signal (high-pass information filtering). Previously, an analytically accessible statistic called the partial synchronous output was introduced as a proxy for the coincidence detector cell's output in order to approximate its information transmission. In the first part of the current paper, we compare the information filtering properties (specifically, the coherence function) of this proxy to those of a simple coincidence detector neuron. We show that the latter's coherence function can indeed be well-approximated by the partial synchronous output with a time scale and threshold criterion that are related approximately linearly to the membrane time constant and firing threshold of the coincidence detector cell. In the second part of the paper, we propose an alternative theory for the spectral measures (including the coherence) of the coincidence detector cell that combines linear-response theory for shot-noise driven integrate-and-fire neurons with a novel perturbation ansatz for the spectra of spike-trains driven by colored noise. We demonstrate how the variability of the synaptic weights for connections from the population to the coincidence detector can shape the information transmission of the entire two-stage system.
Collapse
Affiliation(s)
- Žiga Bostner
- Physics Department, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Gregory Knoll
- Physics Department, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany
| | - Benjamin Lindner
- Physics Department, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany
| |
Collapse
|
38
|
Bouton CE. Merging brain-computer interface and functional electrical stimulation technologies for movement restoration. HANDBOOK OF CLINICAL NEUROLOGY 2020; 168:303-309. [PMID: 32164861 DOI: 10.1016/b978-0-444-63934-9.00022-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BCI (brain-computer interface) and functional electrical stimulation (FES) technologies have advanced significantly over the last several decades. Recent efforts have involved the integration of these technologies with the goal of restoring functional movement in paralyzed patients. Implantable BCIs have provided neural recordings with increased spatial resolution and have been combined with sophisticated neural decoding algorithms and increasingly capable FES systems to advance efforts toward this goal. This chapter reviews historical developments that have occurred as the exciting fields of BCI and FES have evolved and now overlapped to allow new breakthroughs in medicine, targeting restoration of movement and lost function in users with disabilities.
Collapse
Affiliation(s)
- Chad E Bouton
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.
| |
Collapse
|
39
|
Gjorgjieva J, Meister M, Sompolinsky H. Functional diversity among sensory neurons from efficient coding principles. PLoS Comput Biol 2019; 15:e1007476. [PMID: 31725714 PMCID: PMC6890262 DOI: 10.1371/journal.pcbi.1007476] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2019] [Accepted: 10/10/2019] [Indexed: 01/10/2023] Open
Abstract
In many sensory systems the neural signal is coded by the coordinated response of heterogeneous populations of neurons. What computational benefit does this diversity confer on information processing? We derive an efficient coding framework assuming that neurons have evolved to communicate signals optimally given natural stimulus statistics and metabolic constraints. Incorporating nonlinearities and realistic noise, we study optimal population coding of the same sensory variable using two measures: maximizing the mutual information between stimuli and responses, and minimizing the error incurred by the optimal linear decoder of responses. Our theory is applied to a commonly observed splitting of sensory neurons into ON and OFF that signal stimulus increases or decreases, and to populations of monotonically increasing responses of the same type, ON. Depending on the optimality measure, we make different predictions about how to optimally split a population into ON and OFF, and how to allocate the firing thresholds of individual neurons given realistic stimulus distributions and noise, which accord with certain biases observed experimentally.
Collapse
Affiliation(s)
| | - Markus Meister
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Haim Sompolinsky
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|
40
|
Bouton CE. Restoring Movement in Paralysis with a Bioelectronic Neural Bypass Approach: Current State and Future Directions. Cold Spring Harb Perspect Med 2019; 9:a034306. [PMID: 30745288 PMCID: PMC6824398 DOI: 10.1101/cshperspect.a034306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bioelectronic medicine is a rapidly growing field that explores targeted neuromodulation in new treatment options addressing both disease and injury. New bioelectronic methods are being developed to monitor and modulate neural activity directly. The therapeutic benefit of these approaches has been validated in recent clinical studies in various conditions, including paralysis. By using decoding and modulation strategies together, it is possible to restore lost function to those living with paralysis and other debilitating conditions by interpreting and rerouting signals around the affected portion of the nervous system. This, in effect, creates a bioelectronic "neural bypass" to serve the function of the damaged/degenerated network. By learning the language of neurons and using neural interface technology to tap into critical networks, new approaches to repairing or restoring function in areas impacted by disease or injury may become a reality.
Collapse
Affiliation(s)
- Chad E Bouton
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| |
Collapse
|
41
|
Li K, Ditlevsen S. Neural decoding with visual attention using sequential Monte Carlo for leaky integrate-and-fire neurons. PLoS One 2019; 14:e0216322. [PMID: 31086375 PMCID: PMC6516730 DOI: 10.1371/journal.pone.0216322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/18/2019] [Indexed: 11/18/2022] Open
Abstract
How the brain makes sense of a complicated environment is an important question, and a first step is to be able to reconstruct the stimulus that give rise to an observed brain response. Neural coding relates neurobiological observations to external stimuli using computational methods. Encoding refers to how a stimulus affects the neuronal output, and entails constructing a neural model and parameter estimation. Decoding refers to reconstruction of the stimulus that led to a given neuronal output. Existing decoding methods rarely explain neuronal responses to complicated stimuli in a principled way. Here we perform neural decoding for a mixture of multiple stimuli using the leaky integrate-and-fire model describing neural spike trains, under the visual attention hypothesis of probability mixing in which the neuron only attends to a single stimulus at any given time. We assume either a parallel or serial processing visual search mechanism when decoding multiple simultaneous neurons. We consider one or multiple stochastic stimuli following Ornstein-Uhlenbeck processes, and dynamic neuronal attention that switches following discrete Markov processes. To decode stimuli in such situations, we develop various sequential Monte Carlo particle methods in different settings. The likelihood of the observed spike trains is obtained through the first-passage time probabilities obtained by solving the Fokker-Planck equations. We show that the stochastic stimuli can be successfully decoded by sequential Monte Carlo, and different particle methods perform differently considering the number of observed spike trains, the number of stimuli, model complexity, etc. The proposed novel decoding methods, which analyze the neural data through psychological visual attention theories, provide new perspectives to understand the brain.
Collapse
Affiliation(s)
- Kang Li
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Activity Correlations between Direction-Selective Retinal Ganglion Cells Synergistically Enhance Motion Decoding from Complex Visual Scenes. Neuron 2019; 101:963-976.e7. [PMID: 30709656 PMCID: PMC6424814 DOI: 10.1016/j.neuron.2019.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/15/2018] [Accepted: 12/31/2018] [Indexed: 11/26/2022]
Abstract
Neurons in sensory systems are often tuned to particular stimulus features. During complex naturalistic stimulation, however, multiple features may simultaneously affect neuronal responses, which complicates the readout of individual features. To investigate feature representation under complex stimulation, we studied how direction-selective ganglion cells in salamander retina respond to texture motion where direction, velocity, and spatial pattern inside the receptive field continuously change. We found that the cells preserve their direction preference under this stimulation, yet their direction encoding becomes ambiguous due to simultaneous activation by luminance changes. The ambiguities can be resolved by considering populations of direction-selective cells with different preferred directions. This gives rise to synergistic motion decoding, yielding more information from the population than the summed information from single-cell responses. Strong positive response correlations between cells with different preferred directions amplify this synergy. Our results show how correlated population activity can enhance feature extraction in complex visual scenes. Direction-selective ganglion cells respond to motion as well as luminance changes This obscures the readout of direction from single cells under complex texture motion Population decoding improves direction readout supralinearly over individual cells Strong spike correlations further enhance readout through increased synergy
Collapse
|
43
|
Neural code: Another breach in the wall? Behav Brain Sci 2019; 42:e232. [DOI: 10.1017/s0140525x19001328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Brette presents arguments that query the existence of the neural code. However, he has neglected certain evidence that could be viewed as proof that a neural code operates in the brain. Albeit these proofs show a link between neural activity and cognition, we discuss why they fail to demonstrate the existence of an invariant neural code.
Collapse
|
44
|
Berry Ii MJ, Lebois F, Ziskind A, da Silveira RA. Functional Diversity in the Retina Improves the Population Code. Neural Comput 2018; 31:270-311. [PMID: 30576618 DOI: 10.1162/neco_a_01158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Within a given brain region, individual neurons exhibit a wide variety of different feature selectivities. Here, we investigated the impact of this extensive functional diversity on the population neural code. Our approach was to build optimal decoders to discriminate among stimuli using the spiking output of a real, measured neural population and compare its performance against a matched, homogeneous neural population with the same number of cells and spikes. Analyzing large populations of retinal ganglion cells, we found that the real, heterogeneous population can yield a discrimination error lower than the homogeneous population by several orders of magnitude and consequently can encode much more visual information. This effect increases with population size and with graded degrees of heterogeneity. We complemented these results with an analysis of coding based on the Chernoff distance, as well as derivations of inequalities on coding in certain limits, from which we can conclude that the beneficial effect of heterogeneity occurs over a broad set of conditions. Together, our results indicate that the presence of functional diversity in neural populations can enhance their coding fidelity appreciably. A noteworthy outcome of our study is that this effect can be extremely strong and should be taken into account when investigating design principles for neural circuits.
Collapse
Affiliation(s)
- Michael J Berry Ii
- Princeton Neuroscience Institute and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, U.S.A.
| | - Felix Lebois
- Department of Physics, Ecole Normale Supérieure, 75005 Paris, France
| | - Avi Ziskind
- Department of Physics, Princeton University, Princeton, NJ 08544, U.S.A.
| | - Rava Azeredo da Silveira
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, U.S.A.; Department of Physics, Ecole Normale Supérieure, 75005 Paris; Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, 75231 Paris; Université Paris Diderot Sorbonne Paris Cité, 75031 Paris; Sorbonne Universités UPMC Université Paris 6, 75005 Paris, France; CNRS
| |
Collapse
|
45
|
Gardella C, Marre O, Mora T. Modeling the Correlated Activity of Neural Populations: A Review. Neural Comput 2018; 31:233-269. [PMID: 30576613 DOI: 10.1162/neco_a_01154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The principles of neural encoding and computations are inherently collective and usually involve large populations of interacting neurons with highly correlated activities. While theories of neural function have long recognized the importance of collective effects in populations of neurons, only in the past two decades has it become possible to record from many cells simultaneously using advanced experimental techniques with single-spike resolution and to relate these correlations to function and behavior. This review focuses on the modeling and inference approaches that have been recently developed to describe the correlated spiking activity of populations of neurons. We cover a variety of models describing correlations between pairs of neurons, as well as between larger groups, synchronous or delayed in time, with or without the explicit influence of the stimulus, and including or not latent variables. We discuss the advantages and drawbacks or each method, as well as the computational challenges related to their application to recordings of ever larger populations.
Collapse
Affiliation(s)
- Christophe Gardella
- Laboratoire de physique statistique, CNRS, Sorbonne Université, Université Paris-Diderot, and École normale supérieure, 75005 Paris, France, and Institut de la Vision, INSERM, CNRS, and Sorbonne Université, 75012 Paris, France
| | - Olivier Marre
- Institut de la Vision, INSERM, CNRS, and Sorbonne Université, 75012 Paris, France
| | - Thierry Mora
- Laboratoire de physique statistique, CNRS, Sorbonne Université, Université Paris-Diderot, and École normale supérieure, 75005 Paris, France
| |
Collapse
|
46
|
Golden JR, Erickson-Davis C, Cottaris NP, Parthasarathy N, Rieke F, Brainard DH, Wandell BA, Chichilnisky EJ. Simulation of visual perception and learning with a retinal prosthesis. J Neural Eng 2018; 16:025003. [PMID: 30523985 DOI: 10.1088/1741-2552/aaf270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The nature of artificial vision with a retinal prosthesis, and the degree to which the brain can adapt to the unnatural input from such a device, are poorly understood. Therefore, the development of current and future devices may be aided by theory and simulations that help to infer and understand what prosthesis patients see. APPROACH A biologically-informed, extensible computational framework is presented here to predict visual perception and the potential effect of learning with a subretinal prosthesis. The framework relies on optimal linear reconstruction of the stimulus from retinal responses to infer the visual information available to the patient. A simulation of the physiological optics of the eye and light responses of the major retinal neurons was used to calculate the optimal linear transformation for reconstructing natural images from retinal activity. The result was then used to reconstruct the visual stimulus during the artificial activation expected from a subretinal prosthesis in a degenerated retina, as a proxy for inferred visual perception. MAIN RESULTS Several simple observations reveal the potential utility of such a simulation framework. The inferred perception obtained with prosthesis activation was substantially degraded compared to the inferred perception obtained with normal retinal responses, as expected given the limited resolution and lack of cell type specificity of the prosthesis. Consistent with clinical findings and the importance of cell type specificity, reconstruction using only ON cells, and not OFF cells, was substantially more accurate. Finally, when reconstruction was re-optimized for prosthesis stimulation, simulating the greatest potential for learning by the patient, the accuracy of inferred perception was much closer to that of healthy vision. SIGNIFICANCE The reconstruction approach thus provides a more complete method for exploring the potential for treating blindness with retinal prostheses than has been available previously. It may also be useful for interpreting patient data in clinical trials, and for improving prosthesis design.
Collapse
|
47
|
Assessing the Relevance of Specific Response Features in the Neural Code. ENTROPY 2018; 20:e20110879. [PMID: 33266602 PMCID: PMC7512461 DOI: 10.3390/e20110879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 11/27/2022]
Abstract
The study of the neural code aims at deciphering how the nervous system maps external stimuli into neural activity—the encoding phase—and subsequently transforms such activity into adequate responses to the original stimuli—the decoding phase. Several information-theoretical methods have been proposed to assess the relevance of individual response features, as for example, the spike count of a given neuron, or the amount of correlation in the activity of two cells. These methods work under the premise that the relevance of a feature is reflected in the information loss that is induced by eliminating the feature from the response. The alternative methods differ in the procedure by which the tested feature is removed, and the algorithm with which the lost information is calculated. Here we compare these methods, and show that more often than not, each method assigns a different relevance to the tested feature. We demonstrate that the differences are both quantitative and qualitative, and connect them with the method employed to remove the tested feature, as well as the procedure to calculate the lost information. By studying a collection of carefully designed examples, and working on analytic derivations, we identify the conditions under which the relevance of features diagnosed by different methods can be ranked, or sometimes even equated. The condition for equality involves both the amount and the type of information contributed by the tested feature. We conclude that the quest for relevant response features is more delicate than previously thought, and may yield to multiple answers depending on methodological subtleties.
Collapse
|
48
|
Dmochowski JP, Ki JJ, DeGuzman P, Sajda P, Parra LC. Extracting multidimensional stimulus-response correlations using hybrid encoding-decoding of neural activity. Neuroimage 2018; 180:134-146. [DOI: 10.1016/j.neuroimage.2017.05.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/03/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022] Open
|
49
|
Natural image reconstruction on the basis of local field potential signals of pigeon optic tectum neurons. Neuroreport 2018; 29:1092-1098. [DOI: 10.1097/wnr.0000000000001077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Botella-Soler V, Deny S, Martius G, Marre O, Tkačik G. Nonlinear decoding of a complex movie from the mammalian retina. PLoS Comput Biol 2018; 14:e1006057. [PMID: 29746463 PMCID: PMC5944913 DOI: 10.1371/journal.pcbi.1006057] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/27/2018] [Indexed: 11/19/2022] Open
Abstract
Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed "pixel-by-pixel". We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs. We constructed nonlinear (kernelized and neural network) decoders that improved significantly over linear results. An important contribution to this was the ability of nonlinear decoders to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous-like activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. We propose a general principle by which downstream circuitry could discriminate between spontaneous and stimulus-driven activity based solely on higher-order statistical structure in the incoming spike trains.
Collapse
Affiliation(s)
| | - Stéphane Deny
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Georg Martius
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|