1
|
Liddiard GT, Suryavanshi PS, Glykys J. Enhancing GABAergic Tonic Inhibition Reduces Seizure-Like Activity in the Neonatal Mouse Hippocampus and Neocortex. J Neurosci 2024; 44:e1342232023. [PMID: 38176909 PMCID: PMC10869160 DOI: 10.1523/jneurosci.1342-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Approximately one-third of neonatal seizures do not respond to first-line anticonvulsants, including phenobarbital, which enhances phasic inhibition. Whether enhancing tonic inhibition decreases seizure-like activity in the neonate when GABA is mainly depolarizing at this age is unknown. We evaluated if increasing tonic inhibition using THIP [4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, gaboxadol], a δ-subunit-selective GABAA receptor agonist, decreases seizure-like activity in neonatal C57BL/6J mice (postnatal day P5-8, both sexes) using acute brain slices. Whole-cell patch-clamp recordings showed that THIP enhanced GABAergic tonic inhibitory conductances in layer V neocortical and CA1 pyramidal neurons and increased their rheobase without altering sEPSC characteristics. Two-photon calcium imaging demonstrated that enhancing the activity of extrasynaptic GABAARs decreased neuronal firing in both brain regions. In the 4-aminopyridine and the low-Mg2+ model of pharmacoresistant seizures, THIP reduced epileptiform activity in the neocortex and CA1 hippocampal region of neonatal and adult brain slices in a dose-dependent manner. We conclude that neocortical layer V and CA1 pyramidal neurons have tonic inhibitory conductances, and when enhanced, they reduce neuronal firing and decrease seizure-like activity. Therefore, augmenting tonic inhibition could be a viable approach for treating neonatal seizures.
Collapse
Affiliation(s)
- G T Liddiard
- Stead Family Department of Pediatrics, Iowa Neuroscience Institute, The University of Iowa, Iowa City 52242, Iowa
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City 52242, Iowa
| | - P S Suryavanshi
- Stead Family Department of Pediatrics, Iowa Neuroscience Institute, The University of Iowa, Iowa City 52242, Iowa
| | - J Glykys
- Stead Family Department of Pediatrics, Iowa Neuroscience Institute, The University of Iowa, Iowa City 52242, Iowa
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City 52242, Iowa
- Department of Neurology, The University of Iowa, Iowa City 52242, Iowa
| |
Collapse
|
2
|
Singh PK, Saadi A, Sheeni Y, Shekh-Ahmad T. Specific inhibition of NADPH oxidase 2 modifies chronic epilepsy. Redox Biol 2022; 58:102549. [PMID: 36459714 PMCID: PMC9712695 DOI: 10.1016/j.redox.2022.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Recent work by us and others has implicated NADPH oxidase (NOX) enzymes as main producers of reactive oxygen species (ROS) following a brain insult such as status epilepticus, contributing to neuronal damage and development of epilepsy. Although several NOX isoforms have been examined in the context of epilepsy, most attention has focused on NOX2. In this present study, we demonstrate the effect of gp91ds-tat, a specific competitive inhibitor of NOX2, in in vitro epileptiform activity model as well as in temporal lobe epilepsy (TLE) model in rats. We showed that in in vitro seizure model, gp91ds-tat modulated Ca2+ oscillation, prevented epileptiform activity-induced ROS generation, mitochondrial depolarization, and neuronal death. Administration of gp91ds-tat 1 h after kainic acid-induced status epilepticus significantly decreased the expression of NOX2, as well as the overall NOX activity in the cortex and the hippocampus. Finally, we showed that upon continuous intracerebroventricular administration to epileptic rats, gp91ds-tat significantly reduced the seizure frequency and the total number of seizures post-treatment compared to the scrambled peptide-treated animals. The results of the study suggest that NOX2 may have an important effect on modulation of epileptiform activity and has a critical role in mediating seizure-induced NOX activation, ROS generation and oxidative stress in the brain, and thus significantly contributes to development of epilepsy following a brain insult.
Collapse
Affiliation(s)
| | | | | | - Tawfeeq Shekh-Ahmad
- Corresponding author. The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
3
|
Burman RJ, Raimondo JV, Jefferys JG, Sen A, Akerman CJ. The transition to status epilepticus: how the brain meets the demands of perpetual seizure activity. Seizure 2020; 75:137-144. [DOI: 10.1016/j.seizure.2019.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023] Open
|
4
|
Prager O, Kamintsky L, Hasam‐Henderson LA, Schoknecht K, Wuntke V, Papageorgiou I, Swolinsky J, Muoio V, Bar‐Klein G, Vazana U, Heinemann U, Friedman A, Kovács R. Seizure‐induced microvascular injury is associated with impaired neurovascular coupling and blood–brain barrier dysfunction. Epilepsia 2019; 60:322-336. [DOI: 10.1111/epi.14631] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Ofer Prager
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - Lyna Kamintsky
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
- Department of Medical Neuroscience Faculty of Medicine Dalhousie University Halifax Nova Scotia Canada
| | - Luisa A. Hasam‐Henderson
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Karl Schoknecht
- Neuroscience Research Center Charité—Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Vera Wuntke
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Ismini Papageorgiou
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Jutta Swolinsky
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Valeria Muoio
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Guy Bar‐Klein
- McKusick‐Nathans Institute of Genetic Medicine Johns Hopkins University School of Medicine Baltimore Maryland
- Howard Hughes Medical Institute Chevy Chase Maryland
| | - Udi Vazana
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | | | - Alon Friedman
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
- Department of Medical Neuroscience Faculty of Medicine Dalhousie University Halifax Nova Scotia Canada
| | - Richard Kovács
- Department of Medical Neuroscience Faculty of Medicine Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
5
|
Kovács R, Gerevich Z, Friedman A, Otáhal J, Prager O, Gabriel S, Berndt N. Bioenergetic Mechanisms of Seizure Control. Front Cell Neurosci 2018; 12:335. [PMID: 30349461 PMCID: PMC6187982 DOI: 10.3389/fncel.2018.00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control.
Collapse
Affiliation(s)
- Richard Kovács
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Zoltan Gerevich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Siegrun Gabriel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Nikolaus Berndt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Computational and Imaging Science in Cardiovascular Medicine, Berlin, Germany
| |
Collapse
|
6
|
Shekh-Ahmad T, Eckel R, Dayalan Naidu S, Higgins M, Yamamoto M, Dinkova-Kostova AT, Kovac S, Abramov AY, Walker MC. KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy. Brain 2018; 141:1390-1403. [PMID: 29538645 DOI: 10.1093/brain/awy071] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/19/2018] [Indexed: 02/11/2024] Open
Abstract
Hippocampal sclerosis is a common acquired disease that is a major cause of drug-resistant epilepsy. A mechanism that has been proposed to lead from brain insult to hippocampal sclerosis is the excessive generation of reactive oxygen species, and consequent mitochondrial failure. Here we use a novel strategy to increase endogenous antioxidant defences using RTA 408, which we show activates nuclear factor erythroid 2-related factor 2 (Nrf2, encoded by NFE2L2) through inhibition of kelch like ECH associated protein 1 (KEAP1) through its primary sensor C151. Activation of Nrf2 with RTA 408 inhibited reactive oxygen species production, mitochondrial depolarization and cell death in an in vitro model of seizure-like activity. RTA 408 given after status epilepticus in vivo increased ATP, prevented neuronal death, and dramatically reduced (by 94%) the frequency of late spontaneous seizures for at least 4 months following status epilepticus. Thus, acute KEAP1 inhibition following status epilepticus exerts a neuroprotective and disease-modifying effect, supporting the hypothesis that reactive oxygen species generation is a key event in the development of epilepsy.
Collapse
Affiliation(s)
- Tawfeeq Shekh-Ahmad
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
| | - Ramona Eckel
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, Scotland, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stjepana Kovac
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
- Department of Neurology, University of Muenster, Muenster 48149, Germany
| | - Andrey Y Abramov
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
| | - Matthew C Walker
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
| |
Collapse
|
7
|
Lazo-Gomez R, Tapia R. Quercetin prevents spinal motor neuron degeneration induced by chronic excitotoxic stimulus by a sirtuin 1-dependent mechanism. Transl Neurodegener 2017; 6:31. [PMID: 29201361 PMCID: PMC5697078 DOI: 10.1186/s40035-017-0102-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
Background Excitotoxicity is a mechanism of foremost importance in the selective motor neuron degeneration characteristic of motor neuron disorders. Effective therapeutic strategies are an unmet need for these disorders. Polyphenols, such as quercetin and resveratrol, are plant-derived compounds that activate sirtuins (SIRTs) and have shown promising results in some models of neuronal death, although their effects have been scarcely tested in models of motor neuron degeneration. Methods In this work we investigated the effects of quercetin and resveratrol in an in vivo model of excitotoxic motor neuron death induced by the chronic infusion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) into the rat spinal cord tissue. Quercetin and resveratrol were co-infused with AMPA and motor behavior and muscle strength were assessed daily for up to ten days. Then, animals were fixed and lumbar spinal cord tissue was analyzed by histological and immunocytological procedures. Results We found that the chronic infusion of AMPA [1 mM] caused a progressive motor neuron degeneration, accompanied by astrogliosis and microgliosis, and motor deficits and paralysis of the rear limbs. Quercetin infusion ameliorated AMPA-induced paralysis, rescued motor neurons, and prevented both astrogliosis and microgliosis, and these protective effects were prevented by EX527, a very selective SIRT1 inhibitor. In contrast, neither resveratrol nor EX527 alone improved motor behavior deficits or reduced motor neuron degeneration, albeit both reduced gliosis. Conclusions These results suggest that quercetin exerts its beneficial effects through a SIRT1-mediated mechanism, and thus SIRT1 plays an important role in excitotoxic neurodegeneration and therefore its pharmacological modulation might provide opportunities for therapy in motor neuron disorders. Electronic supplementary material The online version of this article (10.1186/s40035-017-0102-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafael Lazo-Gomez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| |
Collapse
|
8
|
Yaseen MA, Sutin J, Wu W, Fu B, Uhlirova H, Devor A, Boas DA, Sakadžić S. Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo. BIOMEDICAL OPTICS EXPRESS 2017; 8:2368-2385. [PMID: 28663879 PMCID: PMC5480486 DOI: 10.1364/boe.8.002368] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 05/06/2023]
Abstract
Evaluating cerebral energy metabolism at microscopic resolution is important for comprehensively understanding healthy brain function and its pathological alterations. Here, we resolve specific alterations in cerebral metabolism in vivo in Sprague Dawley rats utilizing minimally-invasive 2-photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence. Time-resolved fluorescence lifetime measurements enable distinction of different components contributing to NADH autofluorescence. Ostensibly, these components indicate different enzyme-bound formulations of NADH. We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in glycolytic and oxidative metabolism. Classification models were developed with the experimental data and used to predict the metabolic impairments induced during separate experiments involving bicuculline-induced seizures. The models consistently predicted that prolonged focal seizure activity results in impaired activity in the electron transport chain, likely the consequence of inadequate oxygen supply. 2P-FLIM observations of cerebral NADH will help advance our understanding of cerebral energetics at a microscopic scale. Such knowledge will aid in our evaluation of healthy and diseased cerebral physiology and guide diagnostic and therapeutic strategies that target cerebral energetics.
Collapse
Affiliation(s)
- Mohammad A. Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jason Sutin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Weicheng Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hana Uhlirova
- Department of Neurosciences and Radiology, UC San Diego, La Jolla, CA, USA
- Current affiliation: Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurosciences and Radiology, UC San Diego, La Jolla, CA, USA
| | - David A. Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
9
|
Glykys J, Staley KJ. Diazepam effect during early neonatal development correlates with neuronal Cl(.). Ann Clin Transl Neurol 2015; 2:1055-70. [PMID: 26734658 PMCID: PMC4693588 DOI: 10.1002/acn3.259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 11/09/2022] Open
Abstract
Objective Although benzodiazepines and other GABAA receptors allosteric modulators are used to treat neonatal seizures, their efficacy may derive from actions on subcortical structures. Side effects of benzodiazepines in nonseizing human neonates include myoclonus, seizures, and abnormal movements. Excitatory actions of GABA may underlie both side effects and reduced anticonvulsant activity of benzodiazepines. Neocortical organotypic slice cultures were used to study: (1) spontaneous cortical epileptiform activity during early development; (2) developmental changes in [Cl−]i and (3) whether diazepam's anticonvulsant effect correlated with neuronal [Cl−]i. Methods Epileptiform activity in neocortical organotypic slice cultures was measured by field potential recordings. Cl− changes during development were assessed by multiphoton imaging of neurons transgenically expressing a Cl‐sensitive fluorophore. Clinically relevant concentrations of diazepam were used to test the anticonvulsant effectiveness at ages corresponding to premature neonates through early infancy. Results (1) Neocortical organotypic slices at days in vitro 5 (DIV5) exhibited spontaneous epileptiform activity. (2) Epileptiform event duration decreased with age. (3) There was a progressive decrease in [Cl−]i over the same age range. (4) Diazepam was ineffective in decreasing epileptiform activity at DIV5‐6, but progressively more effective at older ages through DIV15. (5) At DIV5‐6, diazepam worsened epileptiform activity in 50% of the slices. Interpretation The neocortical organotypic slice is a useful model to study spontaneous epileptiform activity. Decreasing [Cl−]i during development correlates with decreasing duration of spontaneous epileptiform activity and increasing anticonvulsant efficacy of diazepam. We provide a potential explanation for the reports of seizures and myoclonus induction by benzodiazepines in newborn human neonates and the limited electrographic efficacy of benzodiazepines for the treatment of neonatal seizures.
Collapse
Affiliation(s)
- Joseph Glykys
- Department of Neurology Massachusetts General Hospital Boston Massachusetts; Harvard Medical School Boston Massachusetts
| | - Kevin J Staley
- Department of Neurology Massachusetts General Hospital Boston Massachusetts; Harvard Medical School Boston Massachusetts
| |
Collapse
|
10
|
Human brain slices for epilepsy research: Pitfalls, solutions and future challenges. J Neurosci Methods 2015; 260:221-32. [PMID: 26434706 DOI: 10.1016/j.jneumeth.2015.09.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/17/2022]
Abstract
Increasingly, neuroscientists are taking the opportunity to use live human tissue obtained from elective neurosurgical procedures for electrophysiological studies in vitro. Access to this valuable resource permits unique studies into the network dynamics that contribute to the generation of pathological electrical activity in the human epileptic brain. Whilst this approach has provided insights into the mechanistic features of electrophysiological patterns associated with human epilepsy, it is not without technical and methodological challenges. This review outlines the main difficulties associated with working with epileptic human brain slices from the point of collection, through the stages of preparation, storage and recording. Moreover, it outlines the limitations, in terms of the nature of epileptic activity that can be observed in such tissue, in particular, the rarity of spontaneous ictal discharges, we discuss manipulations that can be utilised to induce such activity. In addition to discussing conventional electrophysiological techniques that are routinely employed in epileptic human brain slices, we review how imaging and multielectrode array recordings could provide novel insights into the network dynamics of human epileptogenesis. Acute studies in human brain slices are ultimately limited by the lifetime of the tissue so overcoming this issue provides increased opportunity for information gain. We review the literature with respect to organotypic culture techniques that may hold the key to prolonging the viability of this material. A combination of long-term culture techniques, viral transduction approaches and electrophysiology in human brain slices promotes the possibility of large scale monitoring and manipulation of neuronal activity in epileptic microcircuits.
Collapse
|
11
|
Metabolic responses differentiate between interictal, ictal and persistent epileptiform activity in intact, immature hippocampus in vitro. Neurobiol Dis 2014; 75:1-14. [PMID: 25533681 DOI: 10.1016/j.nbd.2014.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 12/06/2014] [Accepted: 12/11/2014] [Indexed: 01/09/2023] Open
Abstract
Interictal spikes, ictal responses, and status epilepticus are characteristic of abnormal neuronal activity in epilepsy. Since these events may involve different energy requirements, we evaluated metabolic function (assessed by simultaneous NADH and FAD+ imaging and tissue O2 recordings) in the immature, intact mouse hippocampus (P5-P7, in vitro) during spontaneous interictal spikes and ictal-like events (ILEs), induced by increased neuronal network excitability with either low Mg2+ media or decreased inhibition with bicuculline. In low Mg2+ medium NADH fluorescence showed a small decrease both during the interictal build-up leading to an ictal event and before ILE occurrences, but a large positive response during and after ILEs (up to 10% net change). Tissue O2 recordings (pO2) showed an oxygen dip (indicating oxygen consumption) coincident with each ILE at P5 and P7, closely matching an NADH fluorescence increase, indicating a large surge in oxidative metabolism. The ILE O2 dip was significantly larger at P7 as compared to P5 suggesting a higher metabolic response at P7. After several ILEs at P7, continuous, low voltage activity (late recurrent discharges: LRDs) occurred. During LRDs, whilst the epileptiform activity was relatively small (low voltage synchronous activity) oxygen levels remained low and NADH fluorescence elevated, indicating persistent oxygen utilization and maintained high metabolic demand. In bicuculline, NADH fluorescence levels decreased prior to the onset of epileptiform activity, followed by a slow positive phase, which persisted during interictal responses. Metabolic responses can thus differentiate between interictal, ictal-like and persistent epileptiform activity resembling status epilepticus, and confirm that spreading depression did not occur. These results demonstrate clear translational value to the understanding of metabolic requirements during epileptic conditions.
Collapse
|
12
|
Nazıroğlu M, Yürekli VA. Effects of antiepileptic drugs on antioxidant and oxidant molecular pathways: focus on trace elements. Cell Mol Neurobiol 2013; 33:589-99. [PMID: 23584684 DOI: 10.1007/s10571-013-9936-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/27/2013] [Indexed: 11/26/2022]
Abstract
Current reports on trace elements, oxidative stress, and the effect of antiepileptic drugs are poor and controversial. We aimed to review effects of most common used antiepileptics on antioxidant, trace element, calcium ion (Ca(2+)) influx, and oxidant systems in human and experimental animal models. Observations of lower blood or tissue antioxidant levels in epileptic patients and animals compared to controls in recent publications may commonly support the proposed crucial role of antioxidants in the pathogenesis of epilepsy. Effects of old and new antiepileptics on reactive oxygen species (ROS) production in epilepsy are controversial. The old antiepileptic drugs like valproic acid, phenytoin, and carbamazepine induced ROS overproduction, while new epileptic drugs (e.g., topiramate and zonisamide) induced scavenger effects on over production of ROS in human and animals. Antioxidant trace element levels such as selenium, copper, and zinc were generally low in the blood of epileptic patients, indicating trace element deficiencies in the pathogenesis of epilepsy. Recent papers indicate that selenium with/without topiramate administration in human and animals decreased seizure levels, although antioxidant values were increased. Recent studies also reported that sustained depolarization of mitochondrial membranes, enhanced ROS production and Ca(2+) influx may be modulated by topiramate. In conclusion, there is a large number of recent studies about the role of antioxidants or neuroprotectants in clinical and experimental models of epilepsy. New antiepileptic drugs are more prone to restore antioxidant redox systems in brain and neurons.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neurocience Research Center, Suleyman Demirel University, Tıp Fakültesi Binasi, Isparta, Turkey.
| | | |
Collapse
|
13
|
De la Cruz E, Zhao M, Guo L, Ma H, Anderson SA, Schwartz TH. Interneuron progenitors attenuate the power of acute focal ictal discharges. Neurotherapeutics 2011; 8:763-73. [PMID: 21748528 PMCID: PMC3250298 DOI: 10.1007/s13311-011-0058-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interneuron progenitors from the embryonic medial ganglionic eminence (MGE) can migrate, differentiate, and enhance local inhibition after transplantation into the postnatal cortex. Whether grafted MGE cells can reduce ictal activity in adult neocortex is unknown. We transplanted live MGE or killed cells (control) from pan green fluorescent protein expressing mice into adult mouse sensorimotor cortex. One week, 2 and 1/2 weeks, or 6 to 8 weeks after transplant, acute focal ictal epileptiform discharges were induced by injection of 4-aminopyridine (4-AP) 2 mm away from the site of transplantation. The local field potential of the events was recorded with 2 electrodes, 1 located in the 4-AP focus and the other 1 in the transplantation site. In all control groups and in the 1-week live cell transplant, 4-AP ictal discharges revealed no attenuation in power and duration from the onset site to the site of transplantation. However, 2.5 or 6 ~ 8 weeks after MGE transplants, there was a dramatic decrease in local field potential power at the MGE transplanted site with little decrease in ictal duration. Surprisingly, there was no relationship between grafted cell distribution or density and the degree of attenuation. As remarkably low graft densities still significantly reduced discharge power, these data provide further support for the therapeutic potential of interneuron precursor transplants in the treatment of neocortical epilepsy.
Collapse
Affiliation(s)
- Estanislao De la Cruz
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065 USA
| | - Mingrui Zhao
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065 USA
| | - Lihua Guo
- Department of Psychiatry, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065 USA
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065 USA
| | - Stewart A. Anderson
- Department of Psychiatry, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065 USA
| | - Theodore H. Schwartz
- Departments of Neurological Surgery, Neurology and Neuroscience, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065 USA
| |
Collapse
|
14
|
Status epilepticus induces increasing neuronal excitability and hypersynchrony as revealed by optical imaging. Neurobiol Dis 2011; 43:220-7. [DOI: 10.1016/j.nbd.2011.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/13/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022] Open
|
15
|
Nazıroglu M. Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 2011; 34:2181-91. [PMID: 19513830 DOI: 10.1007/s11064-009-0015-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2009] [Indexed: 01/18/2023]
Abstract
Epilepsy is one of the oldest neurological conditions known to humankind. It is known that oxidative stress and generation of reactive oxygen species are a cause and consequence of epileptic seizures. Although recent years have seen tremendous progress in the molecular biology and metabolism of selenium, we still know little about the cell type-specific and temporal pattern of selenium and its derivatives in the brain of epileptic humans and experimental animals. It has been suggested that some antiepileptic drug therapies such as valproic acid, deplete the total body selenium level and selenium-dependent glutathione peroxidase (GSH-Px) activity although therapy with a new epileptic drug, topiramate, activated GSH-Px activity in epileptic animals and humans. An observation of lower blood or tissue selenium level and GSH-Px activity in epileptic patients and animals compared to controls in recent publications may support the proposed crucial role of selenium level and GSH-Px activity in the pathogenesis of epilepsy. Selenium is incorporated into an interesting class of molecules known as selenoproteins that contain the modified amino acid, selenocysteine. There are signs of selenium and selenoprotein deficiency in the pathogenesis of epilepsy. In conclusion, there is convincing evidence for the proposed crucial role of selenium and deficiency of GSH-Px enzyme activity in epilepsy pathogenesis. Blood GSH-Px activities could be a reliable indicator of selenium deficiency in patients with epilepsy.
Collapse
Affiliation(s)
- Mustafa Nazıroglu
- Department of Biophysics, Medical Faculty, Süleyman Demirel University, Morfoloji Binasi, Cünür, 32260 Isparta, Turkey.
| |
Collapse
|
16
|
Dynamic NAD(P)H post-synaptic autofluorescence signals for the assessment of mitochondrial function in a neurodegenerative disease: monitoring the primary motor cortex of G93A mice, an amyotrophic lateral sclerosis model. Mitochondrion 2009; 10:108-14. [PMID: 19900586 DOI: 10.1016/j.mito.2009.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/18/2009] [Accepted: 11/03/2009] [Indexed: 12/14/2022]
Abstract
Abnormal mitochondrial function was reported in patients and models for amyotrophic lateral sclerosis (ALS). It is therefore important to set up sensitive tools for the monitoring of active agents that enhance energy metabolism delay onset, and extend lifespan of transgenic G93A-SOD1 ALS mice. In this report, primary motor cortex slices from G93A mice at different stages of disease were studied, using NAD(P)H autofluorescence post-synaptic signals following ultraviolet stimuli, as a probe to evaluate mitochondrial function. We observed consistent age-related alterations of responses in G93A primary motor cortex slices versus controls. We conclude that NAD(P)H autofluorescence post-synaptic signal is a highly sensitive real-time technique to detect mitochondrial function failure in primary cortex from living tissues.
Collapse
|
17
|
Kunz WS, Bimpong-Buta NYB, Kudin AP, Elger CE. The Role of Mitochondria in Epilepsy: Implications for Neurodegenerative Diseases. Toxicol Mech Methods 2008; 14:19-23. [DOI: 10.1080/15376520490257374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Brennan AM, Connor JA, Shuttleworth CW. Modulation of the amplitude of NAD(P)H fluorescence transients after synaptic stimulation. J Neurosci Res 2008; 85:3233-43. [PMID: 17497703 DOI: 10.1002/jnr.21288] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In brain slices, excitatory synaptic stimulation results typically in transient initial decreases in NAD(P)H fluorescence, followed by longer-lasting NAD(P)H increases that overshoot pre-stimulus NAD(P)H levels before returning slowly to baseline. We concluded recently that mitochondrial metabolism (rather than NADH generation by glycolysis) was responsible for the "overshoot" phase of responses evoked in murine hippocampal slices. The present study examined factors that may influence the amplitude of the overshoot phase, without necessarily directly influencing mitochondrial or glycolytic metabolism. The amplitudes of overshoots were influenced strongly by changes in pre-stimulus NAD(P)H fluorescence levels produced by a prior electrical stimulus. In contrast, these changes in pre-stimulus redox state had little effect on the amplitude of evoked initial NAD(P)H decreases. Resting NAD(P)H fluorescence levels differed significantly across sub-regions of each slice, however, this is not due to differences in resting redox state, and the relative amplitude of NAD(P)H overshoots were not different in different slice regions. Exposure to an A1 receptor agonist (CPA) reduced the amplitude of postsynaptic potentials, and preferentially reduced the amplitude of NAD(P)H overshoots, before initial oxidizing components of biphasic transients were reduced significantly. These results suggest that amplitudes of NAD(P)H overshoots may not be good quantitative measures of the intensity of a discrete stimulus, under some conditions where the stimulus is small relative to recent activity in the slice. Comparison of flavoprotein autofluorescence with NAD(P)H levels seems useful when making quantitative comparisons of responses from different regions of slices, where optical properties and ongoing activity may be substantially different.
Collapse
Affiliation(s)
- A M Brennan
- Department of Neurosciences, University of New Mexico School of Medicine, MSCO8 4740, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | | |
Collapse
|
19
|
Abstract
Mitochondria are central for various cellular processes that include ATP production, intracellular Ca(2+) signaling, and generation of reactive oxygen species. Neurons critically depend on mitochondrial function to establish membrane excitability and to execute the complex processes of neurotransmission and plasticity. While much information about mitochondrial properties is available from studies on isolated mitochondria and dissociated cell cultures, less is known about mitochondrial function in intact neurons in brain tissue. However, a detailed description of the interactions between mitochondrial function, energy metabolism, and neuronal activity is crucial for the understanding of the complex physiological behavior of neurons, as well as the pathophysiology of various neurological diseases. The combination of new fluorescence imaging techniques, electrophysiology, and brain slice preparations provides a powerful tool to study mitochondrial function during neuronal activity, with high spatiotemporal resolution. This review summarizes recent findings on mitochondrial Ca(2+) transport, mitochondrial membrane potential (DeltaPsi(m)), and energy metabolism during neuronal activity. We will first discuss interactions of these parameters for experimental stimulation conditions that can be related to the physiological range. We will then describe how mitochondrial and metabolic dysfunction develops during pathological neuronal activity, focusing on temporal lobe epilepsy and its experimental models. The aim is to illustrate that 1) the structure of the mitochondrial compartment is highly dynamic in neurons, 2) there is a fine-tuned coupling between neuronal activity and mitochondrial function, and 3) mitochondria are of central importance for the complex behavior of neurons.
Collapse
Affiliation(s)
- Oliver Kann
- Institut für Neurophysiologie, Charité-Universitätsmedizin Berlin, Tucholskystrasse 2, 10117 Berlin, Germany.
| | | |
Collapse
|
20
|
Mayevsky A, Rogatsky GG. Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am J Physiol Cell Physiol 2006; 292:C615-40. [PMID: 16943239 DOI: 10.1152/ajpcell.00249.2006] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal mitochondrial function is a critical factor in maintaining cellular homeostasis in various organs of the body. Due to the involvement of mitochondrial dysfunction in many pathological states, the real-time in vivo monitoring of the mitochondrial metabolic state is crucially important. This type of monitoring in animal models as well as in patients provides real-time data that can help interpret experimental results or optimize patient treatment. The goals of the present review are the following: 1) to provide an historical overview of NADH fluorescence monitoring and its physiological significance; 2) to present the solid scientific ground underlying NADH fluorescence measurements based on published materials; 3) to provide the reader with basic information on the methodologies used in the past and the current state of the art fluorometers; and 4) to clarify the various factors affecting monitored signals, including artifacts. The large numbers of publications by different groups testify to the valuable information gathered in various experimental conditions. The monitoring of NADH levels in the tissue provides the most important information on the metabolic state of the mitochondria in terms of energy production and intracellular oxygen levels. Although NADH signals are not calibrated in absolute units, their trend monitoring is important for the interpretation of physiological or pathological situations. To understand tissue function better, the multiparametric approach has been developed where NADH serves as the key parameter. The development of new light sources in UV and visible spectra has led to the development of small compact units applicable in clinical conditions for better diagnosis of patients.
Collapse
Affiliation(s)
- Avraham Mayevsky
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan Univ., Ramat-Gan 52900, Israel.
| | | |
Collapse
|
21
|
Motamedi GK, Salazar P, Smith EL, Lesser RP, Webber WRS, Ortinski PI, Vicini S, Rogawski MA. Termination of epileptiform activity by cooling in rat hippocampal slice epilepsy models. Epilepsy Res 2006; 70:200-10. [PMID: 16815680 DOI: 10.1016/j.eplepsyres.2006.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 04/12/2006] [Accepted: 05/01/2006] [Indexed: 11/17/2022]
Abstract
Cooling has been shown to terminate experimentally induced epileptiform activity in models of epilepsy without causing injury to the cooled brain, suggesting that cooling could represent an approach to seizure control in intractable focal epilepsies. Here we sought to determine the most effective way to apply cooling to abort spontaneous epileptiform discharges in in vitro brain slice models. We induced spontaneous epileptiform activity in rat brain slices by exposure to 4-aminopyridine (4-AP), 4-AP plus bicuculline, and Mg(2+)-free artificial CSF (aCSF) at 28-34 degrees C. Extracellular field recordings were made at hippocampal or neocortical sites. Slice temperature was reduced by perfusion with cold aCSF. Rapid cooling at rates of 2-5 degrees C/s was compared to cooling at slower rates of 0.1-1 degrees C/s. Cooling at both rates reversibly aborted epileptiform discharges in all three models and at all recording sites. With rapid cooling, small temperature drops were highly effective in terminating discharges, an effect that was sustained for as long as the reduced temperature level was maintained. In contrast, slow cooling required much larger temperature drops to inhibit discharges. With slow cooling, absolute temperature drops to 21-22 degrees C caused a 90% reduction in event frequency, but cooling to 14-15 degrees C was required to terminate discharges. We conclude that rapid cooling as effectively aborts discharges in in vitro epilepsy models as does slow cooling, but the magnitude of the temperature change required is less. Practical devices to inhibit seizure activity may only need to induce small temperature drops, if the cooling can be applied sufficiently rapidly.
Collapse
Affiliation(s)
- Gholam K Motamedi
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-3702, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Acharya MM, Katyare SS. Structural and functional alterations in mitochondrial membrane in picrotoxin-induced epileptic rat brain. Exp Neurol 2005; 192:79-88. [PMID: 15698621 DOI: 10.1016/j.expneurol.2004.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/09/2004] [Accepted: 11/09/2004] [Indexed: 11/26/2022]
Abstract
Mitochondrial function is a key determinant of both excitability and viability of neurons. Present studies were carried out to decipher cerebral mitochondrial oxidative energy metabolism and membrane function in the chronic condition of generalized seizures induced by picrotoxin (PTX) in rats. PTX-induced convulsions resulted in decreased respiration rates (14-41%) with glutamate, pyruvate + malate, and succinate as substrate. The ADP phosphorylation rates were drastically reduced by 44-65%. An opposite trend was observed with ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine [corrected] (TMPD) as substrate. In general, uncoupling of the mitochondrial electron transport was observed after PTX treatment. Malate dehydrogenase (MDH) and succinate dehydrogenase (SDH) activities were decreased by 20-80%; also, there was significant reduction in cytochrome b content after PTX treatment, while the F(o)F(1) ATPase (complex V) activity increased in basal and 2,4-dinitrophenol (DNP)-stimulated condition, indicating increased membrane fragility. The substrate kinetics analysis had shown that K(m) and V(max) of the higher affinity kinetic component of ATPase increased significantly by 1.2- to 1.4-fold in epileptic condition. Temperature kinetic analysis revealed 1.2-fold increase in energies of activation with decreased transition temperature. The total phospholipid (TPL) and cholesterol (CHL) contents decreased significantly with lowering of diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS), while lysophospholipid (lyso), sphingomyelin (SPM), and phosphatidylcholine components were found to be elevated. Brain mitochondrial membrane was somewhat more fluidized in epileptic animals. Possible consequences of mitochondrial respiratory chain (MRC) dysfunction are discussed. In conclusion, impairment of MRC function along with structural alterations suggests novel pathophysiological mechanisms important for chronic epileptic condition.
Collapse
Affiliation(s)
- Munjal M Acharya
- Department of Biochemistry, Faculty of Science, M.S. University of Baroda, Vadodara 390 002, Gujarat, India.
| | | |
Collapse
|
23
|
Avsar E, Empson RM. Adenosine acting via A1 receptors, controls the transition to status epilepticus-like behaviour in an in vitro model of epilepsy. Neuropharmacology 2004; 47:427-37. [PMID: 15275832 DOI: 10.1016/j.neuropharm.2004.04.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 04/27/2004] [Accepted: 04/29/2004] [Indexed: 11/16/2022]
Abstract
Adenosine has powerful inhibitory effects in the central nervous system. In this study, we aim to understand how adenosine controls the progression of seizure-like events (SLEs) in a seizure-prone region of the brain, the entorhinal cortex. We chose to use a low Mg(2+) model of epilepsy in an in vitro slice preparation where, in the entorhinal cortex, SLEs progress into a type of epileptiform activity called late recurrent discharges (LRDs) that bear resemblance to status epilepticus. Adenosine, acting via its A1 receptor, exerted powerful inhibitory effects to prevent the spontaneous progression to LRDs while the potent A1 receptor antagonist, DPCPX, accelerated the progression in a concentration dependent manner. The spontaneous progression from SLEs to LRDs was associated with a decline in total cellular ATP levels and studies with metabolic inhibitors indicated a key role for the production of endogenous adenosine from ATP. We therefore hypothesise that when ATP becomes rate limiting, extracellular adenosine levels fall, the normal inhibitory brake is removed and the progression from SLEs to LRDs or status epilepticus-like activity can ensue. Moreover, under these conditions, inhibition of the adenine nucleotide salvage pathways reversed the status epilepticus-like activity. Our findings suggest a powerful role for adenosine for the control of the progression to status epilepticus-like activity in an epilepsy model that is refractory to most anti-epileptic drugs. On this basis, manipulation of adenine nucleotide metabolism may represent a potential therapeutic approach for the treatment of status epilepticus.
Collapse
Affiliation(s)
- Emin Avsar
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham Surrey TW20 0EX, UK
| | | |
Collapse
|
24
|
Quilichini PP, Diabira D, Chiron C, Milh M, Ben-Ari Y, Gozlan H. Effects of antiepileptic drugs on refractory seizures in the intact immature corticohippocampal formation in vitro. Epilepsia 2003; 44:1365-74. [PMID: 14636342 DOI: 10.1046/j.1528-1157.2003.19503.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE We developed a new in vitro preparation of immature rats, in which intact corticohippocampal formations (CHFs) depleted in magnesium ions become progressively epileptic. The better to characterize this model, we examined the effects of 14 antiepileptic drugs (AEDs) currently used in clinical practice. METHODS Recurrent ictal-like seizures (ILEs, four per hour) were generated in intact CHFs of P7-8 rats, and extracellular recordings were performed in the hippocampus and neocortex. AEDs were applied at clinically relevant concentrations (at least two), during 30 min after the third ILE. Their ability to prevent or to delay the next ILE was examined. RESULTS Valproic acid and benzodiazepines (clobazam and midazolam) but also phenobarbital and levetiracetam prevent the occurrence of seizures. In contrast, usual concentrations of carbamazepine (CBZ), phenytoin, vigabatrin, tiagabine, gabapentin, lamotrigine (LTG), topiramate, felbamate, and ethosuximide did not suppress ILEs. In addition, LTG and CBZ aggravate seizures in one third of the cases. CONCLUSIONS This intact in vitro preparation in immature animals appears to be quite resistant to most AEDs. Blockade of seizures was achieved with drugs acting mainly at the gamma-aminobutyric acid (GABA)A-receptor site but not with those that increase the amount of GABA. Drugs with a broad spectrum of activity are efficient but not those preferentially used in partial seizures or absences. We suggest that this preparation may correspond to a model of epilepsy with generalized convulsive seizures and could be helpful to develop new AEDs for refractory infantile epilepsies.
Collapse
|
25
|
Abstract
We examined mechanisms contributing to stimulus-evoked changes in NAD(P)H fluorescence as a marker of neuronal activation in area CA1 of murine hippocampal slices. Three types of stimuli (electrical, glutamate iontophoresis, bath-applied kainate) produced biphasic fluorescence changes composed of an initial transient decrease ("initial component," 1-3%), followed by a longer-lasting transient increase ("overshoot," 3-8%). These responses were matched by inverted biphasic flavin adenine dinucleotide (FAD) fluorescence transients, suggesting that these transients reflect mitochondrial function rather than optical artifacts. Both components of NAD(P)H transients were abolished by ionotropic glutamate receptor block, implicating postsynaptic neuronal activation as the primary event involved in generating the signals, and not presynaptic activity or reuptake of synaptically released glutamate. Spatial analysis of the evoked signals indicated that the peak of each component could arise in different locations in the slice, suggesting that there is not always obligatory coupling between the two components. The initial NAD(P)H response showed a strong temporal correspondence to intracellular Ca+ increases and mitochondrial depolarization. However, despite the fact that removal of extracellular Ca2+ abolished neuronal cytosolic Ca2+ transients to exogenous glutamate or kainate, this procedure did not reduce slice NAD(P)H responses evoked by either of these agonists, implying that mechanisms other than neuronal mitochondrial Ca2+ loading underlie slice NAD(P)H transients. These data show that, in contrast to previous proposals, slice NAD(P)H transients in mature slices do not reflect neuronal Ca2+ dynamics and demonstrate that these signals are sensitive indicators of both the spatial and temporal characteristics of postsynaptic neuronal activation in these preparations.
Collapse
|
26
|
Kovács R, Schuchmann S, Gabriel S, Kann O, Kardos J, Heinemann U. Free radical-mediated cell damage after experimental status epilepticus in hippocampal slice cultures. J Neurophysiol 2002; 88:2909-18. [PMID: 12466417 DOI: 10.1152/jn.00149.2002] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Generation of free radicals may have a key role in the nerve cell damage induced by prolonged or frequently recurring convulsions (status epilepticus). Mitochondrial function may also be altered due to production of free radicals during seizures. We therefore studied changes in field potentials (fp) together with measurements of extracellular, intracellular, and intramitochondrial calcium concentration ([Ca(2+)]e, [Ca(2+)]i, and [Ca(2+)]m, respectively), mitochondrial membrane potential (deltapsi), NAD(P)H auto-fluorescence, and dihydroethidium (HEt) fluorescence in hippocampal slice cultures by means of simultaneous electrophysiological and microfluorimetric measurements. As reported previously, each seizure-like event (SLE) resulted in mitochondrial depolarization associated with a delayed rise in oxidation of HEt to ethidum, presumably indicating ROS production. We show here that repeated SLEs led to a decline in intracellular and intramitochondrial Ca(2+) signals despite unaltered Ca(2+) influx. Also, mitochondrial depolarization and the NAD(P)H signal became smaller during recurring SLEs. By contrast, the ethidium fluorescence rises remained constant or even increased from SLE to SLE. After about 15 SLEs, activity changed to continuous afterdischarges with steady depolarization of mitochondrial membranes. Staining with a cell death marker, propidium iodide, indicated widespread cell damage after 2 h of recurring SLEs. The free radical scavenger, alpha-tocopherol, protected the slice cultures against this damage and also reduced the ongoing impairment of NAD(P)H production. These findings suggest involvement of reactive oxygen species (ROS) of mitochondrial origin in the epileptic cell damage and that free radical scavenging may prevent status epilepticus-induced cell loss.
Collapse
Affiliation(s)
- Richard Kovács
- Department of Neurochemistry, Chemical Institute, Chemical Research Center, Hungarian Academy of Sciences, Budapest 1025, Hungary
| | | | | | | | | | | |
Collapse
|
27
|
Schuchmann S, Albrecht D, Heinemann U, von Bohlen und Halbach O. Nitric oxide modulates low-Mg2+-induced epileptiform activity in rat hippocampal-entorhinal cortex slices. Neurobiol Dis 2002; 11:96-105. [PMID: 12460549 DOI: 10.1006/nbdi.2002.0533] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The production of nitric oxide (NO) during low-Mg2+-induced epileptiform activity in rat hippocampal-entorhinal cortex slices was investigated by real-time monitoring using 1,2-diaminoanthraquinone (DAQ). NO reacts with the aromatic amino groups of DAQ at neutral pH and in the presence of oxygen to form the fluorescence product 1H-anthra-[1,2d]-[1,2,3]triazole-6,11-dione (ATD). The DAQ-induced formation of ATD required NO and was insensitive to radical oxygen species. Removal of Mg2+ ions from the artificial cerebrospinal fluid (ACSF) induced a significant elevation in the ATD fluorescence signal. The application of L-arginine (2 mM), a substrate of nitric oxide synthase (NOS), caused a comparable increase in the ATD fluorescence signal. Furthermore, ATD signal increase induced either by low-Mg2+ ACSF or by L-arginine was sensitive to N-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor. The application of L-NAME (200 microM) caused a complete blockade of low-Mg2+-induced epileptiform activity. Under this condition, increasing NO concentration by addition of the NO donor S-nitroso-N-acetylpenicillamine (200 microM) reinduced the epileptiform activity. It has been concluded that onset and maintenance of low-Mg2+-induced spontaneous epileptiform activity are modulated by NO concentration. Further NO imaging studies may help to elucidate the role of NO in detail and may bring to light new means for epilepsy therapy.
Collapse
Affiliation(s)
- Sebastian Schuchmann
- Johannes-Müller-Institut für Physiologie, Universitätsklinikum, Charité Humboldt-Universität Berlin, Germany.
| | | | | | | |
Collapse
|
28
|
Heinemann U, Buchheim K, Gabriel S, Kann O, Kovács R, Schuchmann S. Coupling of electrical and metabolic activity during epileptiform discharges. Epilepsia 2002; 43 Suppl 5:168-73. [PMID: 12121315 DOI: 10.1046/j.1528-1157.43.s.5.15.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Changes in electrical activity, ionic microenvironments, and intracellular Ca concentration were measured during recurrent seizures induced by low Mg in slices and slice cultures. In both preparations, initial seizure-like events (SLEs) changed after some time into drug-refractory late recurrent discharges. In slice cultures, there was considerable cell loss in all hippocampal areas after 2 h of status epilepticus. During recurrent SLEs, the NAD(P)H autofluorescence declined, as did intramitochondrial calcium signals, indicating mitochondrial damage. At the same time, ethidium signals indicated increased radical oxygen species production. These alterations could be reduced by alpha-tocopherol, which also protected slice cultures against status epilepticus-induced cell death.
Collapse
Affiliation(s)
- Uwe Heinemann
- Johannes Müller Institut für Physiologie, Universitätsklinikum Charité, Humboldt Universität Berlin, Tucholskystrasse 2, D-10117 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Heinemann U, Buchheim K, Gabriel S, Kann O, Kovacs R, Schuchmann S. Cell death and metabolic activity during epileptiform discharges and status epilepticus in the hippocampus. PROGRESS IN BRAIN RESEARCH 2002; 135:197-210. [PMID: 12143341 DOI: 10.1016/s0079-6123(02)35019-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mechanisms of seizure-induced cell death were studied in organotypic hippocampal slice cultures. These develop after withdrawal of magnesium recurrent seizure-like events (SLE), which lead to intracellular and intramitochondrial calcium accumulation. The intramitochondrial Ca accumulation seems to be involved in causing increased production of NADH, measured as NAD(P)H autofluorescence. During SLEs, depolarization of mitochondria and increased production of free radicals is indicated by fluorescence measurements with appropriate dyes. During recurrent seizures, an increased failure to produce NADH is noted while at the same time free radical production seems to increase. This increase and the decline in NADH production could be involved in transition to late recurrent discharges, a phase in which status epilepticus becomes pharmacoresistant. It also coincides with increased cell death as determined with propidium iodide fluorescence. Interestingly, some of these changes can be prevented by application of alpha-tocopherol, a free radical scavenger, which also has neuroprotective effects under our experimental conditions. The results suggest that free radical-induced mitochondrial impairment is involved in seizure-induced cell death.
Collapse
Affiliation(s)
- U Heinemann
- Johannes Müller Institute of Physiology, Charité, Humboldt University Berlin, D-10117 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Schuchmann S, Meierkord H, Stenkamp K, Breustedt J, Windmüller O, Heinemann U, Buchheim K. Synaptic and nonsynaptic ictogenesis occurs at different temperatures in submerged and interface rat brain slices. J Neurophysiol 2002; 87:2929-35. [PMID: 12037196 DOI: 10.1152/jn.2002.87.6.2929] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the temperature sensitivity of low-Ca2+-induced nonsynaptic and low-Mg2+-induced synaptic ictogenesis under submerged and interface conditions, we compared changes of extracellular field potential and extracellular potassium concentration at room temperature (23 +/- 1 degrees C; mean +/- SD) and at 35 +/- 1 degrees C in hippocampal-entorhinal cortex slices. The induction of spontaneous epileptiform activity under interface conditions occurred at 35 +/- 1 degrees C in both models. In contrast, under submerged conditions, spontaneous epileptiform activity in low-Mg2+ artificial cerebrospinal fluid (ACSF) was observed at 35 +/- 1 degrees C, whereas epileptiform discharges induced by low-Ca2+ ACSF occurred only at room temperature. To investigate the different temperature effects under submerged and interface conditions, measurements of extra- and intracellular pH and extracellular space volume were performed. Lowering the temperature from 35 +/- 1 degrees C to room temperature effected a reduction in extracellular pH under submerged and interface conditions. Under submerged conditions, temperature changes had no significant influence on the intracellular pH in presence of either normal or low-Mg2+ ACSF. In contrast, application of low-Ca2+ ACSF effected a significant increase in intracellular pH at room temperature but not at 35 +/- 1 degrees C under submerged conditions. Therefore increasing intracellular pH by lowering the temperature in low-Ca2+ ACSF may push slices to spontaneous epileptiform activity by opening gap junctions. Finally, extracellular space volume significantly decreased by switching from submerged to interface conditions. The reduced extracellular space volume under interface conditions may lead to an enlarged ephaptic transmission and therefore promotes low-Mg2+- and low-Ca2+-induced spontaneous epileptiform activity. The results of the study indicate that gas-liquid interface and total-liquid submerged slice states impart distinct physiological parameters on brain tissue.
Collapse
Affiliation(s)
- S Schuchmann
- Institut für Physiologie, Universitätsklinikum Charité, Humboldt-Universität Berlin, D-10117 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Mitochondrial dysfunction has gained considerable interest as a potential cause of epileptic seizures and therapy-resistant forms of severe epilepsy. Impairment of mitochondrial function has recently been observed in the seizure focus of human and experimental epilepsy. Additionally, a broad variety of mutation of mitochondrial DNA leading to the inhibition of mitochondrial respiratory chain or directly of mitochondrial adenosine triphosphate synthesis in epileptogenic areas of the human brain has been associated with epileptic phenotypes. Since mitochondrial oxidative phosphorylation provides the major source of adenosine triphosphate in neurons, and mitochondria participate in cellular Ca2+ homeostasis they can modulate neuronal excitability and synaptic transmission. Furthermore, mitochondria are intimately involved in pathways leading to the neuronal cell death characteristic for the areas of epileptogenesis.
Collapse
Affiliation(s)
- Wolfram S Kunz
- Department of Epileptology, University Bonn Medical Center, Bonn, Germany.
| |
Collapse
|
32
|
Kudin AP, Kudina TA, Seyfried J, Vielhaber S, Beck H, Elger CE, Kunz WS. Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur J Neurosci 2002; 15:1105-14. [PMID: 11982622 DOI: 10.1046/j.1460-9568.2002.01947.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial function is a key determinant of both excitability and viability of neurons. Here, we demonstrate seizure-dependent changes in mitochondrial oxidative phosphorylation in the epileptic rat hippocampus. The intense pathological neuronal activity in pilocarpine-treated rats exhibiting spontaneous seizures resulted in a selective decline of the activities of NADH-CoQ oxidoreductase (complex I of the respiratory chain) and cytochrome c oxidase (complex IV of respiratory chain) in the CA3 and CA1 hippocampal pyramidal subfields. In line with these findings, high-resolution respirometry revealed an increased flux control of complex I on respiration in the CA1 and CA3 subfields and decreased maximal respiration rates in the more severely affected CA3 subfield. Imaging of mitochondrial membrane potential using rhodamine 123 showed a lowered mitochondrial membrane potential in both pyramidal subfields. In contrast to the CA1 and CA3 subfields, mitochondrial oxidative phosphorylation was unaltered in the dentate gyrus and the parahippocampal gyrus. The changes of oxidative phosphorylation in the epileptic rat hippocampus cannot be attributed to oxidative enzyme modifications but are very likely related to a decrease in mitochondrial DNA copy number as shown in the more severely affected CA3 subfield and in cultured PC12 cells partially depleted of mitochondrial DNA. Thus, our results demonstrate that seizure activity downregulates the expression of mitochondrial-encoded enzymes of oxidative phosphorylation. This mechanism could be invoked during diverse forms of pathological neuronal activity and could severely affect both excitability and viability of hippocampal pyramidal neurons.
Collapse
Affiliation(s)
- Alexei P Kudin
- Department of Epileptology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Schuchmann S, Kovacs R, Kann O, Heinemann U, Buchheim K. Monitoring NAD(P)H autofluorescence to assess mitochondrial metabolic functions in rat hippocampal-entorhinal cortex slices. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2001; 7:267-76. [PMID: 11431129 DOI: 10.1016/s1385-299x(01)00080-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in neuronal energy metabolism, mitochondrial functions and homeostasis of reactive oxygen species are often supposed to induce alterations in neuronal activity in hippocampal slice models. In order to investigate the NAD(P)H autofluorescence signal in brain slice models, methods to monitor NAD(P)H signal in isolated mitochondria as described by Chance et al. [J. Biol. Chem. 254 (1979) 4764] and dissociated neurons as described by Duchen [Biochem. J. 283 (1992) 41] were adapted to recording conditions required for brain slices. Considering different experimental questions, we established an approach to monitor NAD(P)H autofluorescence signals from hippocampal slices of 400 microm thickness under either submerged or interface conditions. Therefore the procedure described here allows the measurement of NAD(P)H autofluorescence under conditions typically required in electrophysiological experiments. Depolarization of plasma membrane caused by electrical stimulation or application of glutamate (100 microM) resulted in a characteristic initial decrease followed by a long-lasting increase in the NAD(P)H autofluorescence signal. H(2)O(2) (100 microM) evoked a strong NAD(P)H signal decrease indicating direct oxidation to the nonfluorescencend NAD(P)(+). In contrast, the increase in NAD(P)H signal that followed a brief inhibition of mitochondrial respiratory chain complex I using rotenone (1 microM) indicated an accumulation of NAD(P)H. However, in presence of rotenone (1 microM) electrically evoked long-lasting NAD(P)H signal overshoot decreased progressively, due to a negative feedback of accumulated NAD(P)H to the citrate cycle. A comparable reduction in NAD(P)H signal increase were observed during low-Mg(2+) induced epileptiform activity, indicating a relative energy failure. In conclusion, the method presented here allows to monitor NAD(P)H autofluorescence signals to gain insight into the coupling of neuronal activity, energy metabolism and mitochondrial function in brain slice models.
Collapse
Affiliation(s)
- S Schuchmann
- Institut für Physiologie, Universitätsklinikum Charité, Humboldt-Universität Berlin, Tucholskystrasse 2, D-10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
34
|
Empson RM, Jefferys JG. Ca(2+) entry through L-type Ca(2+) channels helps terminate epileptiform activity by activation of a Ca(2+) dependent afterhyperpolarisation in hippocampal CA3. Neuroscience 2001; 102:297-306. [PMID: 11166116 DOI: 10.1016/s0306-4522(00)00494-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In CA3 neurons of disinhibited hippocampal slice cultures the slow afterhyperpolarisation, following spontaneous epileptiform burst events, was confirmed to be Ca(2+) dependent and mediated by K(+) ions. Apamin, a selective blocker of the SK channels responsible for part of the slow afterhyperpolarisation reduced, but did not abolish, the amplitude of the post-burst afterhyperpolarisation. The result was an increased excitability of individual CA3 cells and the whole CA3 network, as measured by burst duration and burst frequency. Increases in excitability could also be achieved by strongly buffering intracellular Ca(2+) or by minimising Ca(2+) influx into the cell, specifically through L-type (but not N-type) voltage operated Ca(2+) channels. Notably the L-type Ca(2+) channel antagonist, nifedipine, was more effective than apamin at reducing the post-burst afterhyperpolarisation. Nifedipine also caused a greater increase in network excitability as determined from measurements of burst duration and frequency from whole cell and extracellular recordings. N-methyl D-aspartate receptor activation contributed to the depolarisations associated with the epileptiform activity but Ca(2+) entry via this route did not contribute to the activation of the post-burst afterhyperpolarisation. We suggest that Ca(2+) entry through L-type channels during an epileptiform event is selectively coupled to both apamin-sensitive and -insensitive Ca(2+) activated K(+) channels. Our findings have implications for how the route of Ca(2+) entry and subsequent Ca(2+) dynamics can influence network excitability during epileptiform discharges.
Collapse
Affiliation(s)
- R M Empson
- Department of Neurophysiology, Division of Neuroscience, The Medical School, University of Birmingham, B15 2TT, Edgbaston, UK.
| | | |
Collapse
|
35
|
Kovacs R, Schuchmann S, Gabriel S, Kardos J, Heinemann U. Ca2+ signalling and changes of mitochondrial function during low-Mg2+-induced epileptiform activity in organotypic hippocampal slice cultures. Eur J Neurosci 2001; 13:1311-9. [PMID: 11298791 DOI: 10.1046/j.0953-816x.2001.01505.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several lines of evidence indicate that augmented neuronal activity is associated with increased mitochondrial function, however, the mechanisms of coupling are still unclear. In this study we used a low extracellular Mg2+ concentration and short stimulus trains to evoke neuronal hyperactivity in the form of seizure-like events (SLE) in hippocampal slice cultures. Simultaneous microfluorimetric and electrophysiological techniques were applied to gain insight into changes of Ca2+ concentration in different compartments and into mitochondrial function. SLEs were associated with a large decrease of the extracellular Ca2+ concentration ([Ca2+]e), a spiking increase of the cytoplasmic and a smoothed elevation of the mitochondrial Ca2+ concentration (cytoplasmic concentration [Ca2+]i; intramitrochondrial concentration [Ca2+]m). Following an initial apparent decline in the mitochondrial membrane potential (DeltaPsi) and NAD(P)H autofluorescence, mitochondria depolarized and NADH production was augmented. Furthermore, SLEs were associated with increased oxidation of dihydroethidine (HEt). Our data suggest that intramitochondrial Ca2+ accumulation stimulates NADH production and production of radical oxygen species (ROS). Interestingly, mitochondrial depolarization followed [Ca2+]i and [Ca2+]m changes with a delay implying that electrogenic extrusion of Ca2+ from the mitochondrial matrix might be responsible for the depolarization of the mitochondrial membrane.
Collapse
Affiliation(s)
- R Kovacs
- Johannes Müller Institute of Physiology, Humboldt University, Berlin, Germany.
| | | | | | | | | |
Collapse
|
36
|
Buchheim K, Schuchmann S, Siegmund H, Weissinger F, Heinemann U, Meierkord H. Comparison of intrinsic optical signals associated with low Mg2+-and 4-aminopyridine-induced seizure-like events reveals characteristic features in adult rat limbic system. Epilepsia 2000; 41:635-41. [PMID: 10840393 DOI: 10.1111/j.1528-1157.2000.tb00222.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To analyze the intrinsic optical signal change associated with seizure-like events in two frequently used in vitro models-the low-Mg2+ and the 4-aminopyridine (4-AP) models-and to monitor regions of onset and spread patterns of these discharges by using imaging of intrinsic optical signals (IOS). METHODS Combined hippocampal-entorhinal-cortex slices of adult rats were exposed to two different treatments: lowering extracellular Mg2+ concentrations or application of 100 microM 4-AP. The electrographic features of the discharges were monitored using extracellular microelectrodes. Optical imaging was achieved by infrared transillumination of the slice and analysis of changes in light transmission using a subtraction approach. The electrographic features were compared with the optical changes. Regions of onset and spread patterns were analyzed in relevant anatomic regions of the slice. RESULTS Both lowering extracellular Mg2+ concentrations and application of 4-AP induced seizure-like events. The relative duration of the intrinsic optical signal change associated with seizure-like events in the low-Mg2+ model was significantly longer compared with that seen with those occurring in the 4-AP model, although duration of field potentials did not differ significantly in the two models. Seizure-like events of the low-Mg2+ model originated predominantly in the entorhinal cortex, with subsequent propagation toward the subiculum and neocortical structures. In contrast, no consistent region of onset or spread patterns were seen in the 4-AP model, indicating that the seizure initiation is not confined to a particular region in this model. CONCLUSIONS We conclude that different forms of spontaneous epileptiform activity are associated with characteristic optical signal changes and that optical imaging represents an excellent method to assess regions of seizure onset and spread patterns.
Collapse
Affiliation(s)
- K Buchheim
- Neurologische Klinik und Poliklinik and *Institut für Physiologie, Universitätsklinikum Charité, Medizinische Fakultät der Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Schuchmann S, Lückermann M, Kulik A, Heinemann U, Ballanyi K. Ca(2+)- and metabolism-related changes of mitochondrial potential in voltage-clamped CA1 pyramidal neurons in situ. J Neurophysiol 2000; 83:1710-21. [PMID: 10712491 DOI: 10.1152/jn.2000.83.3.1710] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In hippocampal slices from rats, dialysis with rhodamine-123 (Rh-123) and/or fura-2 via the patch electrode allowed monitoring of mitochondrial potential (DeltaPsi) changes and intracellular Ca(2+) ([Ca(2+)](i)) of CA1 pyramidal neurons. Plasmalemmal depolarization to 0 mV caused a mean [Ca(2+)](i) rise of 300 nM and increased Rh-123 fluorescence signal (RFS) by </=50% of control. The evoked RFS, indicating depolarization of DeltaPsi, and the [Ca(2+)](i) transient were abolished by Ca(2+)-free superfusate or exposure of Ni(2+)/Cd(2+). Simultaneous measurements of RFS and [Ca(2+)](i) showed that the kinetics of both the Ca(2+) rise and recovery were considerably faster than those of the DeltaPsi depolarization. The plasmalemmal Ca(2+)/H(+) pump blocker eosin-B potentiated the peak of the depolarization-induced RFS and delayed recovery of both the RFS and [Ca(2+)](i) transient. Thus the DeltaPsi depolarization due to plasmalemmal depolarization is related to mitochondrial Ca(2+) sequestration secondary to Ca(2+) influx through voltage-gated Ca(2+) channels. CN(-) elevated [Ca(2+)](i) by <50 nM but increased RFS by 221% as a result of extensive depolarization of DeltaPsi. Oligomycin decreased RFS by 52% without affecting [Ca(2+)](i). In the presence of oligomycin, CN(-) and p-trifluoromethoxy-phenylhydrazone (FCCP) elevated [Ca(2+)](i) by <50 nM and increased RFS by 285 and 290%, respectively. Accordingly, the metabolism-related DeltaPsi changes are independent of [Ca(2+)](i). Imaging techniques revealed that evoked [Ca(2+)](i) rises are distributed uniformly over the soma and primary dendrites, whereas corresponding changes in RFS occur more localized in subregions within the soma. The results show that microfluorometric measurement of the relation between mitochondrial function and intracellular Ca(2+) is feasible in whole cell recorded mammalian neurons in situ.
Collapse
Affiliation(s)
- S Schuchmann
- Institut für Physiologie, Humboldt-Universität Berlin, Universitätsklinikum Charité, D-10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
38
|
Abstract
Despite its clinical use as a therapy for refractory epilepsy for more than 75 years, the ketogenic diet (KD) remains a therapy in search of an explanation. The mechanism of action of the KD is unclear and the optimal indications for its clinical use are incompletely defined. Animal models could help to elucidate these questions. Surprisingly, there have been very few animal studies of the KD, and those that have been performed are difficult to compare because of wide discrepancies in experimental methods. Earlier models concentrated on the effect of the KD on acute seizure threshold in normal (i.e. nonepileptic) animals. Recent studies are beginning to examine the longer term effects of the KD and its role in epileptogenesis. Some features of clinical experience have been replicated in animal models, including the role of ketosis, elevation of seizure threshold by both classic ketogenic and medium chain triglyceride diets, better effectiveness at younger ages, and rapid reversal of the seizure protective effect when the diet is discontinued. These parallels raise hope that pertinent clinical questions can be addressed in the more controlled setting of the research laboratory. As in the clinical arena, there has been a recent resurgence of interest in pursuing basic questions related to the ketogenic diet, using techniques of modern neuroscience. Experimental approaches such as brain slice neurophysiology, genetic models, dissection of metabolic pathways, and neurohistological techniques hold much promise in the effort to understand this intriguing alternative to standard anticonvulsants.
Collapse
Affiliation(s)
- C E Stafstrom
- Department of Neurology, University of Wisconsin, Madison 53792, USA.
| |
Collapse
|
39
|
Abstract
Spinal cord astrocytes express four biophysically and pharmacologically distinct voltage-activated potassium (K(+)) channel types. The K(+) channel blocker 4-aminopyridine (4-AP) exhibited differential and concentration-dependent block of all of these currents. Specifically, 100 microM 4-AP selectively inhibited a slowly inactivating outward current (K(SI)) that was insensitive to dendrototoxin (< or = 10 microM) and that activated at -50 mV. At 2 mM, 4-AP inhibited fast-inactivating, low-threshold (-70 mV) A-type currents (K(A)) and sustained, TEA-sensitive noninactivating delayed-rectifier-type currents (K(DR)). At an even higher concentration (8 mM), 4-AP additionally blocked inwardly rectifying, Cs(+)- and Ba(2+)-sensitive K(+) currents (K(IR)). Current injection into current-clamped astrocytes in culture or in acute spinal cord slices induced an overshooting voltage response reminiscent of slow neuronal action potentials. Increasing concentrations of 4-AP selectively modulated different phases in the repolarization of these glial spikes, suggesting that all four K(+) currents serve different roles in stabilization and repolarization of the astrocytic membrane potential. Our data suggest that 4-AP is an useful, dose-dependent inhibitor of all four astrocytic K(+) channels. We show that the slowly inactivating astrocytic K(+) currents, which had not been described as separate current entities in astrocytes, contribute to the resting K(+) conductance and may thus be involved in K(+) homeostatic functions of astrocytes. The high sensitivity of these currents to micromolar 4-AP suggests that application of 4-AP to inhibit neuronal A-currents or to induce epileptiform discharges in brain slices also may influence astrocytic K(+) buffering.
Collapse
Affiliation(s)
- A Bordey
- Department of Neurobiology, University of Alabama, Birmingham, Alabama 35294, USA
| | | |
Collapse
|