1
|
Girondini M, Montanaro M, Lega C, Gallace A. Spatial sensorimotor mismatch between the motor command and somatosensory feedback decreases motor cortical excitability. A transcranial magnetic stimulation-virtual reality study. Eur J Neurosci 2024; 60:5348-5361. [PMID: 39171623 DOI: 10.1111/ejn.16481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/23/2024]
Abstract
Effective control of movement predominantly depends on the exchange and integration between sensory feedback received by our body and motor command. However, the precise mechanisms governing the adaptation of the motor system's response to altered somatosensory signals (i.e., discrepancies between an action performed and feedback received) following movement execution remain largely unclear. In order to address these questions, we developed a unique paradigm using virtual reality (VR) technology. This paradigm can induce spatial incongruence between the motor commands executed by a body district (i.e., moving the right hand) and the resulting somatosensory feedback received (i.e., feeling touch on the left ankle). We measured functional sensorimotor plasticity in 17 participants by assessing the effector's motor cortical excitability (right hand) before and after a 10-min VR task. The results revealed a decrease in motor cortical excitability of the movement effector following exposure to a 10-min conflict between the motor output and the somatosensory input, in comparison to the control condition where spatial congruence between the moved body part and the area of the body that received the feedback was maintained. This finding provides valuable insights into the functional plasticity resulting from spatial sensorimotor conflict arising from the discrepancy between the anticipated and received somatosensory feedback following movement execution. The cortical reorganization observed can be attributed to functional plasticity mechanisms within the sensorimotor cortex that are related to establishing a new connection between somatosensory input and motor output, guided by temporal binding and the Hebbian plasticity rule.
Collapse
Affiliation(s)
- Matteo Girondini
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- Mind and Behavior Technological Center, University of Milano-Bicocca, Milan, Italy
- MySpace Lab, Department of Clinical Neuroscience, University Hospital of Lausanne, Lausanne, Switzerland
| | - Massimo Montanaro
- Mind and Behavior Technological Center, University of Milano-Bicocca, Milan, Italy
| | - Carlotta Lega
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Alberto Gallace
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- Mind and Behavior Technological Center, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
2
|
Nashed JY, Shearer KT, Wang JZ, Chen Y, Cook EE, Champagne AA, Coverdale NS, Fernandez-Ruiz J, Striver SI, Flanagan JR, Gallivan JP, Cook DJ. Spontaneous Behavioural Recovery Following Stroke Relates to the Integrity of Parietal and Temporal Regions. Transl Stroke Res 2024; 15:127-139. [PMID: 36542292 DOI: 10.1007/s12975-022-01115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Stroke is a devastating disease that results in neurological deficits and represents a leading cause of death and disability worldwide. Following a stroke, there is a degree of spontaneous recovery of function, the neural basis of which is of great interest among clinicians in their efforts to reduce disability following stroke and enhance rehabilitation. Conventionally, work on spontaneous recovery has tended to focus on the neural reorganization of motor cortical regions, with comparably little attention being paid to changes in non-motor regions and how these relate to recovery. Here we show, using structural neuroimaging in a macaque stroke model (N = 31) and by exploiting individual differences in spontaneous behavioural recovery, that the preservation of regions in the parietal and temporal cortices predict animal recovery. To characterize recovery, we performed a clustering analysis using Non-Human Primate Stroke Scale (NHPSS) scores and identified a good versus poor recovery group. By comparing the preservation of brain volumes in the two groups, we found that brain areas in integrity of brain areas in parietal, temporal and somatosensory cortex were associated with better recovery. In addition, a decoding approach performed across all subjects revealed that the preservation of specific brain regions in the parietal, somatosensory and medial frontal cortex predicted recovery. Together, these findings highlight the importance of parietal and temporal regions in spontaneous behavioural recovery.
Collapse
Affiliation(s)
- Joseph Y Nashed
- Department of Translational Medicine, Queen's University, 18 Stuart Street, Room 230, Botterell Hall, Kingston, Ontario, K7L 3N6, Canada
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kaden T Shearer
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Justin Z Wang
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, M5T 1P5, Canada
| | - Yining Chen
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Elise E Cook
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Allen A Champagne
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Nicole S Coverdale
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Shirley I Striver
- Division of Neurosurgery, Department of Surgery, Queen's University, Kingston, Ontario, K7L 2V7, Canada
| | - J Randal Flanagan
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Psychology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Jason P Gallivan
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Psychology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Douglas J Cook
- Department of Translational Medicine, Queen's University, 18 Stuart Street, Room 230, Botterell Hall, Kingston, Ontario, K7L 3N6, Canada.
- Centre of Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
- School of Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
- Division of Neurosurgery, Department of Surgery, Queen's University, Kingston, Ontario, K7L 2V7, Canada.
| |
Collapse
|
3
|
Kommireddy RS, Mehra S, Pompilus M, Arja RD, Zhu T, Yang Z, Fu Y, Zhu J, Kobeissy F, Wang KKW, Febo M. Functional connectivity, tissue microstructure and T2 at 11.1 Tesla distinguishes neuroadaptive differences in two traumatic brain injury models in rats: A Translational Outcomes Project in NeuroTrauma (TOP-NT) UG3 phase study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.10.570975. [PMID: 38168381 PMCID: PMC10760004 DOI: 10.1101/2023.12.10.570975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The damage caused by contusive traumatic brain injuries (TBIs) is thought to involve breakdown in neuronal communication through focal and diffuse axonal injury along with alterations to the neuronal chemical environment, which adversely affects neuronal networks beyond the injury epicenter(s). In the present study, functional connectivity along with brain tissue microstructure coupled with T2 relaxometry were assessed in two experimental TBI models in rat, controlled cortical impact (CCI) and lateral fluid percussive injury (LFPI). Rats were scanned on an 11.1 Tesla scanner on days 2 and 30 following either CCI or LFPI. Naive controls were scanned once and used as a baseline comparison for both TBI groups. Scanning included functional magnetic resonance imaging (fMRI), diffusion weighted images (DWI), and multi-echo T2 images. fMRI scans were analyzed for functional connectivity across laterally and medially located region of interests (ROIs) across the cortical mantle, hippocampus, and dorsal striatum. DWI scans were processed to generate maps of fractional anisotropy, mean, axial, and radial diffusivities (FA, MD, AD, RD). The analyses focused on cortical and white matter (WM) regions at or near the TBI epicenter. Our results indicate that rats exposed to CCI and LFPI had significantly increased contralateral intra-cortical connectivity at 2 days post-injury. This was observed across similar areas of the cortex in both groups. The increased contralateral connectivity was still observed by day 30 in CCI, but not LFPI rats. Although both CCI and LFPI had changes in WM and cortical FA and diffusivities, WM changes were most predominant in CCI and cortical changes in LFPI. Our results provide support for the use of multimodal MR imaging for different types of contusive and skull-penetrating injury.
Collapse
|
4
|
Campos B, Choi H, DeMarco AT, Seydell-Greenwald A, Hussain SJ, Joy MT, Turkeltaub PE, Zeiger W. Rethinking Remapping: Circuit Mechanisms of Recovery after Stroke. J Neurosci 2023; 43:7489-7500. [PMID: 37940595 PMCID: PMC10634578 DOI: 10.1523/jneurosci.1425-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 11/10/2023] Open
Abstract
Stroke is one of the most common causes of disability, and there are few treatments that can improve recovery after stroke. Therapeutic development has been hindered because of a lack of understanding of precisely how neural circuits are affected by stroke, and how these circuits change to mediate recovery. Indeed, some of the hypotheses for how the CNS changes to mediate recovery, including remapping, redundancy, and diaschisis, date to more than a century ago. Recent technological advances have enabled the interrogation of neural circuits with ever greater temporal and spatial resolution. These techniques are increasingly being applied across animal models of stroke and to human stroke survivors, and are shedding light on the molecular, structural, and functional changes that neural circuits undergo after stroke. Here we review these studies and highlight important mechanisms that underlie impairment and recovery after stroke. We begin by summarizing knowledge about changes in neural activity that occur in the peri-infarct cortex, specifically considering evidence for the functional remapping hypothesis of recovery. Next, we describe the importance of neural population dynamics, disruptions in these dynamics after stroke, and how allocation of neurons into spared circuits can restore functionality. On a more global scale, we then discuss how effects on long-range pathways, including interhemispheric interactions and corticospinal tract transmission, contribute to post-stroke impairments. Finally, we look forward and consider how a deeper understanding of neural circuit mechanisms of recovery may lead to novel treatments to reduce disability and improve recovery after stroke.
Collapse
Affiliation(s)
- Baruc Campos
- Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Hoseok Choi
- Department of Neurology, Weill Institute for Neuroscience, University of California-San Francisco, San Francisco, California 94158
| | - Andrew T DeMarco
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- Department of Rehabilitation Medicine, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
| | - Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- MedStar National Rehabilitation Hospital, Washington, DC 20010
| | - Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas 78712
| | - Mary T Joy
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- MedStar National Rehabilitation Hospital, Washington, DC 20010
| | - William Zeiger
- Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| |
Collapse
|
5
|
Albanese GA, Marini F, Morasso P, Campus C, Zenzeri J. μ-band desynchronization in the contralateral central and central-parietal areas predicts proprioceptive acuity. Front Hum Neurosci 2023; 17:1000832. [PMID: 37007684 PMCID: PMC10050694 DOI: 10.3389/fnhum.2023.1000832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionPosition sense, which belongs to the sensory stream called proprioception, is pivotal for proper movement execution. Its comprehensive understanding is needed to fill existing knowledge gaps in human physiology, motor control, neurorehabilitation, and prosthetics. Although numerous studies have focused on different aspects of proprioception in humans, what has not been fully investigated so far are the neural correlates of proprioceptive acuity at the joints.MethodsHere, we implemented a robot-based position sense test to elucidate the correlation between patterns of neural activity and the degree of accuracy and precision exhibited by the subjects. Eighteen healthy participants performed the test, and their electroencephalographic (EEG) activity was analyzed in its μ band (8–12 Hz), as the frequency band related to voluntary movement and somatosensory stimulation.ResultsWe observed a significant positive correlation between the matching error, representing proprioceptive acuity, and the strength of the activation in contralateral hand motor and sensorimotor areas (left central and central-parietal areas). In absence of visual feedback, these same regions of interest (ROIs) presented a higher activation level compared to the association and visual areas. Remarkably, central and central-parietal activation was still observed when visual feedback was added, although a consistent activation in association and visual areas came up.ConclusionSumming up, this study supports the existence of a specific link between the magnitude of activation of motor and sensorimotor areas related to upper limb proprioceptive processing and the proprioceptive acuity at the joints.
Collapse
Affiliation(s)
- Giulia Aurora Albanese
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
- *Correspondence: Giulia Aurora Albanese,
| | | | - Pietro Morasso
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Claudio Campus
- U-VIP Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Jacopo Zenzeri
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- ReWing S.r.l., Milan, Italy
| |
Collapse
|
6
|
Howland DR, Trimble SA, Fox EJ, Tester NJ, Spiess MR, Senesac CR, Kleim JA, Spierre LZ, Rose DK, Johns JS, Ugiliweneza B, Reier PJ, Behrman AL. Recovery of walking in nonambulatory children with chronic spinal cord injuries: Case series. J Neurosci Res 2023; 101:826-842. [PMID: 36690607 DOI: 10.1002/jnr.25162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 01/25/2023]
Abstract
The immature central nervous system is recognized as having substantial neuroplastic capacity. In this study, we explored the hypothesis that rehabilitation can exploit that potential and elicit reciprocal walking in nonambulatory children with chronic, severe (i.e., lower extremity motor score < 10/50) spinal cord injuries (SCIs). Seven male subjects (3-12 years of age) who were at least 1-year post-SCI and incapable of discrete leg movements believed to be required for walking, enrolled in activity-based locomotor training (ABLT; clinicaltrials.gov NCT00488280). Six children completed the study. Following a minimum of 49 sessions of ABLT, three of the six children achieved walking with reverse rolling walkers. Stepping development, however, was not accompanied by improvement in discrete leg movements as underscored by the persistence of synergistic movements and little change in lower extremity motor scores. Interestingly, acoustic startle responses exhibited by the three responding children suggested preserved reticulospinal inputs to circuitry below the level of injury capable of mediating leg movements. On the other hand, no indication of corticospinal integrity was obtained with transcranial magnetic stimulation evoked responses in the same individuals. These findings suggest some children who are not predicted to improve motor and locomotor function may have a reserve of adaptive plasticity that can emerge in response to rehabilitative strategies such as ABLT. Further studies are warranted to determine whether a critical need exists to re-examine rehabilitation approaches for pediatric SCI with poor prognosis for any ambulatory recovery.
Collapse
Affiliation(s)
- Dena R Howland
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Research Service, Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Shelley A Trimble
- Spinal Cord Injury Outpatient Program, Pediatric NeuroRecovery, Frazier Rehab Institute, Louisville, Kentucky, USA
| | - Emily J Fox
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA.,Brooks Rehabilitation, Jacksonville, Florida, USA
| | - Nicole J Tester
- Movement Disorders & Neurorestoration Program, Norman Fixel Institute for Neurological Sciences, University of Florida Health, Gainesville, Florida, USA
| | - Martina R Spiess
- ZHAW Zurich University of Applied Sciences, School of Health Sciences, Institute of Occupational Therapy, Winterthur, Switzerland
| | - Claudia R Senesac
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Jeffrey A Kleim
- School of Biological and Health Systems Engineering & Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, USA
| | - Louise Z Spierre
- University of Florida College of Medicine-Jacksonville, Department of Pediatrics, University of Florida Health Division of Community and Societal Pediatrics, Jacksonville, Florida, USA
| | - Dorian K Rose
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA.,Brooks Rehabilitation, Jacksonville, Florida, USA
| | - Jeffery S Johns
- Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Paul J Reier
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Andrea L Behrman
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
7
|
DeMarco AT, van der Stelt C, Paul S, Dvorak E, Lacey E, Snider S, Turkeltaub PE. Absence of Perilesional Neuroplastic Recruitment in Chronic Poststroke Aphasia. Neurology 2022; 99:e119-e128. [PMID: 35508398 PMCID: PMC9280993 DOI: 10.1212/wnl.0000000000200382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES A prominent theory proposes that neuroplastic recruitment of perilesional tissue supports aphasia recovery, especially when language-capable cortex is spared by smaller lesions. This theory has rarely been tested directly and findings have been inconclusive. We tested the perilesional plasticity hypothesis using 2 fMRI tasks in 2 groups of patients with previous aphasia diagnosis. METHODS Two cohorts totaling 82 patients with chronic left-hemisphere stroke with previous aphasia diagnosis and 82 control participants underwent fMRI using either a naming task or a reliable semantic decision task. Individualized perilesional tissue was defined by dilating anatomical lesions and language regions were defined using meta-analyses. Mixed modeling examined differences in activity between groups. Relationships with lesion size and aphasia severity were examined. RESULTS Patients exhibited reduced activity in perilesional language tissue relative to controls in both tasks. Although a few cortical regions exhibited greater activity irrespective of distance from the lesion, or only when distant from the lesion, no regions exhibited increased activity only when near the lesion. Larger lesions were associated with reduced language activity irrespective of distance from the lesion. Using the reliable fMRI task, reduced language activity was related to aphasia severity independent of lesion size. DISCUSSION We found no evidence for neuroplastic recruitment of perilesional tissue in aphasia beyond its typical role in language. Rather, our findings are consistent with alternative hypotheses that changes in left-hemisphere activation during recovery relate to normalization of language network dysfunction and possibly recruitment of alternate cortical processors. These findings clarify left-hemisphere neuroplastic mechanisms supporting language recovery after stroke.
Collapse
Affiliation(s)
- Andrew Tesla DeMarco
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Candace van der Stelt
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Sachi Paul
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Elizabeth Dvorak
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Elizabeth Lacey
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Sarah Snider
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC
| | - Peter E Turkeltaub
- From the Departments of Rehabilitation Medicine (A.T.D., P.E.T.) and Neurology (A.T.D., C.v.d.S., S.P., E.D., E.L., S.S., P.E.T.), Georgetown University; and MedStar National Rehabilitation Hospital (E.L., P.E.T.), Washington, DC.
| |
Collapse
|
8
|
Yang Z, Gong M, Jian T, Li J, Yang C, Ma Q, Deng P, Wang Y, Huang M, Wang H, Yang S, Chen X, Yu Z, Wang M, Chen C, Zhang K. Engrafted glial progenitor cells yield long-term integration and sensory improvement in aged mice. Stem Cell Res Ther 2022; 13:285. [PMID: 35765112 PMCID: PMC9241208 DOI: 10.1186/s13287-022-02959-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/05/2022] [Indexed: 12/31/2022] Open
Abstract
Aging causes astrocyte morphological degeneration and functional deficiency, which impairs neuronal functions. Until now, whether age-induced neuronal deficiency could be alleviated by engraftment of glial progenitor cell (GPC) derived astrocytes remained unknown. In the current study, GPCs were generated from embryonic cortical neural stem cells in vitro and transplanted into the brains of aged mice. Their integration and intervention effects in the aged brain were examined 12 months after transplantation. Results indicated that these in-vitro-generated GPC-derived astrocytes possessed normal functional properties. After transplantation they could migrate, differentiate, achieve long-term integration, and maintain much younger morphology in the aged brain. Additionally, these GPC-derived astrocytes established endfeet expressing aquaporin-4 (AQP4) and ameliorate AQP4 polarization in the aged neocortex. More importantly, age-dependent sensory response degeneration was reversed by GPC transplantation. This work demonstrates that rejuvenation of the astrocyte niche is a promising treatment to prevent age-induced degradation of neuronal and behavioral functions.
Collapse
Affiliation(s)
- Zhiqi Yang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, 730030, Gansu, China.,Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Mingyue Gong
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Jin Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Chuanyan Yang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Qinlong Ma
- Department of Occupational Health, Third Military Medical University, Chongqing, 400038, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, 400038, China
| | - Yuxia Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Mingzhu Huang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Haoyu Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shaofan Yang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, 400038, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, 730030, Gansu, China.
| | - Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, 400038, China.
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
9
|
Khateeb K, Bloch J, Zhou J, Rahimi M, Griggs DJ, Kharazia VN, Le MN, Wang RK, Yazdan-Shahmorad A. A versatile toolbox for studying cortical physiology in primates. CELL REPORTS METHODS 2022; 2:100183. [PMID: 35445205 PMCID: PMC9017216 DOI: 10.1016/j.crmeth.2022.100183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022]
Abstract
Lesioning and neurophysiological studies have facilitated the elucidation of cortical functions and mechanisms of functional recovery following injury. Clinical translation of such studies is contingent on their employment in non-human primates (NHPs), yet tools for monitoring and modulating cortical physiology are incompatible with conventional lesioning techniques. To address these challenges, we developed a toolbox validated in seven macaques. We introduce the photothrombotic method for inducing focal cortical lesions, a quantitative model for designing experiment-specific lesion profiles and optical coherence tomography angiography (OCTA) for large-scale (~5 cm2) monitoring of vascular dynamics. We integrate these tools with our electrocorticographic array for large-scale monitoring of neural dynamics and testing stimulation-based interventions. Advantageously, this versatile toolbox can be incorporated into established chronic cranial windows. By combining optical and electrophysiological techniques in the NHP cortex, we can enhance our understanding of cortical functions, investigate functional recovery mechanisms, integrate physiological and behavioral findings, and develop neurorehabilitative treatments. MOTIVATION The primate neocortex encodes for complex functions and behaviors, the physiologies of which are yet to be fully understood. Such an understanding in both healthy and diseased states can be crucial for the development of effective neurorehabilitative strategies. However, there is a lack of a comprehensive and adaptable set of tools that enables the study of multiple physiological phenomena in healthy and injured brains. Therefore, we developed a toolbox with the capability to induce targeted cortical lesions, monitor dynamics of underlying cortical microvasculature, and record and stimulate neural activity. With this toolbox, we can enhance our understanding of cortical functions, investigate functional recovery mechanisms, test stimulation-based interventions, and integrate physiological and behavioral findings.
Collapse
Affiliation(s)
- Karam Khateeb
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Julien Bloch
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Jasmine Zhou
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Mona Rahimi
- Washington National Primate Research Center, Seattle, WA 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Devon J. Griggs
- Washington National Primate Research Center, Seattle, WA 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Viktor N. Kharazia
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Minh N. Le
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Ophthalmology, University of Washington Medicine, Seattle, WA 98195, USA
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Proulx CE, Louis Jean MT, Higgins J, Gagnon DH, Dancause N. Somesthetic, Visual, and Auditory Feedback and Their Interactions Applied to Upper Limb Neurorehabilitation Technology: A Narrative Review to Facilitate Contextualization of Knowledge. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:789479. [PMID: 36188924 PMCID: PMC9397809 DOI: 10.3389/fresc.2022.789479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022]
Abstract
Reduced hand dexterity is a common component of sensorimotor impairments for individuals after stroke. To improve hand function, innovative rehabilitation interventions are constantly developed and tested. In this context, technology-based interventions for hand rehabilitation have been emerging rapidly. This paper offers an overview of basic knowledge on post lesion plasticity and sensorimotor integration processes in the context of augmented feedback and new rehabilitation technologies, in particular virtual reality and soft robotic gloves. We also discuss some factors to consider related to the incorporation of augmented feedback in the development of technology-based interventions in rehabilitation. This includes factors related to feedback delivery parameter design, task complexity and heterogeneity of sensory deficits in individuals affected by a stroke. In spite of the current limitations in our understanding of the mechanisms involved when using new rehabilitation technologies, the multimodal augmented feedback approach appears promising and may provide meaningful ways to optimize recovery after stroke. Moving forward, we argue that comparative studies allowing stratification of the augmented feedback delivery parameters based upon different biomarkers, lesion characteristics or impairments should be advocated (e.g., injured hemisphere, lesion location, lesion volume, sensorimotor impairments). Ultimately, we envision that treatment design should combine augmented feedback of multiple modalities, carefully adapted to the specific condition of the individuals affected by a stroke and that evolves along with recovery. This would better align with the new trend in stroke rehabilitation which challenges the popular idea of the existence of an ultimate good-for-all intervention.
Collapse
Affiliation(s)
- Camille E. Proulx
- School of Rehabilitation, Faculty of Medecine, Université de Montréal, Montreal, QC, Canada
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal – Site Institut universitaire sur la réadaptation en déficience physique de Montréal, CIUSSS Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
- *Correspondence: Camille E. Proulx
| | | | - Johanne Higgins
- School of Rehabilitation, Faculty of Medecine, Université de Montréal, Montreal, QC, Canada
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal – Site Institut universitaire sur la réadaptation en déficience physique de Montréal, CIUSSS Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Dany H. Gagnon
- School of Rehabilitation, Faculty of Medecine, Université de Montréal, Montreal, QC, Canada
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal – Site Institut universitaire sur la réadaptation en déficience physique de Montréal, CIUSSS Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Numa Dancause
- Department of Neurosciences, Faculty of Medecine, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
11
|
Bokulić E, Medenica T, Knezović V, Štajduhar A, Almahariq F, Baković M, Judaš M, Sedmak G. The Stereological Analysis and Spatial Distribution of Neurons in the Human Subthalamic Nucleus. Front Neuroanat 2022; 15:749390. [PMID: 34970124 PMCID: PMC8712451 DOI: 10.3389/fnana.2021.749390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
The subthalamic nucleus (STN) is a small, ovoid structure, and an important site of deep brain stimulation (DBS) for the treatment of Parkinson’s disease. Although the STN is a clinically important structure, there are many unresolved issues with regard to it. These issues are especially related to the anatomical subdivision, neuronal phenotype, neuronal composition, and spatial distribution. In this study, we have examined the expression pattern of 8 neuronal markers [nNOS, NeuN, parvalbumin (PV), calbindin (CB), calretinin (CR), FOXP2, NKX2.1, and PAX6] in the adult human STN. All of the examined markers, except CB, were present in the STN. To determine the neuronal density, we have performed stereological analysis on Nissl-stained and immunohistochemical slides of positive markers. The stereology data were also used to develop a three-dimensional map of the spatial distribution of neurons within the STN. The nNOS population exhibited the largest neuronal density. The estimated total number of nNOS STN neurons is 281,308 ± 38,967 (± 13.85%). The STN neuronal subpopulations can be divided into two groups: one with a neuronal density of approximately 3,300 neurons/mm3 and the other with a neuronal density of approximately 2,200 neurons/mm3. The largest density of STN neurons was observed along the ventromedial border of the STN and the density gradually decreased toward the dorsolateral border. In this study, we have demonstrated the presence of 7 neuronal markers in the STN, three of which were not previously described in the human STN. The human STN is a collection of diverse, intermixed neuronal subpopulations, and our data, as far as the cytoarchitectonics is concerned, did not support the tripartite STN subdivision.
Collapse
Affiliation(s)
- Ema Bokulić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Tila Medenica
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Vinka Knezović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Andrija Štajduhar
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,School of Public Health "Andrija Štampar," University of Zagreb School of Medicine, Zagreb, Croatia
| | - Fadi Almahariq
- Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,Department of Neurosurgery, Clinical Hospital "Dubrava," Zagreb, Croatia
| | - Marija Baković
- Department of Forensic Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
12
|
Sirigu A, Desmurget M. Somatosensory awareness in the parietal operculum. Brain 2021; 144:3558-3560. [PMID: 34791060 DOI: 10.1093/brain/awab415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 11/14/2022] Open
Abstract
This scientific commentary refers to ‘Tonic somatosensory responses and deficits of tactile awareness converge in the parietal operculum’ by Del Vecchio et al. (doi:10.1093/brain/awab384).
Collapse
Affiliation(s)
- Angela Sirigu
- Institute of Cognitive Sciences Marc Jeannerod, CNRS/UMR, 5229 Bron, France.,iMIND, Center of Excellence for Autism, le Vinatier Hospital, Bron, France
| | - Michel Desmurget
- Institute of Cognitive Sciences Marc Jeannerod, CNRS/UMR, 5229 Bron, France
| |
Collapse
|
13
|
Does Delayed Microglial Ablation Alter Outcomes after Traumatic Brain Injury? J Neurosci 2021; 40:8211-8213. [PMID: 33087459 DOI: 10.1523/jneurosci.1336-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 11/21/2022] Open
|
14
|
Seim CE, Wolf SL, Starner TE. Wearable vibrotactile stimulation for upper extremity rehabilitation in chronic stroke: clinical feasibility trial using the VTS Glove. J Neuroeng Rehabil 2021; 18:14. [PMID: 33485371 PMCID: PMC7824932 DOI: 10.1186/s12984-021-00813-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Evaluate the feasibility and potential impacts on hand function using a wearable stimulation device (the VTS Glove) which provides mechanical, vibratory input to the affected limb of chronic stroke survivors. METHODS A double-blind, randomized, controlled feasibility study including sixteen chronic stroke survivors (mean age: 54; 1-13 years post-stroke) with diminished movement and tactile perception in their affected hand. Participants were given a wearable device to take home and asked to wear it for three hours daily over eight weeks. The device intervention was either (1) the VTS Glove, which provided vibrotactile stimulation to the hand, or (2) an identical glove with vibration disabled. Participants were randomly assigned to each condition. Hand and arm function were measured weekly at home and in local physical therapy clinics. RESULTS Participants using the VTS Glove showed significantly improved Semmes-Weinstein monofilament exam results, reduction in Modified Ashworth measures in the fingers, and some increased voluntary finger flexion, elbow and shoulder range of motion. CONCLUSIONS Vibrotactile stimulation applied to the disabled limb may impact tactile perception, tone and spasticity, and voluntary range of motion. Wearable devices allow extended application and study of stimulation methods outside of a clinical setting.
Collapse
Affiliation(s)
- Caitlyn E Seim
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| | - Steven L Wolf
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Thad E Starner
- College of Computing, Georgia Institute of Technology, Atlanta, CA, USA
| |
Collapse
|
15
|
Koo KI, Hwang CH. Five-day rehabilitation of patients undergoing total knee arthroplasty using an end-effector gait robot as a neuromodulation blending tool for deafferentation, weight offloading and stereotyped movement: Interim analysis. PLoS One 2020; 15:e0241117. [PMID: 33326434 PMCID: PMC7743990 DOI: 10.1371/journal.pone.0241117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Deafferentation and weight offloading can increase brain and spinal motor neuron excitability, respectively. End-effector gait robots (EEGRs) can blend these effects with stereotyped movement-induced neuroplasticity. The authors aimed to evaluate the usefulness of EEGRs as a postoperative neuro-muscular rehabilitation tool. This prospective randomized controlled trial included patients who had undergone unilateral total knee arthroplasty (TKA). Patients were randomly allocated into two groups: one using a 200-step rehabilitation program in an EEGR or the other using a walker on a floor (WF) three times a day for five weekdays. The two groups were compared by electrophysiological and biomechanical methods. Since there were no more enrollments due to funding issues, interim analysis was performed. Twelve patients were assigned to the EEGR group and eight patients were assigned to the WF group. Although the muscle volume of the quadriceps and hamstring did not differ between the two groups, the normalized peak torque of the operated knee flexors (11.28 ± 16.04 Nm/kg) was improved in the EEGR group compared to that of the operated knee flexors in the WF group (4.25 ± 14.26 Nm/kg) (p = 0.04). The normalized compound motor action potentials of the vastus medialis (VM) and biceps femoris (BF) were improved in the EEGR group (p < 0.05). However, the normalized real-time peak amplitude and total, mean area under the curve of VM were decreased during rehabilitation in the EEGR group (p < 0.05). No significant differences were found between operated and non-operated knees in the EEGR group. Five-day EEGR-assisted rehabilitation induced strengthening in the knee flexors and the muscular reactivation of the BF and VM after TKA, while reducing the real-time use of the VM. This observation may suggest the feasibility of this technique: EEGR modulated the neuronal system of the patients rather than training their muscles. However, because the study was underpowered, all of the findings should be interpreted with the utmost caution.
Collapse
Affiliation(s)
- Kyo-In Koo
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan, Republic of Korea
| | - Chang Ho Hwang
- Department of Physical and Rehabilitation Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Republic of Korea
| |
Collapse
|
16
|
Callier T, Suresh AK, Bensmaia SJ. Neural Coding of Contact Events in Somatosensory Cortex. Cereb Cortex 2020; 29:4613-4627. [PMID: 30668644 DOI: 10.1093/cercor/bhy337] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
Manual interactions with objects require precise and rapid feedback about contact events. These tactile signals are integrated with motor plans throughout the neuraxis to achieve dexterous object manipulation. To better understand the role of somatosensory cortex in interactions with objects, we measured, using chronically implanted arrays of electrodes, the responses of populations of somatosensory neurons to skin indentations designed to simulate the initiation, maintenance, and termination of contact with an object. First, we find that the responses of somatosensory neurons to contact onset and offset dwarf their responses to maintenance of contact. Second, we show that these responses rapidly and reliably encode features of the simulated contact events-their timing, location, and strength-and can account for the animals' performance in an amplitude discrimination task. Third, we demonstrate that the spatiotemporal dynamics of the population response in cortex mirror those of the population response in the nerves. We conclude that the responses of populations of somatosensory neurons are well suited to encode contact transients and are consistent with a role of somatosensory cortex in signaling transitions between task subgoals.
Collapse
Affiliation(s)
- Thierri Callier
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
| | - Aneesha K Suresh
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
| | - Sliman J Bensmaia
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Poststroke Impairment and Recovery Are Predicted by Task-Specific Regionalization of Injury. J Neurosci 2020; 40:6082-6097. [PMID: 32605940 DOI: 10.1523/jneurosci.0057-20.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 01/01/2023] Open
Abstract
Lesion size and location affect the magnitude of impairment and recovery following stroke, but the precise relationship between these variables and functional outcome is unknown. Herein, we systematically varied the size of strokes in motor cortex and surrounding regions to assess effects on impairment and recovery of function. Female Sprague Dawley rats (N = 64) were evaluated for skilled reaching, spontaneous limb use, and limb placement over a 7 week period after stroke. Exploration and reaching were also tested in a free ranging, more naturalistic, environment. MRI voxel-based analysis of injury volume and its likelihood of including the caudal forelimb area (CFA), rostral forelimb area (RFA), hindlimb (HL) cortex (based on intracranial microstimulation), or their bordering regions were related to both impairment and recovery. Severity of impairment on each task was best predicted by injury in unique regions: impaired reaching, by damage in voxels encompassing CFA/RFA; hindlimb placement, by damage in HL; and spontaneous forelimb use, by damage in CFA. An entirely different set of voxels predicted recovery of function: damage lateral to RFA reduced recovery of reaching, damage medial to HL reduced recovery of hindlimb placing, and damage lateral to CFA reduced recovery of spontaneous limb use. Precise lesion location is an important, but heretofore relatively neglected, prognostic factor in both preclinical and clinical stroke studies, especially those using region-specific therapies, such as transcranial magnetic stimulation.SIGNIFICANCE STATEMENT By estimating lesion location relative to cortical motor representations, we established the relationship between individualized lesion location, and functional impairment and recovery in reaching/grasping, spontaneous limb use, and hindlimb placement during walking. We confirmed that stroke results in impairments to specific motor domains linked to the damaged cortical subregion and that damage encroaching on adjacent regions reduces the ability to recover from initial lesion-induced impairments. Each motor domain encompasses unique brain regions that are most associated with recovery and likely represent targets where beneficial reorganization is taking place. Future clinical trials should use individualized therapies (e.g., transcranial magnetic stimulation, intracerebral stem/progenitor cells) that consider precise lesion location and the specific functional impairments of each subject since these variables can markedly affect therapeutic efficacy.
Collapse
|
18
|
Hejazi-Shirmard M, Taghizadeh G, Azad A, Lajevardi L, Rassafiani M. Sensory retraining improves light touch threshold of the paretic hand in chronic stroke survivors: a single-subject A-B design. Somatosens Mot Res 2020; 37:74-83. [PMID: 32162568 DOI: 10.1080/08990220.2020.1736021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Light touch, one of the primary and basic sensations, is often neglected in sensory retraining programmes for stroke survivors.Objective: This study aimed to investigate the effects of sensory retraining on the light touch threshold of the hand, dexterity and upper limb motor function of chronic stroke survivors.Methods: Five chronic stroke survivors with sensory impairment participated in this single-subject A-B design study. In baseline (A) phase, they only received standard rehabilitation. In the treatment (B) phase, they received a 6-week sensory retraining intervention in addition to standard rehabilitation. In both phases, they were evaluated every 3 days. Light touch threshold, manual dexterity and upper limb motor function were assessed using Semmes-Weinstein Monofilaments, Box-Block Test and Fugl-Meyer Assessment, respectively. Visual analysis, nonparametric Mann-Whitney U test and, c-statistic were used for assessing the changes between phases.Results: All participants indicated changes in trend or slope of the total score of light touch or both between the two phases. The results of the c-statistic also showed the statistical difference in the total score of light touch between baseline and treatment in all participants (p < 0.001). Also, the results of the c-statistic and Mann-Whitney U test supported the difference of manual dexterity and motor function of the upper limb between baseline and treatment in all participants (p < 0.001).Conclusion: Current findings showed that sensory retraining may be an effective adjunctive intervention for improving the light touch threshold of the hand, dexterity and upper limb motor function in chronic stroke survivors.
Collapse
Affiliation(s)
- Mahnaz Hejazi-Shirmard
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ghorban Taghizadeh
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Akram Azad
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Laleh Lajevardi
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehdi Rassafiani
- Occupational Therapy Department, Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait.,Neurorehabilitation Research Center, The University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
19
|
Kraft AW, Bauer AQ, Culver JP, Lee JM. Sensory deprivation after focal ischemia in mice accelerates brain remapping and improves functional recovery through Arc-dependent synaptic plasticity. Sci Transl Med 2019; 10:10/426/eaag1328. [PMID: 29386356 DOI: 10.1126/scitranslmed.aag1328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 06/22/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022]
Abstract
Recovery after stroke, a major cause of adult disability, is often unpredictable and incomplete. Behavioral recovery is associated with functional reorganization (remapping) in perilesional regions, suggesting that promoting this process might be an effective strategy to enhance recovery. However, the molecular mechanisms underlying remapping after brain injury and the consequences of its modulation are poorly understood. Focal sensory loss or deprivation has been shown to induce remapping in the corresponding brain areas through activity-regulated cytoskeleton-associated protein (Arc)-mediated synaptic plasticity. We show that targeted sensory deprivation via whisker trimming in mice after induction of ischemic stroke in the somatosensory cortex representing forepaw accelerates remapping into the whisker barrel cortex and improves sensorimotor recovery. These improvements persisted even after focal sensory deprivation ended (whiskers allowed to regrow). Mice deficient in Arc, a gene critical for activity-dependent synaptic plasticity, failed to remap or recover sensorimotor function. These results indicate that post-stroke remapping occurs through Arc-mediated synaptic plasticity and is required for behavioral recovery. Furthermore, our findings suggest that enhancing perilesional cortical plasticity via focal sensory deprivation improves recovery after ischemic stroke in mice.
Collapse
Affiliation(s)
- Andrew W Kraft
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph P Culver
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Physics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110, USA. .,Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
20
|
Engineer ND, Kimberley TJ, Prudente CN, Dawson J, Tarver WB, Hays SA. Targeted Vagus Nerve Stimulation for Rehabilitation After Stroke. Front Neurosci 2019; 13:280. [PMID: 30983963 PMCID: PMC6449801 DOI: 10.3389/fnins.2019.00280] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/08/2019] [Indexed: 01/14/2023] Open
Abstract
Stroke is a leading cause of disability worldwide, and in approximately 60% of individuals, upper limb deficits persist 6 months after stroke. These deficits adversely affect the functional use of the upper limb and restrict participation in day to day activities. An important goal of stroke rehabilitation is to improve the quality of life by enhancing functional independence and participation in activities. Since upper limb deficits are one of the best predictors of quality of life after stroke, effective interventions targeting these deficits may represent a means to improve quality of life. An increased understanding of the neurobiological processes underlying stroke recovery has led to the development of targeted approaches to improve motor deficits. One such targeted strategy uses brief bursts of Vagus Nerve Stimulation (VNS) paired with rehabilitation to enhance plasticity and support recovery of upper limb function after chronic stroke. Stimulation of the vagus nerve triggers release of plasticity promoting neuromodulators, such as acetylcholine and norepinephrine, throughout the cortex. Timed engagement of neuromodulators concurrent with motor training drives task-specific plasticity in the motor cortex to improve function and provides the basis for paired VNS therapy. A number of studies in preclinical models of ischemic stroke demonstrated that VNS paired with rehabilitative training significantly improved the recovery of forelimb motor function compared to rehabilitative training without VNS. The improvements were associated with synaptic reorganization of cortical motor networks and recruitment of residual motor neurons controlling the impaired forelimb, demonstrating the putative neurobiological mechanisms underlying recovery of motor function. These preclinical studies provided the basis for conducting two multi-site, randomized controlled pilot trials in individuals with moderate to severe upper limb weakness after chronic ischemic stroke. In both studies, VNS paired with rehabilitation improved motor deficits compared to rehabilitation alone. The trials provided support for a 120-patient pivotal study designed to evaluate the efficacy of paired VNS therapy in individuals with chronic ischemic stroke. This manuscript will discuss the neurobiological rationale for VNS therapy, provide an in-depth discussion of both animal and human studies of VNS therapy for stroke, and outline the challenges and opportunities for the future use of VNS therapy.
Collapse
Affiliation(s)
| | - Teresa J. Kimberley
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA, United States
| | | | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Queen Elizabeth University Hospital, University of Glasgow, Glasgow, United Kingdom
| | | | - Seth A. Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
21
|
Hosseini ZS, Peyrovi H, Gohari M. The Effect of Early Passive Range of Motion Exercise on Motor Function of People with Stroke: a Randomized Controlled Trial. J Caring Sci 2019; 8:39-44. [PMID: 30915312 PMCID: PMC6428159 DOI: 10.15171/jcs.2019.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/06/2018] [Indexed: 11/12/2022] Open
Abstract
Introduction: Frequent and regular exercises in the first six months of stroke may cause return of a significant portion of sensory and motor function of patients. This study aimed to examine the effects of passive range of motion exercise in the acute phase after stroke on motor function of the patients. Methods: A randomized controlled trial study was conducted. The patients with first ischemic stroke were randomly allocated to either experimental (n=33) or control (n=19) group. Passive range of motion exercises was performed in the experimental group during the first 48 hours of admission as 6 to 8 times of 30 minute exercise. Before intervention, and one and three months after intervention, motor function were measured by muscle strength grading scale (Oxford scale) and compared. SPSS version 13.0 for Windows was used for statistical analysis. Frequency distribution was used to describe the data. For comparisons, paired t-test, independent t-test was used, and repeated measures test was used. Results: In acute phase, the intervention in the experimental group led to significant improvement of motor function between the first and third month in both the upper and lower extremities. In control group, improvement was observed only in the muscle strength of upper extremity in the first and third month compared to pre-intervention measurement. The greatest improvement was observed in the interval from base to one month in the upper extremity, and base to the first month and the first to the third month in the lower extremity. Conclusion: It is recommended to use early passive range of motion exercise as part of care for people with stroke during the acute phase of the disease.
Collapse
Affiliation(s)
- Zahra-Sadat Hosseini
- Emergency Intensive care of neurosurgery, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamid Peyrovi
- Nursing Care Research Centre, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoodreza Gohari
- Department of Statistics, School of Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Ingemanson ML, Rowe JR, Chan V, Wolbrecht ET, Reinkensmeyer DJ, Cramer SC. Somatosensory system integrity explains differences in treatment response after stroke. Neurology 2019; 92:e1098-e1108. [PMID: 30728310 DOI: 10.1212/wnl.0000000000007041] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To test the hypothesis that, in the context of robotic therapy designed to enhance proprioceptive feedback via a Hebbian model, integrity of both somatosensory and motor systems would be important in understanding interparticipant differences in treatment-related motor gains. METHODS In 30 patients with chronic stroke, behavioral performance, neural injury, and neural function were quantified for somatosensory and motor systems. Patients then received a 3-week robot-based therapy targeting finger movements with enhanced proprioceptive feedback. RESULTS Hand function improved after treatment (Box and Blocks score increase of 2.8 blocks, p = 0.001) but with substantial variability: 9 patients showed improvement exceeding the minimal clinically important difference (6 blocks), while 8 patients (all of whom had >2-SD greater proprioception deficit compared to 25 healthy controls) showed no improvement. In terms of baseline behavioral assessments, a somatosensory measure (finger proprioception assessed robotically) best predicted treatment gains, outperforming all measures of motor behavior. When the neural basis underlying variability in treatment response was examined, somatosensory-related variables were again the strongest predictors. A multivariate model combining total sensory system injury and sensorimotor cortical connectivity (between ipsilesional primary motor and secondary somatosensory cortices) explained 56% of variance in treatment-induced hand functional gains (p = 0.002). CONCLUSIONS Measures related to the somatosensory network best explained interparticipant differences in treatment-related hand function gains. These results underscore the importance of baseline somatosensory integrity for improving hand function after stroke and provide insights useful for individualizing rehabilitation therapy. CLINICALTRIALSGOV IDENTIFIER NCT02048826.
Collapse
Affiliation(s)
- Morgan L Ingemanson
- From the Departments of Anatomy and Neurobiology (M.L.I., D.J.R., S.C.C.), Biomedical Engineering (J.R.R., D.J.R.), Neurology (V.C. , S.C.C.), Mechanical and Aerospace Engineering (D.J.R.), and Physical Medicine and Rehabilitation (D.J.R. , S.C.C.), University of California at Irvine; and Department of Mechanical Engineering (E.T.W.), University of Idaho, Moscow
| | - Justin R Rowe
- From the Departments of Anatomy and Neurobiology (M.L.I., D.J.R., S.C.C.), Biomedical Engineering (J.R.R., D.J.R.), Neurology (V.C. , S.C.C.), Mechanical and Aerospace Engineering (D.J.R.), and Physical Medicine and Rehabilitation (D.J.R. , S.C.C.), University of California at Irvine; and Department of Mechanical Engineering (E.T.W.), University of Idaho, Moscow
| | - Vicky Chan
- From the Departments of Anatomy and Neurobiology (M.L.I., D.J.R., S.C.C.), Biomedical Engineering (J.R.R., D.J.R.), Neurology (V.C. , S.C.C.), Mechanical and Aerospace Engineering (D.J.R.), and Physical Medicine and Rehabilitation (D.J.R. , S.C.C.), University of California at Irvine; and Department of Mechanical Engineering (E.T.W.), University of Idaho, Moscow
| | - Eric T Wolbrecht
- From the Departments of Anatomy and Neurobiology (M.L.I., D.J.R., S.C.C.), Biomedical Engineering (J.R.R., D.J.R.), Neurology (V.C. , S.C.C.), Mechanical and Aerospace Engineering (D.J.R.), and Physical Medicine and Rehabilitation (D.J.R. , S.C.C.), University of California at Irvine; and Department of Mechanical Engineering (E.T.W.), University of Idaho, Moscow
| | - David J Reinkensmeyer
- From the Departments of Anatomy and Neurobiology (M.L.I., D.J.R., S.C.C.), Biomedical Engineering (J.R.R., D.J.R.), Neurology (V.C. , S.C.C.), Mechanical and Aerospace Engineering (D.J.R.), and Physical Medicine and Rehabilitation (D.J.R. , S.C.C.), University of California at Irvine; and Department of Mechanical Engineering (E.T.W.), University of Idaho, Moscow
| | - Steven C Cramer
- From the Departments of Anatomy and Neurobiology (M.L.I., D.J.R., S.C.C.), Biomedical Engineering (J.R.R., D.J.R.), Neurology (V.C. , S.C.C.), Mechanical and Aerospace Engineering (D.J.R.), and Physical Medicine and Rehabilitation (D.J.R. , S.C.C.), University of California at Irvine; and Department of Mechanical Engineering (E.T.W.), University of Idaho, Moscow.
| |
Collapse
|
23
|
Fujiwara T, Ushiba J, Soekadar SR. Neurorehabilitation: Neural Plasticity and Functional Recovery 2018. Neural Plast 2019; 2019:7812148. [PMID: 30804993 PMCID: PMC6360543 DOI: 10.1155/2019/7812148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/06/2018] [Indexed: 11/18/2022] Open
Affiliation(s)
- Toshiyuki Fujiwara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Junichi Ushiba
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- Keio Institute of Pure and Applied Sciences (KiPAS), Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Surjo R. Soekadar
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Psychotherapy, Neuroscience Research Center (NWFZ), Charité-University Medicine Berlin, Germany
- Department of Psychiatry and Psychotherapy, Eberhard-Karls-University Tübingen, Germany
| |
Collapse
|
24
|
Cieśla K, Wolak T, Lorens A, Heimler B, Skarżyński H, Amedi A. Immediate improvement of speech-in-noise perception through multisensory stimulation via an auditory to tactile sensory substitution. Restor Neurol Neurosci 2019; 37:155-166. [PMID: 31006700 PMCID: PMC6598101 DOI: 10.3233/rnn-190898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hearing loss is becoming a real social and health problem. Its prevalence in the elderly is an epidemic. The risk of developing hearing loss is also growing among younger people. If left untreated, hearing loss can perpetuate development of neurodegenerative diseases, including dementia. Despite recent advancements in hearing aid (HA) and cochlear implant (CI) technologies, hearing impaired users still encounter significant practical and social challenges, with or without aids. In particular, they all struggle with understanding speech in challenging acoustic environments, especially in presence of a competing speaker. OBJECTIVES In the current proof-of-concept study we tested whether multisensory stimulation, pairing audition and a minimal-size touch device would improve intelligibility of speech in noise. METHODS To this aim we developed an audio-to-tactile sensory substitution device (SSD) transforming low-frequency speech signals into tactile vibrations delivered on two finger tips. Based on the inverse effectiveness law, i.e., multisensory enhancement is strongest when signal-to-noise ratio is lowest between senses, we embedded non-native language stimuli in speech-like noise and paired it with a low-frequency input conveyed through touch. RESULTS We found immediate and robust improvement in speech recognition (i.e. in the Signal-To-Noise-ratio) in the multisensory condition without any training, at a group level as well as in every participant. The reported improvement at the group-level of 6 dB was indeed major considering that an increase of 10 dB represents a doubling of the perceived loudness. CONCLUSIONS These results are especially relevant when compared to previous SSD studies showing effects in behavior only after a demanding cognitive training. We discuss the implications of our results for development of SSDs and of specific rehabilitation programs for the hearing impaired either using or not using HAs or CIs. We also discuss the potential application of such a set-up for sense augmentation, such as when learning a new language.
Collapse
Affiliation(s)
- Katarzyna Cieśla
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw, Poland
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel
| | - Tomasz Wolak
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw, Poland
| | - Artur Lorens
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw, Poland
| | - Benedetta Heimler
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel
| | - Henryk Skarżyński
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Warsaw, Poland
| | - Amir Amedi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel
- The Cognitive Science Program, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
25
|
Chen X, Liu F, Yan Z, Cheng S, Liu X, Li H, Li Z. Therapeutic effects of sensory input training on motor function rehabilitation after stroke. Medicine (Baltimore) 2018; 97:e13387. [PMID: 30508935 PMCID: PMC6283184 DOI: 10.1097/md.0000000000013387] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Motor dysfunction is a common and severe complication of stroke that affects the quality of life of these patients. Currently, motor function rehabilitation predominantly focuses on active movement training; nevertheless, the role of sensory input is usually overlooked. Sensory input is very important to motor function. Voluntary functional movement necessitates preparation, execution, and monitoring functions of the central nervous system, while the monitoring needs the participation of the sensory system. Sensory signals affect motor functions by inputting external environment information and intrinsic physiological status as well as by guiding initiation of the motor system. Recent studies focusing on sensory input-based rehabilitation training for post-stroke dyskinesia have demonstrated that sensory function has significant effects on voluntary functional movements. In conclusion, sensory input plays a crucial role in motor function rehabilitation, and the combined sensorimotor training modality is more effective than conventional motor-oriented approaches.
Collapse
|
26
|
Fernández-García L, Pérez-Rigueiro J, Martinez-Murillo R, Panetsos F, Ramos M, Guinea GV, González-Nieto D. Cortical Reshaping and Functional Recovery Induced by Silk Fibroin Hydrogels-Encapsulated Stem Cells Implanted in Stroke Animals. Front Cell Neurosci 2018; 12:296. [PMID: 30237762 PMCID: PMC6135908 DOI: 10.3389/fncel.2018.00296] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/16/2018] [Indexed: 01/07/2023] Open
Abstract
The restitution of damaged circuitry and functional remodeling of peri-injured areas constitute two main mechanisms for sustaining recovery of the brain after stroke. In this study, a silk fibroin-based biomaterial efficiently supports the survival of intracerebrally implanted mesenchymal stem cells (mSCs) and increases functional outcomes over time in a model of cortical stroke that affects the forepaw sensory and motor representations. We show that the functional mechanisms underlying recovery are related to a substantial preservation of cortical tissue in the first days after mSCs-polymer implantation, followed by delayed cortical plasticity that involved a progressive functional disconnection between the forepaw sensory (FLs1) and caudal motor (cFLm1) representations and an emergent sensory activity in peri-lesional areas belonging to cFLm1. Our results provide evidence that mSCs integrated into silk fibroin hydrogels attenuate the cerebral damage after brain infarction inducing a delayed cortical plasticity in the peri-lesional tissue, this later a functional change described during spontaneous or training rehabilitation-induced recovery. This study shows that brain remapping and sustained recovery were experimentally favored using a stem cell-biomaterial-based approach.
Collapse
Affiliation(s)
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain
| | - Ricardo Martinez-Murillo
- Department of Translational Neuroscience, Instituto Cajal – Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, Madrid, Spain,Neural Plasticity Research Group, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Milagros Ramos
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain,Departamento de Tecnología Fotónica y Bioingeniería, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain,Departamento de Tecnología Fotónica y Bioingeniería, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain,*Correspondence: Daniel González-Nieto,
| |
Collapse
|
27
|
Kilgard MP, Rennaker RL, Alexander J, Dawson J. Vagus nerve stimulation paired with tactile training improved sensory function in a chronic stroke patient. NeuroRehabilitation 2018; 42:159-165. [PMID: 29562561 DOI: 10.3233/nre-172273] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent studies indicate that vagus nerve stimulation (VNS) paired with rehabilitation can enhance neural plasticity in the primary sensory and motor cortices, improve forelimb function after stroke in animal models and improve motor function in patients with arm weakness after stroke. OBJECTIVE To gain "first-in-man" experience of VNS paired with tactile training in a patient with severe sensory impairment after stroke. METHODS During the long-term follow-up phase of a clinical trial of VNS paired with motor rehabilitation, a 71-year-old man who had made good motor recovery had ongoing severe sensory loss in his left hand and arm. He received VNS paired with tactile therapy in an attempt to improve his sensory function. During twenty 2-hour sessions, each passive and active tactile event was paired with a 0.5 second burst of 0.8 mA VNS. Sensory function was measured before, halfway through, and after this therapy. RESULTS The patient did not report any side effects during or following VNS+Tactile therapy. Quantitative measures revealed lasting and clinically meaningful improvements in tactile threshold, proprioception, and stereognosis. After VNS+Tactile therapy, the patient was able to detect tactile stimulation to his affected hand that was eight times less intense, identify the joint position of his fingers in the affected hand three times more often, and identify everyday objects using his affected hand seven times more often, compared to baseline. CONCLUSIONS Sensory function significantly improved in this man following VNS paired with tactile stimulation. This approach merits further study in controlled clinical trials.
Collapse
Affiliation(s)
- Michael P Kilgard
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.,Texas Biomedical Device Center, Richardson, TX, USA
| | - Robert L Rennaker
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX, USA.,Texas Biomedical Device Center, Richardson, TX, USA
| | - Jen Alexander
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Western Infirmary, Glasgow, UK
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Western Infirmary, Glasgow, UK
| |
Collapse
|
28
|
Grechuta K, Bellaster BR, Munne RE, Bernal TU, Hervas BM, Segundo RS, Verschure PFMJ. The effects of silent visuomotor cueing on word retrieval in Broca's aphasies: A pilot study. IEEE Int Conf Rehabil Robot 2018; 2017:193-199. [PMID: 28813817 DOI: 10.1109/icorr.2017.8009245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
About a quarter of stroke patients worldwide suffer serious language disorders such as aphasias. Most common symptoms of Broca's aphasia are word naming disorders which highly impact verbal communication and the quality of life of aphasic patients. In order to recover disturbances in word retrieval, several cueing methods (i.e. phonemic and semantic) have been established to improve lexical access establishing effective language rehabilitation techniques. Based on recent evidence from action-perception theories, which postulate that neural circuits for speech perception and articulation are tightly coupled, in the present work, we propose and investigate an alternative type of cueing using silent articulation-related visual stimuli. We hypothesize that providing patients with primes in the form of silent videos showing lip motions representative of correct pronunciation of target words, will result in faster word retrieval than when no such cue is provided. To test our prediction, we realize a longitudinal clinical virtual reality-based trial with four post-stroke Broca's patients and compare the interaction times between the two conditions over the eight weeks of the therapy. Our results suggest that silent visuomotor cues indeed facilitate word retrieval and verbal execution, and might be beneficial in lexical relearning in chronic Broca's patients.
Collapse
|
29
|
Sampaio-Baptista C, Sanders ZB, Johansen-Berg H. Structural Plasticity in Adulthood with Motor Learning and Stroke Rehabilitation. Annu Rev Neurosci 2018; 41:25-40. [DOI: 10.1146/annurev-neuro-080317-062015] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of advanced noninvasive techniques to image the human brain has enabled the demonstration of structural plasticity during adulthood in response to motor learning. Understanding the basic mechanisms of structural plasticity in the context of motor learning is essential to improve motor rehabilitation in stroke patients. Here, we review and discuss the emerging evidence for motor-learning-related structural plasticity and the implications for stroke rehabilitation. In the clinical context, a few studies have started to assess the effects of rehabilitation on structural measures to understand recovery poststroke and additionally to predict intervention outcomes. Structural imaging will likely have a role in the future in providing measures that inform patient stratification for optimal outcomes.
Collapse
Affiliation(s)
- Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom;,
| | - Zeena-Britt Sanders
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom;,
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom;,
| |
Collapse
|
30
|
Wang P, Jia X, Zhang M, Cao Y, Zhao Z, Shan Y, Ma Q, Qian T, Wang J, Lu J, Li K. Correlation of Longitudinal Gray Matter Volume Changes and Motor Recovery in Patients After Pontine Infarction. Front Neurol 2018; 9:312. [PMID: 29910762 PMCID: PMC5992285 DOI: 10.3389/fneur.2018.00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/19/2018] [Indexed: 11/18/2022] Open
Abstract
The mechanisms of motor functional recovery after pontine infarction (PI) remain unclear. Here, we assessed longitudinal changes in gray matter volume (GMV) and examined the relationship between GMV and clinical outcome. Fifteen patients with unilateral PI underwent magnetic resonance imaging and neurological exams five times during a period of 6 months. Another 15 healthy participants were enrolled as the normal control (NC) group and were examined with the same protocol. The MR exam included routine protocol and a 3D T1-weighted magnetization-prepared rapid acquisition gradient echo scan. Changes in GMV were assessed using voxel-based morphometry. Furthermore, the correlations between GMV changes in regions of interest and clinical scores were assessed. Compared with NCs, the decreased GMVs in the contralateral uvula of cerebellum and the ipsilateral tuber of cerebellum were detected at third month after stroke onset. At the sixth month after stroke onset, the decreased GMVs were detected in the contralateral culmen of cerebellum, putamen, as well as in the ipsilateral tuber/tonsil of cerebellum. Compared with NC, the PI group exhibited significant increases in GMV at each follow-up time point relative to stroke onset. Specifically, the significant GMV increase was found in the ipsilateral middle frontal gyrus and ventral anterior nucleus of thalamus at second week after stroke onset. At first month after stroke onset, the increased GMVs in the ipsilateral middle temporal gyrus were detected. The significant GMV increase in the ipsilateral mediodorsal thalamus was noted at third month after stroke onset. At the end of sixth month after stroke onset, the GMV increase was found in the ipsilateral mediodorsal thalamus, superior frontal gyrus, and the contralateral precuneus. Across five times during a period of 6-month, a negative correlation was observed between mean GMV in the contralateral uvula, culmen, putamen, and ipsilateral tuber/tonsil and mean Fugl-Meyer (FM) score. However, mean GMV in the ipsilateral mediodorsal thalamus was positively correlated with mean FM score. Our findings suggest that structural reorganization of the ipsilateral mediodorsal thalamus might contribute to motor functional recovery after PI.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Xiuqin Jia
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Radiology, Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Miao Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yanxiang Cao
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Zhilian Zhao
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yi Shan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianyi Qian
- Collaborations NE Asia, Siemens Healthcare, Beijing, China
| | - Jingjuan Wang
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
31
|
Liu W. A narrative review of gait training after stroke and a proposal for developing a novel gait training device that provides minimal assistance. Top Stroke Rehabil 2018; 25:375-383. [PMID: 29718796 DOI: 10.1080/10749357.2018.1466970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Gait impairment is common in stroke survivors. Recovery of walking ability is one of the most pressing objectives in stroke rehabilitation. OBJECTIVES Of this report are to briefly review recent progress in gait training after stroke including the use of partial body weight-supported treadmill training (PBWSTT) and robot-assisted step training (RAST), and propose a minimal assistance strategy that may overcome some of limitations of current RAST. METHODS The literature review emphasizes a dilemma that recent randomized clinical trials did not support the use of RAST. The unsatisfactory results of current RAST clinical trials may be partially due to a lack of careful analysis of movement deficiencies and their relevance to gait training task specificity after stroke. Normal movement pattern is implied to be part of task specificity in the current RAST. Limitations of such task specificity are analyzed. RESULTS Based on the review, we redefine an alternative set of gait training task specificity that represents a minimal assistance strategy in terms of assisted body movements and amount of assistance. Specifically, assistances are applied only to hip flexion and ankle dorsiflexion of the affected lower limb during swing phase. Furthermore, we propose a conceptual design of a novel device that may overcome limitations of current RAST in gait training after stroke. The novel device uses a pulling cable, either manually operated by a therapist or automated by a servomotor, to provide assistive forces to help hip flexion and ankle dorsiflexion of the affected lower limb during gait training. CONCLUSION The proposed minimal assistance strategy may help to design better devices for gait or other motor training.
Collapse
Affiliation(s)
- Wen Liu
- a Department of Physical Therapy & Rehabilitation Science , University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
32
|
Bolognini N, Russo C, Edwards DJ. The sensory side of post-stroke motor rehabilitation. Restor Neurol Neurosci 2018; 34:571-86. [PMID: 27080070 DOI: 10.3233/rnn-150606] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body position and predicts future positions, by integrating a variety of sensory inputs with ongoing and planned motor activity. Neurological patients who have lost one or more of their senses may show profoundly affected motor functions, even if muscle strength remains unaffected. Following stroke, motor recovery can be dictated by the degree of sensory disruption. Consequently, a thorough account of sensory function might be both prognostic and prescriptive in neurorehabilitation. This review outlines the key sensory components of human voluntary movement, describes how sensory disruption can influence prognosis and expected outcomes in stroke patients, reports on current sensory-based approaches in post-stroke motor rehabilitation, and makes recommendations for optimizing rehabilitation programs based on sensory stimulation.
Collapse
Affiliation(s)
- Nadia Bolognini
- Department of Psychology and Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico, Milano, Italy
| | - Cristina Russo
- Department of Psychology and Milan Center for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Dylan J Edwards
- Burke-Cornell Medical Research Institute, White Plains, New York, NY, USA
| |
Collapse
|
33
|
Abstract
Somatosensory areas containing topographic maps of the body surface are a major feature of parietal cortex. In primates, parietal cortex contains four somatosensory areas, each with its own map, with the primary cutaneous map in area 3b. Rodents have at least three parietal somatosensory areas. Maps are not isomorphic to the body surface, but magnify behaviorally important skin regions, which include the hands and face in primates, and the whiskers in rodents. Within each map, intracortical circuits process tactile information, mediate spatial integration, and support active sensation. Maps may also contain fine-scale representations of touch submodalities, or direction of tactile motion. Functional representations are more overlapping than suggested by textbook depictions of map topography. The whisker map in rodent somatosensory cortex is a canonic system for studying cortical microcircuits, sensory coding, and map plasticity. Somatosensory maps are plastic throughout life in response to altered use or injury. This chapter reviews basic principles and recent findings in primate, human, and rodent somatosensory maps.
Collapse
Affiliation(s)
- Samuel Harding-Forrester
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
34
|
Mrotek LA, Bengtson M, Stoeckmann T, Botzer L, Ghez CP, McGuire J, Scheidt RA. The Arm Movement Detection (AMD) test: a fast robotic test of proprioceptive acuity in the arm. J Neuroeng Rehabil 2017; 14:64. [PMID: 28659156 PMCID: PMC5490232 DOI: 10.1186/s12984-017-0269-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/05/2017] [Indexed: 11/17/2022] Open
Abstract
Background We examined the validity and reliability of a short robotic test of upper limb proprioception, the Arm Movement Detection (AMD) test, which yields a ratio-scaled, objective outcome measure to be used for evaluating the impact of sensory deficits on impairments of motor control, motor adaptation and functional recovery in stroke survivors. Methods Subjects grasped the handle of a horizontal planar robot, with their arm and the robot hidden from view. The robot applied graded force perturbations, which produced small displacements of the handle. The AMD test required subjects to respond verbally to queries regarding whether or not they detected arm motions. Each participant completed ten, 60s trials; in five of the trials, force perturbations were increased in small increments until the participant detected motion while in the others, perturbations were decreased until the participant could no longer detect motion. The mean and standard deviation of the 10 movement detection thresholds were used to compute a Proprioceptive Acuity Score (PAS). Based on the sensitivity and consistency of the estimated thresholds, the PAS quantifies the likelihood that proprioception is intact. Lower PAS scores correspond to higher proprioceptive acuity. Thirty-nine participants completed the AMD test, consisting of 25 neurologically intact control participants (NIC), seven survivors of stroke with intact proprioception in the more affected limb (HSS+P), and seven survivors of stroke with impaired or absent proprioception in the more affected limb (HSS-P). Results Significant group differences were found, with the NIC and HSS+P groups having lower (i.e., better) PAS scores than the HSS-P group. A subset of the participants completed the AMD test multiple times and the AMD test was found to be reliable across repetitions. Conclusions The AMD test required less than 15 min to complete and provided an objective, ratio-scaled measure of proprioceptive acuity in the upper limb. In the future, this test could be utilized to evaluate the contributions of sensory deficits to motor recovery following stroke. Electronic supplementary material The online version of this article (doi:10.1186/s12984-017-0269-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leigh Ann Mrotek
- Marquette University, Biomedical Engineering 1515 W. Wisconsin Ave, Milwaukee, WI, 53233, USA. .,University of Wisconsin Oshkosh, Department of Kinesiology, 800 Algoma Boulevard, Oshkosh, WI, 54901-8630, USA.
| | - Maria Bengtson
- Marquette University, Biomedical Engineering 1515 W. Wisconsin Ave, Milwaukee, WI, 53233, USA
| | - Tina Stoeckmann
- Marquette University, Physical Therapy P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Lior Botzer
- Marquette University, Biomedical Engineering 1515 W. Wisconsin Ave, Milwaukee, WI, 53233, USA
| | - Claude P Ghez
- Columbia University, Neuroscience Kolb Annex, 1051 Riverside Drive, New York, NY, 10032, USA
| | - John McGuire
- Medical College of Wisconsin, Physical Medicine and Rehabilitation 9200 W. Wisconsin Ave, Milwaukee, WI, 53226, USA
| | - Robert A Scheidt
- Marquette University, Biomedical Engineering 1515 W. Wisconsin Ave, Milwaukee, WI, 53233, USA.,Northwestern University Feinberg School of Medicine, Physical Medicine and Rehabilitation 710 North Lake Shore Drive #1022, Chicago, IL, 60611, USA
| |
Collapse
|
35
|
Blake DT. Network Supervision of Adult Experience and Learning Dependent Sensory Cortical Plasticity. Compr Physiol 2017. [DOI: 10.1002/cphy.c160036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Savidan J, Kaeser M, Belhaj-Saïf A, Schmidlin E, Rouiller EM. Role of primary motor cortex in the control of manual dexterity assessed via sequential bilateral lesion in the adult macaque monkey: A case study. Neuroscience 2017. [PMID: 28629845 DOI: 10.1016/j.neuroscience.2017.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
From a case study, we describe the impact of unilateral lesion of the hand area in the primary motor cortex (M1) on manual dexterity and the role of the intact contralesional M1 in long-term functional recovery. An adult macaque monkey performed two manual dexterity tasks: (i) "modified Brinkman board" task, assessed simple precision grip versus complex precision grip, the latter involved a hand postural adjustment; (ii) "modified Klüver board" task, assessed movements ranging from power grip to precision grip, pre-shaping and grasping. Two consecutive unilateral M1 lesions targeted the hand area of each hemisphere, the second lesion was performed after stable, though incomplete, functional recovery from the primary lesion. Following each lesion, the manual dexterity of the contralesional hand was affected in a comparable manner, effects being progressively more deleterious from power grip to simple and then complex precision grips. Both tasks yielded consistent data, namely that the secondary M1 lesion did not have a significant impact on the recovered performance from the primary M1 lesion, which took place 5months earlier. In conclusion, the intact contralesional M1 did not play a major role in the long-term functional recovery from a primary M1 lesion targeted to the hand area.
Collapse
Affiliation(s)
- Julie Savidan
- Department of Medicine, Fribourg Centre for Cognition, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.
| | - Mélanie Kaeser
- Department of Medicine, Fribourg Centre for Cognition, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.
| | - Abderraouf Belhaj-Saïf
- Department of Medicine, Fribourg Centre for Cognition, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.
| | - Eric Schmidlin
- Department of Medicine, Fribourg Centre for Cognition, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.
| | - Eric M Rouiller
- Department of Medicine, Fribourg Centre for Cognition, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
37
|
Thomaty S, Pezard L, Xerri C, Brezun JM. Acute granulocyte macrophage-colony stimulating factor treatment modulates neuroinflammatory processes and promotes tactile recovery after spinal cord injury. Neuroscience 2017; 349:144-164. [DOI: 10.1016/j.neuroscience.2017.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 11/25/2022]
|
38
|
Resnik J, Polley DB. Fast-spiking GABA circuit dynamics in the auditory cortex predict recovery of sensory processing following peripheral nerve damage. eLife 2017; 6. [PMID: 28323619 PMCID: PMC5378474 DOI: 10.7554/elife.21452] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Cortical neurons remap their receptive fields and rescale sensitivity to spared peripheral inputs following sensory nerve damage. To address how these plasticity processes are coordinated over the course of functional recovery, we tracked receptive field reorganization, spontaneous activity, and response gain from individual principal neurons in the adult mouse auditory cortex over a 50-day period surrounding either moderate or massive auditory nerve damage. We related the day-by-day recovery of sound processing to dynamic changes in the strength of intracortical inhibition from parvalbumin-expressing (PV) inhibitory neurons. Whereas the status of brainstem-evoked potentials did not predict the recovery of sensory responses to surviving nerve fibers, homeostatic adjustments in PV-mediated inhibition during the first days following injury could predict the eventual recovery of cortical sound processing weeks later. These findings underscore the potential importance of self-regulated inhibitory dynamics for the restoration of sensory processing in excitatory neurons following peripheral nerve injuries. DOI:http://dx.doi.org/10.7554/eLife.21452.001
Collapse
Affiliation(s)
- Jennifer Resnik
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States.,Department of Otolaryngology, Harvard Medical School, Boston, United States
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States.,Department of Otolaryngology, Harvard Medical School, Boston, United States
| |
Collapse
|
39
|
Yamada H, Yaguchi H, Tomatsu S, Takei T, Oya T, Seki K. Representation of Afferent Signals from Forearm Muscle and Cutaneous Nerves in the Primary Somatosensory Cortex of the Macaque Monkey. PLoS One 2016; 11:e0163948. [PMID: 27701434 PMCID: PMC5049845 DOI: 10.1371/journal.pone.0163948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022] Open
Abstract
Proprioception is one's overall sense of the relative positions and movements of the various parts of one's body. The primary somatosensory cortex (SI) is involved in generating the proprioception by receiving peripheral sensory inputs from both cutaneous and muscle afferents. In particular, area 3a receives input from muscle afferents and areas 3b and 1 from cutaneous afferents. However, segregation of two sensory inputs to these cortical areas has not been evaluated quantitatively because of methodological difficulties in distinguishing the incoming signals. To overcome this, we applied electrical stimulation separately to two forearm nerves innervating muscle (deep radial nerve) and skin (superficial radial nerve), and examined the spatiotemporal distribution of sensory evoked potentials (SEPs) in SI of anaesthetized macaques. The SEPs arising from the deep radial nerve were observed exclusively at the bottom of central sulcus (CS), which was identified as area 3a using histological reconstruction. In contrast, SEPs evoked by stimulation of the superficial radial nerve were observed in the superficial part of SI, identified as areas 3b and 1. In addition to these earlier, larger potentials, we also found small and slightly delayed SEPs evoked by cutaneous nerve stimulation in area 3a. Coexistence of the SEPs from both deep and superficial radial nerves suggests that area 3a could integrate muscle and cutaneous signals to shape proprioception.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Hiroaki Yaguchi
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Saeka Tomatsu
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Tomohiko Takei
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Tomomichi Oya
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
- * E-mail:
| |
Collapse
|
40
|
Gathercole SE, Dunning DL, Holmes J, Norris D. Working memory training involves learning new skills. JOURNAL OF MEMORY AND LANGUAGE 2016; 105:19-42. [PMID: 31235992 PMCID: PMC6591133 DOI: 10.1016/j.jml.2018.10.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present a new framework characterizing training-induced changes in WM as the acquisition of novel cognitive routines akin to learning a new skill. Predictions were tested in three studies analyzing the transfer between WM tasks following WM training. Study 1 reports a meta-analysis establishing substantial transfer when trained and untrained tasks shared either a serial recall, complex span or backward span paradigm. Transfer was weaker for serial recall of verbal than visuo-spatial material, suggesting that this paradigm is served by an existing verbal STM system and does not require a new routine. Re-analysis of published WM training data in Study 2 showed that transfer was restricted to tasks sharing properties proposed to require new routines. In a re-analysis of data from four studies, Study 3 demonstrated that transfer was greatest for children with higher fluid cognitive abilities. These findings suggest that development of new routines depends on general cognitive resources and that they can only be applied to other similarly-structured tasks.
Collapse
Affiliation(s)
- Susan E. Gathercole
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, England, United Kingdom
| | - Darren L. Dunning
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, England, United Kingdom
| | - Joni Holmes
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, England, United Kingdom
| | - Dennis Norris
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, England, United Kingdom
| |
Collapse
|
41
|
Abstract
In this review, we examine how tactile misperceptions provide evidence regarding body representations. First, we propose that tactile detection and localization are serial processes, in contrast to parallel processing hypotheses based on patients with numbsense. Second, we discuss how information in primary somatosensory maps projects to body size and shape representations to localize touch on the skin surface, and how responses after use-dependent plasticity reflect changes in this mapping. Third, we review situations in which our body representations are inconsistent with our actual body shape, specifically discussing phantom limb phenomena and anesthetization. We discuss problems with the traditional remapping hypothesis in amputees, factors that modulate perceived body size and shape, and how changes in perceived body form influence tactile localization. Finally, we review studies in which brain-damaged individuals perceive touch on the opposite side of the body, and demonstrate how interhemispheric mechanisms can give rise to these anomalous percepts.
Collapse
Affiliation(s)
- Jared Medina
- a Department of Psychology , University of Delaware , Newark , DE , USA
| | - H Branch Coslett
- b Department of Neurology, Center for Cognitive Neuroscience , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
42
|
Bakheit A, Shaw S, Barrett L, Wood J, Carrington S, Griffiths S, Searle K, Koutsi F. A prospective, randomized, parallel group, controlled study of the effect of intensity of speech and language therapy on early recovery from poststroke aphasia. Clin Rehabil 2016; 21:885-94. [DOI: 10.1177/0269215507078486] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: To examine whether the amount of speech and language therapy influences the recovery from poststroke aphasia. Setting: A hospital stroke unit and community. Design: A prospective, randomized controlled trial. Intervention: Aphasic stroke patients were randomly allocated to receive 5 hours (intensive therapy group, n=51) or 2 hours (standard therapy group) of speech and language therapy per week for 12 consecutive weeks starting as soon as practicable after the stroke. Another 19 patients were recruited for 2 hours per week of therapy and were treated by National Health Service (NHS) staff (NHS group). Outcome measure and assessment: The Western Aphasia Battery. Assessments were made blind to randomization at baseline and 4, 8, 12 and 24 weeks after the start of therapy. Data were analysed by intention to treat. Results: The mean (SD) Western Aphasia Battery score at week 12 for the intensive, standard and NHS groups was 70.3 (26.9), 66.2 (26.2) and 58.1 (33.7), respectively. There was no treatment effect of intensive therapy (P > 0.05), but there was a statistically significant difference between the standard study and the NHS groups (P = 0.002 at week 12 and 0.01 at week 24). Conclusions: Intensive speech and language therapy (as delivered in this study) did not improve the language impairment significantly more than the `standard' therapy which averaged 1.6 hours/week. The improvement in aphasia was least in patients who were in the NHS group. These patients received 0.57 (0.49) hours of therapy per week.
Collapse
Affiliation(s)
| | - S. Shaw
- School of Mathematics & Statistics, University of Plymouth
| | - L. Barrett
- Stroke Unit, Mount Gould Hospital, Plymouth, UK
| | - J. Wood
- Stroke Unit, Mount Gould Hospital, Plymouth, UK
| | | | | | - K. Searle
- Stroke Unit, Mount Gould Hospital, Plymouth, UK
| | - F. Koutsi
- Stroke Unit, Mount Gould Hospital, Plymouth, UK
| |
Collapse
|
43
|
Abstract
That eccentric experimentalist, Charles Edouard Brown-Séquard, flitted restlessly between the major cities of the old and new worlds in the nineteenth century, replacing outdated concepts with new ideas of his own concerning the operation of the nervous system in health and disease. He used the experimental approach to generate hypotheses but had no interest in showing by meticulous study that his views were correct, leaving this to others. Extending his work on the integrative action of the nervous system, he came to believe that humoral factors are important in integrating the operation of the intact animal. Such views brought chilling disapproval and his erratic and unfocused approach led to dramatic success but later obscurity. Ironically, many of his views that were originally ridiculed or misunderstood have been vindicated by the later work of others and are now widely accepted. The significance and potential implications of other concepts that he advanced, such as the basis of sensory disturbances after spinal cord lesions, have yet to receive the recognition that they merit. NEUROSCIENTIST 6:60-65, 2000
Collapse
|
44
|
Carey LM, Seitz RJ. Functional Neuroimaging in Stroke Recovery and Neurorehabilitation: Conceptual Issues and Perspectives. Int J Stroke 2016; 2:245-64. [DOI: 10.1111/j.1747-4949.2007.00164.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background In stroke, functional neuroimaging has become a potent diagnostic tool; opened new insights into the pathophysiology of ischaemic damage in the human brain; and made possible the assessment of functional–structural relationships in postlesion recovery. Summary of review Here, we give a critical account on the potential and limitation of functional neuroimaging and discuss concepts related to the use of neuroimaging for exploring the neurobiological and neuroanatomical mechanisms of poststroke recovery and neurorehabilitation. We identify and provide evidence for five hypotheses that functional neuroimaging can provide new insights into: adaptation occurs at the level of functional brain systems; the brain–behaviour relationship varies with recovery and over time; functional neuroimaging can improve our ability to predict recovery and select individuals for rehabilitation; mechanisms of recovery reflect different pathophysiological phases; and brain adaptation may be modulated by experience and specific rehabilitation. The significance and application of this new evidence is discussed, and recommendations made for investigations in the field. Conclusion Functional neuroimaging is an important tool to explore the mechanisms underlying brain plasticity and, thereby, to guide clinical research in neurorehabilitation.
Collapse
Affiliation(s)
- Leeanne M. Carey
- National Stroke Research Institute, Neurosciences Building, Heidelberg Heights, Vic., Australia
- School of Occupational Therapy, LaTrobe University, Bundoora, Vic., Australia
| | - Rüdiger J. Seitz
- National Stroke Research Institute, Neurosciences Building, Heidelberg Heights, Vic., Australia
- Institute of Advanced Study, La Trobe University, Bundoora, Vic., Australia
- Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
45
|
Plastic Change along the Intact Crossed Pathway in Acute Phase of Cerebral Ischemia Revealed by Optical Intrinsic Signal Imaging. Neural Plast 2016; 2016:1923160. [PMID: 27144032 PMCID: PMC4837289 DOI: 10.1155/2016/1923160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/17/2022] Open
Abstract
The intact crossed pathway via which the contralesional hemisphere responds to the ipsilesional somatosensory input has shown to be affected by unilateral stroke. The aim of this study was to investigate the plasticity of the intact crossed pathway in response to different intensities of stimulation in a rodent photothrombotic stroke model. Using optical intrinsic signal imaging, an overall increase of the contralesional cortical response was observed in the acute phase (≤48 hours) after stroke. In particular, the contralesional hyperactivation is more prominent under weak stimulations, while a strong stimulation would even elicit a depressed response. The results suggest a distinct stimulation-response pattern along the intact crossed pathway after stroke. We speculate that the contralesional hyperactivation under weak stimulations was due to the reorganization for compensatory response to the weak ipsilateral somatosensory input.
Collapse
|
46
|
Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, Deruyter F, Eng JJ, Fisher B, Harvey RL, Lang CE, MacKay-Lyons M, Ottenbacher KJ, Pugh S, Reeves MJ, Richards LG, Stiers W, Zorowitz RD. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2016; 47:e98-e169. [PMID: 27145936 DOI: 10.1161/str.0000000000000098] [Citation(s) in RCA: 1624] [Impact Index Per Article: 203.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The aim of this guideline is to provide a synopsis of best clinical practices in the rehabilitative care of adults recovering from stroke. METHODS Writing group members were nominated by the committee chair on the basis of their previous work in relevant topic areas and were approved by the American Heart Association (AHA) Stroke Council's Scientific Statement Oversight Committee and the AHA's Manuscript Oversight Committee. The panel reviewed relevant articles on adults using computerized searches of the medical literature through 2014. The evidence is organized within the context of the AHA framework and is classified according to the joint AHA/American College of Cardiology and supplementary AHA methods of classifying the level of certainty and the class and level of evidence. The document underwent extensive AHA internal and external peer review, Stroke Council Leadership review, and Scientific Statements Oversight Committee review before consideration and approval by the AHA Science Advisory and Coordinating Committee. RESULTS Stroke rehabilitation requires a sustained and coordinated effort from a large team, including the patient and his or her goals, family and friends, other caregivers (eg, personal care attendants), physicians, nurses, physical and occupational therapists, speech-language pathologists, recreation therapists, psychologists, nutritionists, social workers, and others. Communication and coordination among these team members are paramount in maximizing the effectiveness and efficiency of rehabilitation and underlie this entire guideline. Without communication and coordination, isolated efforts to rehabilitate the stroke survivor are unlikely to achieve their full potential. CONCLUSIONS As systems of care evolve in response to healthcare reform efforts, postacute care and rehabilitation are often considered a costly area of care to be trimmed but without recognition of their clinical impact and ability to reduce the risk of downstream medical morbidity resulting from immobility, depression, loss of autonomy, and reduced functional independence. The provision of comprehensive rehabilitation programs with adequate resources, dose, and duration is an essential aspect of stroke care and should be a priority in these redesign efforts. (Stroke.2016;47:e98-e169. DOI: 10.1161/STR.0000000000000098.).
Collapse
|
47
|
Cassidy JM, Cramer SC. Spontaneous and Therapeutic-Induced Mechanisms of Functional Recovery After Stroke. Transl Stroke Res 2016; 8:33-46. [PMID: 27109642 DOI: 10.1007/s12975-016-0467-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023]
Abstract
With increasing rates of survival throughout the past several years, stroke remains one of the leading causes of adult disability. Following the onset of stroke, spontaneous mechanisms of recovery at the cellular, molecular, and systems levels ensue. The degree of spontaneous recovery is generally incomplete and variable among individuals. Typically, the best recovery outcomes entail the restitution of function in injured but surviving neural matter. An assortment of restorative therapies exists or is under development with the goal of potentiating restitution of function in damaged areas or in nearby ipsilesional regions by fostering neuroplastic changes, which often rely on mechanisms similar to those observed during spontaneous recovery. Advancements in stroke rehabilitation depend on the elucidation of both spontaneous and therapeutic-driven mechanisms of recovery. Further, the implementation of neural biomarkers in research and clinical settings will enable a multimodal approach to probing brain state and predicting the extent of post-stroke functional recovery. This review will discuss spontaneous and therapeutic-induced mechanisms driving post-stroke functional recovery while underscoring several potential restorative therapies and biomarkers.
Collapse
Affiliation(s)
- Jessica M Cassidy
- Department of Neurology, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 206, Orange, CA, 92868-4280, USA
| | - Steven C Cramer
- Department of Neurology, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 206, Orange, CA, 92868-4280, USA. .,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA. .,Department of Physical Medicine & Rehabilitation, University of California, Irvine Medical Center, 200 S. Manchester Ave, Suite 210, Orange, CA, 92868-5397, USA. .,Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Rd, Irvine, 92697, CA, USA.
| |
Collapse
|
48
|
Han J, Waddington G, Adams R, Anson J, Liu Y. Assessing proprioception: A critical review of methods. JOURNAL OF SPORT AND HEALTH SCIENCE 2016; 5:80-90. [PMID: 30356896 PMCID: PMC6191985 DOI: 10.1016/j.jshs.2014.10.004] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/25/2014] [Accepted: 10/20/2014] [Indexed: 05/12/2023]
Abstract
To control movement, the brain has to integrate proprioceptive information from a variety of mechanoreceptors. The role of proprioception in daily activities, exercise, and sports has been extensively investigated, using different techniques, yet the proprioceptive mechanisms underlying human movement control are still unclear. In the current work we have reviewed understanding of proprioception and the three testing methods: threshold to detection of passive motion, joint position reproduction, and active movement extent discrimination, all of which have been used for assessing proprioception. The origin of the methods, the different testing apparatus, and the procedures and protocols used in each approach are compared and discussed. Recommendations are made for choosing an appropriate technique when assessing proprioceptive mechanisms in different contexts.
Collapse
Affiliation(s)
- Jia Han
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2600, Australia
| | - Gordon Waddington
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2600, Australia
| | - Roger Adams
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2600, Australia
| | - Judith Anson
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2600, Australia
| | - Yu Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
49
|
Zennou-Azogui Y, Catz N, Xerri C. Hypergravity within a critical period impacts on the maturation of somatosensory cortical maps and their potential for use-dependent plasticity in the adult. J Neurophysiol 2016; 115:2740-60. [PMID: 26888103 DOI: 10.1152/jn.00900.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] Open
Abstract
We investigated experience-dependent plasticity of somatosensory maps in rat S1 cortex during early development. We analyzed both short- and long-term effects of exposure to 2G hypergravity (HG) during the first 3 postnatal weeks on forepaw representations. We also examined the potential of adult somatosensory maps for experience-dependent plasticity after early HG rearing. At postnatal day 22, HG was found to induce an enlargement of cortical zones driven by nail displacements and a contraction of skin sectors of the forepaw map. In these remaining zones serving the skin, neurons displayed expanded glabrous skin receptive fields (RFs). HG also induced a bias in the directional sensitivity of neuronal responses to nail displacement. HG-induced map changes were still found after 16 wk of housing in normogravity (NG). However, the glabrous skin RFs recorded in HG rats decreased to values similar to that of NG rats, as early as the end of the first week of housing in NG. Moreover, the expansion of the glabrous skin area and decrease in RF size normally induced in adults by an enriched environment (EE) did not occur in the HG rats, even after 16 wk of EE housing in NG. Our findings reveal that early postnatal experience critically and durably shapes S1 forepaw maps and limits their potential to be modified by novel experience in adulthood.
Collapse
Affiliation(s)
- Yoh'i Zennou-Azogui
- Neurosciences Intégratives et Adaptatives, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte Recherche 7260, Fédération de Recherches Comportement-Cerveau-Cognition 3512, Marseille, France
| | - Nicolas Catz
- Neurosciences Intégratives et Adaptatives, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte Recherche 7260, Fédération de Recherches Comportement-Cerveau-Cognition 3512, Marseille, France
| | - Christian Xerri
- Neurosciences Intégratives et Adaptatives, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte Recherche 7260, Fédération de Recherches Comportement-Cerveau-Cognition 3512, Marseille, France
| |
Collapse
|
50
|
Walker-Batson D, Mehta J, Smith P, Johnson M. Amphetamine and other pharmacological agents in human and animal studies of recovery from stroke. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:225-30. [PMID: 25896190 DOI: 10.1016/j.pnpbp.2015.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 11/15/2022]
Abstract
Neuromodulation with pharmacological agents, including drugs of abuse such as amphetamine, when paired with behavioral experience, has been shown to positively modify outcomes in animal models of stroke. A number of clinical studies have tested the efficacy of a variety of drugs to enhance recovery of language deficit post-stroke. The purpose of this paper is to: (1) present pertinent animal studies supporting the use of dextro-amphetamine sulfate (AMPH) to enhance recovery after experimental lesions with emphasis on the importance of learning dependent activity for lasting recovery; (2) briefly review neuropharmacological explorations in the treatment of aphasia; (3) present a pilot study in aphasia exploring a drug combination of AMPH and donepezil hydrochloride paired with behavioral treatment to facilitate recovery; and (4) conclude with comments regarding the role of adjunctive pharmacotherapy in the rehabilitation of aphasia, particularly AMPH.
Collapse
Affiliation(s)
- D Walker-Batson
- The Stroke Center-Dallas, T. Boone Pickens Institute of Health Sciences, Texas Woman's University, 5500 Southwestern Medical Avenue, Dallas, TX 75235, United States.
| | - J Mehta
- The Stroke Center-Dallas, T. Boone Pickens Institute of Health Sciences, Texas Woman's University, 5500 Southwestern Medical Avenue, Dallas, TX 75235, United States
| | - P Smith
- Department of Physical Therapy, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75235, United States
| | - M Johnson
- Department of Neurology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8897, United States
| |
Collapse
|