1
|
Lomboni DJ, Ozgun A, de Medeiros TV, Staines W, Naccache R, Woulfe J, Variola F. Electroconductive Collagen-Carbon Nanodots Nanocomposite Elicits Neurite Outgrowth, Supports Neurogenic Differentiation and Accelerates Electrophysiological Maturation of Neural Progenitor Spheroids. Adv Healthc Mater 2024; 13:e2301894. [PMID: 37922888 PMCID: PMC11481026 DOI: 10.1002/adhm.202301894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Neuronal disorders are characterized by the loss of functional neurons and disrupted neuroanatomical connectivity, severely impacting the quality of life of patients. This study investigates a novel electroconductive nanocomposite consisting of glycine-derived carbon nanodots (GlyCNDs) incorporated into a collagen matrix and validates its beneficial physicochemical and electro-active cueing to relevant cells. To this end, this work employs mouse induced pluripotent stem cell (iPSC)-derived neural progenitor (NP) spheroids. The findings reveal that the nanocomposite markedly augmented neuronal differentiation in NP spheroids and stimulate neuritogenesis. In addition, this work demonstrates that the biomaterial-driven enhancements of the cellular response ultimately contribute to the development of highly integrated and functional neural networks. Lastly, acute dizocilpine (MK-801) treatment provides new evidence for a direct interaction between collagen-bound GlyCNDs and postsynaptic N-methyl-D-aspartate (NMDA) receptors, thereby suggesting a potential mechanism underlying the observed cellular events. In summary, the findings establish a foundation for the development of a new nanocomposite resulting from the integration of carbon nanomaterials within a clinically approved hydrogel, toward an effective biomaterial-based strategy for addressing neuronal disorders by restoring damaged/lost neurons and supporting the reestablishment of neuroanatomical connectivity.
Collapse
Affiliation(s)
- David J. Lomboni
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Ottawa‐Carleton Institute for Biomedical Engineering (OCIBME)OttawaONK1N 6N5Canada
| | - Alp Ozgun
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| | - Tayline V. de Medeiros
- Department of Chemistry and Biochemistry and the Centre for NanoScience ResearchConcordia UniversityMontrealQCH4B 1R6Canada
- Quebec Centre for Advanced MaterialsDepartment of Chemistry and BiochemistryConcordia UniversityMontrealQCH4B 1R6Canada
| | - William Staines
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| | - Rafik Naccache
- Department of Chemistry and Biochemistry and the Centre for NanoScience ResearchConcordia UniversityMontrealQCH4B 1R6Canada
- Quebec Centre for Advanced MaterialsDepartment of Chemistry and BiochemistryConcordia UniversityMontrealQCH4B 1R6Canada
| | - John Woulfe
- The Ottawa Hospital Research InstituteOttawaONK1Y 4E9Canada
| | - Fabio Variola
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Ottawa‐Carleton Institute for Biomedical Engineering (OCIBME)OttawaONK1N 6N5Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| |
Collapse
|
2
|
Alhilou AM, Shimada A, Svensson CI, Svensson P, Ernberg M, Cairns BE, Christidis N. Sex-related differences in response to masseteric injections of glutamate and nerve growth factor in healthy human participants. Sci Rep 2021; 11:13873. [PMID: 34230516 PMCID: PMC8260580 DOI: 10.1038/s41598-021-93171-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/11/2021] [Indexed: 11/08/2022] Open
Abstract
The neurophysiological mechanisms underlying NGF-induced masseter muscle sensitization and sex-related differences in its effect are not well understood in humans. Therefore, this longitudinal cohort study aimed to investigate the effect of NGF injection on the density and expression of substance P, NMDA-receptors and NGF by the nerve fibers in the human masseter muscle, to correlate expression with pain characteristics, and to determine any possible sex-related differences in these effects of NGF. The magnitude of NGF-induced mechanical sensitization and pain during oral function was significantly greater in women than in men (P < 0.050). Significant positive correlations were found between nerve fiber expression of NMDA-receptors and peak pain intensity (rs = 0.620, P = 0.048), and expression of NMDA-receptors by putative nociceptors and change in temporal summation pain after glutamate injection (rs = 0.561, P = 0.003). In women, there was a significant inverse relationship between the degree of NGF-induced mechanical sensitization and the change in nerve fiber expression of NMDA-receptors alone (rs = - 0.659, P = 0.013), and in combination with NGF (rs = - 0.764, P = 0.001). In conclusion, women displayed a greater magnitude of NGF-induced mechanical sensitization that also was associated with nerve fibers expression of NMDA-receptors, when compared to men. The present findings suggest that, in women, increased peripheral NMDA-receptor expression could be associated with masseter muscle pain sensitivity.
Collapse
Affiliation(s)
- Abdelrahman M Alhilou
- Department of Restorative Dentistry, College of Dentistry, Umm Al-Qura University, Makkah Al Mukarramah, Saudi Arabia.
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, and Scandinavian Center for Orofacial Neurosciences (SCON), Box 4064, SE14104, Huddinge, Sweden.
| | - Akiko Shimada
- Department of Geriatric Dentistry, Osaka Dental University, Osaka, 573-1144, Japan
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Peter Svensson
- Section of Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, and Scandinavian Center for Orofacial Neurosciences (SCON), 5674+W3, Aarhus, Denmark
| | - Malin Ernberg
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, and Scandinavian Center for Orofacial Neurosciences (SCON), Box 4064, SE14104, Huddinge, Sweden
| | - Brian E Cairns
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Nikolaos Christidis
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, and Scandinavian Center for Orofacial Neurosciences (SCON), Box 4064, SE14104, Huddinge, Sweden
| |
Collapse
|
3
|
Barker PA, Mantyh P, Arendt-Nielsen L, Viktrup L, Tive L. Nerve Growth Factor Signaling and Its Contribution to Pain. J Pain Res 2020; 13:1223-1241. [PMID: 32547184 PMCID: PMC7266393 DOI: 10.2147/jpr.s247472] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nerve growth factor (NGF) is a neurotrophic protein essential for the growth, differentiation, and survival of sympathetic and sensory afferent neurons during development. A substantial body of evidence, based on both animal and human studies, demonstrates that NGF plays a pivotal role in modulation of nociception in adulthood. This has spurred development of a variety of novel analgesics that target the NGF signaling pathway. Here, we present a narrative review designed to summarize how NGF receptor activation and downstream signaling alters nociception through direct sensitization of nociceptors at the site of injury and changes in gene expression in the dorsal root ganglion that collectively increase nociceptive signaling from the periphery to the central nervous system. This review illustrates that NGF has a well-known and multifunctional role in nociceptive processing, although the precise signaling pathways downstream of NGF receptor activation that mediate nociception are complex and not completely understood. Additionally, much of the existing knowledge derives from studies performed in animal models and may not accurately represent the human condition. However, available data establish a role for NGF in the modulation of nociception through effects on the release of inflammatory mediators, nociceptive ion channel/receptor activity, nociceptive gene expression, and local neuronal sprouting. The role of NGF in nociception and the generation and/or maintenance of chronic pain has led to it becoming a novel and attractive target of pain therapeutics for the treatment of chronic pain conditions.
Collapse
Affiliation(s)
- Philip A Barker
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Patrick Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology and the Center for Sensory-Motor Interaction/Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
4
|
Torres-Cruz FM, César Vivar-Cortés I, Moran I, Mendoza E, Gómez-Pineda V, García-Sierra F, Hernández-Echeagaray E. NT-4/5 antagonizes the BDNF modulation of corticostriatal transmission: Role of the TrkB.T1 receptor. CNS Neurosci Ther 2019; 25:621-631. [PMID: 30666798 PMCID: PMC6488875 DOI: 10.1111/cns.13091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
Neurotrophins are related to survival, growth, differentiation and neurotrophic maintenance as well as modulation of synaptic transmission in different regions of the nervous system. BDNF effects have been studied in the striatum due to the trophic role of BDNF in medium spiny neurons; however, less is known about the effects of NT‐4/5, which is also present in the striatum and activates the TrkB receptor along with BDNF. If both neurotrophins are present in the striatum, the following question arises: What role do they play in striatal physiology? Thus, the aim of this study was to determine the physiological effect of the sequential application and coexistence of BDNF and NT‐4/5 on the modulation of corticostriatal synapses. Our data demonstrated that neurotrophins exhibit differential effects depending on exposure order. BDNF did not modify NT‐4/5 effect; however, NT‐4/5 inhibited the effects of BDNF. Experiments carried out in COS‐7 cells to understand the mechanisms of this antagonism, indicated that NT‐4/5 exerts its inhibitory effect on BDNF by upregulating the TrkB.T1 and downregulating the TrkB‐FL isoforms of the TrkB receptor.
Collapse
Affiliation(s)
- Francisco M Torres-Cruz
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Israel César Vivar-Cortés
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Isaac Moran
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ernesto Mendoza
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Victor Gómez-Pineda
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Elizabeth Hernández-Echeagaray
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
5
|
Loprinzi PD, Frith E. A brief primer on the mediational role of BDNF in the exercise-memory link. Clin Physiol Funct Imaging 2018; 39:9-14. [PMID: 29719116 DOI: 10.1111/cpf.12522] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/03/2018] [Indexed: 12/28/2022]
Abstract
One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain-derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF-induced alterations in membrane receptor expression and translocation, as well as activating several pathways (PLC-y, PI3K, ERK) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| | - Emily Frith
- Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| |
Collapse
|
6
|
Gulyaeva NV. Interplay between brain BDNF and glutamatergic systems: A brief state of the evidence and association with the pathogenesis of depression. BIOCHEMISTRY (MOSCOW) 2017; 82:301-307. [DOI: 10.1134/s0006297917030087] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Wong H, Dong XD, Cairns BE. Nerve growth factor alters the sensitivity of rat masseter muscle mechanoreceptors to NMDA receptor activation. J Neurophysiol 2014; 112:2275-82. [DOI: 10.1152/jn.00327.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intramuscular injection of nerve growth factor (NGF) into rat masseter muscle induces a local mechanical sensitization that is greater in female than in male rats. The duration of NGF-induced sensitization in male and female rats was associated with an increase in peripheral N-methyl-d-aspartate (NMDA) receptor expression by masseter muscle afferent fibers that began 3 days postinjection. Here, we investigated the functional consequences of increased NMDA expression on the response properties of masseter muscle mechanoreceptors. In vivo extracellular single-unit electrophysiological recordings of trigeminal ganglion neurons innervating the masseter muscle were performed in anesthetized rats 3 days after NGF injection (25 μg/ml, 10 μl) into the masseter muscle. Mechanical activation threshold was assessed before and after intramuscular injection of NMDA. NMDA injection induced mechanical sensitization in both sexes that was increased significantly following NGF injection in the male rats but not in the female rats. However, in female but not male rats, further examination found that preadministration of NGF induced a greater sensitization in slow Aδ-fibers (2–7 m/s) than fast Aδ-fibers (7–12 m/s). This suggests that preadministration of NGF had a different effect on slowly conducting mechanoreceptors in the female rats compared with the male rats. Although previous studies have found an association between estrogenic tone and NMDA activity, no correlation was observed between NMDA-evoked mechanical sensitization and plasma estrogen level. This study suggests NGF alters NMDA-induced mechanical sensitization in the peripheral endings of masseter mechanoreceptors in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Hayes Wong
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xu-Dong Dong
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- College of Stomatology, Tianjin Medical University, Tianjin, China; and
| | - Brian E. Cairns
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Center for Sensory Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg East, Denmark
| |
Collapse
|
8
|
Wong H, Kang I, Dong XD, Christidis N, Ernberg M, Svensson P, Cairns B. NGF-induced mechanical sensitization of the masseter muscle is mediated through peripheral NMDA receptors. Neuroscience 2014; 269:232-44. [DOI: 10.1016/j.neuroscience.2014.03.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 01/24/2023]
|
9
|
Sarchielli P, Gallai V. Nerve growth factor and chronic daily headache: a potential implication for therapy. Expert Rev Neurother 2014; 4:115-27. [PMID: 15853622 DOI: 10.1586/14737175.4.1.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The pivotal role of nerve growth factor in inducing hyperalgesia and central sensitization has been emphasized in experimental pain models. Higher nerve growth factor levels have recently been found in the cerebrospinal fluid of patients with chronic daily headache. These levels were significantly correlated with the cerebrospinal fluid levels of substance P and calcitonin gene-related peptide, supporting the involvement of this neurotrophin in enhancing the production of the two sensory neuropeptides of the trigemino-vascular system in chronic daily headache. This may, in part, account for the long-lasting sensitization and activation of this system, which could contribute to headache chronicity. More recent research has shown a significant correlation between the higher cerebrospinal fluid levels of nerve growth factor and those of another neurotrophin, the brain-derived neurotrophic factor, as well as glutamate in chronic daily headache patients. These findings suggest the potential involvement of nerve growth factor-mediated upregulation of brain-derived neurotrophic factor in persistent head pain. Therefore, nerve growth factor appears to indirectly exert its effect through enhancing glutamatergic transmission involved in the processing of head pain via brain-derived neurotrophic factor. Based on these data, a potential application can be hypothesized for novel strategies targeting neurotrophins (nerve growth factor and brain-derived neurotrophic factor) and their receptors to chronic daily headache. To date, the majority of the molecules discovered in this regard have been scarcely or never proved in animal pain models and are far from clinical use in chronic pain, including chronic daily headache. If this approach is to be developed in the near future, research should be focused on identifying strategies with few central side effects and specific selective action on central sites involved in chronic head pain and more generally in chronic pain conditions. This will represent a very difficult challenge, taking into account the pleiotropic effect of nerve growth factor and the wide range of intracellular signalling pathways activated by this neurotrophin which are not limited to the nociceptive system.
Collapse
Affiliation(s)
- Paola Sarchielli
- Department of Neuroscience, Neurologic Clinic, Via E Dal Pozzo 06126, Perugia, Italy.
| | | |
Collapse
|
10
|
Ogier M, Kron M, Katz DM. Neurotrophic factors in development and regulation of respiratory control. Compr Physiol 2013; 3:1125-34. [PMID: 23897682 DOI: 10.1002/cphy.c120029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurotrophic factors (NTFs) are a heterogeneous group of extracellular signaling molecules that play critical roles in the development, maintenance, modulation and plasticity of the central and peripheral nervous systems. A subset of these factors, including members of three multigene families-the neurotrophins, neuropoetic cytokines and the glial cell line-derived neurotrophic factor ligands-are particularly important for development and regulation of neurons involved in respiratory control. Here, we review the functional biology of these NTFs and their receptors, as well as their roles in regulating survival, maturation, synaptic strength and plasticity in respiratory control pathways. In addition, we highlight recent progress in identifying the role of abnormal NTF signaling in the molecular pathogenesis of respiratory dysfunction in Rett syndrome and in the development of potential new NTF-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Michael Ogier
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | |
Collapse
|
11
|
Scianni M, Antonilli L, Chece G, Cristalli G, Di Castro MA, Limatola C, Maggi L. Fractalkine (CX3CL1) enhances hippocampal N-methyl-D-aspartate receptor (NMDAR) function via D-serine and adenosine receptor type A2 (A2AR) activity. J Neuroinflammation 2013; 10:108. [PMID: 23981568 PMCID: PMC3765929 DOI: 10.1186/1742-2094-10-108] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/28/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND N-Methyl-D-aspartate receptors (NMDARs) play fundamental roles in basic brain functions such as excitatory neurotransmission and learning and memory processes. Their function is largely regulated by factors released by glial cells, including the coagonist d-serine. We investigated whether the activation of microglial CX3CR1 induces the release of factors that modulate NMDAR functions. METHODS We recorded the NMDAR component of the field excitatory postsynaptic potentials (NMDA-fEPSPs) elicited in the CA1 stratum radiatum of mouse hippocampal slices by Shaffer collateral stimulation and evaluated D-serine content in the extracellular medium of glial primary cultures by mass spectrometry analysis. RESULTS We demonstrated that CX3CL1 increases NMDA-fEPSPs by a mechanism involving the activity of the adenosine receptor type A2 (A2AR) and the release of the NMDAR coagonist D-serine. Specifically (1) the selective A2AR blocker 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261) and the genetic ablation of A2AR prevent CX3CL1 action while the A2AR agonist 5-(6-amino-2-(phenethylthio)-9H-purin-9-yl)-N-ethyl-3,4-dihydroxytetrahydrofuran-2-carboxamide (VT7) mimics CX3CL1 effect, and (2) the selective blocking of the NMDAR glycine (and D-serine) site by 5,7-dicholorokynurenic acid (DCKA), the enzymatic degradation of D-serine by D-amino acid oxidase (DAAO) and the saturation of the coagonist site by D-serine, all block the CX3CL1 effect. In addition, mass spectrometry analysis demonstrates that stimulation of microglia and astrocytes with CX3CL1 or VT7 increases D-serine release in the extracellular medium. CONCLUSIONS CX3CL1 transiently potentiates NMDAR function though mechanisms involving A2AR activity and the release of D-serine.
Collapse
Affiliation(s)
- Maria Scianni
- Institute Pasteur-Cenci Bolognetti Foundation, Department of Physiology and Pharmacology, University Sapienza, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Low-frequency (1Hz) repetitive transcranial magnetic stimulation (rTMS) reverses Aβ1–42-mediated memory deficits in rats. Exp Gerontol 2013; 48:786-94. [PMID: 23665072 DOI: 10.1016/j.exger.2013.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 01/10/2023]
|
13
|
Deregulated mTOR-mediated translation in intellectual disability. Prog Neurobiol 2012; 96:268-82. [DOI: 10.1016/j.pneurobio.2012.01.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 01/02/2012] [Accepted: 01/12/2012] [Indexed: 02/04/2023]
|
14
|
An increase in basal BDNF provokes hyperactivation of the Akt-mammalian target of rapamycin pathway and deregulation of local dendritic translation in a mouse model of Down's syndrome. J Neurosci 2011; 31:9445-55. [PMID: 21715609 DOI: 10.1523/jneurosci.0011-11.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
As in other diseases associated with mental retardation, dendrite morphology and synaptic plasticity are impaired in Down's syndrome (DS). Both these features of neurons are critically influenced by BDNF, which regulates local dendritic translation through phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (mTOR) and Ras-ERK signaling cascades. Here we show that the levels of BDNF and phosphorylated Akt-mTOR (but not Ras-ERK) pathway proteins are augmented in hippocampal dendrites of Ts1Cje mice, a DS model. Consequently, the rate of local dendritic translation is abnormally high and the modulatory effect of exogenous BDNF is lost. Interestingly, rapamycin (a Food and Drug Administration-approved drug) restores normal levels of phosphorylated Akt-mTOR proteins and normal rates of local translation in Ts1Cje neurons, opening new therapeutic perspectives for DS. The NMDAR inhibitors APV, MK-801, and memantine also restore the normal levels of phospho-mTOR in dendrites of Ts1Cje hippocampal neurons. We propose a model to explain how BDNF-mediated regulation of local translation is lost in the Ts1Cje hippocampus through the establishment of a glutamatergic positive-feedback loop. Together, these findings help elucidate the mechanisms underlying altered synaptic plasticity in DS.
Collapse
|
15
|
Bi C, Yue X, Zhou R, Plummer MR. EphA activation overrides the presynaptic actions of BDNF. J Neurophysiol 2011; 105:2364-74. [PMID: 21411563 DOI: 10.1152/jn.00564.2010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adult pattern of neural connectivity is shaped by repulsive and attractive factors, many of which are modulated by activity. Although much is known about the actions of these factors when studied in isolation, little is known about how they interact. To address this question, we examined the effects of sequential or coapplication of brain-derived neurotrophic factor (BDNF) and Fc-conjugated ephrin-A5 or EphA5 in cultured embryonic hippocampal neurons. BDNF promotes neurite outgrowth and synapse formation, and when applied acutely, it elicits an increase in ongoing synaptic activity. Members of the ephrin family of ligands and receptors can be repulsive and prevent formation of synaptic contacts. Acute exposure to either ephrin-A5-Fc or EphA5-Fc transiently enhanced synaptic activity when applied alone, but when applied prior to BDNF, they dramatically reduced the electrophysiological effects of the neurotrophin. Conversely, BDNF had no effect on subsequently applied ephrin-A5-Fc or EphA5-Fc. Consistent with this, ephrin-A5-Fc also prevented BDNF-induced activation of p42/44 MAPK. The effect of ephrin-A5-Fc appears to be presynaptic, as it prevented the BDNF-induced increase in spontaneous miniature postsynaptic current frequency, whereas EphA5-Fc did not. These results suggest that these factors can be categorized differently, with the contact-mediated activation of EphA receptors by ephrin-A5 overriding the diffusion-mediated effect of BDNF.
Collapse
Affiliation(s)
- Caixia Bi
- Rutgers University, Department of Cell Biology & Neuroscience, Nelson Laboratories, 604 Allison Rd., Piscataway, NJ 08854-8082, USA
| | | | | | | |
Collapse
|
16
|
Svensson P, Wang MW, Dong XD, Kumar U, Cairns BE. Human nerve growth factor sensitizes masseter muscle nociceptors in female rats. Pain 2010; 148:473-480. [DOI: 10.1016/j.pain.2009.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 12/09/2009] [Accepted: 12/15/2009] [Indexed: 01/08/2023]
|
17
|
Kandratavicius L, Monteiro MR, Silva RADVD, Leite JP. Neurotrofinas na epilepsia do lobo temporal. ACTA ACUST UNITED AC 2010. [DOI: 10.1590/s1676-26492010000100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUÇÃO: A neurotrofinas NGF, BDNF, NT-3 e NT-4 são os principais representantes da família das neurotrofinas no sistema nervoso central de mamíferos. Estão presentes em estágios específicos do crescimento e sobrevivência neuronal como a divisão celular, diferenciação e axogênese e também nos processos naturais de morte celular neuronal. A atividade biológica das neurotrofinas é mediada pelos receptores de tropomiosina quinase Trk. NGF ativa principalmente os receptores TrkA, BDNF e NT-4 interagem com os receptores TrkB e NT-3 com TrkC. Todas as NTs também podem se ligar, com menor afinidade, ao receptor p75NTR. Nesta breve revisão serão levantadas as principais evidências sobre o papel e expressão das principais neurotrofinas no hipocampo, com ênfase nas alterações que ocorrem em modelos animais de epilepsia. RESULTADOS: As neurotrofinas parecem ter um papel chave na plasticidade sináptica relacionada à epilepsia, onde elas poderiam agir tanto como fatores promotores da epileptogênese quanto como substâncias anti-epiléptogênicas endógenas. Além disso a expressão dos genes que codificam os fatores neurotróficos e seus receptores pode ser alterada pela atividade de crises em diversos modelos de epilepsia. CONCLUSÃO: Vários estudos têm demonstrado a relação entre a expressão das neurotrofinas e as alterações na plasticidade dos circuitos neuronais que ocorrem após danos cerebrais, tais como a epilepsia. O conhecimento das alterações na expressão das neurotrofinas na plasticidade neuronal pode nos auxiliar a entender como estas moléculas participam dos mecanismos epileptogênicos e dessa forma, dar início ao estudo de novas terapias e ao desenvolvimento de novas drogas que auxiliem no tratamento da epilepsia.
Collapse
|
18
|
Crozier RA, Bi C, Han YR, Plummer MR. BDNF modulation of NMDA receptors is activity dependent. J Neurophysiol 2008; 100:3264-74. [PMID: 18842955 DOI: 10.1152/jn.90418.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a potent modulator of synaptic transmission, is known to influence associative synaptic plasticity and refinement of neural connectivity. We now show that BDNF modulation of glutamate currents in hippocampal neurons exhibits the additional property of use dependence, a postsynaptic mechanism resulting in selective modulation of active channels. We demonstrate selectivity by varying the repetition rate of iontophoretically applied glutamate pulses during BDNF exposure. During relatively high-frequency glutamate pulses (0.1 Hz), BDNF application elicited a doubling of the glutamate current. During low-frequency pulses (0.0033 Hz), however, BDNF evoked a dramatically diminished response. This effect was apparently mediated by calcium because manipulations that prevented elevation of intracellular calcium largely eliminated the action of BDNF on glutamate currents. To confirm N-methyl-D-aspartate (NMDA) receptor involvement and assess spatial requirements, we made cell-attached single-channel recordings from somatic NMDA receptors. Inclusion of calcium in the pipette was sufficient to produce enhancement of channel activity by BDNF. Substitution of EGTA for calcium prevented BDNF effects. We conclude that BDNF modulation of postsynaptic NMDA receptors requires concurrent neuronal activity potentially conferring synaptic specificity on the neurotrophin's actions.
Collapse
Affiliation(s)
- Robert A Crozier
- Department of Cell Biology and Neuroscience, Rutgers University, Nelson Laboratories, Piscataway, NJ 08854-8082, USA
| | | | | | | |
Collapse
|
19
|
Sopi RB, Martin RJ, Haxhiu MA, Dreshaj IA, Yao Q, Jafri A, Zaidi SIA. Role of brain-derived neurotrophic factor in hyperoxia-induced enhancement of contractility and impairment of relaxation in lung parenchyma. Am J Physiol Lung Cell Mol Physiol 2008; 295:L348-55. [PMID: 18515408 DOI: 10.1152/ajplung.00067.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Prolonged hyperoxic exposure contributes to neonatal lung injury, and airway hyperreactivity is characterized by enhanced contraction and impaired relaxation of airway smooth muscle. Our previous data demonstrate that hyperoxia in rat pups upregulates expression of brain-derived neurotrophic factor (BDNF) mRNA and protein, disrupts NO-cGMP signaling, and impairs cAMP production in airway smooth muscle. We hypothesized that BDNF-tyrosine kinase B (TrkB) signaling plays a functional role in airway hyperreactivity via upregulation of cholinergic mechanisms in hyperoxia-exposed lungs. Five-day-old rat pups were exposed to >or=95% oxygen or room air for 7 days and administered daily tyrosine kinase inhibitor K-252a (50 microg x kg(-1) x day(-1) i.p.) to block BDNF-TrkB signaling or vehicle. Lungs were removed for HPLC measurement of ACh or for in vitro force measurement of lung parenchymal strips. ACh content doubled in hyperoxic compared with room air-exposed lungs. K-252a treatment of hyperoxic pups restored ACh content to room air levels. Hyperoxia increased contraction and impaired relaxation of lung strips in response to incremental electrical field stimulation. K-252a administration to hyperoxic pups reversed this increase in contraction and decrease in relaxation. K-252a or TrkB-Fc was used to block the effect of exogenous BDNF in vitro. Both K-252a and TrkB-Fc blocked the effects of exogenous BDNF. Hyperoxia decreased cAMP and cGMP levels in lung strips, and blockade of BDNF-TrkB signaling restored cAMP but not cGMP to control levels. Therefore, hyperoxia-induced increase in activity of BDNF-TrkB receptor signaling appears to play a critical role in enhancing cholinergically mediated contractile responses of lung parenchyma.
Collapse
Affiliation(s)
- Ramadan B Sopi
- Deptartment of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, 11100 Euclid Ave., Cleveland, OH 44106-6009, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Svensson P, Wang K, Arendt-Nielsen L, Cairns BE. Effects of NGF-induced muscle sensitization on proprioception and nociception. Exp Brain Res 2008; 189:1-10. [DOI: 10.1007/s00221-008-1399-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 04/16/2008] [Indexed: 02/07/2023]
|
21
|
|
22
|
Sarchielli P, Mancini ML, Floridi A, Coppola F, Rossi C, Nardi K, Acciarresi M, Pini LA, Calabresi P. Increased Levels of Neurotrophins Are Not Specific for Chronic Migraine: Evidence From Primary Fibromyalgia Syndrome. THE JOURNAL OF PAIN 2007; 8:737-45. [PMID: 17611164 DOI: 10.1016/j.jpain.2007.05.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 05/01/2007] [Accepted: 05/08/2007] [Indexed: 12/11/2022]
Abstract
UNLABELLED All data obtained in experimental animal pain models support the role of nerve growth factor (NGF) as a putative candidate intervening in the pathogenesis of chronic pain, including chronic daily headache (CDH). Few studies have been carried out to establish its role in maintaining pain states in humans. The present study was aimed at investigating cerebrospinal fluid (CSF) levels of NGF and brain-derived neurotrophic factor (BDNF), both measured by sensitive immunoassay, in 20 chronic migraine (CM) patients and 20 patients affected by primary fibromyalgia syndrome (PFMS), compared with those of 20 age-matched control subjects. Significantly higher levels of both neurotrophins and glutamate were found. A significantly positive correlation emerged between CSF values of BDNF and those of NGF (r = .61, P < .001; r = .53, P < .01) and glutamate (r = .44, P < .02; r = .51, P < .01) in CM and PFMS patients, respectively. These findings suggest the possibility of a NGF-mediated up-regulation of BDNF involved in the pathophysiological events underlying long-term neuroplastic changes in persistent chronic painful conditions, such as CM and fibromyalgia. NGF might indirectly exert its effect through enhancing glutamatergic transmission via BDNF. The above mechanisms could account for sustained central sensitization in both chronic pain states. PERSPECTIVE This article presents findings of higher NGF and BDNF levels correlated to increased glutamate levels in the CSF of both chronic migraine and fibromyalgia patients. This opens new insights into the pathogenic mechanisms of chronic pain and offers clinicians new therapeutic perspectives targeting the above mechanisms in both painful disorders.
Collapse
Affiliation(s)
- Paola Sarchielli
- Neurologic Clinic, Department of Medical and Surgical Specialties and Public Health, University of Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tian SL, Jiang H, Zeng Y, Li LL, Shi J. NGF-induced reduction of an outward-rectifying TRPM7-like current in rat CA1 hippocampal neurons. Neurosci Lett 2007; 419:93-8. [PMID: 17482355 DOI: 10.1016/j.neulet.2007.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/18/2007] [Accepted: 04/10/2007] [Indexed: 11/21/2022]
Abstract
Transient receptor potential melastatin 7 (TRPM7) channels are widely expressed in the nervous system; however, their function and regulation are largely unknown. This study aimed to explore whether the current mediated by TRPM7-like channels in rat CA1 hippocampal neurons could be modulated by nerve growth factor (NGF). Using whole-cell patch clamp techniques, we identified an outward-rectifying TRPM7-like current in hippocampal neurons freshly isolated from postnatal (10-day-old) rats. The outward component of this current was reversibly reduced by NGF in dose- and time-dependent manners, and this effect was substantially blocked by K252a, an inhibitor of TrkA. In addition, NGF-induced reduction of the TRPM7-like current was abolished by U73122, a phopholipase C inhibitor. In light of the abundance of NGF in hippocampus that express both TrkA and TRPM7, these results suggest that the function of TRPM7-like channels in hippocampal neurons may be regulated by NGF.
Collapse
Affiliation(s)
- Shun-Lian Tian
- Department of Neurobiology and Key Laboratory of Neurological Disease of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | | | | | | | | |
Collapse
|
24
|
Abstract
Neuroconstructivism is a theoretical framework focusing on the construction of representations in the developing brain. Cognitive development is explained as emerging from the experience-dependent development of neural structures supporting mental representations. Neural development occurs in the context of multiple interacting constraints acting on different levels, from the individual cell to the external environment of the developing child. Cognitive development can thus be understood as a trajectory originating from the constraints on the underlying neural structures. This perspective offers an integrated view of normal and abnormal development as well as of development and adult processing, and it stands apart from traditional cognitive approaches in taking seriously the constraints on cognition inherent to the substrate that delivers it.
Collapse
Affiliation(s)
- Gert Westermann
- Department of Psychology, Oxford Brookes University, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Voorn P, van de Witte SV, Li KW, Jonker AJ. Dynorphin displaces binding at the glycine site of the NMDA receptor in the rat striatum. Neurosci Lett 2007; 415:55-8. [PMID: 17234341 DOI: 10.1016/j.neulet.2006.12.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/18/2006] [Accepted: 12/23/2006] [Indexed: 11/19/2022]
Abstract
Binding of dynorphin A (1-17 and 2-17) to NMDA receptors in the rat striatum was studied by displacing radioactive ligands for the receptor's polyamine ([3H]-Ifenprodil), glutamate ([3H]-CGP-39653), dizocilpine ([3H]-MK-801) and glycine ([3H]-MDL105,519) sites with the neuropeptide. Dynorphin A selectively displaced [3H]-MDL105,519 and none of the other ligands. Opioid antagonists did not affect displacement. Thus, in the striatum dynorphin may regulate NMDA receptor function via the glycineB site through non-opioid mechanisms. This may contribute to the long-term changes in behavioral responsiveness seen after dopamine depletion and treatment with dopaminomimetics which are associated with substantial changes in striatal dynorphin metabolism.
Collapse
Affiliation(s)
- Pieter Voorn
- Department of Anatomy and Neurosciences, ICEN, Vrije Universiteit Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
26
|
Amaral MD, Chapleau CA, Pozzo-Miller L. Transient receptor potential channels as novel effectors of brain-derived neurotrophic factor signaling: potential implications for Rett syndrome. Pharmacol Ther 2007; 113:394-409. [PMID: 17118456 PMCID: PMC1862519 DOI: 10.1016/j.pharmthera.2006.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 09/26/2006] [Indexed: 02/07/2023]
Abstract
In addition to their prominent role as survival signals for neurons in the developing nervous system, neurotrophins have established their significance in the adult brain as well, where their modulation of synaptic transmission and plasticity may participate in associative learning and memory. These crucial activities are primarily the result of neurotrophin regulation of intracellular Ca(2+) homeostasis and, ultimately, changes in gene expression. Outlined in the following review is a synopsis of neurotrophin signaling with a particular focus upon brain-derived neurotrophic factor (BDNF) and its role in hippocampal synaptic plasticity and neuronal Ca(2+) homeostasis. Neurotrophin signaling through tropomyosin-related kinase (Trk) and pan-neurotrophin receptor 75 kD (p75(NTR)) receptors are also discussed, reviewing recent results that indicate signaling through these two receptor modalities leads to opposing cellular outcomes. We also provide an intriguing look into the transient receptor potential channel (TRPC) family of ion channels as distinctive targets of BDNF signaling; these channels are critical for capacitative Ca(2+) entry, which, in due course, mediates changes in neuronal structure including dendritic spine density. Finally, we expand these topics into an exploration of mental retardation (MR), in particular Rett Syndrome (RTT), where dendritic spine abnormalities may underlie cognitive impairments. We propose that understanding the role of neurotrophins in synapse formation, plasticity, and maintenance will make fundamental contributions to the development of therapeutic strategies to improve cognitive function in developmental disorders associated with MR.
Collapse
Affiliation(s)
- Michelle D Amaral
- Department of Neurobiology, Civitan International Research Center, McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | |
Collapse
|
27
|
Gomes RA, Hampton C, El-Sabeawy F, Sabo SL, McAllister AK. The dynamic distribution of TrkB receptors before, during, and after synapse formation between cortical neurons. J Neurosci 2006; 26:11487-500. [PMID: 17079678 PMCID: PMC6674530 DOI: 10.1523/jneurosci.2364-06.2006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although brain-derived neurotrophic factor (BDNF) potently regulates neuronal connectivity in the developing CNS, the mechanism by which BDNF influences the formation and/or maintenance of glutamatergic synapses remains unknown. Details about the subcellular localization of the BDNF receptor, TrkB, relative to synaptic and nonsynaptic proteins on excitatory neurons should provide insight into how BDNF might exert its effects during synapse formation. Here, we investigated the subcellular localization of tyrosine kinase receptor B (TrkB) relative to synaptic vesicle-associated proteins and NMDA receptors using immunocytochemistry, confocal microscopy, and time-lapse imaging in dissociated cultures of cortical neurons before, during, and after the peak of synapse formation. We find that TrkB is present in puncta on the surface and intracellularly in both dendrites and axons throughout development. Before synapse formation, some TrkB puncta in dendrites colocalize with NMDA receptors, and almost all TrkB puncta in axons colocalize with synaptic vesicle proteins. Clusters of TrkB fused to the enhanced green fluorescent protein (TrkB-EGFP) are highly mobile in both axons and dendrites. In axons, TrkB-EGFP dynamics are almost identical to vesicle-associated protein (VAMP2-EGFP), and these proteins are often transported together. Finally, surface TrkB is found in structures that actively participate in synapse formation: axonal growth cones and dendritic filopodia. Over time, surface TrkB becomes enriched at glutamatergic synapses, which contain both catalytic and truncated TrkB. These results suggest that TrkB is in the right place at the right time to play a direct role in the formation of glutamatergic synapses between cortical neurons.
Collapse
Affiliation(s)
- Raquel A. Gomes
- Center for Neuroscience, University of California at Davis, Davis, California 95616
| | - Cara Hampton
- Center for Neuroscience, University of California at Davis, Davis, California 95616
| | - Faten El-Sabeawy
- Center for Neuroscience, University of California at Davis, Davis, California 95616
| | - Shasta L. Sabo
- Center for Neuroscience, University of California at Davis, Davis, California 95616
| | | |
Collapse
|
28
|
Gras G, Porcheray F, Samah B, Leone C. The glutamate-glutamine cycle as an inducible, protective face of macrophage activation. J Leukoc Biol 2006; 80:1067-75. [PMID: 16912070 DOI: 10.1189/jlb.0306153] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neuronal damage in HIV infection results mainly from chronic activation of brain tissue and involves inflammation, oxidative stress, and glutamate-related neurotoxicity. Glutamate toxicity acts via two distinct pathways: an excitotoxic one, in which glutamate receptors are hyperactivated, and an oxidative one, in which cystine uptake is inhibited, resulting in glutathione depletion, oxidative stress, and cell degeneration. A number of studies have shown that astrocytes normally take up glutamate, keeping extracellular glutamate concentration low in the brain and preventing excitotoxicity. They, in turn, provide the trophic amino acid glutamine via their expression of glutamine synthetase. These protective and trophic actions are inhibited in HIV infection, probably as a result of the effects of inflammatory mediators and viral proteins. In vitro and in vivo studies have demonstrated that activated microglia and brain macrophages (AMM) express the transporters and enzymes of the glutamate cycle. This suggests that in addition to their recognized neurotoxic properties in HIV infection, these cells exhibit some neuroprotective properties, which may partly compensate for the inhibited astrocytic function. This hypothesis might explain the discrepancy between microglial activation, which occurs early in the disease, and neuronal apoptosis and neuronal loss, which are late events. In this review, we discuss the possible neuroprotective and neurotrophic roles of AMM and their relationships with inflammation and oxidative stress.
Collapse
Affiliation(s)
- Gabriel Gras
- CEA, DSV, DRM, SNV, UMR E-01 Université Paris-Sud XI, Laboratoire de Neuro-Immuno-Virologie, F92265 Fontenay-aux Roses, France.
| | | | | | | |
Collapse
|
29
|
Ster J, Colomer C, Monzo C, Duvoid-Guillou A, Moos F, Alonso G, Hussy N. Insulin-like growth factor-1 inhibits adult supraoptic neurons via complementary modulation of mechanoreceptors and glycine receptors. J Neurosci 2006; 25:2267-76. [PMID: 15745952 PMCID: PMC6726091 DOI: 10.1523/jneurosci.4053-04.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the CNS, insulin-like growth factor-1 (IGF-1) is mainly known for its trophic effect both during development and in adulthood. Here, we show than in adult rat supraoptic nucleus (SON), IGF-1 receptor immunoreactivity is present in neurons, whereas IGF-1 immunoreactivity is found principally in astrocytes and more moderately in neurons. In vivo application of IGF-1 within the SON acutely inhibits the activity of both vasopressin and oxytocin neurons, the two populations of SON neuroendocrine cells. Recordings of acutely isolated SON neurons showed that this inhibition occurs through two rapid and reversible mechanisms, both involving the neuronal IGF-1 receptor but different intracellular messengers. IGF-1 inhibits Gd3+-sensitive and osmosensitive mechanoreceptor cation current via phosphatidylinositol-3 (PI3) kinase activation. IGF-1 also potentiates taurine-activated glycine receptor (GlyR) Cl- currents by increasing the agonist sensitivity through a extremely rapid (within a second) PI3 kinase-independent mechanism. Both mechanoreceptor channels and GlyR, which form the excitatory and inhibitory components of SON neuron osmosensitivity, are active at rest, and their respective inhibition and potentiation will both be inhibitory, leading to strong decrease in neuronal activity. It will be of interest to determine whether IGF-1 is released by neurons, thus participating in an inhibitory autocontrol, or astrocytes, then joining the growing family of glia-to-neuron transmitters that modulate neuronal and synaptic activity. Through the opposite and complementary acute regulation of mechanoreceptors and GlyR, IGF-1 appears as a new important neuromodulator in the adult CNS, participating in the complex integration of neural messages that regulates the level of neuronal excitability.
Collapse
Affiliation(s)
- Jeanne Ster
- Biologie des Neurones Endocrines, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5101, Institut National de la Santé et de la Recherche Médicale de Pharmacologie et d'Endocrinologie, 34094 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Macdonald DS, Weerapura M, Beazely MA, Martin L, Czerwinski W, Roder JC, Orser BA, MacDonald JF. Modulation of NMDA receptors by pituitary adenylate cyclase activating peptide in CA1 neurons requires G alpha q, protein kinase C, and activation of Src. J Neurosci 2006; 25:11374-84. [PMID: 16339032 PMCID: PMC6725893 DOI: 10.1523/jneurosci.3871-05.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At CA1 synapses, activation of NMDA receptors (NMDARs) is required for the induction of both long-term potentiation and depression. The basal level of activity of these receptors is controlled by converging cell signals from G-protein-coupled receptors and receptor tyrosine kinases. Pituitary adenylate cyclase activating peptide (PACAP) is implicated in the regulation of synaptic plasticity because it enhances NMDAR responses by stimulating Galphas-coupled receptors and protein kinase A (Yaka et al., 2003). However, the major hippocampal PACAP1 receptor (PAC1R) also signals via Galphaq subunits and protein kinase C (PKC). In CA1 neurons, we showed that PACAP38 (1 nM) enhanced synaptic NMDA, and evoked NMDAR, currents in isolated CA1 neurons via activation of the PAC1R, Galphaq, and PKC. The signaling was blocked by intracellular applications of the Src inhibitory peptide Src(40-58). Immunoblots confirmed that PACAP38 biochemically activates Src. A Galphaq pathway is responsible for this Src-dependent PACAP enhancement because it was attenuated in mice lacking expression of phospholipase C beta1, it was blocked by preventing elevations in intracellular Ca2+, and it was eliminated by inhibiting either PKC or cell adhesion kinase beta [CAKbeta or Pyk2 (proline rich tyrosine kinase 2)]. Peptides that mimic the binding sites for either Fyn or Src on receptor for activated C kinase-1 (RACK1) also enhanced NMDAR in CA1 neurons, but their effects were blocked by Src(40-58), implying that Src is the ultimate regulator of NMDARs. RACK1 serves as a hub for PKC, Fyn, and Src and facilitates the regulation of basal NMDAR activity in CA1 hippocampal neurons.
Collapse
Affiliation(s)
- D S Macdonald
- Department of Pharmacology, Faculty of Medicine, University of Toronto, Mount Sinai Hospital, Toronto, Ontario, M5S 1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hayashi Y, Ishibashi H, Hashimoto K, Nakanishi H. Potentiation of the NMDA receptor-mediated responses through the activation of the glycine site by microglia secreting soluble factors. Glia 2006; 53:660-8. [PMID: 16498631 DOI: 10.1002/glia.20322] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously reported that both transferred microglia and microglia-conditioned medium (MCM) potentiated the N-methyl-D-aspatate (NMDA) receptor-mediated synaptic responses in cortical neurons. To elucidate the mechanism underlying the potentiation of NMDA receptor-mediated responses by microglia, we examined the effects of MCM on NMDA-induced inward currents in mechanically dissociated hippocampal CA1 neurons under whole-cell patch recordings. MCM potentiated the amplitude of NMDA-induced currents up to 10-fold in a dose-dependent manner, and this effect of MCM remained even after boiling or cutting off molecules with a molecular mass more than 3 kDa. In the presence of glycine with a concentration sufficient to saturate the NMDA receptor glycine site, MCM failed to further potentiate the NMDA-induced currents. The glycine site antagonist 5, 7-dichrolokynurenic acid, significantly inhibited the effects of MCM. The effect of MCM was still observed even after treatment with D-amino acid oxidase, a D-serine degrading enzyme. On the other hand, MCM had no significant effect on the voltage-dependent Mg(2+) blockade of NMDA receptors. Furthermore, MCM enhanced the formation of the long-term potentiation in the Schaffer collateral pathway-CA1 pyramidal cell synapses. Using a high performance liquid chromatography system, we found the levels of both glycine and L-serine in MCM to be significantly higher than those in the control medium. It was also noted that an increased glycine productivity of microglia was observed in the hippocampus in the acute phase of neuronal injury. These observations strongly suggest that glycine is a major causative molecule released from microglia that potentiates the NMDA-induced currents.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Communication/drug effects
- Cell Communication/physiology
- Cells, Cultured
- Culture Media, Conditioned/pharmacology
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Glutamic Acid/metabolism
- Glycine/metabolism
- Glycine/pharmacology
- Hippocampus/cytology
- Hippocampus/metabolism
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/physiology
- Mice
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/metabolism
- N-Methylaspartate/pharmacology
- Patch-Clamp Techniques
- Pyramidal Cells/drug effects
- Pyramidal Cells/metabolism
- Rats
- Rats, Wistar
- Receptors, Glycine/agonists
- Receptors, Glycine/antagonists & inhibitors
- Receptors, Glycine/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Serine/antagonists & inhibitors
- Serine/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Yoshinori Hayashi
- Laboratory of Oral Aging Science, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
32
|
Katz DM. Regulation of respiratory neuron development by neurotrophic and transcriptional signaling mechanisms. Respir Physiol Neurobiol 2005; 149:99-109. [PMID: 16203214 DOI: 10.1016/j.resp.2005.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/07/2005] [Accepted: 02/08/2005] [Indexed: 01/06/2023]
Abstract
Functionally diverse populations of respiratory neurons appear to be targets of common neurotrophic and transcriptional signaling pathways. For example, peripheral chemoafferent neurons and noradrenergic neurons in the pontine A5 cell group both require co-signaling by brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF) for survival, growth and/or phenotypic differentiation. Moreover, these same cell groups are dependent on the Phox2 family of transcription factors for early cell type specification. In addition, BDNF and its receptor, TrkB, are expressed in the pre-Botzinger complex (pBC), a critical site for respiratory rhythm generation, and exogenous BDNF can modulate the activity of pBC neurons. This convergence of BDNF, GDNF and Phox2 dependencies may help to explain how mutations in each of these pathways can result in human developmental disorders of breathing.
Collapse
Affiliation(s)
- David M Katz
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
33
|
Yang B, Gu Q. Contribution of glutamate receptors to brain-derived neurotrophic factor-induced elevation of intracellular Ca2+levels. Neuroreport 2005; 16:977-80. [PMID: 15931072 DOI: 10.1097/00001756-200506210-00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the present study, acute effects of brain-derived neurotrophic factor (BDNF) on intracellular calcium concentration ([Ca2+]i) in cultured visual cortical neurons were investigated. We examined specifically whether pharmacological blockade of glutamatergic receptors interfered with effects of BDNF on [Ca2+]i. We found that blockade of N-methyl-D-aspartate (NMDA) receptors significantly reduced the number of BDNF-responsive neurons, while inhibition of metabotropic glutamate receptors (mGluR) completely prevented the effect of BDNF. By contrast, blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxasole propionic acid (AMPA) receptors did not affect the BDNF-induced increase of [Ca2+]i. Our results thus suggest that glutamate-mediated excitatory pathways are involved in the BDNF-induced rise of [Ca2+]i in visual cortical neurons, and that both mGluR and NMDA receptors play a critical role in this event.
Collapse
Affiliation(s)
- Benduan Yang
- Brain Research Center and Department of Ophthalmology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
34
|
Isokawa M. N-methyl-D-aspartic acid-induced and Ca-dependent neuronal swelling and its retardation by brain-derived neurotrophic factor in the epileptic hippocampus. Neuroscience 2005; 131:801-12. [PMID: 15749335 DOI: 10.1016/j.neuroscience.2004.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2004] [Indexed: 12/23/2022]
Abstract
Dentate granule cell (DGC) swelling was studied by imaging changes in light transmittance from hippocampal slices in the rat pilocarpine model of epilepsy and human epileptic specimens. Brief bath-application of N-methyl-D-aspartic acid (NMDA) induced swelling in the control rat DGC (physiological swelling). Physiological swelling was short-lasting, and rapidly recovered upon removal of NMDA. In contrast, the swelling induced in the pilocarpine-treated rat hippocampus and human epileptic hippocampus (epileptic swelling) was long-lasting, and often recovered slowly over an hour. Both types of swelling were blocked by the NMDA receptor (NMDAR) antagonist, D-APV, suggesting that they shared the same induction mechanism. However, the swellings differed in their sensitivity to a calcium chelator, 1.2-bis(2-aminophenoxy)ethane-N,N,N,N-tetra-acetate (BAPTA), and an endoplasmic reticulum (ER) Ca2+-ATPase inhibitor, thapsigargin (TG). BAPTA and TG affected only epileptic swelling, and physiological swelling was spared. This suggested that the NMDAR-induced epileptic swelling might involve an additional mechanism for its maintenance, likely recruiting ER Ca2+ stores. Brain-derived neurotrophic factor (BDNF) slightly attenuated physiological swelling, and blocked epileptic swelling. The present study suggests a functional link between the activation of NMDAR and a release of Ca2+ from internal stores during the induction of epileptic swelling, and a neuroprotective role of BDNF on the NMDAR-induced swelling in the epileptic hippocampus.
Collapse
Affiliation(s)
- M Isokawa
- Department of Physiology and Program in Neuroscience University of Maryland, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
35
|
Zaidi SIA, Jafri A, Doggett T, Haxhiu MA. Airway-related vagal preganglionic neurons express brain-derived neurotrophic factor and TrkB receptors: implications for neuronal plasticity. Brain Res 2005; 1044:133-43. [PMID: 15885212 DOI: 10.1016/j.brainres.2005.02.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 01/28/2005] [Accepted: 02/03/2005] [Indexed: 01/19/2023]
Abstract
Recent evidence indicates that brain-derived neurotrophic factor (BDNF) is present in neurons and may affect neurotransmitter release, cell excitability, and synaptic plasticity via activation of tyrosine kinase B (TrkB) receptors. However, whether airway-related vagal preganglionic neurons (AVPNs) produce BDNF and contain TrkB receptors is not known. Hence, in ferrets, we examined BDNF and TrkB receptor expression in identified AVPNs using in situ hybridization and immunohistochemistry. BDNF protein levels were measured within the rostral nucleus ambiguus (rNA) region by ELISA. We observed that the subpopulation of AVPNs, identified by neuroanatomical tract tracing, within the rNA region express BDNF mRNA, BDNF protein, as well as TrkB receptor. In addition, brain tissue from the rNA region contained measurable amounts of BDNF that were comparable to the hippocampal region of the brain. These data indicate, for the first time, that the BDNF-TrkB system is expressed by AVPNs and may play a significant role in regulating cholinergic outflow to the airways.
Collapse
Affiliation(s)
- Syed I A Zaidi
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Mechanisms underlying the fast action of neurotrophins include intracellular Ca(2+) signaling, neuronal excitation, augmentation of synaptic excitation by modulation of N-methyl-d-aspartate receptor activity and control of synaptic inhibition through the regulation of the K(+)-Cl(-) cotransporter KCC2. The fastest action of brain-derived neurotrophic factor and neurotrophin-4/5 occurs within milliseconds, and involves activation of TrkB and the opening of the Na(+) channel Na(v)1.9. Through these rapid actions, neurotrophins shape neuronal activity, modulate synaptic transmission and produce instructive signals for the induction of long-term changes in the efficacy of synaptic transmission.
Collapse
Affiliation(s)
- Yury Kovalchuk
- Institut für Physiologie, Ludwig-Maximilians-Universität München, 80336 München, Germany
| | | | | |
Collapse
|
37
|
Lee CS, Tee LY, Dusenbery S, Takata T, Golden JP, Pierchala BA, Gottlieb DI, Johnson EM, Choi DW, Snider BJ. Neurotrophin and GDNF family ligands promote survival and alter excitotoxic vulnerability of neurons derived from murine embryonic stem cells. Exp Neurol 2005; 191:65-76. [PMID: 15589513 DOI: 10.1016/j.expneurol.2004.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 08/11/2004] [Accepted: 08/19/2004] [Indexed: 11/18/2022]
Abstract
Embryonic stem (ES) cells are genetically manipulable pluripotential cells that can be differentiated in vitro into neurons, oligodendrocytes, and astrocytes. Given their potential utility as a source of replacement cells for the injured nervous system and the likelihood that transplantation interventions might include co-application of growth factors, we examined the effects of neurotrophin and GDNF family ligands on the survival and excitotoxic vulnerability of ES cell-derived neurons (ES neurons) grown in vitro. ES cells were differentiated down a neural lineage in vitro using the 4-/4+ protocol (Bain et al., Dev Biol 168:342-57, 1995). RT-PCR demonstrated expression of receptors for neurotrophins and GDNF family ligands in ES neural lineage cells. Neuronal expression of GFRalpha1, GFRalpha2, and ret was confirmed by immunocytochemistry. Exposure to 30-100 ng/ml GDNF or neurturin (NRTN) resulted in activation of ret. Addition of NT-3 and GDNF did not increase cell division but did increase the number of neurons in the cultures 7 days after plating. Pretreatment with NT-3 enhanced the vulnerability of ES neurons to NMDA-induced death (100 microM NMDA for 10 min) and enhanced the NMDA-induced increase in neuronal [Ca2+]i, but did not alter expression of NMDA receptor subunits NR2A or NR2B. In contrast, pretreatment with GDNF reduced the vulnerability of ES neurons to NMDA-induced death while modestly enhancing the NMDA-induced increase in neuronal [Ca2+]i. These findings demonstrate that the response of ES-derived neurons to neurotrophins and GDNF family ligands is largely similar to that of other cultured central neurons.
Collapse
Affiliation(s)
- Chul-Sang Lee
- Washington University School of Medicine, Center for the Study of Nervous System Injury, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED, Knapp PE, Scheff SW, Singh IN, Vissel B, Woods AS, Yakovleva T, Shippenberg TS. Pathobiology of dynorphins in trauma and disease. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2005; 10:216-35. [PMID: 15574363 PMCID: PMC4304872 DOI: 10.2741/1522] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dynorphins, endogenous opioid neuropeptides derived from the prodynorphin gene, are involved in a variety of normative physiologic functions including antinociception and neuroendocrine signaling, and may be protective to neurons and oligodendroglia via their opioid receptor-mediated effects. However, under experimental or pathophysiological conditions in which dynorphin levels are substantially elevated, these peptides are excitotoxic largely through actions at glutamate receptors. Because the excitotoxic actions of dynorphins require supraphysiological concentrations or prolonged tissue exposure, there has likely been little evolutionary pressure to ameliorate the maladaptive, non-opioid receptor mediated consequences of dynorphins. Thus, dynorphins can have protective and/or proapoptotic actions in neurons and glia, and the net effect may depend upon the distribution of receptors in a particular region and the amount of dynorphin released. Increased prodynorphin gene expression is observed in several disease states and disruptions in dynorphin processing can accompany pathophysiological situations. Aberrant processing may contribute to the net negative effects of dysregulated dynorphin production by tilting the balance towards dynorphin derivatives that are toxic to neurons and/or oligodendroglia. Evidence outlined in this review suggests that a variety of CNS pathologies alter dynorphin biogenesis. Such alterations are likely maladaptive and contribute to secondary injury and the pathogenesis of disease.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rose CR, Blum R, Kafitz KW, Kovalchuk Y, Konnerth A. From modulator to mediator: rapid effects of BDNF on ion channels. Bioessays 2004; 26:1185-94. [PMID: 15499580 DOI: 10.1002/bies.20118] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurotrophins (NTs) are [?AUTHOR] a family of structurally related, secreted proteins that regulate the survival, differentiation and maintenance of function of different populations of peripheral and central neurons.1,2 Among these, BDNF (brain-derived neurotrophic factor) has drawn considerable interest because both its synthesis and secretion are increased by physiological levels of activity, indicating a unique role of this neurotrophin in coupling neuronal activity to structural and functional properties of neuronal circuits. In addition to its classical neurotrophic effects, which are evident within hours or days and which usually result from changes in cellular gene expression, BDNF exerts acute effects on synaptic transmission and is involved in the induction of long-term potentiation. Many of these rapid effects of BDNF are mediated by its modulation of ion channel properties following TrkB-mediated activation of intracellular second messenger cascades and protein phosphorylation. However, recent reports have shown that BDNF not only acts as a modulator of ion channels, but can also directly and rapidly gate a Na(+) channel, thereby assigning BDNF the properties of a classical excitatory transmitter. Thus, BDNF, in addition its role as a potent neuromodulator, emerges as an excitatory transmitter-like substance which acutely controls resting membrane potential, neuronal excitability, synaptic transmission and participates in the induction of synaptic plasticity.
Collapse
Affiliation(s)
- Christine R Rose
- Institut für Physiologie, Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | |
Collapse
|
40
|
Elmariah SB, Crumling MA, Parsons TD, Balice-Gordon RJ. Postsynaptic TrkB-mediated signaling modulates excitatory and inhibitory neurotransmitter receptor clustering at hippocampal synapses. J Neurosci 2004; 24:2380-93. [PMID: 15014113 PMCID: PMC6729485 DOI: 10.1523/jneurosci.4112-03.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tyrosine receptor kinase B (TrkB)-mediated signaling modulates synaptic structure and strength in hippocampal and other neurons, but the underlying mechanisms are poorly understood. Full-length and truncated TrkB are diffusely distributed throughout the dendrites and soma of rat hippocampal neurons grown in vitro. Manipulation of TrkB-mediated signaling resulted in dramatic changes in the number and synaptic localization of postsynaptic NMDA receptor (NMDAR) and GABA(A) receptor (GABA(A)R) clusters. BDNF treatment resulted in an increase in the number of NMDAR and GABA(A)R clusters and increased the proportion of clusters apposed to presynaptic terminals. Downregulation of TrkB signaling resulted in a decrease in receptor cluster number and synaptic localization. Examination of the time course of the effects of BDNF on receptor clusters showed that the increase in GABA(A)R clusters preceded the increase in NMDAR clusters by at least 12 hr. Moreover, the TrkB-mediated effects on NMDAR clusters were dependent on GABA(A)R activation. Although TTX, APV, and CNQX treatment had no effect, blockade of GABA(A)Rs with bicuculline abolished the BDNF-mediated increase in NMDAR cluster number and synaptic localization. In contrast, application of exogenous GABA prevented the decrease in NMDAR clusters induced by BDNF scavenging. Together, these results suggest that TrkB-mediated signaling modulates the clustering of postsynaptic GABA(A)Rs and that receptor activity is required for a subsequent upregulation of NMDAR clusters. Therefore, TrkB-mediated effects on postsynaptic neurotransmitter clusters may be part of a mechanism that balances inhibitory and excitatory synaptic transmission in developing neural circuits.
Collapse
Affiliation(s)
- Sarina B Elmariah
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6074, USA
| | | | | | | |
Collapse
|
41
|
Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 2004; 124:71-9. [PMID: 14960340 DOI: 10.1016/j.neuroscience.2003.09.029] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2003] [Indexed: 01/12/2023]
Abstract
We have previously shown that voluntary exercise produces enhanced neurogenesis and long-term potentiation (LTP) in the dentate gyrus (DG) of mice in vitro. In the present experiments we show that rats given access to a running wheel (Runners) exhibit significantly more short-term potentiation and LTP with theta-patterned conditioning stimulation in vivo than do age-matched litter mates (Controls). This increase in LTP appears to reflect an alteration in the induction threshold for synaptic plasticity that accompanies voluntary exercise. Weak theta-patterned stimulation, which did not produce LTP in control subjects, produced a robust and long-lasting LTP in Runners. LTP induction in both groups was dependent upon the activation of N-methyl-D-aspartate (NMDA) receptors, and could be blocked by the competitive antagonist [+/-]-3-[2-carboxypiperazin-4-yl] propanephosphonic acid. Consistent with these findings, we found that mRNA levels for NR2B subtype of NMDA receptor were increased specifically in the DG of Runners. In addition to changes in NR2B mRNA levels, quantitative polymerase chain reaction analysis revealed that brain-derived neurotrophic factor (BDNF) and glutamate receptor 5 mRNA levels were also significantly elevated in the DG of Runners, but not in other areas of the hippocampus. Thus, alterations in the expression of BDNF, and specific glutamate receptor subtypes, may underlie the ability of exercise to enhance neurogenesis and reduce the threshold for LTP in the DG.
Collapse
Affiliation(s)
- J Farmer
- Department of Psychology, Division of Neuroscience and The Brain Research Centre, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | | | |
Collapse
|
42
|
Mhyre TR, Applegate CD. Persistent regional increases in brain-derived neurotrophic factor in the flurothyl model of epileptogenesis are dependent upon the kindling status of the animal. Neuroscience 2004; 121:1031-45. [PMID: 14580953 DOI: 10.1016/s0306-4522(03)00475-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) appears to be both regulated by and a regulator of epileptogenesis. In the flurothyl (HFE) model of kindling mice exposed to successive flurothyl trials over 8 days express a rapid, long-lasting reduction in generalized seizure threshold and a more slowly evolving change in seizure phenotype in response to subsequent flurothyl exposure. The BDNF genotype of particular mouse strains appears to influence the epileptogenic progression in this model. Thus, we hypothesized that BDNF signaling pathways are altered by flurothyl-induced seizures. Following HFE kindling, fully kindled (eight seizures) adult male C57BI/6J mice had significantly elevated whole brain BDNF levels through at least 28 days after their final seizure. Mice that received only four HFE seizures (not kindled) had elevated BDNF levels, but only at 1 day post-seizure (DPSz), while BDNF levels were not significantly altered in mice receiving just one HFE seizure at any time point studied. Regional expression patterns of BDNF in the hippocampus, hypothalamus, and frontal cortex were also elevated by one DPSz and returned to control values by 14 DPSz in mice that received four HFE seizures. No changes were seen in the cerebellum, striatum, or piriform cortex. In contrast, fully kindled mice had significantly elevated BDNF levels within the hippocampus, hypothalamus, neocortex, and striatum that remained elevated through at least 14 DPSz, while levels were unchanged in the cerebellum and piriform cortex. Regional results were confirmed using anti-BDNF immunohistochemistry (IHC). Despite changes in BDNF levels following HFE kindling, we were unable to demonstrate alterations either in full-length tyrosine kinase receptor B (TrkB) expression (Western blot and IHC) or in truncated TrkB (IHC) expression levels. Together, these data suggest a model of a positive feedback loop involving seizure activity and seizure number and persistently modified BDNF signaling pathways that influences seizure phenotypes within the HFE kindling paradigm. Thus, long-term elevations in BDNF may be responsible in part for epileptogenic processes and the development of human refractory epilepsies.
Collapse
Affiliation(s)
- T R Mhyre
- Strong Epilepsy Center, Department of Neurology, University of Rochester Medical Center, Box 673, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | |
Collapse
|
43
|
Moriguchi S, Mizoguchi Y, Tomimatsu Y, Hayashi Y, Kadowaki T, Kagamiishi Y, Katsube N, Yamamoto K, Inoue K, Watanabe S, Nabekura J, Nakanishi H. Potentiation of NMDA receptor-mediated synaptic responses by microglia. ACTA ACUST UNITED AC 2004; 119:160-9. [PMID: 14625083 DOI: 10.1016/j.molbrainres.2003.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To study the influence of microglia on glutamatergic synaptic transmission in the acute phase of neuronal injury, we first examined the effects of primary cultured microglia transferred onto the organotypic cortical slice cultures. In these microglia-transferred cortical slice cultures, stimulation of the subcortical white matter induced fast excitatory postsynaptic potentials followed by N-methyl-D-aspartate (NMDA) receptor-mediated plateau-like potentials that were never observed in control slice cultures. A similar potentiation of NMDA receptor-mediated postsynaptic responses was also observed by an application of a microglial-conditioned medium (MCM, 10% v/v) in acute cortical slices. These effects of MCM disappeared after boiling or incubation with proteinase K. After fractionation of MCM by anion-exchange chromatography, the enhancing activity of each fraction was quantitated electrophysiologically. When each fraction was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the fraction 24 which showed the most potent enhancing activity on NMDA receptor-mediated responses contained a relatively strong protein band with a molecular mass of approximately 70 kDa. MCM also enhanced both glutamate- and NMDA-induced inward currents recorded from acutely isolated cortical neurons. It was also noted that glutamate and NMDA induced transient large inward currents during an application of MCM, which were never observed in the control condition. These observations strongly suggest that NMDA receptor-mediated responses can be potentiated by both heat- and protease-labile (presumably 70-kDa proteins) molecules released from microglia.
Collapse
Affiliation(s)
- Shigeki Moriguchi
- Laboratory of Oral Aging Science, Faculty of Dental Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Merighi A, Carmignoto G, Gobbo S, Lossi L, Salio C, Vergnano AM, Zonta M. Neurotrophins in spinal cord nociceptive pathways. PROGRESS IN BRAIN RESEARCH 2004; 146:291-321. [PMID: 14699971 DOI: 10.1016/s0079-6123(03)46019-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurotrophins are a well-known family of growth factors for the central and peripheral nervous systems. In the course of the last years, several lines of evidence converged to indicate that some members of the family, particularly NGF and BDNF, also participate in structural and functional plasticity of nociceptive pathways within the dorsal root ganglia and spinal cord. A subpopulation of small-sized dorsal root ganglion neurons is sensitive to NGF and responds to peripheral NGF stimulation with upregulation of BDNF synthesis and increased anterograde transport to the dorsal horn. In the latter, release of BDNF appears to modulate or even mediate nociceptive sensory inputs and pain hypersensitivity. We summarize here the status of the art on the role of neurotrophins in nociceptive pathways, with special emphasis on short-term synaptic and intracellular events that are mediated by this novel class of neuromessengers in the dorsal horn. Under this perspective we review the findings obtained through an array of techniques in naïve and transgenic animals that provide insight into the modulatory mechanisms of BDNF at central synapses. We also report on the results obtained after immunocytochemistry, in situ hybridization, and monitoring intracellular calcium levels by confocal microscopy, that led to hypothesize that also NGF might have a direct central effect in pain modulation. Although it is unclear whether or not NGF may be released at dorsal horn endings of certain nociceptors in vivo, we believe that these findings offer a clue for further studies aiming to elucidate the putative central effects of NGF and other neurotrophins in nociceptive pathways.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Morphophysiology, Rita Levi-Montalcini Center for Brain Repair, Via Leonardo da Vinci 44, 10095 Grugliasco, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Lui PW, Suen KC, Chan YS, Yung WH, Yung KKL. Striatal neurons but not nigral dopaminergic neurons in neonatal primary cell culture express endogenous functional N-methyl-d-aspartate receptors. ACTA ACUST UNITED AC 2003; 120:9-21. [PMID: 14667572 DOI: 10.1016/j.molbrainres.2003.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Developmental expression of N-methyl-D-aspartate (NMDA) receptor subunits were determined and compared in striatal and nigral neurons in neonatal primary cell cultures. In striatal neurons, NR1, NR2A and NR2B mRNAs and immunoreactivity, and NR2D mRNA were found and the maximal levels of NR1 mRNA and immunoreactivity expression were found at 6 day-in-vitro (DIV). NMDA receptors found at this stage in striatal neurons are likely to contain NR1 plus NR2A, NR2B and NR2D subunits. In nigral neurons, NR1 and NR2B mRNAs and immunoreactivity, and NR2D mRNA were found and the maximal level of NR1 immunoreactivity expression was found at 10 DIV. Unlike striatal neurons, NMDA receptors found in nigral neurons are likely to contain NR1 plus NR2B and NR2D subunits only. NMDA-induced toxicity assays showed that striatal neurons were most susceptible to cell death at around 10 DIV but nigral neurons were not susceptible to NMDA-induced cell death at all stages. In addition, patch clamp analysis revealed that functional NMDA receptors could only be found in striatal neurons but not in nigral dopaminergic neurons in vitro. The present results indicate that striatal and nigral neurons are programmed to express distinct NMDA receptor subunits during their endogenous development in cell cultures. Despite dopaminergic neurons in culture display NMDA receptor subunits, functional NMDA receptors are not assembled. The present findings have demonstrated that dopaminergic neurons in vitro may behave very differently to their counterparts in vivo in terms of NMDA receptor-mediated responses. Our results also have implications in transplantations using dopaminergic neurons in vitro in treatments of Parkinson's disease.
Collapse
Affiliation(s)
- P W Lui
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China
| | | | | | | | | |
Collapse
|
46
|
Pollock GS, Frost DO. Complexity in the modulation of neurotrophic factor mRNA expression by early visual experience. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:225-32. [PMID: 12855194 DOI: 10.1016/s0165-3806(03)00153-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The expression of mRNA for brain-derived neurotrophic factor (BDNF) is regulated by early visual experience. In this study, we sought to determine whether other neurotrophic factor mRNAs are similarly regulated. We reared pigmented rats from birth to postnatal day 21 in a normal light cycle, constant light (LR) or constant darkness (DR). In the retina, superior colliculus (SC), primary visual cortex (V1), hippocampus (HIPP) and cerebellum (CBL), using a ribonuclease protection assay (RPA), we examined expression of the mRNAs for nerve growth factor (NGF), BDNF, NT3, NT4, ciliary neurotrophic factor (CNTF) and glial cell line-derived neurotrophic factor (GDNF). LR or DR alter the expression of the mRNAs for NGF, BDNF and NT3 and CNTF within the visual system. LR also upregulated BDNF mRNA expression within the cerebellum. In all of the structures examined, NT4 mRNA expression was unaltered by LR or DR and GDNF mRNA was undetectable. Notably, the same rearing condition could induce changes of opposite sign in the mRNA for a single factor in different structures or for different factors in the same structure. Thus, during developmental stages when sensory experience and neuroelectric activity are important in the shaping of visual circuitry, vision regulates the expression of multiple neurotrophic factor mRNAs and each mRNA has a unique profile with respect to the locus and sign of activity-induced changes.
Collapse
Affiliation(s)
- Graeme S Pollock
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
47
|
Svensson P, Cairns BE, Wang K, Arendt-Nielsen L. Injection of nerve growth factor into human masseter muscle evokes long-lasting mechanical allodynia and hyperalgesia. Pain 2003; 104:241-7. [PMID: 12855334 DOI: 10.1016/s0304-3959(03)00012-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nerve growth factor (NGF) is a neurotrophic protein with a pivotal role in development and maintenance of the nervous system on one side and inflammatory and neuropathic pain states on the other. NGF causes clear signs of behavioral hyperalgesia in animal models and following intradermal and systemic administration in humans. The present double-blinded, placebo-controlled study was designed to test quantitatively the effect and duration (1h, 1, 7, 14, 21 and 28 days) of NGF (5 microg in 0.2 ml) injected into the masseter muscle. Pressure pain thresholds (PPT) and pressure tolerance thresholds (PTOL) were used as indices of mechanical allodynia and hyperalgesia in the jaw-closing muscles. In addition, perceived pain intensity was assessed by the subjects on a 0-10 numerical rating scale (NRS) with the jaw at rest and in relation to various oral functions (chewing, yawning, talking, swallowing, drinking and smiling). Repeated measures analysis of variance (ANOVA) was used to test for significant effects. Injection of NGF into the masseter muscle was associated with significantly reduced PPT for 7 days (ANOVA: P<0.001) and PTOL for 1 day (P<0.001). Buffered isotonic saline injections into the masseter muscle also significantly lowered the PPT after 1 day but to a significantly smaller extent than the NGF injections (P<0.001) and isotonic saline had no significant effects on PTOL. In contrast, assessment of PPT and PTOL in the non-injected temporalis muscles demonstrated a significant increase after 14-28 days (P<0.001), which may have reflected an adaptation to the test procedure. NRS scores of chewing and yawning were significantly increased for 7 days following NGF injection (P<0.001). Systemic adverse effects were noted in one subject who reported fever and slight discomfort about 8h after the NGF injection. In conclusion, this is the first study to show that injection of NGF into the human masseter muscle causes local signs of mechanical allodynia and hyperalgesia that persist for at least 7 days as well as pain during strenuous jaw movement. The present pain model is safe and may be used to gain further insight into the neurobiological mechanisms of muscle pain and sensitization.
Collapse
Affiliation(s)
- Peter Svensson
- Department of Clinical Oral Physiology, Dental School, University of Aarhus, Vennelyst Boulevard 9, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
48
|
Abstract
Neurotrophic molecules, released by neurons and neural target tissues, play a pivotal role in regulating neuronal development and plasticity. This article reviews recent work demonstrating the pivotal role of two such molecules, brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), in the growth and maturation of respiratory neurons and the expression of normal ventilatory behavior. Although BDNF and GDNF are structurally dissimilar and signal through wholly distinct receptors, they are both required for development of peripheral chemoafferent neurons that provide hypoxic drive to the brainstem respiratory network. Studies of genetically engineered mice carrying targeted deletions in the genes encoding BDNF and GDNF, as well as genetic linkage analysis in humans, indicate that these trophic molecules may be candidate genes for human developmental disorders of breathing.
Collapse
Affiliation(s)
- David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
49
|
Mcdonald JW, Stefovska VG, Liu XZ, Shin H, Liu S, Choi DW. Neurotrophin potentiation of iron-induced spinal cord injury. Neuroscience 2003; 115:931-9. [PMID: 12435430 DOI: 10.1016/s0306-4522(02)00342-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous studies have shown that pretreatment with neurotrophins can potentiate the vulnerability of cultured neurons to excitotoxic and free radical-induced necrosis, in contrast to their well known neuroprotective effects against apoptosis. Here we tested the hypothesis that this unexpected injury-potentiating effect of neurotrophins would also take place in the adult rat spinal cord. Fe(3+)-citrate was injected stereotaxically into spinal cord gray matter in adult rats in amounts sufficient to produce minimal tissue injury 24 h later. Twenty-four-hour pretreatment with brain-derived neurotrophic factor, neurotrophin-3, or neurotrophin-4/5, but not nerve growth factor, markedly enhanced tissue injury in the gray matter as evidenced by an increase in the damaged area, as well as the loss of neurons and oligodendrocytes. Consistent with maintained free radical mediation, the neurotrophin-potentiated iron-induced spinal cord damage was blocked by co-application of the antioxidant N-tert-butyl-(2-sulfophenyl)-nitrone. These data support the hypothesis that the overall neuroprotective properties of neurotrophins in models of acute injury to the spinal cord may be limited by an underlying potentiation of free radical-mediated necrosis.
Collapse
Affiliation(s)
- J W Mcdonald
- Department of Neurology, Washington University School of Medicine, PO Box 8111, 660 S Euclid Avenue, St Louis, MO 63110-1093, , USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The mammalian cerebral cortex requires the proper formation of exquisitely precise circuits to function correctly. These neuronal circuits are assembled during development by the formation of synaptic connections between hundreds of thousands of differentiating neurons. Although the development of the cerebral cortex has been well described anatomically, the cellular and molecular mechanisms that guide neuronal differentiation and formation of connections are just beginning to be understood. Moreover, despite evidence that coordinated patterns of activity underlie reorganization of brain circuits during critical periods of development, the molecular signals that translate activity into structural and functional changes in connections remain unknown. Recently, the neurotrophins have emerged as attractive candidates not only for regulating neuronal differentiation in the developing brain, but also for mediating activity-dependent synaptic plasticity. The neurotrophins meet many of the criteria required for molecular signals involved in neuronal differentiation and plasticity. They are present in the cerebral cortex during development and their expression is regulated by synaptic activity. In turn, the neurotrophins themselves strongly influence both short-term synaptic plasticity and long-term potentiation and depression. In addition to their functional effects, the neurotrophins also profoundly regulate the structural changes that underlie axonal and dendritic differentiation. Finally, the neurotrophins have been implicated in mediating synaptic competition required for activity-dependent plasticity during the critical period. This chapter presents and discusses the rapidly accumulating evidence that the neurotrophins are critical for neuronal differentiation and that they may be involved in activity-dependent synaptic refinement in the developing cerebral cortex.
Collapse
Affiliation(s)
- A Kimberley McAllister
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, California 95616, USA
| |
Collapse
|