1
|
Chapman KB, Amireh A, van Helmond N, Yousef TA. Evaluation of Washout Periods After Dorsal Root Ganglion Stimulation Trial. Neuromodulation 2024; 27:881-886. [PMID: 38551547 DOI: 10.1016/j.neurom.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVE Dorsal root ganglion stimulation (DRG-S) is a novel therapy to treat chronic pain. It has shown efficacy when delivered intermittently, suggesting a delayed washout effect exists. To measure the washout period, and to determine whether there are differences in washout times among different types of treated pain, we measured the time for pain to return at the end of the patients' one-week DRG stimulation trials. MATERIALS AND METHODS Patients who completed a successful DRG-S trial were included. The times until 25% (t25) and 90% (t90) of baseline pain level returned were recorded. The patients were divided into neuropathic, nociceptive, and mixed pain groups for subgroup comparison. t25 and t90 were plotted in the entire cohort and subgroups using reverse Kaplan-Meier plots (failure curves) and compared using a log-rank test. RESULTS In total, 29 consecutive patients were included. Median t25 and t90 times were 7.1 and 19.5 hours, respectively. Median (interquartile range) times were longest for the nociceptive pain group (n = 17) and shortest for the neuropathic pain group (n = 6), with the mixed-pain group (n = 6) in between (t25: 7.1 [1.7-19.4], 3.40 [1.4-8.4], and 5.7 [0.8-17.6]; t90, 22.0 [10.7-71.0], 7.6 [3.6-19.8], and 20.9 [14.2-31.2], respectively). t90 times differed significantly by pain type (p = 0.040). CONCLUSIONS This study showed a prolonged washout period after cessation of DRG-S therapy. Washout times vary according to pain type. The observed effects are possibly due to long-term depression of pain signaling and could allow the implementation of alternative stimulation strategies with DRG-S. Further investigations evaluating DRG-S washout times are warranted.
Collapse
Affiliation(s)
- Kenneth B Chapman
- The Spine & Pain Institute of New York, New York City, NY, USA; Department of Anesthesiology, New York University Langone Medical Center, New York City, NY, USA; The Zucker School of Medicine at Hofstra/Northwell, New York City, NY, USA; Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Ahmad Amireh
- The Spine & Pain Institute of New York, New York City, NY, USA
| | - Noud van Helmond
- The Spine & Pain Institute of New York, New York City, NY, USA; Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tariq A Yousef
- The Spine & Pain Institute of New York, New York City, NY, USA
| |
Collapse
|
2
|
Tabatabaei P, Salomonsson J, Kakas P, Eriksson M. Bilateral T12 Dorsal Root Ganglion Stimulation for the Treatment of Low Back Pain With 20-Hz and 4-Hz Stimulation, a Retrospective Study. Neuromodulation 2024; 27:141-150. [PMID: 37542505 DOI: 10.1016/j.neurom.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 08/07/2023]
Abstract
OBJECTIVES Chronic low back pain (CLBP) is one of the most common chronic pain conditions that cause both individual suffering and a burden to society. For these patients, several interventional treatment options such as surgery, blocks, radiofrequency, and spinal cord stimulation are available. Lately, dorsal root ganglion stimulation (DRG-S) also has been mentioned as an option by targeting bilateral T12 dorsal ganglia. In this study, we present the outcome of 11 patients with CLBP treated with bilateral T12 DRG-S. MATERIALS AND METHODS Thirteen patients with CLBP with and without leg pain were treated with bilateral T12 DRG-S. Three of the patients also received a third lumbar lead owing to leg pain. Eleven of the patients had >50% pain relief during the peri- or/and postoperative testing and received a fully implantable neurostimulator. Pain intensity, general health status, quality of life, pain catastrophizing, mental status, sleeping disorder, physical activity, and patient satisfaction were followed using numeric rating scale (NRS), Patient-Reported Outcomes Measurement Information System 29 version 2.1, Pain Catastrophizing Score, Generalized Anxiety Disorder 7-item scale, Patient Health Questionnaire Depression Module, Insomnia Severity Index, and Patient Satisfaction Questionnaire at baseline before implantation and at three months and six months. The results were analyzed on the basis of six domains: pain relief, sleeping disorder, social ability, mental status, physical activity, and satisfaction. To be identified as a responder, the patients should show a significant improvement in the pain relief domain together with at least two other domains. All responders also were given the opportunity to test 4-Hz DRG-S and compare it with traditional 20-Hz stimulation. RESULTS All 11 patients were identified as responders at six months. Five of the patients had >80% pain relief, with an average NRS score reduction of 71% for the whole group. Significant improvement could be observed in three domains for one patient, four domains for three patients, five domains for six patients, and six domains for one patient. Seven patients chose to try 4-Hz stimulation. All seven identified 4-Hz stimulation as at least as good as or better than 20-Hz stimulation and chose to continue with 4-Hz stimulation. CONCLUSIONS Bilateral T12 DRG-S seems to be an effective treatment for chronic low back pain, with significant beneficial effect not only on pain but also on quality of life, pain catastrophizing, mental status, sleeping disorder, and physical activity. 4-Hz DRG-S gave a result comparable with or better than 20-Hz stimulation.
Collapse
Affiliation(s)
| | | | - Pavlina Kakas
- Department of Clinical Science, Umeå University, Umeå, Sweden
| | - Maria Eriksson
- Department of Clinical Science, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Chapman KB, Sayed D, Lamer T, Hunter C, Weisbein J, Patel KV, Dickerson D, Hagedorn JM, Lee DW, Amirdelfan K, Deer T, Chakravarthy K. Best Practices for Dorsal Root Ganglion Stimulation for Chronic Pain: Guidelines from the American Society of Pain and Neuroscience. J Pain Res 2023; 16:839-879. [PMID: 36942306 PMCID: PMC10024474 DOI: 10.2147/jpr.s364370] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/17/2023] [Indexed: 03/14/2023] Open
Abstract
With continued innovations in neuromodulation comes the need for evolving reviews of best practices. Dorsal root ganglion stimulation (DRG-S) has significantly improved the treatment of complex regional pain syndrome (CRPS), and it has broad applicability across a wide range of other conditions. Through funding and organizational leadership by the American Society for Pain and Neuroscience (ASPN), this best practices consensus document has been developed for the selection, implantation, and use of DRG stimulation for the treatment of chronic pain syndromes. This document is composed of a comprehensive narrative literature review that has been performed regarding the role of the DRG in chronic pain and the clinical evidence for DRG-S as a treatment for multiple pain etiologies. Best practice recommendations encompass safety management, implantation techniques, and mitigation of the potential complications reported in the literature. Looking to the future of neuromodulation, DRG-S holds promise as a robust intervention for otherwise intractable pain.
Collapse
Affiliation(s)
- Kenneth B Chapman
- The Spine & Pain Institute of New York, New York, NY, USA
- Department of Anesthesiology, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY, USA
| | - Dawood Sayed
- Department of Anesthesiology, The University of Kansas Medical Center (KUMC), Kansas City, KS, USA
| | - Tim Lamer
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Corey Hunter
- Ainsworth Institute of Pain Management, New York, NY, USA
| | | | - Kiran V Patel
- The Spine & Pain Institute of New York, New York, NY, USA
- Department of Anesthesiology, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY, USA
| | - David Dickerson
- Department of Anesthesiology, Critical Care and Pain Medicine, NorthShore University Health System, Evanston, IL, USA
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | | | - David W Lee
- Fullerton Orthopedic Surgery Medical Group, Fullerton, CA, USA
| | | | - Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Krishnan Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
4
|
Frequency dependency of therapeutic efficacy in dorsal root ganglion stimulation for neuropathic pain. Acta Neurochir (Wien) 2022; 164:1193-1199. [PMID: 35217898 PMCID: PMC8967770 DOI: 10.1007/s00701-022-05161-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/13/2022] [Indexed: 11/23/2022]
Abstract
Background The influence of the stimulation frequency on the outcomes of dorsal root ganglion stimulation (DRG-S) to treat pain is not well understood. It is assumed that specific neural components dedicated to different tasks in the DRG can be preferably influenced at specific frequencies. The identification of frequencies designed for the type of pain and the ratio of neuropathic versus nociceptive pain might improve overall pain control and open new indications in DRG-S. Method We report on a randomized double-blind clinical trial with a crossover design. Patients with a permanent DRG-S system underwent phases of stimulation with 20 Hz, 40 Hz, 60 Hz, 80 Hz, and sham in a randomized order. Each phase lasted for 4 days and was followed by a 2-day washout period. Pain intensity and quality of life were assessed with visual analog scale (VAS), McGill Pain Questionnaire (MPQ), EQ-5D, and Beck Depression Inventory (BDI). Analgesics intake was assessed. Results Overall 19 patients were included in the study. CRPS was the most frequent pain etiology (7). Five patients had a PainDetect score of 12 or lower at baseline. The mean VAS before the system was implanted was 8.6 and 3.9 at the baseline. Pain intensity was reduced to 3.7 by the stimulation with 20 Hz but increased with higher frequencies reaching 5.8 at 80 Hz. A significant difference among the groups was shown over all variables examined (VAS, MPQ, EQ-5D, BDI). The best results were seen at 20 Hz for all variables, including the smallest increase in pain medication consumption. Conclusions The choice of the stimulation frequency shows a clear influence on pain reduction and quality of life. Lower stimulation frequencies seem to be most effective in neuropathic pain. Further studies are required to determine whether specific frequencies should be preferred based on the condition treated.
Collapse
|
5
|
Intermittent Dorsal Root Ganglion Stimulation Is as Efficacious as Standard Continuous Dosing in Treating Chronic Pain: Results From a Randomized Controlled Feasibility Trial. Neuromodulation 2022; 25:989-997. [DOI: 10.1016/j.neurom.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/29/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
|
6
|
Chapman KB, Yousef TA, Foster A, D Stanton-Hicks M, van Helmond N. Mechanisms for the Clinical Utility of Low-Frequency Stimulation in Neuromodulation of the Dorsal Root Ganglion. Neuromodulation 2020; 24:738-745. [PMID: 33236811 DOI: 10.1111/ner.13323] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dorsal root ganglion stimulation (DRG-S) involves the electrical modulation of the somata of afferent neural fibers to treat chronic pain. DRG-S has demonstrated clinical efficacy at frequencies lower than typically used with spinal cord stimulation (SCS). In a clinical study, we found that the frequency of DRG-S can be tapered to a frequency as low as 4 Hz with no loss of efficacy. This review discusses possible mechanisms of action underlying effective pain relief with very low-frequency DRG-S. MATERIALS AND METHODS We performed a literature review to explore the role of frequency in neural transmission and the corresponding relevance of frequency settings with neuromodulation. FINDINGS Sensory neural transmission is a frequency-modulated system, with signal frequency determining which mechanisms are activated in the dorsal horn. In the dorsal horn, low-frequency signaling (<20 Hz) activates inhibitory processes while higher frequencies (>25 Hz) are excitatory. Physiologically, low-threshold mechanoreceptors (LTMRs) fibers transmit or modulate innocuous mechanical touch at frequencies as low as 0.5-5 Hz, while nociceptive fibers transmit pain at high frequencies. We postulate that very low-frequency DRG-S, at least partially, harnesses LTMRs and the native endogenous opioid system. Utilizing lower stimulation frequency decreases the total energy delivery used for DRG-S, extends battery life, and facilitates the development of devices with smaller generators.
Collapse
Affiliation(s)
- Kenneth B Chapman
- Spine & Pain Institute of New York, New York City, NY, USA.,Department of Anesthesiology, New York University Langone Medical Center, New York City, NY, USA.,Department of Anesthesiology, Zucker School of Medicine at Hofstra Northwell, Northwell Health, Manhasset, NY, USA
| | - Tariq A Yousef
- Spine & Pain Institute of New York, New York City, NY, USA
| | | | | | - Noud van Helmond
- Spine & Pain Institute of New York, New York City, NY, USA.,Department of Anesthesiology, Cooper Medical School of Rowan University, Cooper University Hospital, Camden, NJ, USA
| |
Collapse
|
7
|
Chapman KB, Yousef TA, Vissers KC, van Helmond N, D Stanton-Hicks M. Very Low Frequencies Maintain Pain Relief From Dorsal Root Ganglion Stimulation: An Evaluation of Dorsal Root Ganglion Neurostimulation Frequency Tapering. Neuromodulation 2020; 24:746-752. [PMID: 33227827 DOI: 10.1111/ner.13322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dorsal root ganglion neurostimulation (DRG-S) is effective in treating various refractory chronic pain syndromes. In preclinical studies, DRG-S at very low frequencies (<5 Hz) reduces excitatory output in the superficial dorsal horn. Clinically, we have also observed the effectiveness of DRG-S at low frequencies. We conducted a case series to describe the effect of very low-frequency DRG-S stimulation on clinical outcomes. MATERIALS AND METHODS DRG-S for refractory low back pain was initiated at parameters consistent with published values. Thereafter, the stimulation frequency of DRG-S was reduced in a stepwise fashion to the lowest frequency that maintained pain relief. Pain intensity, disability, and general health status data were collected at baseline, prior to initiation of tapering, and at four weeks after each patient's lowest effective stimulation frequency was reached. RESULTS After device activation (N = 20), DRG-S frequency was tapered from 16 to 4 Hz over a 4- to 17-week period, reducing charge-per-second by nearly two-thirds. Even so, pain relief was maintained at more than 75%, with consistent findings in the other measures. CONCLUSION DRG-S may have utility in treating chronic pain at lower stimulation frequencies than previously recognized. We have previously theorized that the mechanism of action may involve preferential recruitment of low-threshold mechanoreceptor fibers via the endogenous opioid system. Of clinical relevance, lower frequency stimulation maintains DRG-S efficacy regarding improvements in pain, disability, and quality of life. It can extend battery life and may potentially lead to the development of smaller implantable pulse generators.
Collapse
Affiliation(s)
- Kenneth B Chapman
- The Spine & Pain Institute of New York, New York City, NY, USA.,Department of Anesthesiology, New York University Langone Medical Center, New York City, NY, USA.,Department of Anesthesiology, Zucker School of Medicine at Hofstra Northwell, Northwell Health, Manhasset, NY, USA
| | - Tariq A Yousef
- The Spine & Pain Institute of New York, New York City, NY, USA
| | - Kris C Vissers
- Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University, Nijmegen, The Netherlands
| | - Noud van Helmond
- The Spine & Pain Institute of New York, New York City, NY, USA.,Department of Anesthesiology, Cooper Medical School of Rowan University, Cooper University Hospital, Camden, NJ, USA
| | | |
Collapse
|
8
|
Chapman KB, Groenen PS, Vissers KC, van Helmond N, Stanton-Hicks MD. The Pathways and Processes Underlying Spinal Transmission of Low Back Pain: Observations From Dorsal Root Ganglion Stimulation Treatment. Neuromodulation 2020; 24:610-621. [PMID: 32329155 DOI: 10.1111/ner.13150] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dorsal root ganglion stimulation (DRG-S) is a novel approach to treat chronic pain. Lead placement at L2 has been reported to be an effective treatment for axial low back pain (LBP) primarily of discogenic etiology. We have recently shown, in a diverse cohort including cases of multilevel instrumentation following extensive prior back surgeries, that DRG-S lead placement at T12 is another promising target. Local effects at the T12 DRG, alone, are insufficient to explain these results. MATERIALS AND METHODS We performed a literature review to explore the mechanisms of LBP relief with T12 DRG-S. FINDINGS Branches of individual spinal nerve roots innervate facet joints and posterior spinal structures, while the discs and anterior vertebrae are carried via L2, and converge in the dorsal horn (DH) of the spinal cord at T8-T9. The T12 nerve root contains cutaneous afferents from the low back and enters the DH of the spinal cord at T10. Low back Aδ and C-fibers then ascend via Lissauer's tract (LT) to T8-T9, converging with other low back afferents. DRG-S at T12, then, results in inhibition of the converged low back fibers via endorphin-mediated and GABAergic frequency-dependent mechanisms. Therefore, T12 lead placement may be the optimal location for DRG-S to treat LBP.
Collapse
Affiliation(s)
- Kenneth B Chapman
- The Spine & Pain Institute of New York, New York City, NY, USA.,Department of Anesthesiology, New York University Langone Medical Center, New York City, NY, USA.,Northwell Health Systems, New York City, NY, USA
| | - Pauline S Groenen
- The Spine & Pain Institute of New York, New York City, NY, USA.,College of Medicine, Radboud University, Nijmegen, the Netherlands
| | - Kris C Vissers
- Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University, Nijmegen, the Netherlands
| | - Noud van Helmond
- The Spine & Pain Institute of New York, New York City, NY, USA.,Department of Anesthesiology, Cooper Medical School of Rowan University, Cooper University Hospital, Camden, NJ, USA
| | | |
Collapse
|
9
|
Watanabe N, Piché M, Hotta H. Types of skin afferent fibers and spinal opioid receptors that contribute to touch-induced inhibition of heart rate changes evoked by noxious cutaneous heat stimulation. Mol Pain 2015; 11:4. [PMID: 25884917 PMCID: PMC4335417 DOI: 10.1186/s12990-015-0001-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/26/2015] [Indexed: 12/04/2022] Open
Abstract
Background In anesthetized rats and conscious humans, a gentle touch using a soft disc covered with microcones (with a texture similar to that of a finger), but not with a flat disc, inhibits nociceptive somatocardiac reflexes. Such an inhibitory effect is most reliably evoked when touch is applied to the skin ipsilateral and closest to nociceptive inputs. However, the mechanism of this inhibition is not completely elucidated. We aimed to clarify the types of cutaneous afferent fibers and spinal opioid receptors that contribute to antinociceptive effects of microcone touch. Results The present study comprised two experiments with urethane-anesthetized rats. In the first experiment, unitary activity of skin afferent fibers was recorded from the saphenous nerve, and responses to a 10-min touch using a microcone disc and a flat disc (control) were compared. Greater discharge rate during microcone touch was observed in low-threshold mechanoreceptive Aδ and C afferent units, whereas many Aβ afferents responded similarly to the two types of touch. In the second experiment, the effect of an intrathecal injection of opioid receptor antagonists on the inhibitory effects of microcone touch on heart rate responses to noxious heat stimulation was examined. The magnitude of the heart rate response was significantly reduced by microcone touch in rats that received saline or naltrindole (δ-opioid receptor antagonist) injections. However, such an inhibition was not observed in rats that received naloxone (non-selective opioid receptor antagonist) or Phe-Cys-Tyr-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP; μ-opioid receptor antagonist) injections. Conclusions Microcone touch induced greater responses of low-threshold mechanoreceptive Aδ and C afferent units than control touch. The antinociceptive effect of microcone touch was abolished by intrathecal injection of μ-opioid receptor antagonist. These results suggest that excitation of low-threshold mechanoreceptive Aδ and C afferents produces the release of endogenous μ-opioid ligands in the spinal cord, resulting in the inhibition of nociceptive transmission that contributes to somatocardiac reflexes.
Collapse
Affiliation(s)
- Nobuhiro Watanabe
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Mathieu Piché
- Department of Chiropractic, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P 500, Trois-Rivières, Québec, G9A 5H7, Canada.
| | - Harumi Hotta
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
10
|
Matsuta Y, Roppolo JR, de Groat WC, Tai C. Poststimulation inhibition of the micturition reflex induced by tibial nerve stimulation in rats. Physiol Rep 2014; 2:e00205. [PMID: 24744884 PMCID: PMC3967688 DOI: 10.1002/phy2.205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/25/2013] [Accepted: 01/06/2014] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to determine the effect of tibial nerve stimulation (TNS) on the micturition reflex. Experiments were conducted in 24 rats under urethane anesthesia. A catheter was inserted into the bladder via the bladder dome for saline infusion. A cuff electrode was placed around right tibial nerve for stimulation. TNS (5 Hz, 0.2 msec pulse width) at 2–4 times the threshold (T) intensity for inducing a toe movement was applied either during slow (0.08 mL/min) infusion of the bladder or for 30 min with an empty bladder. TNS had no effect on the micturition reflex when it was applied during slow bladder infusion. However, the 30‐min TNS applied with an empty bladder induced poststimulation inhibition and significantly (P < 0.05) increased the bladder capacity to about 140% of prestimulation level in a 50‐min period following the termination of stimulation. The bladder compliance was also significantly (P < 0.05) increased after the 30‐min TNS. These results suggest that different mechanisms might exist in acute‐ and post‐TNS inhibition of micturition reflex. The animal model developed in this study will be very useful for further investigations of the neurotransmitter mechanisms underlying tibial neuromodulation of bladder function. This study suggests that different mechanisms might exist in acute‐ and poststimulation tibial inhibition of the micturition reflex. The animal model developed in this study is very useful for further investigations of the neurotransmitter mechanisms underlying tibial neuromodulation of bladder function.
Collapse
Affiliation(s)
- Yosuke Matsuta
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James R Roppolo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Changfeng Tai
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Gentle mechanical skin stimulation inhibits the somatocardiac sympathetic. Eur J Pain 2012; 14:806-13. [DOI: 10.1016/j.ejpain.2010.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/05/2010] [Accepted: 02/17/2010] [Indexed: 02/04/2023]
|
12
|
Xing GG, Liu FY, Qu XX, Han JS, Wan Y. Long-term synaptic plasticity in the spinal dorsal horn and its modulation by electroacupuncture in rats with neuropathic pain. Exp Neurol 2007; 208:323-32. [PMID: 17936754 DOI: 10.1016/j.expneurol.2007.09.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 02/01/2023]
Abstract
Our previous study has reported that electroacupuncture (EA) at low frequency of 2 Hz had greater and more prolonged analgesic effects on mechanical allodynia and thermal hyperalgesia than that EA at high frequency of 100 Hz in rats with neuropathic pain. However, how EA at different frequencies produces distinct analgesic effects on neuropathic pain is unclear. Neuronal plastic changes in spinal cord might contribute to the development and maintenance of neuropathic pain. In the present study, we investigated changes of spinal synaptic plasticity in the development of neuropathic pain and its modulation by EA in rats with neuropathic pain. Field potentials of spinal dorsal horn neurons were recorded extracellularly in sham-operated rats and in rats with spinal nerve ligation (SNL). We found for the first time that the threshold for inducing long-term potentiation (LTP) of C-fiber-evoked potentials in dorsal horn was significantly lower in SNL rats than that in sham-operated rats. The threshold for evoking the C-fiber-evoked field potentials was also significantly lower, and the amplitude of the field potentials was higher in SNL rats as compared with those in the control rats. EA at low frequency of 2 Hz applied on acupoints ST 36 and SP 6, which was effective in treatment of neuropathic pain, induced long-term depression (LTD) of the C-fiber-evoked potentials in SNL rats. This effect could be blocked by N-methyl-d-aspartic acid (NMDA) receptor antagonist MK-801 and by opioid receptor antagonist naloxone. In contrast, EA at high frequency of 100 Hz, which was not effective in treatment of neuropathic pain, induced LTP in SNL rats but LTD in sham-operated rats. Unlike the 2 Hz EA-induced LTD in SNL rats, the 100 Hz EA-induced LTD in sham-operated rats was dependent on the endogenous GABAergic and serotonergic inhibitory system. Results from our present study suggest that (1) hyperexcitability in the spinal nociceptive synaptic transmission may occur after nerve injury, which may contribute to the development of neuropathic pain; (2) EA at low or high frequency has a different effect on modulating spinal synaptic plasticities in rats with neuropathic pain. The different modulation on spinal LTD or LTP by low- or high-frequency EA may be a potential mechanism of different analgesic effects of EA on neuropathic pain. LTD of synaptic strength in the spinal dorsal horn in SNL rats may contribute to the long-lasting analgesic effects of EA at 2 Hz.
Collapse
Affiliation(s)
- Guo-Gang Xing
- Department of Neurobiology, Key Laboratory for Neuroscience of the Ministry of Education and Public Health, Peking University, 38 Xue-Yuan Road, Beijing 100083, People's Republic of China.
| | | | | | | | | |
Collapse
|
13
|
Kusudo K, Ikeda H, Murase K. Depression of presynaptic excitation by the activation of vanilloid receptor 1 in the rat spinal dorsal horn revealed by optical imaging. Mol Pain 2006; 2:8. [PMID: 16503963 PMCID: PMC1434724 DOI: 10.1186/1744-8069-2-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 02/17/2006] [Indexed: 12/30/2022] Open
Abstract
In this study, we show that capsaicin (CAP) depresses primary afferent fiber terminal excitability by acting on vanilloid receptor 1 (TRPV1 channels) of primary afferent fibers in adenosine 5'-triphosphate (ATP)- and temperature-dependent manner using two optical imaging methods. First, transverse slices of spinal cord were stained with a voltage-sensitive dye and the net excitation in the spinal dorsal horn was recorded. Prolonged treatment (>20 min) with the TRPV1 channel agonist, CAP, resulted in a long-lasting inhibition of the net excitation evoked by single-pulse stimulation of C fiber-activating strength. A shorter application of CAP inhibited the excitation in a concentration-dependent manner and the inhibition was reversed within several minutes. This inhibition was Ca++-dependent, was antagonized by the TRPV1 channel antagonist, capsazepine (CPZ), and the P2X and P2Y antagonist, suramin, and was facilitated by the P2Y agonist, uridine 5'-triphosphate (UTP). The inhibition of excitation was unaffected by bicuculline and strychnine, antagonists of GABAA and glycine receptors, respectively. Raising the perfusate temperature to 39°C from 27°C inhibited the excitation (-3%/°C). This depressant effect was antagonized by CPZ and suramin, but not by the P2X antagonist, 2', 3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP). Second, in order to record the presynaptic excitation exclusively, we stained the primary afferent fibers anterogradely from the dorsal root. CAP application and a temperature increase from 27°C to 33°C depressed the presynaptic excitation, and CPZ antagonized these effects. Thus, this study showed that presynaptic excitability is modulated by CAP, temperature, and ATP under physiological conditions, and explains the reported central actions of CAP. These results may have clinical importance, especially for the control of pain.
Collapse
Affiliation(s)
- Kei Kusudo
- University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Hiroshi Ikeda
- University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | | |
Collapse
|
14
|
Affiliation(s)
- Jens Ellrich
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| |
Collapse
|
15
|
Bäcker M, Dobos G. Psychophysiologische Wirkmechanismen von Akupunktur in der Behandlung von Schmerzen. DEUTSCHE ZEITSCHRIFT FUR AKUPUNKTUR 2006. [DOI: 10.1078/0415-6412-00197] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Bäcker M, Gareus IK, Knoblauch NTM, Michalsen A, Dobos GJ. [Acupuncture in the treatment of pain--hypothesis to adaptive effects]. Complement Med Res 2005; 11:335-45. [PMID: 15604624 DOI: 10.1159/000082815] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A basic principle in conventional pain therapy is that the treatment should be tailored to the pathological mechanism of the disease. This is based on the knowledge of the effector mechanisms of the applied treatment modalities. Although for acupuncture the mode of action still remains elusive in many parts, evidence about its mechanisms in pain treatment is growing. A better understanding of the hypalgesic effects of acupuncture might lead to a more differentiated and mechanism guided application. The aim of this article is to evaluate the scientific data about the neurobiological mechanisms of acupuncture in the treatment of pain. Data are critically evaluated regarding their relevance for clinical practice. Possible mechanisms are differentiated in local and systemic effects and the question of point specificity is discussed. Additionally a comprehensive hypothesis is set up for the long-term effects of acupuncture in the treatment of chronic pain. In this context acupuncture is considered as a mode of repetitive, nociceptive stimulation, which induces adaptive processes on different physiological levels leading to an improved ability of the nociceptive system to cope with painful stimuli.
Collapse
Affiliation(s)
- M Bäcker
- Klinik für Innere Medizin V. Naturheilkunde und Integrative Medizin, Essen.
| | | | | | | | | |
Collapse
|
17
|
Ellrich J. Dopamine D2-like receptor activation antagonizes long-term depression of orofacial sensorimotor processing in anesthetized mice. Brain Res 2005; 1035:94-9. [PMID: 15713281 DOI: 10.1016/j.brainres.2004.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2004] [Indexed: 11/20/2022]
Abstract
Long-term depression (LTD) of orofacial sensorimotor processing recently has been demonstrated in anesthetized mice. Due to the remarkable role of dopamine in central nervous system LTD, the influence of dopamine D2 receptor activation on LTD of the jaw-opening reflex (JOR) was investigated. Electric low-frequency stimulation (LFS, 1 Hz) of the tongue suppressed the JOR integral by 43% for at least 1 h. After systemic administration of the dopamine D2-like receptor agonist quinpirole, LTD was significantly attenuated to 14%. JOR decreased for only about 15 min after LFS according to a short-term depression. Under systemic application of the dopamine D2-like receptor antagonist sulpiride, LTD significantly increased to 64%, again for at least 1 h. Thus, D2-like receptor activation prevented LTD, and D2-like receptor blockade amplified LTD of the reflex. The time course of inhibition may be due to a dopaminergic D2-like receptor mechanism that antagonizes the transfer from short-term into long-term depression. Considering a putative mediation of LTD by the endogenous pain control system, the results correspond to the known inhibitory control of this system by a D2-like receptor mechanism.
Collapse
Affiliation(s)
- Jens Ellrich
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| |
Collapse
|
18
|
Ellrich J. Electric Low-Frequency Stimulation of the Tongue Induces Long-Term Depression of the Jaw-Opening Reflex in Anesthetized Mice. J Neurophysiol 2004; 92:3332-7. [PMID: 15102895 DOI: 10.1152/jn.00156.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long-term depression (LTD) of somatosensory processing has been demonstrated in slice preparations of the spinal dorsal horn. Although LTD could be reliably induced in vitro, inconsistent results were encountered when the same types of experiments were conducted in adult animals in vivo. We addressed the hypothesis that LTD of orofacial sensorimotor processing can be induced in mice under general anesthesia. The effects of electric low- and high-frequency conditioning stimulation of the tongue on the sensorimotor jaw-opening reflex (JOR) elicited by electric tongue stimulation were investigated. Low-frequency stimulation induced a sustained decrease of the reflex integral for ≥1 h after the end of conditioning stimulation. After additional high-frequency stimulation, the reflex partly recovered from LTD. High-frequency stimulation alone induced a transient increase of the JOR integral for <10 min. The LTD of the sensorimotor jaw-opening reflex in anesthetized mice may be an appropriate model to investigate the central mechanisms and the pharmacology of synaptic plasticity in the orofacial region. The application of electrophysiological techniques in mice provides the opportunity to include adequate knock-out models to elucidate the neurobiology of LTD.
Collapse
Affiliation(s)
- Jens Ellrich
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital Aachen, D-52074 Aachen, Germany.
| |
Collapse
|
19
|
Yoshida H, Okada Y, Maruiwa H, Fukuda K, Nakamura M, Chiba K, Toyama Y. Synaptic Blockade Plays a Major Role in the Neural Disturbance of Experimental Spinal Cord Compression. J Neurotrauma 2003; 20:1365-76. [PMID: 14748984 DOI: 10.1089/089771503322686157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We analyzed dynamic processes of neural excitation propagation in the experimentally compressed spinal cord using a high-speed optical recording system. Transverse slices of the juvenile rat cervical spinal cord were stained with a voltage-sensitive dye (di-4-ANEPPS). Two components were identified in the depolarizing optical responses to dorsal root electrical stimulation: a fast component of short duration corresponding to pre-synaptic excitation and a slow component of long duration corresponding to post-synaptic excitation. In the directly compressed dorsal horn, the slow component was attenuated more (attenuated to 37.4 +/- 9.1% of the control) than the fast component (to 70.5 +/- 14.9%) (p < 0.01) at 400 msec after stimulation. Depolarizing optical responses to compression and to chemical synaptic blockade were similar. There was a regional difference between white matter (attenuated to 86.2 +/- 10.5%) and gray matter (to 72.6 +/- 10.4%) (p < 0.03) in compression-induced changes of the fast components; neural activity in the white matter was resistant to compression, especially in the dorsal root entry zone. Depolarizing optical signals in the region adjacent to the directly compressed site were also attenuated; the fast component was attenuated to 77.6 +/- 10.4% and the slow component to 31.8 +/- 11.3% of the control signals (p < 0.01). Spinal cord dysfunction induced by purely mechanical compression without tissue destruction was virtually restored with early decompression. We suggest that a disturbance of synaptic transmission plays an important role in the pathophysiological mechanisms of spinal cord compression, at least under in vitro experimental conditions of juvenile rats.
Collapse
Affiliation(s)
- Hideaki Yoshida
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Ikeda H, Kusudo K, Ryu PD, Murase K. Effects of corticotropin-releasing factor on plasticity of optically recorded neuronal activity in the substantia gelatinosa of rat spinal cord slices. Pain 2003; 106:197-207. [PMID: 14581128 DOI: 10.1016/j.pain.2003.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined the effects of corticotropin-releasing factor (CRF) on plasticity of optically recorded neuronal activity in the substantia gelatinosa (lamina II) of 12-18-day-old rat spinal cord slices stained with a voltage-sensitive dye. Single-pulse test stimulation to the dorsal root that activated A and C fibres evoked prolonged (>100 ms) light-absorption change in the lamina II. This response represents the gross membrane potential change of all elements along the slice depth. After conditioning high-frequency stimulation of A-fibre-activating strength, test stimulus elicited less neuronal activity [-27+/-1% (7), (average+/-SE (n)), P<0.01 (*) at 45-60 min after conditioning]. When CRF (1 microM, 10 min) was applied during conditioning, the neuronal activity was facilitated rather than suppressed [+20+/-3% (5), P<0.05]. CRF alone exhibited insignificant effect [-5+/-1% (4), P=0.2]. In the presence of the inhibitory amino acid antagonists bicuculline (1 microM) and strychnine (0.3 microM) in the perfusate, in contrast, the conditioning facilitated it [+27+/-1% (12)*], and CRF treatment during conditioning inhibited the facilitation dose-dependently [0.1 microM: +18+/-2% (5)*, 1 microM: +13+/-1% (7)*]. Although interneuronal actions might contribute, these results suggest that CRF may have dual effects on excitatory synaptic transmission within the lamina II depending upon cellular conditions: a conversion from the induction of long-term depression to long-term potentiation (LTP), and inhibition of LTP induction. Since the LTP is thought to be responsible at least in part for the persistent pain, CRF could regulate the induction.
Collapse
Affiliation(s)
- Hiroshi Ikeda
- Department of Human and Artificial Intelligence Systems, Fukui University, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | | | | | | |
Collapse
|
21
|
Cheng G, Randić M. Involvement of intracellular calcium and protein phosphatases in long-term depression of A-fiber-mediated primary afferent neurotransmission. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 144:73-82. [PMID: 12888218 DOI: 10.1016/s0165-3806(03)00161-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Long-term depression (LTD) of monosynaptic and polysynaptic excitatory postsynaptic potentials (EPSPs) in substantia gelatinosa (SG) neurons can be induced by brief high-frequency electrical stimulation (HFS, 300 pulses at 100 Hz) of primary afferent fibers in dorsal roots. Here we examined the possible cellular mechanism underlying spinal LTD. Conventional intracellular recordings were made from SG neurons in a transverse slice-dorsal root preparation of the young rat lumbar spinal cord. LTD of both monosynaptic and polysynaptic EPSPs was induced in 16 of 24 SG neurons by HFS of dorsal root in either the presence or absence of the GABA(A) receptor antagonist bicuculline and the glycine receptor antagonist strychnine. Loading the postsynaptic cell with BAPTA, an intracellular Ca(2+) chelator, almost completely blocked the induction of LTD. Induction of LTD was abolished by bath application of calyculin A (100 nM), a potent inhibitor of protein phosphatases 1 and 2A. These results indicate that: (i) a rise in postsynaptic Ca(2+) is necessary for LTD induction, (ii) synaptic activation of protein phosphatases 1 and 2A plays an important role in the induction of LTD of primary afferent A-fiber neurotransmission in the young rat spinal cord, and (iii) the effect of LTD may be physiologically relevant for transmission and integration of sensory information, including nociception.
Collapse
Affiliation(s)
- Gong Cheng
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011-1250, USA.
| | | |
Collapse
|
22
|
Bao L, Wang HF, Cai HJ, Tong YG, Jin SX, Lu YJ, Grant G, Hökfelt T, Zhang X. Peripheral axotomy induces only very limited sprouting of coarse myelinated afferents into inner lamina II of rat spinal cord. Eur J Neurosci 2002; 16:175-85. [PMID: 12169100 DOI: 10.1046/j.1460-9568.2002.02080.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peripheral axotomy-induced sprouting of thick myelinated afferents (A-fibers) from laminae III-IV into laminae I-II of the spinal cord is a well-established hypothesis for the structural basis of neuropathic pain. However, we show here that the cholera toxin B subunit (CTB), a neuronal tracer used to demonstrate the sprouting of A-fibers in several earlier studies, also labels unmyelinated afferents (C-fibers) in lamina II and thin myelinated afferents in lamina I, when applied after peripheral nerve transection. The lamina II afferents also contained vasoactive intestinal polypeptide and galanin, two neuropeptides mainly expressed in small dorsal root ganglion (DRG) neurons and C-fibers. In an attempt to label large DRG neurons and A-fibers selectively, CTB was applied four days before axotomy (pre-injury-labelling), and sprouting was monitored after axotomy. We found that only a small number of A-fibers sprouted into inner lamina II, a region normally innervated by C-fibers, but not into outer lamina II or lamina I. Such sprouts made synaptic contact with dendrites in inner lamina II. Neuropeptide Y (NPY) was found in these sprouts in inner lamina II, an area very rich in Y1 receptor-positive processes. These results suggest that axotomy-induced sprouting from deeper to superficial layers is much less pronounced than previously assumed, in fact it is only marginal. This limited reorganization involves large NPY immunoreactive DRG neurons sprouting into the Y1 receptor-rich inner lamina II. Even if quantitatively small, it cannot be excluded that this represents a functional circuitry involved in neuropathic pain.
Collapse
MESH Headings
- Afferent Pathways/physiology
- Afferent Pathways/ultrastructure
- Animals
- Cells, Cultured
- Cholera Toxin/metabolism
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Immunohistochemistry
- Male
- Microscopy, Electron
- Nerve Crush
- Nerve Fibers, Myelinated/physiology
- Nerve Fibers, Myelinated/ultrastructure
- Nerve Fibers, Unmyelinated/physiology
- Nerve Fibers, Unmyelinated/ultrastructure
- Nerve Regeneration/physiology
- Neurofilament Proteins/metabolism
- Neuronal Plasticity/physiology
- Neuropeptide Y/metabolism
- Posterior Horn Cells/physiology
- Posterior Horn Cells/ultrastructure
- Presynaptic Terminals/physiology
- Presynaptic Terminals/ultrastructure
- Rats
- Rats, Sprague-Dawley
- Receptors, Neuropeptide Y/metabolism
- Sciatic Nerve/injuries
- Sciatic Nerve/physiology
- Sciatic Nerve/surgery
- Spinal Nerve Roots/physiology
- Spinal Nerve Roots/ultrastructure
Collapse
Affiliation(s)
- Lan Bao
- Laboratory of Sensory System, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Takuma S. Effect of neonatal capsaicin treatment on neural activity in the medullary dorsal horn of neonatal rats evoked by electrical stimulation to the trigeminal afferents: an optical, electrophysiological, and quantitative study. Brain Res 2001; 906:1-12. [PMID: 11430856 DOI: 10.1016/s0006-8993(01)02448-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To elucidate which glutamate receptors, NMDA or non-NMDA, have the main role in synaptic transmission via unmyelinated afferents in the trigeminal subnucleus caudalis (the medullary dorsal horn), and to examine the early functional effects of neonatal capsaicin treatment to the subnucleus caudalis, optical recording, field potential recording, and quantitative study using electron micrographs were employed. A medulla oblongata isolated from a rat 5--7 days old was sectioned horizontally 400-microm thick or parasagittally and stained with a voltage-sensitive dye, RH482 or RH795. Single-pulse stimulation with high intensity to the trigeminal afferents evoked optical responses mainly in the subnucleus caudalis. The optical signals were composed of two phases, a fast component followed by a long-lasting component. The spatiotemporal properties of the optical signals were well correlated to those of the field potentials recorded simultaneously. The fast component was eliminated by 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX; 10 microM), while the long-lasting component was not. The latter increased in amplitude under a condition of low Mg(2+) but was significantly reduced by DL-2-amino-5-phosphonovaleric acid (AP5; 30 microM). Neonatal capsaicin treatment also reduced the long-lasting component markedly. In addition, the decreases in the ratio of unmyelinated axons to myelinated axons and in the ratio of unmyelinated axons to Schwann cell subunits of trigeminal nerve roots both showed significant differences (P<0.05, Student's t-test) between the control group and the neonatal capsaicin treatment group. This line of evidence indirectly suggests that synaptic transmission via unmyelinated afferents in the subnucleus caudalis is mediated substantially by NMDA glutamate receptors and documented that neonatal capsaicin treatment induced a functional alteration of the neural transmission in the subnucleus caudalis as well as a morphological alteration of primary afferents within several days after the treatment.
Collapse
MESH Headings
- 2-Amino-5-phosphonovalerate/pharmacology
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Action Potentials/drug effects
- Action Potentials/physiology
- Afferent Pathways/drug effects
- Afferent Pathways/growth & development
- Afferent Pathways/ultrastructure
- Animals
- Animals, Newborn/anatomy & histology
- Animals, Newborn/growth & development
- Animals, Newborn/metabolism
- Capsaicin/pharmacology
- Cell Count
- Electric Stimulation
- Electronic Data Processing
- Excitatory Amino Acid Antagonists/pharmacology
- Fluorescent Dyes/pharmacokinetics
- Magnesium Deficiency/physiopathology
- Medulla Oblongata/drug effects
- Medulla Oblongata/growth & development
- Medulla Oblongata/ultrastructure
- Microscopy, Electron
- Nerve Fibers/drug effects
- Nerve Fibers/metabolism
- Nerve Fibers/ultrastructure
- Nerve Fibers, Myelinated/ultrastructure
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/ultrastructure
- Nociceptors/drug effects
- Nociceptors/metabolism
- Nociceptors/ultrastructure
- Rats
- Rats, Wistar
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Styrenes/pharmacokinetics
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Trigeminal Caudal Nucleus/drug effects
- Trigeminal Caudal Nucleus/growth & development
- Trigeminal Caudal Nucleus/ultrastructure
Collapse
Affiliation(s)
- S Takuma
- Department of Dental Anesthesiology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| |
Collapse
|
24
|
Affiliation(s)
- Jürgen Sandkühler
- Department of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, D-69120 Heidelberg, Germany
| |
Collapse
|
25
|
Ikeda H, Asai T, Murase K. Robust changes of afferent-induced excitation in the rat spinal dorsal horn after conditioning high-frequency stimulation. J Neurophysiol 2000; 83:2412-20. [PMID: 10758142 DOI: 10.1152/jn.2000.83.4.2412] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the neuronal plasticity in the spinal dorsal horn and its relationship with spinal inhibitory networks using an optical-imaging method that detects neuronal excitation. High-intensity single-pulse stimulation of the dorsal root activating both A and C fibers evoked an optical response in the lamina II (the substantia gelatinosa) of the dorsal horn in transverse slices of 12- to 25-day-old rat spinal cords stained with a voltage-sensitive dye, RH-482. The optical response, reflecting the net neuronal excitation along the slice-depth, was depressed by 28% for more than 1 h after a high-frequency conditioning stimulation of A fibers in the dorsal root (3 tetani of 100 Hz for 1 s with an interval of 10 s). The depression was not induced in a perfusion solution containing an NMDA antagonist, DL-2-amino-5-phosphonovaleric acid (AP5; 30 microM). In a solution containing the inhibitory amino acid antagonists bicuculline (1 microM) and strychnine (3 microM), and also in a low Cl(-) solution, the excitation evoked by the single-pulse stimulation was enhanced after the high-frequency stimulation by 31 and 18%, respectively. The enhanced response after conditioning was depotentiated by a low-frequency stimulation of A fibers (0.2-1 Hz for 10 min). Furthermore, once the low-frequency stimulation was applied, the high-frequency conditioning could not potentiate the excitation. Inhibitory transmissions thus regulate the mode of synaptic plasticity in the lamina II most likely at afferent terminals. The high-frequency conditioning elicits a long-term depression (LTD) of synaptic efficacy under a greater activity of inhibitory amino acids, but it results in a long-term potentiation (LTP) when inhibition is reduced. The low-frequency preconditioning inhibits the potentiation induction and maintenance by the high-frequency conditioning. These mechanisms might underlie robust changes of nociception, such as hypersensitivity after injury or inflammation and pain relief after electrical or cutaneous stimulation.
Collapse
Affiliation(s)
- H Ikeda
- Department of Human and Artificial Intelligence Systems, Fukui University, Fukui 910, Japan
| | | | | |
Collapse
|