1
|
Schaefer PM, Kalinina S, Rueck A, von Arnim CAF, von Einem B. NADH Autofluorescence-A Marker on its Way to Boost Bioenergetic Research. Cytometry A 2018; 95:34-46. [PMID: 30211978 DOI: 10.1002/cyto.a.23597] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/20/2018] [Accepted: 08/04/2018] [Indexed: 12/20/2022]
Abstract
More than 60 years ago, the idea was introduced that NADH autofluorescence could be used as a marker of cellular redox state and indirectly also of cellular energy metabolism. Fluorescence lifetime imaging microscopy of NADH autofluorescence offers a marker-free readout of the mitochondrial function of cells in their natural microenvironment and allows different pools of NADH to be distinguished within a cell. Despite its many advantages in terms of spatial resolution and in vivo applicability, this technique still requires improvement in order to be fully useful in bioenergetics research. In the present review, we give a summary of technical and biological challenges that have so far limited the spread of this powerful technology. To help overcome these challenges, we provide a comprehensible overview of biological applications of NADH imaging, along with a detailed summary of valid imaging approaches that may be used to tackle many biological questions. This review is meant to provide all scientists interested in bioenergetics with support on how to embed successfully NADH imaging in their research. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Sviatlana Kalinina
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Ulm, Germany
| | - Angelika Rueck
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Ulm, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm, Germany.,Clinic for Neurogeriatrics and Neurological Rehabilitation, University- and Rehabilitation Hospital Ulm, Ulm, Germany
| | | |
Collapse
|
2
|
Kawashima J, Alquier T, Tsuji Y, Peroni OD, Kahn BB. Ca2+/calmodulin-dependent protein kinase kinase is not involved in hypothalamic AMP-activated protein kinase activation by neuroglucopenia. PLoS One 2012; 7:e36335. [PMID: 22590531 PMCID: PMC3349669 DOI: 10.1371/journal.pone.0036335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/03/2012] [Indexed: 11/18/2022] Open
Abstract
Hypoglycemia and neuroglucopenia stimulate AMP-activated protein kinase (AMPK) activity in the hypothalamus and this plays an important role in the counterregulatory responses, i.e. increased food intake and secretion of glucagon, corticosterone and catecholamines. Several upstream kinases that activate AMPK have been identified including Ca2+/Calmodulin-dependent protein kinase kinase (CaMKK), which is highly expressed in neurons. However, the involvement of CaMKK in neuroglucopenia-induced activation of AMPK in the hypothalamus has not been tested. To determine whether neuroglucopenia-induced AMPK activation is mediated by CaMKK, we tested whether STO-609 (STO), a CaMKK inhibitor, would block the effects of 2-deoxy-D-glucose (2DG)-induced neuroglucopenia both ex vivo on brain sections and in vivo. Preincubation of rat brain sections with STO blocked KCl-induced α1 and α2-AMPK activation but did not affect AMPK activation by 2DG in the medio-basal hypothalamus. To confirm these findings in vivo, STO was pre-administrated intracerebroventricularly (ICV) in rats 30 min before 2DG ICV injection (40 µmol) to induce neuroglucopenia. 2DG-induced neuroglucopenia lead to a significant increase in glycemia and food intake compared to saline-injected control rats. ICV pre-administration of STO (5, 20 or 50 nmol) did not affect 2DG-induced hyperglycemia and food intake. Importantly, activation of hypothalamic α1 and α2-AMPK by 2DG was not affected by ICV pre-administration of STO. In conclusion, activation of hypothalamic AMPK by 2DG-induced neuroglucopenia is not mediated by CaMKK.
Collapse
Affiliation(s)
- Junji Kawashima
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thierry Alquier
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Youki Tsuji
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Odile D. Peroni
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barbara B. Kahn
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
3
|
Masino SA, Kawamura M, Ruskin DN, Geiger JD, Boison D. Purines and neuronal excitability: links to the ketogenic diet. Epilepsy Res 2011; 100:229-38. [PMID: 21880467 DOI: 10.1016/j.eplepsyres.2011.07.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 01/03/2023]
Abstract
ATP and adenosine are purines that play dual roles in cell metabolism and neuronal signaling. Acting at the A(1) receptor (A(1)R) subtype, adenosine acts directly on neurons to inhibit excitability and is a powerful endogenous neuroprotective and anticonvulsant molecule. Previous research showed an increase in ATP and other cell energy parameters when an animal is administered a ketogenic diet, an established metabolic therapy to reduce epileptic seizures, but the relationship among purines, neuronal excitability and the ketogenic diet was unclear. Recent work in vivo and in vitro tested the specific hypothesis that adenosine acting at A(1)Rs is a key mechanism underlying the success of ketogenic diet therapy and yielded direct evidence linking A(1)Rs to the antiepileptic effects of a ketogenic diet. Specifically, an in vitro mimic of a ketogenic diet revealed an A(1)R-dependent metabolic autocrine hyperpolarization of hippocampal neurons. In parallel, applying the ketogenic diet in vivo to transgenic mouse models with spontaneous electrographic seizures revealed that intact A(1)Rs are necessary for the seizure-suppressing effects of the diet. This is the first direct in vivo evidence linking A(1)Rs to the antiepileptic effects of a ketogenic diet. Other predictions of the relationship between purines and the ketogenic diet are discussed. Taken together, recent research on the role of purines may offer new opportunities for metabolic therapy and insight into its underlying mechanisms.
Collapse
Affiliation(s)
- S A Masino
- Neuroscience Program and Psychology Department, Trinity College, Hartford, CT 06106, USA.
| | | | | | | | | |
Collapse
|
4
|
Krnjević K. Electrophysiology of cerebral ischemia. Neuropharmacology 2008; 55:319-33. [DOI: 10.1016/j.neuropharm.2008.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 12/31/2007] [Accepted: 01/08/2008] [Indexed: 12/20/2022]
|
5
|
Vetter I, Wyse BD, Monteith GR, Roberts-Thomson SJ, Cabot PJ. The mu opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway. Mol Pain 2006; 2:22. [PMID: 16842630 PMCID: PMC1553434 DOI: 10.1186/1744-8069-2-22] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/16/2006] [Indexed: 01/23/2023] Open
Abstract
Background The vanilloid receptor 1 (TRPV1) is critical in the development of inflammatory hyperalgesia. Several receptors including G-protein coupled prostaglandin receptors have been reported to functionally interact with the TRPV1 through a cAMP-dependent protein kinase A (PKA) pathway to potentiate TRPV1-mediated capsaicin responses. Such regulation may have significance in inflammatory pain. However, few functional receptor interactions that inhibit PKA-mediated potentiation of TRPV1 responses have been described. Results In the present studies we investigated the hypothesis that the μ opioid receptor (MOP) agonist morphine can modulate forskolin-potentiated capsaicin responses through a cAMP-dependent PKA pathway. HEK293 cells were stably transfected with TRPV1 and MOP, and calcium (Ca2+) responses to injection of the TRPV1 agonist capsaicin were monitored in Fluo-3-loaded cells. Pre-treatment with morphine did not inhibit unpotentiated capsaicin-induced Ca2+ responses but significantly altered capsaicin responses potentiated by forskolin. TRPV1-mediated Ca2+ responses potentiated by the direct PKA activator 8-Br-cAMP and the PKC activator Phorbol-12-myristate-13-acetatewere not modulated by morphine. Immunohistochemical studies confirmed that the TRPV1 and MOP are co-expressed on cultured Dorsal Root Ganglion neurones, pointing towards the existence of a functional relationship between the G-protein coupled MOP and nociceptive TRPV1. Conclusion The results presented here indicate that the opioid receptor agonist morphine acts via inhibition of adenylate cyclase to inhibit PKA-potentiated TRPV1 responses. Targeting of peripheral opioid receptors may therefore have therapeutic potential as an intervention to prevent potentiation of TRPV1 responses through the PKA pathway in inflammation.
Collapse
Affiliation(s)
- Irina Vetter
- The School of Pharmacy, The University of Queensland, Brisbane, 4072, Australia
| | - Bruce D Wyse
- The School of Pharmacy, The University of Queensland, Brisbane, 4072, Australia
| | - Gregory R Monteith
- The School of Pharmacy, The University of Queensland, Brisbane, 4072, Australia
| | | | - Peter J Cabot
- The School of Pharmacy, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
6
|
McDermott CJ, Bradley KN, McCarron JG, Palmer AM, Morris BJ. Striatal neurones show sustained recovery from severe hypoglycaemic insult. J Neurochem 2003; 86:383-93. [PMID: 12871579 DOI: 10.1046/j.1471-4159.2003.01853.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glucose deprivation provides a reliable model to investigate cellular responses to metabolic dysfunction, and is reportedly associated with permanent cell death in many paradigms. Consistent with previous studies, primary cultures of rat striatal neurones exposed to 24-h hypoglycaemia showed dramatically decreased sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) metabolism (used as a marker of cell viability) and increased TUNEL staining, suggesting widespread DNA damage typical of apoptotic cell death. Remarkably, restoration of normal glucose levels initiated a sustained recovery in XTT staining, along with a concomitant decrease in TUNEL staining, even after 24 h of hypoglycaemia, suggesting recovery of damaged neurones and repair of nicked DNA. No alterations in the levels of four DNA repair proteins could be detected during hypoglycaemia or recovery. A reduction in intracellular calcium concentration was seen in recovered cells. These data suggest that striatal cells do not die after extended periods of glucose deprivation, but survive in a form of suspended animation, with sufficient energy to maintain membrane potential.
Collapse
Affiliation(s)
- C J McDermott
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | |
Collapse
|
7
|
Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci 2002. [PMID: 11739569 DOI: 10.1523/jneurosci.21-24-09585.2001] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Large-conductance Ca(2+)-activated K(+) channels (BK, also called Maxi-K or Slo channels) are widespread in the vertebrate nervous system, but their functional roles in synaptic transmission in the mammalian brain are largely unknown. By combining electrophysiology and immunogold cytochemistry, we demonstrate the existence of functional BK channels in presynaptic terminals in the hippocampus and compare their functional roles in somata and terminals of CA3 pyramidal cells. Double-labeling immunogold analysis with BK channel and glutamate receptor antibodies indicated that BK channels are targeted to the presynaptic membrane facing the synaptic cleft in terminals of Schaffer collaterals in stratum radiatum. Whole-cell, intracellular, and field-potential recordings from CA1 pyramidal cells showed that the presynaptic BK channels are activated by calcium influx and can contribute to repolarization of the presynaptic action potential (AP) and negative feedback control of Ca(2+) influx and transmitter release. This was observed in the presence of 4-aminopyridine (4-AP, 40-100 microm), which broadened the presynaptic compound action potential. In contrast, the presynaptic BK channels did not contribute significantly to regulation of action potentials or transmitter release under basal experimental conditions, i.e., without 4-AP, even at high stimulation frequencies. This is unlike the situation in the parent cell bodies (CA3 pyramidal cells), where BK channels contribute strongly to action potential repolarization. These results indicate that the functional role of BK channels depends on their subcellular localization.
Collapse
|
8
|
Cai L, Ruan DY, Xu YZ, Liu Z, Meng XM, Dai XQ. Effects of lead exposure on long-term potentiation induced by 2-deoxy-D-glucose in area CA1 of rat hippocampus in vitro. Neurotoxicol Teratol 2001; 23:481-7. [PMID: 11711251 DOI: 10.1016/s0892-0362(01)00158-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Chronic developmental lead exposure is known to be associated with cognitive dysfunction in children. Previous studies have demonstrated that chronic lead exposure could impair the induction and maintenance of long-term potentiation induced by high-frequency stimulation (HFS-LTP). In area CA1 of rat hippocampus, long-term potentiation could also be induced following temporary replacement of 10 mM 2-deoxy-D-glucose (2-DG) for 10 mM glucose in the normal perfusate (artificial cerebrospinal fluid). The present study was carried out to investigate whether chronic lead exposure affected long-term potentiation induced by 2-DG (2-DG-LTP). Neonatal Wistar rats were exposed to lead from parturition to weaning via milk of dams whose drinking water contained 0.2% lead acetate. Field excitatory postsynaptic potentials (EPSPs) in area CA1 of hippocampus were recorded on postnatal days 25-30. 2-DG application was followed by an increase in EPSP slopes in a time-course-dependent manner in both control and lead-exposed rats, while the amplitude of 2-DG-LTP in the lead-exposed rats (225.9+/-19.0%, n=12) was significantly greater than that in controls (155.2+/-9.8%, n=12). In contrast to the effects of lead exposure on 2-DG-LTP, the amplitude of HFS-LTP in the lead-exposed rats (121.5+/-13.7%, n=12) was significantly less than that in controls (183.9+/-18.6%, n=12). These results indicate that chronic lead exposure had opposite effects on the two types of LTP induced by HFS and 2-DG. This would suggest that the effects of lead on HFS-LTP and 2-DG-LTP are the result of different sites of lead toxicity.
Collapse
Affiliation(s)
- L Cai
- School of Life Science, University of Science and Technology of China, Anhui, 230027, Hefei, China
| | | | | | | | | | | |
Collapse
|
9
|
Xu YZ, Krnjevic K. Unlike 2-deoxy-D-glucose, 3-O-methyl-D-glucose does not induce long-term potentiation in rat hippocampal slices. Brain Res 2001; 895:250-2. [PMID: 11259785 DOI: 10.1016/s0006-8993(01)02077-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Equimolar replacement of 10 mM glucose by 2-deoxy-D-glucose (2-DG) causes substantial depression followed by a sharp and sustained potentiation of CA1 field EPSPs. In the present experiments, similar applications of 3-O-methyl-D-glucose, which is also taken up by cells but is not phosphorylated, had only a weak blocking action and elicited no potentiation. Possible explanations for the marked effects of 2-DG include a more rapid block of glycolysis and the production of phosphorylated derivatives of 2-DG.
Collapse
Affiliation(s)
- Y Z Xu
- Department of Biology, University of Science and Technology, Hefei, Anhui 23002, China
| | | |
Collapse
|
10
|
Krnjević K, Zhao YT. 2-Deoxyglucose-induced long-term potentiation of monosynaptic IPSPs in CA1 hippocampal neurons. J Neurophysiol 2000; 83:879-87. [PMID: 10669501 DOI: 10.1152/jn.2000.83.2.879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In previous experiments on excitatory synaptic transmission in CA1, temporary (10-20 min) replacement of glucose with 10 mM 2-deoxyglucose (2-DG) consistently caused a marked and very sustained potentiation (2-DG LTP). To find out whether 2-DG has a similar effect on inhibitory synapses, we recorded pharmacologically isolated mononosynaptic inhibitory postsynaptic potentials (IPSPs; under current clamp) and inhibitory postsynaptic currents (IPSCs; under voltage clamp); 2-DG was applied both in the presence and the absence of antagonists of N-methyl-D-aspartate (NMDA). In spite of sharply varied results (some neurons showing large potentiation, lasting for >1 h, and many little or none), overall there was a significant and similar potentiation of IPSP conductance, both for the early (at approximately 30 ms) and later (at approximately 140 ms) components of IPSPs or IPSCs: by 35.1 +/- 10.25% (mean +/- SE; for n = 24, P = 0.0023) and 36.5 +/- 16.3% (for n = 19, P = 0.038), respectively. The similar potentiation of the early and late IPSP points to a presynaptic mechanism of LTP. Overall, the LTP was statistically significant only when 2-DG was applied in the absence of glutamate antagonists. Tetanic stimulations (in presence or absence of glutamate antagonists) only depressed IPSPs (by half). In conclusion, although smaller and more variable, 2-DG-induced LTP of inhibitory synapses appears to be broadly similar to the 2-DG-induced LTP of excitatory postsynaptic potentials previously observed in CA1.
Collapse
Affiliation(s)
- K Krnjević
- Anaesthesia Research Department, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|
11
|
Zhao YT, Krnjević K. 2-Deoxyglucose-induced long-term potentiation in CA1 is not prevented by intraneuronal chelator. J Neurophysiol 2000; 83:177-80. [PMID: 10634864 DOI: 10.1152/jn.2000.83.1.177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In hippocampal slices, temporary (10-20 min) replacement of glucose with 10 mM 2-deoxyglucose is followed by marked and very sustained potentiation of EPSPs (2-DG LTP). To investigate its mechanism, we examined 2-DG's effect in CA1 neurons recorded with sharp 3 M KCl electrodes containing a strong chelator, 50 or 100 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). In most cases, field EPSPs were simultaneously recorded and conventional LTP was also elicited in some cells by tetanic stimulation of stratum radiatum. 2-DG potentiated intracellular EPSP slopes by 48 +/- 5.1% (SE) in nine cells recorded with plain KCl electrodes and by 52 +/- 6.2% in seven cells recorded with EGTA-containing electrodes. In four of the latter cells, tetanic stimulation (twice 100 Hz for 1 s) failed to evoke LTP (2 +/- 1.1%), although field EPSPs were clearly potentiated (by 28 +/- 6.9%). Thus unlike tetanic LTP, 2-DG LTP is not readily prevented by postsynaptic intraneuronal injection of EGTA. These findings agree with other evidence that the rise in postsynaptic (somatic) [Ca(2+)](i) caused by 2-DG is not the principal trigger for the subsequent 2-DG LTP and that it may be a purely presynaptic phenomenon.
Collapse
Affiliation(s)
- Y T Zhao
- Anaesthesia Research Department, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|