1
|
Hao YA, Lee S, Roth RH, Natale S, Gomez L, Taxidis J, O'Neill PS, Villette V, Bradley J, Wang Z, Jiang D, Zhang G, Sheng M, Lu D, Boyden E, Delvendahl I, Golshani P, Wernig M, Feldman DE, Ji N, Ding J, Südhof TC, Clandinin TR, Lin MZ. A fast and responsive voltage indicator with enhanced sensitivity for unitary synaptic events. Neuron 2024:S0896-6273(24)00643-3. [PMID: 39305894 DOI: 10.1016/j.neuron.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
A remaining challenge for genetically encoded voltage indicators (GEVIs) is the reliable detection of excitatory postsynaptic potentials (EPSPs). Here, we developed ASAP5 as a GEVI with enhanced activation kinetics and responsivity near resting membrane potentials for improved detection of both spiking and subthreshold activity. ASAP5 reported action potentials (APs) in vivo with higher signal-to-noise ratios than previous GEVIs and successfully detected graded and subthreshold responses to sensory stimuli in single two-photon trials. In cultured rat or human neurons, somatic ASAP5 reported synaptic events propagating centripetally and could detect ∼1-mV EPSPs. By imaging spontaneous EPSPs throughout dendrites, we found that EPSP amplitudes decay exponentially during propagation and that amplitude at the initiation site generally increases with distance from the soma. These results extend the applications of voltage imaging to the quantal response domain, including in human neurons, opening up the possibility of high-throughput, high-content characterization of neuronal dysfunction in disease.
Collapse
Affiliation(s)
- Yukun A Hao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Sungmoo Lee
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Silvia Natale
- Department of Molecular & Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Laura Gomez
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California Berkeley, CA 94720, USA
| | - Jiannis Taxidis
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Philipp S O'Neill
- Department of Molecular Life Sciences, University of Zurich (UZH), 8057 Zurich, Switzerland; Neuroscience Center Zurich, 8057 Zurich, Switzerland
| | - Vincent Villette
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Jonathan Bradley
- Institut de Biologie de l'École Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Zeguan Wang
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, MIT, Cambridge, MA 02139, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA
| | - Dongyun Jiang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Mengjun Sheng
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Di Lu
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Edward Boyden
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, MIT, Cambridge, MA 02139, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich (UZH), 8057 Zurich, Switzerland; Neuroscience Center Zurich, 8057 Zurich, Switzerland
| | - Peyman Golshani
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Marius Wernig
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Daniel E Feldman
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Na Ji
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California Berkeley, CA 94720, USA
| | - Jun Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Thomas C Südhof
- Department of Molecular & Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Bandet MV, Winship IR. Aberrant cortical activity, functional connectivity, and neural assembly architecture after photothrombotic stroke in mice. eLife 2024; 12:RP90080. [PMID: 38687189 PMCID: PMC11060715 DOI: 10.7554/elife.90080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within 'remapped' forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.
Collapse
Affiliation(s)
- Mischa Vance Bandet
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| | - Ian Robert Winship
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| |
Collapse
|
3
|
Meftah S, Cavallini A, Murray TK, Jankowski L, Bose S, Ashby MC, Brown JT, Witton J. Synaptic alterations associated with disrupted sensory encoding in a mouse model of tauopathy. Brain Commun 2024; 6:fcae134. [PMID: 38712321 PMCID: PMC11073755 DOI: 10.1093/braincomms/fcae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/09/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
Synapse loss is currently the best biological correlate of cognitive decline in Alzheimer's disease and other tauopathies. Synapses seem to be highly vulnerable to tau-mediated disruption in neurodegenerative tauopathies. However, it is unclear how and when this leads to alterations in function related to the progression of tauopathy and neurodegeneration. We used the well-characterized rTg4510 mouse model of tauopathy at 5-6 months and 7-8 months of age, respectively, to study the functional impact of cortical synapse loss. The earlier age was used as a model of prodromal tauopathy, with the later age corresponding to more advanced tau pathology and presumed progression of neurodegeneration. Analysis of synaptic protein expression in the somatosensory cortex showed significant reductions in synaptic proteins and NMDA and AMPA receptor subunit expression in rTg4510 mice. Surprisingly, in vitro whole-cell patch clamp electrophysiology from putative pyramidal neurons in layer 2/3 of the somatosensory cortex suggested no functional alterations in layer 4 to layer 2/3 synaptic transmission at 5-6 months. From these same neurons, however, there were alterations in dendritic structure, with increased branching proximal to the soma in rTg4510 neurons. Therefore, in vivo whole-cell patch clamp recordings were utilized to investigate synaptic function and integration in putative pyramidal neurons in layer 2/3 of the somatosensory cortex. These recordings revealed a significant increase in the peak response to synaptically driven sensory stimulation-evoked activity and a loss of temporal fidelity of the evoked signal to the input stimulus in rTg4510 neurons. Together, these data suggest that loss of synapses, changes in receptor expression and dendritic restructuring may lead to alterations in synaptic integration at a network level. Understanding these compensatory processes could identify targets to help delay symptomatic onset of dementia.
Collapse
Affiliation(s)
- Soraya Meftah
- Faculty of Health and Life Sciences, Department of Clinical and Biomedical Science, University of Exeter, Exeter, EX1 2LU, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Annalisa Cavallini
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Tracey K Murray
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Lukasz Jankowski
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Suchira Bose
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Michael C Ashby
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jonathan T Brown
- Faculty of Health and Life Sciences, Department of Clinical and Biomedical Science, University of Exeter, Exeter, EX1 2LU, UK
| | - Jonathan Witton
- Faculty of Health and Life Sciences, Department of Clinical and Biomedical Science, University of Exeter, Exeter, EX1 2LU, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
4
|
Blanco-Duque C, Chan D, Kahn MC, Murdock MH, Tsai LH. Audiovisual gamma stimulation for the treatment of neurodegeneration. J Intern Med 2024; 295:146-170. [PMID: 38115692 PMCID: PMC10842797 DOI: 10.1111/joim.13755] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disease and a health challenge with major social and economic consequences. In this review, we discuss the therapeutic potential of gamma stimulation in treating AD and delve into the possible mechanisms responsible for its positive effects. Recent studies reveal that it is feasible and safe to induce 40 Hz brain activity in AD patients through a range of 40 Hz multisensory and noninvasive electrical or magnetic stimulation methods. Although research into the clinical potential of these interventions is still in its nascent stages, these studies suggest that 40 Hz stimulation can yield beneficial effects on brain function, disease pathology, and cognitive function in individuals with AD. Specifically, we discuss studies involving 40 Hz light, auditory, and vibrotactile stimulation, as well as noninvasive techniques such as transcranial alternating current stimulation and transcranial magnetic stimulation. The precise mechanisms underpinning the beneficial effects of gamma stimulation in AD are not yet fully elucidated, but preclinical studies have provided relevant insights. We discuss preclinical evidence related to both neuronal and nonneuronal mechanisms that may be involved, touching upon the relevance of interneurons, neuropeptides, and specific synaptic mechanisms in translating gamma stimulation into widespread neuronal activity within the brain. We also explore the roles of microglia, astrocytes, and the vasculature in mediating the beneficial effects of gamma stimulation on brain function. Lastly, we examine upcoming clinical trials and contemplate the potential future applications of gamma stimulation in the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Blanco-Duque
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Diane Chan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin C Kahn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mitchell H Murdock
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Ahn SJ, Anfray A, Anrather J, Iadecola C. Calcium transients in nNOS neurons underlie distinct phases of the neurovascular response to barrel cortex activation in awake mice. J Cereb Blood Flow Metab 2023; 43:1633-1647. [PMID: 37149758 PMCID: PMC10581240 DOI: 10.1177/0271678x231173175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 05/08/2023]
Abstract
Neuronal nitric oxide (NO) synthase (nNOS), a Ca2+ dependent enzyme, is expressed by distinct populations of neocortical neurons. Although neuronal NO is well known to contribute to the blood flow increase evoked by neural activity, the relationships between nNOS neurons activity and vascular responses in the awake state remain unclear. We imaged the barrel cortex in awake, head-fixed mice through a chronically implanted cranial window. The Ca2+ indicator GCaMP7f was expressed selectively in nNOS neurons using adenoviral gene transfer in nNOScre mice. Air-puffs directed at the contralateral whiskers or spontaneous motion induced Ca2+ transients in 30.2 ± 2.2% or 51.6 ± 3.3% of nNOS neurons, respectively, and evoked local arteriolar dilation. The greatest dilatation (14.8 ± 1.1%) occurred when whisking and motion occurred simultaneously. Ca2+ transients in individual nNOS neurons and local arteriolar dilation showed various degrees of correlation, which was strongest when the activity of whole nNOS neuron ensemble was examined. We also found that some nNOS neurons became active immediately prior to arteriolar dilation, while others were activated gradually after arteriolar dilatation. Discrete nNOS neuron subsets may contribute either to the initiation or to the maintenance of the vascular response, suggesting a previously unappreciated temporal specificity to the role of NO in neurovascular coupling.
Collapse
Affiliation(s)
- Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Day-Cooney J, Dalangin R, Zhong H, Mao T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J Neurochem 2023; 164:284-308. [PMID: 35285522 PMCID: PMC11322610 DOI: 10.1111/jnc.15608] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The brain relies on many forms of dynamic activities in individual neurons, from synaptic transmission to electrical activity and intracellular signaling events. Monitoring these neuronal activities with high spatiotemporal resolution in the context of animal behavior is a necessary step to achieve a mechanistic understanding of brain function. With the rapid development and dissemination of highly optimized genetically encoded fluorescent sensors, a growing number of brain activities can now be visualized in vivo. To date, cellular calcium imaging, which has been largely used as a proxy for electrical activity, has become a mainstay in systems neuroscience. While challenges remain, voltage imaging of neural populations is now possible. In addition, it is becoming increasingly practical to image over half a dozen neurotransmitters, as well as certain intracellular signaling and metabolic activities. These new capabilities enable neuroscientists to test previously unattainable hypotheses and questions. This review summarizes recent progress in the development and delivery of genetically encoded fluorescent sensors, and highlights example applications in the context of in vivo imaging.
Collapse
Affiliation(s)
- Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rochelin Dalangin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Zhang H, Wang X, Guo W, Li A, Chen R, Huang F, Liu X, Chen Y, Li N, Liu X, Xu T, Xue Z, Zeng S. Cross-Streams Through the Ventral Posteromedial Thalamic Nucleus to Convey Vibrissal Information. Front Neuroanat 2021; 15:724861. [PMID: 34776879 PMCID: PMC8582278 DOI: 10.3389/fnana.2021.724861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Whisker detection is crucial to adapt to the environment for some animals, but how the nervous system processes and integrates whisker information is still an open question. It is well-known that two main parallel pathways through Ventral posteromedial thalamic nucleus (VPM) ascend to the barrel cortex, and classical theory suggests that the cross-talk from trigeminal nucleus interpolaris (Sp5i) to principal nucleus (Pr5) between the main parallel pathways contributes to the multi-whisker integration in barrel columns. Moreover, some studies suggest there are other cross-streams between the parallel pathways. To confirm their existence, in this study we used a dual-viral labeling strategy and high-resolution, large-volume light imaging to get the complete morphology of individual VPM neurons and trace their projections. We found some new thalamocortical projections from the ventral lateral part of VPM (VPMvl) to barrel columns. In addition, the retrograde-viral labeling and imaging results showed there were the large trigeminothalamic projections from Sp5i to the dorsomedial section of VPM (VPMdm). Our results reveal new cross-streams between the parallel pathways through VPM, which may involve the execution of multi-whisker integration in barrel columns.
Collapse
Affiliation(s)
- Huimin Zhang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojun Wang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyan Guo
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Chen
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Huang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Liu
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Chen
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuli Liu
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Tonghui Xu
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoqun Zeng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Lyall EH, Mossing DP, Pluta SR, Chu YW, Dudai A, Adesnik H. Synthesis of a comprehensive population code for contextual features in the awake sensory cortex. eLife 2021; 10:e62687. [PMID: 34723796 PMCID: PMC8598168 DOI: 10.7554/elife.62687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
How cortical circuits build representations of complex objects is poorly understood. Individual neurons must integrate broadly over space, yet simultaneously obtain sharp tuning to specific global stimulus features. Groups of neurons identifying different global features must then assemble into a population that forms a comprehensive code for these global stimulus properties. Although the logic for how single neurons summate over their spatial inputs has been well explored in anesthetized animals, how large groups of neurons compose a flexible population code of higher-order features in awake animals is not known. To address this question, we probed the integration and population coding of higher-order stimuli in the somatosensory and visual cortices of awake mice using two-photon calcium imaging across cortical layers. We developed a novel tactile stimulator that allowed the precise measurement of spatial summation even in actively whisking mice. Using this system, we found a sparse but comprehensive population code for higher-order tactile features that depends on a heterogeneous and neuron-specific logic of spatial summation beyond the receptive field. Different somatosensory cortical neurons summed specific combinations of sensory inputs supra-linearly, but integrated other inputs sub-linearly, leading to selective responses to higher-order features. Visual cortical populations employed a nearly identical scheme to generate a comprehensive population code for contextual stimuli. These results suggest that a heterogeneous logic of input-specific supra-linear summation may represent a widespread cortical mechanism for the synthesis of sparse higher-order feature codes in neural populations. This may explain how the brain exploits the thalamocortical expansion of dimensionality to encode arbitrary complex features of sensory stimuli.
Collapse
Affiliation(s)
- Evan H Lyall
- Biophysics Graduate GroupBerkeleyUnited States
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Daniel P Mossing
- Biophysics Graduate GroupBerkeleyUnited States
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Scott R Pluta
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Yun Wen Chu
- Department of Molecular and Cell BiologyBerkeleyUnited States
| | - Amir Dudai
- The Edmond and Lily Safra Center for Brain Sciences and The Life Sciences Institute, The Hebrew University of JerusalemJerusalemIsrael
| | - Hillel Adesnik
- Department of Molecular and Cell BiologyBerkeleyUnited States
- The Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
9
|
Adibi M, Lampl I. Sensory Adaptation in the Whisker-Mediated Tactile System: Physiology, Theory, and Function. Front Neurosci 2021; 15:770011. [PMID: 34776857 PMCID: PMC8586522 DOI: 10.3389/fnins.2021.770011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 12/03/2022] Open
Abstract
In the natural environment, organisms are constantly exposed to a continuous stream of sensory input. The dynamics of sensory input changes with organism's behaviour and environmental context. The contextual variations may induce >100-fold change in the parameters of the stimulation that an animal experiences. Thus, it is vital for the organism to adapt to the new diet of stimulation. The response properties of neurons, in turn, dynamically adjust to the prevailing properties of sensory stimulation, a process known as "neuronal adaptation." Neuronal adaptation is a ubiquitous phenomenon across all sensory modalities and occurs at different stages of processing from periphery to cortex. In spite of the wealth of research on contextual modulation and neuronal adaptation in visual and auditory systems, the neuronal and computational basis of sensory adaptation in somatosensory system is less understood. Here, we summarise the recent finding and views about the neuronal adaptation in the rodent whisker-mediated tactile system and further summarise the functional effect of neuronal adaptation on the response dynamics and encoding efficiency of neurons at single cell and population levels along the whisker-mediated touch system in rodents. Based on direct and indirect pieces of evidence presented here, we suggest sensory adaptation provides context-dependent functional mechanisms for noise reduction in sensory processing, salience processing and deviant stimulus detection, shift between integration and coincidence detection, band-pass frequency filtering, adjusting neuronal receptive fields, enhancing neural coding and improving discriminability around adapting stimuli, energy conservation, and disambiguating encoding of principal features of tactile stimuli.
Collapse
Affiliation(s)
- Mehdi Adibi
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Ilan Lampl
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Environmental Enrichment Sharpens Sensory Acuity by Enhancing Information Coding in Barrel Cortex and Premotor Cortex. eNeuro 2021; 8:ENEURO.0309-20.2021. [PMID: 33893166 PMCID: PMC8143018 DOI: 10.1523/eneuro.0309-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022] Open
Abstract
Environmental enrichment (EE) is beneficial to sensory functions. Thus, elucidating the neural mechanism underlying improvement of sensory stimulus discrimination is important for developing therapeutic strategies. We aim to advance the understanding of such neural mechanism. We found that tactile enrichment improved tactile stimulus feature discrimination. The neural correlate of such improvement was revealed by analyzing single-cell information coding in both the primary somatosensory cortex and the premotor cortex of awake behaving animals. Our results show that EE enhances the decision-information coding capacity of cells that are tuned to adjacent whiskers, and of premotor cortical cells.
Collapse
|
11
|
Katz Y, Lampl I. Cross-Whisker Adaptation of Neurons in Layer 2/3 of the Rat Barrel Cortex. Front Syst Neurosci 2021; 15:646563. [PMID: 33994963 PMCID: PMC8113387 DOI: 10.3389/fnsys.2021.646563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Neurons in the barrel cortex respond preferentially to stimulation of one principal whisker and weakly to several adjacent whiskers. Such integration exists already in layer 4, the pivotal recipient layer of thalamic inputs. Previous studies show that cortical neurons gradually adapt to repeated whisker stimulations and that layer 4 neurons exhibit whisker specific adaptation and no apparent interactions with other whiskers. This study aimed to study the specificity of adaptation of layer 2/3 cortical cells. Towards this aim, we compared the synaptic response of neurons to either repetitive stimulation of one of two responsive whiskers or when repetitive stimulation of the two whiskers was interleaved. We found that in most layer 2/3 cells adaptation is whisker-specific. These findings indicate that despite the multi-whisker receptive fields in the cortex, the adaptation process for each whisker-pathway is mostly independent of other whiskers. A mechanism allowing high responsiveness in complex environments.
Collapse
Affiliation(s)
- Yonatan Katz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ilan Lampl
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
13
|
Li B, Routh BN, Johnston D, Seidemann E, Priebe NJ. Voltage-Gated Intrinsic Conductances Shape the Input-Output Relationship of Cortical Neurons in Behaving Primate V1. Neuron 2020; 107:185-196.e4. [PMID: 32348717 DOI: 10.1016/j.neuron.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 12/01/2022]
Abstract
Neurons are input-output (I/O) devices-they receive synaptic inputs from other neurons, integrate those inputs with their intrinsic properties, and generate action potentials as outputs. To understand this fundamental process, we studied the interaction between synaptic inputs and intrinsic properties using whole-cell recordings from V1 neurons of awake, fixating macaque monkeys. Our measurements during spontaneous activity and visual stimulation reveal an intrinsic voltage-gated conductance that profoundly alters the integrative properties and visual responses of cortical neurons. This voltage-gated conductance increases neuronal gain and selectivity with subthreshold depolarization and linearizes the relationship between synaptic input and neural output. This intrinsic conductance is found in layer 2/3 V1 neurons of awake macaques, anesthetized mice, and acute brain slices. These results demonstrate that intrinsic conductances play an essential role in shaping the I/O relationship of cortical neurons and must be taken into account in future models of cortical computations.
Collapse
Affiliation(s)
- Baowang Li
- Center for Perceptual Systems, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Center for Learning and Memory, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Psychology, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Brandy N Routh
- Center for Learning and Memory, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Daniel Johnston
- Center for Learning and Memory, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Eyal Seidemann
- Center for Perceptual Systems, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Psychology, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA.
| | - Nicholas J Priebe
- Center for Learning and Memory, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
14
|
DeCosta-Fortune TM, Ramshur JT, Li CX, de Jongh Curry A, Pellicer-Morata V, Wang L, Waters RS. Repetitive microstimulation in rat primary somatosensory cortex (SI) strengthens the connection between homotopic sites in the opposite SI and leads to expression of previously ineffective input from the ipsilateral forelimb. Brain Res 2020; 1732:146694. [PMID: 32017899 PMCID: PMC7237062 DOI: 10.1016/j.brainres.2020.146694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 01/06/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
The primary somatosensory cortex (SI) receives input from the contralateral forelimb and projects to homotopic sites in the opposite SI. Since homotopic sites in SI are linked by a callosal pathway, we proposed that repetitive intracortical microstimulation (ICMSr) of neurons in layer V of SI forelimb cortex would increase spike firing in the opposite SI cortex thereby strengthening the callosal pathway sufficiently to allow normally ineffective stimuli from the ipsilateral forelimb to excite cells in the ipsilateral SI. The forelimb representation in SI in one hemisphere was mapped using mechanical and electrical stimulation of the contralateral forelimb, a homotopic site was similarly identified in the opposite SI, the presence of ipsilateral peripheral input was tested in both homotopic sites, and ICMS was used to establish an interhemispheric connection between the two homotopic recording sites. The major findings are: (1) each homotopic forelimb site in SI initially received short latency input only from the contralateral forelimb; (2) homotopic sites in layer V in each SI were interconnected by a callosal pathway; (3) ICMSr delivered to layer V of the homotopic SI in one hemisphere generally increased evoked response spike firing in layer V in the opposite homotopic site; (4) increased spike firing was often followed by the expression of a longer latency normally ineffective input from the ipsilateral forelimb; (5) these longer latency ipsilateral responses are consistent with a delay time sufficient to account for travel across the callosal pathway; (6) increased spike firing and the resulting ipsilateral peripheral input were also corroborated using in-vivo intracellular recording; and (7) inactivation of the stimulating site in SI by lidocaine injection or local surface cooling abolished the ipsilateral response, suggesting that the ipsilateral response was very likely relayed across the callosal pathway. These results suggest that repetitive microstimulation can do more than expand receptive fields in the territory adjacent to the stimulating electrode but in addition can also alter receptive fields in homotopic sites in the opposite SI to bring about the expression of previously ineffective input from the ipsilateral forelimb.
Collapse
Affiliation(s)
- Tina M DeCosta-Fortune
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152, USA
| | - John T Ramshur
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152, USA
| | - Cheng X Li
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA
| | - Amy de Jongh Curry
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152, USA
| | - Violeta Pellicer-Morata
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA
| | - Lie Wang
- Department of Neurology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA
| | - Robert S Waters
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
15
|
Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat Neurosci 2020; 23:520-532. [PMID: 32123378 PMCID: PMC7131894 DOI: 10.1038/s41593-020-0598-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/27/2020] [Indexed: 01/01/2023]
Abstract
Hyper-reactivity to sensory input is a common and debilitating symptom in individuals with autism spectrum disorders (ASD), but the neural basis underlying sensory abnormality is not completely understood. Here we examined the neural representations of sensory perception in the neocortex of a Shank3B-/- mouse model of ASD. Male and female Shank3B-/- mice were more sensitive to relatively weak tactile stimulation in a vibrissa motion detection task. In vivo population calcium imaging in vibrissa primary somatosensory cortex (vS1) revealed increased spontaneous and stimulus-evoked firing in pyramidal neurons but reduced activity in interneurons. Preferential deletion of Shank3 in vS1 inhibitory interneurons led to pyramidal neuron hyperactivity and increased stimulus sensitivity in the vibrissa motion detection task. These findings provide evidence that cortical GABAergic interneuron dysfunction plays a key role in sensory hyper-reactivity in a Shank3 mouse model of ASD and identify a potential cellular target for exploring therapeutic interventions.
Collapse
|
16
|
Synaptic Integration of Thalamic and Limbic Inputs in Rodent Gustatory Cortex. eNeuro 2020; 7:ENEURO.0199-19.2019. [PMID: 32019871 PMCID: PMC7029183 DOI: 10.1523/eneuro.0199-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023] Open
Abstract
Neurons in the gustatory cortex (GC) process multiple aspects of a tasting experience, encoding not only the physiochemical identity of tastes, but also their anticipation and hedonic value. Information pertaining to these stimulus features is relayed to GC via the gustatory thalamus (VPMpc) and basolateral amygdala (BLA). It is not known whether these inputs drive separate groups of neurons, thus activating separate channels of information, or are integrated by neurons that receive both afferents. Here, we used anterograde labeling and in vivo intracellular recordings in anesthetized rats to assess the potential convergence of BLA and VPMpc inputs in GC, and to investigate the dynamics of integration of these inputs. We report substantial anatomic overlap of BLA and VPMpc axonal fields across GC, and identify a population of GC neurons receiving converging BLA and VPMpc inputs. Our data show that BLA modulates the gain of VPMpc-evoked responses in a time-dependent fashion and that this modulation is dependent on the recruitment of synaptic inhibition by both BLA and VPMpc. Our results suggest that BLA shapes cortical processing of thalamic inputs by dynamically gating the excitatory/inhibitory balance of the GC circuit.
Collapse
|
17
|
Neymotin SA, Daniels DS, Caldwell B, McDougal RA, Carnevale NT, Jas M, Moore CI, Hines ML, Hämäläinen M, Jones SR. Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data. eLife 2020; 9:e51214. [PMID: 31967544 PMCID: PMC7018509 DOI: 10.7554/elife.51214] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
Magneto- and electro-encephalography (MEG/EEG) non-invasively record human brain activity with millisecond resolution providing reliable markers of healthy and disease states. Relating these macroscopic signals to underlying cellular- and circuit-level generators is a limitation that constrains using MEG/EEG to reveal novel principles of information processing or to translate findings into new therapies for neuropathology. To address this problem, we built Human Neocortical Neurosolver (HNN, https://hnn.brown.edu) software. HNN has a graphical user interface designed to help researchers and clinicians interpret the neural origins of MEG/EEG. HNN's core is a neocortical circuit model that accounts for biophysical origins of electrical currents generating MEG/EEG. Data can be directly compared to simulated signals and parameters easily manipulated to develop/test hypotheses on a signal's origin. Tutorials teach users to simulate commonly measured signals, including event related potentials and brain rhythms. HNN's ability to associate signals across scales makes it a unique tool for translational neuroscience research.
Collapse
Affiliation(s)
- Samuel A Neymotin
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
- Center for Biomedical Imaging and NeuromodulationNathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Dylan S Daniels
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
| | - Blake Caldwell
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
| | - Robert A McDougal
- Department NeuroscienceYale UniversityNew HavenUnited States
- Department of BiostatisticsYale UniversityNew HavenUnited States
| | | | - Mainak Jas
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownUnited States
- Harvard Medical SchoolBostonUnited States
| | - Christopher I Moore
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
| | - Michael L Hines
- Department NeuroscienceYale UniversityNew HavenUnited States
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownUnited States
- Harvard Medical SchoolBostonUnited States
| | - Stephanie R Jones
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
- Center for Neurorestoration and NeurotechnologyProvidence VAMCProvidenceUnited States
| |
Collapse
|
18
|
Hubatz S, Hucher G, Shulz DE, Férézou I. Spatiotemporal properties of whisker-evoked tactile responses in the mouse secondary somatosensory cortex. Sci Rep 2020; 10:763. [PMID: 31964984 PMCID: PMC6972923 DOI: 10.1038/s41598-020-57684-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/27/2019] [Indexed: 01/08/2023] Open
Abstract
The representation of rodents' mystacial vibrissae within the primary somatosensory (S1) cortex has become a major model for studying the cortical processing of tactile sensory information. However, upon vibrissal stimulation, tactile information first reaches S1 but also, almost simultaneously, the secondary somatosensory cortex (S2). To further understand the role of S2 in the processing of whisker inputs, it is essential to characterize the spatio-temporal properties of whisker-evoked response dynamics in this area. Here we describe the topography of the whiskers representation in the mouse S2 with voltage sensitive dye imaging. Analysis of the spatial properties of the early S2 responses induced by stimulating individually 22 to 24 whiskers revealed that they are spatially ordered in a mirror symmetric map with respect to S1 responses. Evoked signals in S2 and S1 are of similar amplitude and closely correlated at the single trial level. They confirm a short delay (~3 ms) between S1 and S2 early activation. In both S1 and S2 caudo-dorsal whiskers induce stronger responses than rostro-ventral ones. Finally, analysis of early C2-evoked responses indicates a faster activation of neighboring whisker representations in S2 relative to S1, probably due to the reduced size of the whisker map in S2.
Collapse
Affiliation(s)
- Sophie Hubatz
- Department of Integrative and Computational Neuroscience (ICN), Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, 91190, France
- Institut de biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, 75005, France
| | - Guillaume Hucher
- Department of Integrative and Computational Neuroscience (ICN), Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, 91190, France
| | - Daniel E Shulz
- Department of Integrative and Computational Neuroscience (ICN), Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, 91190, France.
| | - Isabelle Férézou
- Department of Integrative and Computational Neuroscience (ICN), Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, 91190, France.
| |
Collapse
|
19
|
Sermet BS, Truschow P, Feyerabend M, Mayrhofer JM, Oram TB, Yizhar O, Staiger JF, Petersen CCH. Pathway-, layer- and cell-type-specific thalamic input to mouse barrel cortex. eLife 2019; 8:e52665. [PMID: 31860443 PMCID: PMC6924959 DOI: 10.7554/elife.52665] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Mouse primary somatosensory barrel cortex (wS1) processes whisker sensory information, receiving input from two distinct thalamic nuclei. The first-order ventral posterior medial (VPM) somatosensory thalamic nucleus most densely innervates layer 4 (L4) barrels, whereas the higher-order posterior thalamic nucleus (medial part, POm) most densely innervates L1 and L5A. We optogenetically stimulated VPM or POm axons, and recorded evoked excitatory postsynaptic potentials (EPSPs) in different cell-types across cortical layers in wS1. We found that excitatory neurons and parvalbumin-expressing inhibitory neurons received the largest EPSPs, dominated by VPM input to L4 and POm input to L5A. In contrast, somatostatin-expressing inhibitory neurons received very little input from either pathway in any layer. Vasoactive intestinal peptide-expressing inhibitory neurons received an intermediate level of excitatory input with less apparent layer-specificity. Our data help understand how wS1 neocortical microcircuits might process and integrate sensory and higher-order inputs.
Collapse
Affiliation(s)
- B Semihcan Sermet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Pavel Truschow
- Institute for Neuroanatomy,University Medical CenterGeorg-August-University GoettingenGoettingenGermany
| | - Michael Feyerabend
- Institute for Neuroanatomy,University Medical CenterGeorg-August-University GoettingenGoettingenGermany
| | - Johannes M Mayrhofer
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Tess B Oram
- Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael
| | - Ofer Yizhar
- Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael
| | - Jochen F Staiger
- Institute for Neuroanatomy,University Medical CenterGeorg-August-University GoettingenGoettingenGermany
| | - Carl CH Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
20
|
Vilarchao ME, Estebanez L, Shulz DE, Férézou I. Supra-barrel Distribution of Directional Tuning for Global Motion in the Mouse Somatosensory Cortex. Cell Rep 2019; 22:3534-3547. [PMID: 29590621 DOI: 10.1016/j.celrep.2018.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 01/17/2018] [Accepted: 02/28/2018] [Indexed: 11/15/2022] Open
Abstract
Rodents explore their environment with an array of whiskers, inducing complex patterns of whisker deflections. Cortical neuronal networks can extract global properties of tactile scenes. In the primary somatosensory cortex, the information relative to the global direction of a spatiotemporal sequence of whisker deflections can be extracted at the single neuron level. To further understand how the cortical network integrates multi-whisker inputs, we imaged and recorded the mouse barrel cortex activity evoked by sequences of multi-whisker deflections generating global motions in different directions. A majority of barrel-related cortical columns show a direction preference for global motions with an overall preference for caudo-ventral directions. Responses to global motions being highly sublinear, the identity of the first deflected whiskers is highly salient but does not seem to determine the global direction preference. Our results further demonstrate that the global direction preference is spatially organized throughout the barrel cortex at a supra-columnar scale.
Collapse
Affiliation(s)
- María Eugenia Vilarchao
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Luc Estebanez
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Daniel E Shulz
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France.
| | - Isabelle Férézou
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
21
|
Li YT, Fang Q, Zhang LI, Tao HW. Spatial Asymmetry and Short-Term Suppression Underlie Direction Selectivity of Synaptic Excitation in the Mouse Visual Cortex. Cereb Cortex 2019; 28:2059-2070. [PMID: 28498898 DOI: 10.1093/cercor/bhx111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/20/2017] [Indexed: 01/24/2023] Open
Abstract
Direction selectivity (DS) of neuronal responses is fundamental for motion detection. With in vivo whole-cell voltage-clamp recordings from layer (L)4 neurons in the mouse visual cortex, we observed a strong correlation between DS and spatial asymmetry in the distribution of excitatory input strengths. This raises an interesting possibility that the latter may contribute to DS. The preferred direction of excitatory input was found from the stronger to weaker side of its spatial receptive field. A simple linear summation of asymmetrically distributed excitatory responses to stationary flash stimuli however failed to predict the correct directionality: it at best resulted in weak DS with preferred direction opposite to what was observed experimentally. Further studies with sequential 2 flash-bar stimulation revealed a short-term suppression of excitatory input evoked by the late bar. More importantly, the level of the suppression positively correlated with the relative amplitude of the early-bar response. Implementing this amplitude-dependent suppressive interaction can successfully predict DS of excitatory input. Our results suggest that via nonlinear temporal interactions, the spatial asymmetry can be transformed into differential temporal integration of inputs under opposite directional movements. This mechanism may contribute to the DS of excitatory inputs to L4 neurons.
Collapse
Affiliation(s)
- Ya-Tang Li
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Graduate Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Qi Fang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Graduate Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Department of Cell and Neurobiolog, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
22
|
Yu J, Hu H, Agmon A, Svoboda K. Recruitment of GABAergic Interneurons in the Barrel Cortex during Active Tactile Behavior. Neuron 2019; 104:412-427.e4. [PMID: 31466734 DOI: 10.1016/j.neuron.2019.07.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/07/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
Neural computation involves diverse types of GABAergic inhibitory interneurons that are integrated with excitatory (E) neurons into precisely structured circuits. To understand how each neuron type shapes sensory representations, we measured firing patterns of defined types of neurons in the barrel cortex while mice performed an active, whisker-dependent object localization task. Touch excited fast-spiking (FS) interneurons at short latency, followed by activation of E neurons and somatostatin-expressing (SST) interneurons. Touch only weakly modulated vasoactive intestinal polypeptide-expressing (VIP) interneurons. Voluntary whisker movement activated FS neurons in the ventral posteromedial nucleus (VPM) target layers, a subset of SST neurons and a majority of VIP neurons. Together, FS neurons track thalamic input, mediating feedforward inhibition. SST neurons monitor local excitation, providing feedback inhibition. VIP neurons are activated by non-sensory inputs, disinhibiting E and FS neurons. Our data reveal rules of recruitment for interneuron types during behavior, providing foundations for understanding computation in cortical microcircuits.
Collapse
Affiliation(s)
- Jianing Yu
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA 20147, USA.
| | - Hang Hu
- Department of Neuroscience, West Virginia University School of Medicine and Rockefeller Neuroscience Institute, Morgantown, WV 26506, USA
| | - Ariel Agmon
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA 20147, USA; Department of Neuroscience, West Virginia University School of Medicine and Rockefeller Neuroscience Institute, Morgantown, WV 26506, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA 20147, USA.
| |
Collapse
|
23
|
Adibi M. Whisker-Mediated Touch System in Rodents: From Neuron to Behavior. Front Syst Neurosci 2019; 13:40. [PMID: 31496942 PMCID: PMC6712080 DOI: 10.3389/fnsys.2019.00040] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/02/2019] [Indexed: 01/02/2023] Open
Abstract
A key question in systems neuroscience is to identify how sensory stimuli are represented in neuronal activity, and how the activity of sensory neurons in turn is “read out” by downstream neurons and give rise to behavior. The choice of a proper model system to address these questions, is therefore a crucial step. Over the past decade, the increasingly powerful array of experimental approaches that has become available in non-primate models (e.g., optogenetics and two-photon imaging) has spurred a renewed interest for the use of rodent models in systems neuroscience research. Here, I introduce the rodent whisker-mediated touch system as a structurally well-established and well-organized model system which, despite its simplicity, gives rise to complex behaviors. This system serves as a behaviorally efficient model system; known as nocturnal animals, along with their olfaction, rodents rely on their whisker-mediated touch system to collect information about their surrounding environment. Moreover, this system represents a well-studied circuitry with a somatotopic organization. At every stage of processing, one can identify anatomical and functional topographic maps of whiskers; “barrelettes” in the brainstem nuclei, “barreloids” in the sensory thalamus, and “barrels” in the cortex. This article provides a brief review on the basic anatomy and function of the whisker system in rodents.
Collapse
Affiliation(s)
- Mehdi Adibi
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.,Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Trieste, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
24
|
Abstract
Tactile sensory information from facial whiskers provides nocturnal tunnel-dwelling rodents, including mice and rats, with important spatial and textural information about their immediate surroundings. Whiskers are moved back and forth to scan the environment (whisking), and touch signals from each whisker evoke sparse patterns of neuronal activity in whisker-related primary somatosensory cortex (wS1; barrel cortex). Whisking is accompanied by desynchronized brain states and cell-type-specific changes in spontaneous and evoked neuronal activity. Tactile information, including object texture and location, appears to be computed in wS1 through integration of motor and sensory signals. wS1 also directly controls whisker movements and contributes to learned, whisker-dependent, goal-directed behaviours. The cell-type-specific neuronal circuitry in wS1 that contributes to whisker sensory perception is beginning to be defined.
Collapse
|
25
|
Laboy-Juárez KJ, Langberg T, Ahn S, Feldman DE. Elementary motion sequence detectors in whisker somatosensory cortex. Nat Neurosci 2019; 22:1438-1449. [PMID: 31332375 PMCID: PMC6713603 DOI: 10.1038/s41593-019-0448-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 06/11/2019] [Indexed: 01/09/2023]
Abstract
How somatosensory cortex (S1) encodes complex patterns of touch, as occur during tactile exploration, is poorly understood. In mouse whisker S1, temporally dense stimulation of local whisker pairs revealed that most neurons are not classical single-whisker feature detectors, but instead are strongly tuned to 2-whisker sequences involving the columnar whisker (CW) and one, specific surround whisker (SW), usually in SW-leading-CW order. Tuning was spatiotemporally precise and diverse across cells, generating a rate code for local motion vectors defined by SW-CW combinations. Spatially asymmetric, sublinear suppression for suboptimal combinations and near-linearity for preferred combinations sharpened combination tuning relative to linearly predicted tuning. This resembles computation of motion direction selectivity in vision. SW-tuned neurons, misplaced in the classical whisker map, had the strongest combination tuning. Thus, each S1 column contains a rate code for local motion sequences involving the CW, providing a basis for higher-order feature extraction.
Collapse
Affiliation(s)
- Keven J Laboy-Juárez
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.,Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Tomer Langberg
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Seoiyoung Ahn
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Daniel E Feldman
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
26
|
Rock C, Zurita H, Lebby S, Wilson CJ, Apicella AJ. Cortical Circuits of Callosal GABAergic Neurons. Cereb Cortex 2019; 28:1154-1167. [PMID: 28174907 DOI: 10.1093/cercor/bhx025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
Anatomical studies have shown that the majority of callosal axons are glutamatergic. However, a small proportion of callosal axons are also immunoreactive for glutamic acid decarboxylase, an enzyme required for gamma-aminobutyric acid (GABA) synthesis and a specific marker for GABAergic neurons. Here, we test the hypothesis that corticocortical parvalbumin-expressing (CC-Parv) neurons connect the two hemispheres of multiple cortical areas, project through the corpus callosum, and are a functional part of the local cortical circuit. Our investigation of this hypothesis takes advantage of viral tracing and optogenetics to determine the anatomical and electrophysiological properties of CC-Parv neurons of the mouse auditory, visual, and motor cortices. We found a direct inhibitory pathway made up of parvalbumin-expressing (Parv) neurons which connects corresponding cortical areas (CC-Parv neurons → contralateral cortex). Like other Parv cortical neurons, these neurons provide local inhibition onto nearby pyramidal neurons and receive thalamocortical input. These results demonstrate a previously unknown long-range inhibitory circuit arising from a genetically defined type of GABAergic neuron that is engaged in interhemispheric communication.
Collapse
Affiliation(s)
- Crystal Rock
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| | - Hector Zurita
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| | - Sharmon Lebby
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| | - Charles J Wilson
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| | - Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, Biosciences Building 1.03.26, One UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
27
|
Ranjbar-Slamloo Y, Arabzadeh E. Diverse tuning underlies sparse activity in layer 2/3 vibrissal cortex of awake mice. J Physiol 2019; 597:2803-2817. [PMID: 30932197 DOI: 10.1113/jp277506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/22/2019] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Sparse population activity is a common feature observed across cortical areas, yet the implications for sensory coding are not clear. We recorded single neuron activity in the vibrissal somatosensory cortex of awake head-fixed mice using the cell-attached technique. Unlike the anaesthetised condition, in awake mice a high-velocity, piezo-controlled whisker deflection excited only a small fraction of neurons. Manual probing of whiskers revealed that the majority of these silent neurons could be activated by specific forms of whisker-object contact. Our results suggest that sparse coding in vibrissal cortex may be due to high dimensionality of the stimulus space and narrow tuning of individual neurons. ABSTRACT It is widely reported that superficial layers of the somatosensory cortex exhibit sparse firing. This sparseness could reflect weak feedforward sensory inputs that are not sufficient to generate action potentials in these layers. Alternatively, sparseness might reflect tuning to unknown or higher-level complex features that are not fully explored in the stimulus space. Here, we examined these hypotheses by applying a range of vibrotactile and manual vibrissal stimuli in awake, head-fixed mice while performing loose-seal cell-attached recordings from the vibrissal primary somatosensory (vS1) cortex. A high-velocity stimulus delivered by a piezo-electric actuator evoked activity in a small fraction of regular spiking supragranular neurons (23%) in the awake condition. However, a majority of the supragranular regular spiking neurons (84%) were driven by manual stimulation of whiskers. Our results suggest that most neurons in the superficial layers of vS1 cortex contribute to coding in the awake condition when neurons may encounter their preferred feature(s) during whisker-object interactions.
Collapse
Affiliation(s)
- Yadollah Ranjbar-Slamloo
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australian Capital Territory, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
28
|
Enander JM, Jörntell H. Somatosensory Cortical Neurons Decode Tactile Input Patterns and Location from Both Dominant and Non-dominant Digits. Cell Rep 2019; 26:3551-3560.e4. [DOI: 10.1016/j.celrep.2019.02.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/10/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022] Open
|
29
|
Lee AK, Brecht M. Elucidating Neuronal Mechanisms Using Intracellular Recordings during Behavior. Trends Neurosci 2018; 41:385-403. [DOI: 10.1016/j.tins.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 12/17/2022]
|
30
|
Abstract
Somatosensory areas containing topographic maps of the body surface are a major feature of parietal cortex. In primates, parietal cortex contains four somatosensory areas, each with its own map, with the primary cutaneous map in area 3b. Rodents have at least three parietal somatosensory areas. Maps are not isomorphic to the body surface, but magnify behaviorally important skin regions, which include the hands and face in primates, and the whiskers in rodents. Within each map, intracortical circuits process tactile information, mediate spatial integration, and support active sensation. Maps may also contain fine-scale representations of touch submodalities, or direction of tactile motion. Functional representations are more overlapping than suggested by textbook depictions of map topography. The whisker map in rodent somatosensory cortex is a canonic system for studying cortical microcircuits, sensory coding, and map plasticity. Somatosensory maps are plastic throughout life in response to altered use or injury. This chapter reviews basic principles and recent findings in primate, human, and rodent somatosensory maps.
Collapse
Affiliation(s)
- Samuel Harding-Forrester
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
31
|
Petersen CCH. Whole-Cell Recording of Neuronal Membrane Potential during Behavior. Neuron 2017; 95:1266-1281. [PMID: 28910617 DOI: 10.1016/j.neuron.2017.06.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 11/16/2022]
Abstract
Neuronal membrane potential is of fundamental importance for the mechanistic understanding of brain function. This review discusses progress in whole-cell patch-clamp recordings for low-noise measurement of neuronal membrane potential in awake behaving animals. Whole-cell recordings can be combined with two-photon microscopy to target fluorescently labeled neurons, revealing cell-type-specific membrane potential dynamics of retrogradely or genetically labeled neurons. Dual whole-cell recordings reveal behavioral modulation of membrane potential synchrony and properties of synaptic transmission in vivo. Optogenetic manipulations are also readily integrated with whole-cell recordings, providing detailed information about the effect of specific perturbations on the membrane potential of diverse types of neurons. Exciting developments for future behavioral experiments include dendritic whole-cell recordings and imaging, and use of the whole-cell recording pipette for single-cell delivery of drugs and DNA, as well as RNA expression profiling. Whole-cell recordings therefore offer unique opportunities for investigating the neuronal circuits and synaptic mechanisms driving membrane potential dynamics during behavior.
Collapse
Affiliation(s)
- Carl C H Petersen
- Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
32
|
Estebanez L, Férézou I, Ego-Stengel V, Shulz DE. Representation of tactile scenes in the rodent barrel cortex. Neuroscience 2017; 368:81-94. [PMID: 28843997 DOI: 10.1016/j.neuroscience.2017.08.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 11/29/2022]
Abstract
After half a century of research, the sensory features coded by neurons of the rodent barrel cortex remain poorly understood. Still, views of the sensory representation of whisker information are increasingly shifting from a labeled line representation of single-whisker deflections to a selectivity for specific elements of the complex statistics of the multi-whisker deflection patterns that take place during spontaneous rodent behavior - so called natural tactile scenes. Here we review the current knowledge regarding the coding of patterns of whisker stimuli by barrel cortex neurons, from responses to single-whisker deflections to the representation of complex tactile scenes. A number of multi-whisker tunings have already been identified, including center-surround feature extraction, angular tuning during edge-like multi-whisker deflections, and even tuning to specific statistical properties of the tactile scene such as the level of correlation across whiskers. However, a more general model of the representation of multi-whisker information in the barrel cortex is still missing. This is in part because of the lack of a human intuition regarding the perception emerging from a whisker system, but also because in contrast to other primary sensory cortices such as the visual cortex, the spatial feature selectivity of barrel cortex neurons rests on highly nonlinear interactions that remained hidden to classical receptive field approaches.
Collapse
Affiliation(s)
- Luc Estebanez
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Isabelle Férézou
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Valérie Ego-Stengel
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Daniel E Shulz
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
33
|
Alloway KD, Smith JB, Mowery TM, Watson GDR. Sensory Processing in the Dorsolateral Striatum: The Contribution of Thalamostriatal Pathways. Front Syst Neurosci 2017; 11:53. [PMID: 28790899 PMCID: PMC5524679 DOI: 10.3389/fnsys.2017.00053] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/07/2017] [Indexed: 01/24/2023] Open
Abstract
The dorsal striatum has two functionally-defined subdivisions: a dorsomedial striatum (DMS) region involved in mediating goal-directed behaviors that require conscious effort, and a dorsolateral striatum (DLS) region involved in the execution of habitual behaviors in a familiar sensory context. Consistent with its presumed role in forming stimulus-response (S-R) associations, neurons in DLS receive massive inputs from sensorimotor cortex and are responsive to both active and passive sensory stimulation. While several studies have established that corticostriatal inputs contribute to the stimulus-induced responses observed in the DLS, there is growing awareness that the thalamus has a significant role in conveying sensory-related information to DLS and other parts of the striatum. The thalamostriatal projections to DLS originate mainly from the caudal intralaminar region, which contains the parafascicular (Pf) nucleus, and from higher-order thalamic nuclei such as the medial part of the posterior (POm) nucleus. Based on recent findings, we hypothesize that the thalamostriatal projections from these two regions exert opposing influences on the expression of behavioral habits. This article reviews the subcortical circuits that regulate the transmission of sensory information through these thalamostriatal projection systems, and describes the evidence that indicates these circuits could be manipulated to ameliorate the symptoms of Parkinson's disease (PD) and related neurological disorders.
Collapse
Affiliation(s)
- Kevin D. Alloway
- Neural and Behavioral Sciences, Center for Neural Engineering, Pennsylvania State UniversityUniversity Park, PA, United States
| | - Jared B. Smith
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa Jolla, CA, United States
| | - Todd M. Mowery
- Center for Neural Science, New York UniversityNew York, NY, United States
| | - Glenn D. R. Watson
- Department of Psychology and Neuroscience, Duke UniversityDurham, NC, United States
| |
Collapse
|
34
|
Hennequin G, Agnes EJ, Vogels TP. Inhibitory Plasticity: Balance, Control, and Codependence. Annu Rev Neurosci 2017; 40:557-579. [DOI: 10.1146/annurev-neuro-072116-031005] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guillaume Hennequin
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Everton J. Agnes
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3SR, United Kingdom
| | - Tim P. Vogels
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3SR, United Kingdom
| |
Collapse
|
35
|
Abstract
Nervous systems use excitatory cell assemblies to encode and represent sensory percepts. Similarly, synaptically connected cell assemblies or "engrams" are thought to represent memories of past experience. Multiple lines of recent evidence indicate that brain systems create and use inhibitory replicas of excitatory representations for important cognitive functions. Such matched "inhibitory engrams" can form through homeostatic potentiation of inhibition onto postsynaptic cells that show increased levels of excitation. Inhibitory engrams can reduce behavioral responses to familiar stimuli, thereby resulting in behavioral habituation. In addition, by preventing inappropriate activation of excitatory memory engrams, inhibitory engrams can make memories quiescent, stored in a latent form that is available for context-relevant activation. In neural networks with balanced excitatory and inhibitory engrams, the release of innate responses and recall of associative memories can occur through focused disinhibition. Understanding mechanisms that regulate the formation and expression of inhibitory engrams in vivo may help not only to explain key features of cognition but also to provide insight into transdiagnostic traits associated with psychiatric conditions such as autism, schizophrenia, and posttraumatic stress disorder.
Collapse
|
36
|
Pluta SR, Lyall EH, Telian GI, Ryapolova-Webb E, Adesnik H. Surround Integration Organizes a Spatial Map during Active Sensation. Neuron 2017; 94:1220-1233.e5. [PMID: 28504117 DOI: 10.1016/j.neuron.2017.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/05/2017] [Accepted: 04/18/2017] [Indexed: 01/09/2023]
Abstract
During active sensation, sensors scan space in order to generate a representation of the outside world. However, since spatial coding in sensory systems is typically addressed by measuring receptive fields in a fixed, sensor-based coordinate frame, the cortical representation of scanned space is poorly understood. To address this question, we probed spatial coding in the rodent whisker system using a combination of two-photon imaging and electrophysiology during active touch. We found that surround whiskers powerfully transform the cortical representation of scanned space. On the single-neuron level, surround input profoundly alters response amplitude and modulates spatial preference in the cortex. On the population level, surround input organizes the spatial preference of neurons into a continuous map of the space swept out by the whiskers. These data demonstrate how spatial summation over a moving sensor array is critical to generating population codes of sensory space.
Collapse
Affiliation(s)
- Scott R Pluta
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Evan H Lyall
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Greg I Telian
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Elena Ryapolova-Webb
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
37
|
Abstract
Intracellular recording is an essential technique for investigating cellular mechanisms underlying complex brain functions. Despite the high sensitivity of the technique to mechanical disturbances, intracellular recording has been applied to awake, behaving, and even freely moving, animals. Here we summarize recent advances in these methods and their application to the measurement and manipulation of membrane potential dynamics for understanding neuronal computations in behaving animals.
Collapse
Affiliation(s)
- Doyun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34141, Republic of Korea;
| | - Albert K Lee
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147
| |
Collapse
|
38
|
Sawant-Pokam PM, Suryavanshi P, Mendez JM, Dudek FE, Brennan KC. Mechanisms of Neuronal Silencing After Cortical Spreading Depression. Cereb Cortex 2017; 27:1311-1325. [PMID: 26733536 PMCID: PMC6317285 DOI: 10.1093/cercor/bhv328] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cortical spreading depression (CSD) is associated with migraine, stroke, and traumatic brain injury, but its mechanisms remain poorly understood. One of the major features of CSD is an hour-long silencing of neuronal activity. Though this silencing has clear ramifications for CSD-associated disease, it has not been fully explained. We used in vivo whole-cell recordings to examine the effects of CSD on layer 2/3 pyramidal neurons in mouse somatosensory cortex and used in vitro recordings to examine their mechanism. We found that CSD caused a reduction in spontaneous synaptic activity and action potential (AP) firing that lasted over an hour. Both pre- and postsynaptic mechanisms contributed to this silencing. Reductions in frequency of postsynaptic potentials were due to a reduction in presynaptic transmitter release probability as well as reduced AP activity. Decreases in postsynaptic potential amplitude were due to an inhibitory shift in the ratio of excitatory and inhibitory postsynaptic currents. This inhibitory shift in turn contributed to the reduced frequency of APs. Thus, distinct but complementary mechanisms generate the long neuronal silence that follows CSD. These cellular changes could contribute to wider network dysfunction in CSD-associated disease, while the pre- and postsynaptic mechanisms offer separate targets for therapy.
Collapse
Affiliation(s)
| | | | | | - F. E. Dudek
- Department of Neurosurgery
,
University of Utah School of Medicine
,
Salt Lake City, UT
,
USA
| | | |
Collapse
|
39
|
Lecrux C, Hamel E. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150350. [PMID: 27574304 PMCID: PMC5003852 DOI: 10.1098/rstb.2015.0350] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 12/18/2022] Open
Abstract
Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- C Lecrux
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Quebec, Canada H3A 2B4
| | - E Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Quebec, Canada H3A 2B4
| |
Collapse
|
40
|
Somatosensory map expansion and altered processing of tactile inputs in a mouse model of fragile X syndrome. Neurobiol Dis 2016; 96:201-215. [PMID: 27616423 DOI: 10.1016/j.nbd.2016.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome (FXS) is a common inherited form of intellectual disability caused by the absence or reduction of the fragile X mental retardation protein (FMRP) encoded by the FMR1 gene. In humans, one symptom of FXS is hypersensitivity to sensory stimuli, including touch. We used a mouse model of FXS (Fmr1 KO) to study sensory processing of tactile information conveyed via the whisker system. In vivo electrophysiological recordings in somatosensory barrel cortex showed layer-specific broadening of the receptive fields at the level of layer 2/3 but not layer 4, in response to whisker stimulation. Furthermore, the encoding of tactile stimuli at different frequencies was severely affected in layer 2/3. The behavioral effect of this broadening of the receptive fields was tested in the gap-crossing task, a whisker-dependent behavioral paradigm. In this task the Fmr1 KO mice showed differences in the number of whisker contacts with platforms, decrease in the whisker sampling duration and reduction in the whisker touch-time while performing the task. We propose that the increased excitability in the somatosensory barrel cortex upon whisker stimulation may contribute to changes in the whisking strategy as well as to other observed behavioral phenotypes related to tactile processing in Fmr1 KO mice.
Collapse
|
41
|
Translaminar Cortical Membrane Potential Synchrony in Behaving Mice. Cell Rep 2016; 15:2387-99. [PMID: 27264185 PMCID: PMC4914774 DOI: 10.1016/j.celrep.2016.05.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/24/2016] [Accepted: 05/04/2016] [Indexed: 11/23/2022] Open
Abstract
The synchronized activity of six layers of cortical neurons is critical for sensory perception and the control of voluntary behavior, but little is known about the synaptic mechanisms of cortical synchrony across layers in behaving animals. We made single and dual whole-cell recordings from the primary somatosensory forepaw cortex in awake mice and show that L2/3 and L5 excitatory neurons have layer-specific intrinsic properties and membrane potential dynamics that shape laminar-specific firing rates and subthreshold synchrony. First, while sensory and movement-evoked synaptic input was tightly correlated across layers, spontaneous action potentials and slow spontaneous subthreshold fluctuations had laminar-specific timing; second, longer duration forepaw movement was associated with a decorrelation of subthreshold activity; third, spontaneous and sensory-evoked forepaw movements were signaled more strongly by L5 than L2/3 neurons. Together, our data suggest that the degree of translaminar synchrony is dependent upon the origin (sensory, spontaneous, and movement) of the synaptic input. We made dual whole-cell recordings from L2/3 and L5 cortical neurons in behaving mice Layer-specific membrane properties determine higher mean firing rates of L5 neurons Synchrony of translaminar synaptic activity is determined by the origin of input L5 neurons signal spontaneous and sensory-triggered movements
Collapse
|
42
|
Gerard-Mercier F, Carelli PV, Pananceau M, Troncoso XG, Frégnac Y. Synaptic Correlates of Low-Level Perception in V1. J Neurosci 2016; 36:3925-42. [PMID: 27053201 PMCID: PMC6705520 DOI: 10.1523/jneurosci.4492-15.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/26/2016] [Accepted: 02/13/2016] [Indexed: 11/21/2022] Open
Abstract
The computational role of primary visual cortex (V1) in low-level perception remains largely debated. A dominant view assumes the prevalence of higher cortical areas and top-down processes in binding information across the visual field. Here, we investigated the role of long-distance intracortical connections in form and motion processing by measuring, with intracellular recordings, their synaptic impact on neurons in area 17 (V1) of the anesthetized cat. By systematically mapping synaptic responses to stimuli presented in the nonspiking surround of V1 receptive fields, we provide the first quantitative characterization of the lateral functional connectivity kernel of V1 neurons. Our results revealed at the population level two structural-functional biases in the synaptic integration and dynamic association properties of V1 neurons. First, subthreshold responses to oriented stimuli flashed in isolation in the nonspiking surround exhibited a geometric organization around the preferred orientation axis mirroring the psychophysical "association field" for collinear contour perception. Second, apparent motion stimuli, for which horizontal and feedforward synaptic inputs summed in-phase, evoked dominantly facilitatory nonlinear interactions, specifically during centripetal collinear activation along the preferred orientation axis, at saccadic-like speeds. This spatiotemporal integration property, which could constitute the neural correlate of a human perceptual bias in speed detection, suggests that local (orientation) and global (motion) information is already linked within V1. We propose the existence of a "dynamic association field" in V1 neurons, whose spatial extent and anisotropy are transiently updated and reshaped as a function of changes in the retinal flow statistics imposed during natural oculomotor exploration. SIGNIFICANCE STATEMENT The computational role of primary visual cortex in low-level perception remains debated. The expression of this "pop-out" perception is often assumed to require attention-related processes, such as top-down feedback from higher cortical areas. Using intracellular techniques in the anesthetized cat and novel analysis methods, we reveal unexpected structural-functional biases in the synaptic integration and dynamic association properties of V1 neurons. These structural-functional biases provide a substrate, within V1, for contour detection and, more unexpectedly, global motion flow sensitivity at saccadic speed, even in the absence of attentional processes. We argue for the concept of a "dynamic association field" in V1 neurons, whose spatial extent and anisotropy changes with retinal flow statistics, and more generally for a renewed focus on intracortical computation.
Collapse
Affiliation(s)
- Florian Gerard-Mercier
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France, Graduate School of the École Polytechnique, École Polytechnique, 91128 Palaiseau, France, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama-shi, 338-8570, Japan, and
| | - Pedro V Carelli
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France
| | - Marc Pananceau
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France, Université Paris-Sud, 91405 Orsay, France
| | - Xoana G Troncoso
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France
| | - Yves Frégnac
- Unité de Neuroscience Information et Complexité (UNIC), Centre National de la Recherche Scientifique UPR-3293, 91198 Gif-sur-Yvette, France, Graduate School of the École Polytechnique, École Polytechnique, 91128 Palaiseau, France,
| |
Collapse
|
43
|
Sofroniew NJ, Vlasov YA, Hires SA, Freeman J, Svoboda K. Neural coding in barrel cortex during whisker-guided locomotion. eLife 2015; 4. [PMID: 26701910 PMCID: PMC4764557 DOI: 10.7554/elife.12559] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/21/2015] [Indexed: 11/15/2022] Open
Abstract
Animals seek out relevant information by moving through a dynamic world, but sensory systems are usually studied under highly constrained and passive conditions that may not probe important dimensions of the neural code. Here, we explored neural coding in the barrel cortex of head-fixed mice that tracked walls with their whiskers in tactile virtual reality. Optogenetic manipulations revealed that barrel cortex plays a role in wall-tracking. Closed-loop optogenetic control of layer 4 neurons can substitute for whisker-object contact to guide behavior resembling wall tracking. We measured neural activity using two-photon calcium imaging and extracellular recordings. Neurons were tuned to the distance between the animal snout and the contralateral wall, with monotonic, unimodal, and multimodal tuning curves. This rich representation of object location in the barrel cortex could not be predicted based on simple stimulus-response relationships involving individual whiskers and likely emerges within cortical circuits. DOI:http://dx.doi.org/10.7554/eLife.12559.001 Mice are primarily nocturnal animals that rely on their whiskers to navigate dark underground burrows and winding corridors. When a whisker touches an object, cells called neurons at the base of the whiskers produce electrical signals that are relayed to other neurons in an area of the brain called the barrel cortex. However, it is not clear how information is encoded in these electrical signals, in part, because it is technically challenging to collect data about neuron activity and behavior while the mice move around. To overcome these difficulties, Sofroniew, Vlasov et al. used a touch-based (or 'tactile') virtual reality system to study how mice navigate along corridors. The system simulated the contact the whiskers would have with the walls of a winding corridor. This was achieved by moving the walls with motors while holding the mouse still enough to be able to measure the activity of neurons in the barrel cortex and observe the behavior of the animal. The experiments show that the electrical signals in the barrel cortex encode information about motion as well as the distance between the mouse and the wall. For example, some neurons in the barrel cortex were only activated when a mouse was a particular distance from the walls. The experiments suggest that the barrel cortex processes signals received from several whiskers to build an overall picture of the locations and shapes of objects. Sofroniew, Vlasov et al. also used a technique called optogenetics to deliberately activate particular neurons in a manner that mimics their activity patterns during interactions with walls. In the absence of walls, the optogenetic stimuli guided the behavior of the mice so that they tracked along the paths of 'illusory' corridors. Together, these findings reveal the neural code in the barrel cortex that allows mice to navigate by touch. DOI:http://dx.doi.org/10.7554/eLife.12559.002
Collapse
Affiliation(s)
| | - Yurii A Vlasov
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,IBM Thomas J. Watson Research Center, New York, United States
| | - Samuel Andrew Hires
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jeremy Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
44
|
Synaptic Basis for Differential Orientation Selectivity between Complex and Simple Cells in Mouse Visual Cortex. J Neurosci 2015; 35:11081-93. [PMID: 26245969 DOI: 10.1523/jneurosci.5246-14.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In the primary visual cortex (V1), orientation-selective neurons can be categorized into simple and complex cells primarily based on their receptive field (RF) structures. In mouse V1, although previous studies have examined the excitatory/inhibitory interplay underlying orientation selectivity (OS) of simple cells, the synaptic bases for that of complex cells have remained obscure. Here, by combining in vivo loose-patch and whole-cell recordings, we found that complex cells, identified by their overlapping on/off subfields, had significantly weaker OS than simple cells at both spiking and subthreshold membrane potential response levels. Voltage-clamp recordings further revealed that although excitatory inputs to complex and simple cells exhibited a similar degree of OS, inhibition in complex cells was more narrowly tuned than excitation, whereas in simple cells inhibition was more broadly tuned than excitation. The differential inhibitory tuning can primarily account for the difference in OS between complex and simple cells. Interestingly, the differential synaptic tuning correlated well with the spatial organization of synaptic input: the inhibitory visual RF in complex cells was more elongated in shape than its excitatory counterpart and also was more elongated than that in simple cells. Together, our results demonstrate that OS of complex and simple cells is differentially shaped by cortical inhibition based on its orientation tuning profile relative to excitation, which is contributed at least partially by the spatial organization of RFs of presynaptic inhibitory neurons. SIGNIFICANCE STATEMENT Simple and complex cells, two classes of principal neurons in the primary visual cortex (V1), are generally thought to be equally selective for orientation. In mouse V1, we report that complex cells, identified by their overlapping on/off subfields, has significantly weaker orientation selectivity (OS) than simple cells. This can be primarily attributed to the differential tuning selectivity of inhibitory synaptic input: inhibition in complex cells is more narrowly tuned than excitation, whereas in simple cells inhibition is more broadly tuned than excitation. In addition, there is a good correlation between inhibitory tuning selectivity and the spatial organization of inhibitory inputs. These complex and simple cells with differential degree of OS may provide functionally distinct signals to different downstream targets.
Collapse
|
45
|
LFP-guided targeting of a cortical barrel column for in vivo two-photon calcium imaging. Sci Rep 2015; 5:15905. [PMID: 26511063 PMCID: PMC4625133 DOI: 10.1038/srep15905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/06/2015] [Indexed: 12/02/2022] Open
Abstract
Two-photon microscopy of bulk-loaded functional dyes is an outstanding physiological technique that enables simultaneous functional mapping of hundreds of brain cells in vivo at single-cell resolution. However, precise targeting of a specific cortical location is not easy due to its fine dimensionality. To enable precise targeting, intrinsic-signal optical imaging is often additionally performed. However, the intrinsic-signal optical imaging is not only time-consuming but also ineffective in ensuring precision. Here, we propose an alternative method for precise targeting based on local field potential (LFP) recording, a conventional electrophysiological method. The heart of this method lies in use of the same glass pipette to record LFPs and to eject calcium dye. After confirming the target area by LFP using a glass pipette, the calcium dye is ejected from the same pipette without a time delay or spatial adjustment. As a result, the calcium dye is loaded into the same ensemble of brain cells from which the LFP was obtained. As a validation of the proposed LFP-based method, we targeted and successfully loaded calcium dye into layer 2/3 of a mouse barrel column.
Collapse
|
46
|
Ji XY, Zingg B, Mesik L, Xiao Z, Zhang LI, Tao HW. Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity. Cereb Cortex 2015; 26:2612-25. [PMID: 25979090 DOI: 10.1093/cercor/bhv099] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite many previous studies, the functional innervation pattern of thalamic axons and their target specificity remains to be investigated thoroughly. Here, in primary auditory cortical slices, we examined thalamic innervation patterns for excitatory and different types of inhibitory neurons across laminae, by optogenetically stimulating axons from the medial geniculate body. We found that excitatory cells and parvalbumin (PV)-expressing inhibitory neurons across layer 2/3 (L2/3) to L6 are directly innervated by thalamic projections, with the strongest innervation occurring in L4. The innervation of PV neurons is stronger than that of excitatory neurons in the same layer, with a relatively constant ratio between their innervation strengths across layers. For somatostatin and vasoactive intestinal peptide inhibitory neurons, essentially only L4 neurons were innervated by thalamic axons and the innervation was much weaker compared with excitatory and PV cells. In addition, more than half of inhibitory neurons in L1 were innervated, relatively strongly, by thalamic axons. Similar innervation patterns were also observed in the primary visual cortex. Thus, thalamic information can be processed independently and differentially by different cortical layers, in addition to the generally thought hierarchical processing starting from L4. This parallel processing is likely shaped by feedforward inhibition from PV neurons in each individual lamina, and may extend the computation power of sensory cortices.
Collapse
Affiliation(s)
- Xu-Ying Ji
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China Zilkha Neurogenetic Institute
| | - Brian Zingg
- Zilkha Neurogenetic Institute Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Lukas Mesik
- Zilkha Neurogenetic Institute Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Li I Zhang
- Zilkha Neurogenetic Institute Department of Biophysics and Physiology
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute Department of Cell and Neurobiology
| |
Collapse
|
47
|
Rabang CF, Lin J, Wu GK. Balance or imbalance: inhibitory circuits for direction selectivity in the auditory system. Cell Mol Life Sci 2015; 72:1893-906. [PMID: 25638210 PMCID: PMC11113761 DOI: 10.1007/s00018-015-1841-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
Abstract
The auditory system detects and processes dynamic sound information transmitted in the environment. Other than the basic acoustic parameters, such as frequency, amplitude and phase, the time-varying changes of these parameters must also be encoded in our brain. Frequency-modulated (FM) sound is socially and environmentally significant, and the direction of FM sweeps is essential for animal communication and human speech. Many auditory neurons selectively respond to the directional change of such FM signals. In the past half century, our knowledge of auditory representation and processing has been updated frequently, due to technological advancement. Recently, in vivo whole-cell voltage clamp recordings have been applied to different brain regions in sensory systems. These recordings illustrate the synaptic mechanisms underlying basic sensory information processing and provide profound insights toward our understanding of neural circuits for complex signal analysis. In this review, we summarize the major findings of direction selectivity at several key auditory regions and emphasize on the recent discoveries on the synaptic mechanisms for direction selectivity in the auditory system. We conclude this review by describing promising technical developments in dissecting neural circuits and future directions in the study of complex sound analysis.
Collapse
Affiliation(s)
- Cal F. Rabang
- Department of Psychology, The George Washington University, 2300 Eye St NW, Washington, DC 20037 USA
- George Washington Institute for Neuroscience, The George Washington University, 2300 Eye St NW, Washington, DC 20037 USA
| | - Jeff Lin
- Department of Psychology, The George Washington University, 2300 Eye St NW, Washington, DC 20037 USA
- George Washington Institute for Neuroscience, The George Washington University, 2300 Eye St NW, Washington, DC 20037 USA
| | - Guangying K. Wu
- Department of Psychology, The George Washington University, 2300 Eye St NW, Washington, DC 20037 USA
- George Washington Institute for Neuroscience, The George Washington University, 2300 Eye St NW, Washington, DC 20037 USA
| |
Collapse
|
48
|
Pritchett DL, Siegle JH, Deister CA, Moore CI. For things needing your attention: the role of neocortical gamma in sensory perception. Curr Opin Neurobiol 2015; 31:254-63. [PMID: 25770854 DOI: 10.1016/j.conb.2015.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 11/25/2022]
Abstract
Two general classes of hypotheses for the role for gamma oscillations in sensation are those that predict gamma facilitates signal amplification through local synchronization of a distinct ensemble, and those that predict gamma modulates fine temporal relationships between neurons to represent information. Correlative evidence has been offered for and against these hypotheses. A recent study in which gamma was optogenetically entrained by driving fast-spiking interneurons showed enhanced sensory detection of harder-to-perceive stimuli, those that benefit most from attention, in agreement with the amplification hypotheses. These findings are supported by similar studies employing less specific optogenetic patterns or single neuron stimulation, but contrast with findings based on direct optogenetic stimulation of pyramidal neurons. Key next steps for this topic are described.
Collapse
|
49
|
Tamè L, Pavani F, Papadelis C, Farnè A, Braun C. Early integration of bilateral touch in the primary somatosensory cortex. Hum Brain Mapp 2014; 36:1506-23. [PMID: 25514844 DOI: 10.1002/hbm.22719] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 11/06/2022] Open
Abstract
Animal, as well as behavioural and neuroimaging studies in humans have documented integration of bilateral tactile information at the level of primary somatosensory cortex (SI). However, it is still debated whether integration in SI occurs early or late during tactile processing, and whether it is somatotopically organized. To address both the spatial and temporal aspects of bilateral tactile processing we used magnetoencephalography in a tactile repetition-suppression paradigm. We examined somatosensory evoked-responses produced by probe stimuli preceded by an adaptor, as a function of the relative position of adaptor and probe (probe always at the left index finger; adaptor at the index or middle finger of the left or right hand) and as a function of the delay between adaptor and probe (0, 25, or 125 ms). Percentage of response-amplitude suppression was computed by comparing paired (adaptor + probe) with single stimulations of adaptor and probe. Results show that response suppression varies differentially in SI and SII as a function of both spatial and temporal features of the stimuli. Remarkably, repetition suppression of SI activity emerged early in time, regardless of whether the adaptor stimulus was presented on the same and the opposite body side with respect to the probe. These novel findings support the notion of an early and somatotopically organized inter-hemispheric integration of tactile information in SI.
Collapse
Affiliation(s)
- Luigi Tamè
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | | | | | | | |
Collapse
|
50
|
Interplay between intra- and interhemispheric remodeling of neural networks as a substrate of functional recovery after stroke: Adaptive versus maladaptive reorganization. Neuroscience 2014; 283:178-201. [DOI: 10.1016/j.neuroscience.2014.06.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022]
|