1
|
Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019; 122:760-787. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.
Collapse
Affiliation(s)
- Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thompson
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Pehar
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Winlow W, Polese G, Moghadam HF, Ahmed IA, Di Cosmo A. Sense and Insensibility - An Appraisal of the Effects of Clinical Anesthetics on Gastropod and Cephalopod Molluscs as a Step to Improved Welfare of Cephalopods. Front Physiol 2018; 9:1147. [PMID: 30197598 PMCID: PMC6117391 DOI: 10.3389/fphys.2018.01147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022] Open
Abstract
Recent progress in animal welfare legislation stresses the need to treat cephalopod molluscs, such as Octopus vulgaris, humanely, to have regard for their wellbeing and to reduce their pain and suffering resulting from experimental procedures. Thus, appropriate measures for their sedation and analgesia are being introduced. Clinical anesthetics are renowned for their ability to produce unconsciousness in vertebrate species, but their exact mechanisms of action still elude investigators. In vertebrates it can prove difficult to specify the differences of response of particular neuron types given the multiplicity of neurons in the CNS. However, gastropod molluscs such as Aplysia, Lymnaea, or Helix, with their large uniquely identifiable nerve cells, make studies on the cellular, subcellular, network and behavioral actions of anesthetics much more feasible, particularly as identified cells may also be studied in culture, isolated from the rest of the nervous system. To date, the sorts of study outlined above have never been performed on cephalopods in the same way as on gastropods. However, criteria previously applied to gastropods and vertebrates have proved successful in developing a method for humanely anesthetizing Octopus with clinical doses of isoflurane, i.e., changes in respiratory rate, color pattern and withdrawal responses. However, in the long term, further refinements will be needed, including recordings from the CNS of intact animals in the presence of a variety of different anesthetic agents and their adjuvants. Clues as to their likely responsiveness to other appropriate anesthetic agents and muscle relaxants can be gained from background studies on gastropods such as Lymnaea, given their evolutionary history.
Collapse
Affiliation(s)
- William Winlow
- Department of Biology, University of Naples Federico II, Naples, Italy
- Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, United Kingdom
- NPC Newton, Preston, United Kingdom
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Hadi-Fathi Moghadam
- Department of Physiology, Faculty of Medicine, Physiology Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Armstrong R, Riaz S, Hasan S, Iqbal F, Rice T, Syed N. Mechanisms of Anesthetic Action and Neurotoxicity: Lessons from Molluscs. Front Physiol 2018; 8:1138. [PMID: 29410627 PMCID: PMC5787087 DOI: 10.3389/fphys.2017.01138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/27/2017] [Indexed: 01/17/2023] Open
Abstract
Anesthesia is a prerequisite for most surgical procedures in both animals and humans. Significant strides have been made in search of effective and safer compounds that elicit rapid induction and recovery from anesthesia. However, recent studies have highlighted possible negative effects of several anesthetic agents on the developing brain. The precise nature of this cytotoxicity remains to be determined mainly due to the complexity and the intricacies of the mammalian brain. Various invertebrates have contributed significantly toward our understanding of how both local and general anesthetics affect intrinsic membrane and synaptic properties. Moreover, the ability to reconstruct in vitro synapses between individually identifiable pre- and postsynaptic neurons is a unique characteristic of molluscan neurons allowing us to ask fundamental questions vis-à-vis the long-term effects of anesthetics on neuronal viability and synaptic connectivity. Here, we highlight some of the salient aspects of various molluscan organisms and their contributions toward our understanding of the fundamental mechanisms underlying the actions of anesthetic agents as well as their potential detrimental effects on neuronal growth and synaptic connectivity. We also present some novel preliminary data regarding a newer anesthetic agent, dexmedetomidine, and its effects on synaptic transmission between Lymnaea neurons. The findings presented here underscore the importance of invertebrates for research in the field of anesthesiology while highlighting their relevance to both vertebrates and humans.
Collapse
Affiliation(s)
- Ryden Armstrong
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sean Hasan
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tiffany Rice
- Department of Anesthesia, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Naweed Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Armstrong R, Xu F, Arora A, Rasic N, Syed NI. General anesthetics and cytotoxicity: possible implications for brain health. Drug Chem Toxicol 2016; 40:241-249. [PMID: 27252089 DOI: 10.1080/01480545.2016.1188306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The search for agents that bring about faster induction and quicker recovery in the operating room have yielded numerous anesthetics whose mechanisms of action and potential toxic side effects remain unknown, especially in the young and aging brain. OBJECTIVE Taking advantage of our clinical and basic science expertise, here we subject the reader to an interesting perspective vis-à-vis the current applications of general anesthetics, and present evidence for their neurotoxic effects on the developing and elderly brains. RESULTS Recent studies have called into question the safety of general anesthetics, especially with regards to potentially significant detrimental impacts on the developing brains of young children, and cognitive decline in the elderly - often following multiple episodes of anesthesia. Despite accumulating evidence from animal studies demonstrating that general anesthesia leads to neurodegeneration and cognitive impairment, to date a clear consensus on the impact of anesthetics in humans remains elusive. Because a direct impact of anesthetics on human neuronal networks is often difficult to deduce experimentally, most laboratories have resorted to animal models - albeit with limited success in translating these findings back to the clinic. Moreover, the precise mechanisms that lead to potential cognitive, learning, and memory decline in young and elderly patients also remain to be fully defined. CONCLUSIONS This review will focus primarily on the cytotoxic effects of anesthetics, and offer some practical resolutions that may attenuate their long-term harm. An urgent need for studies on animal models and an increased focus on highly controlled prospective epidemiological studies is also reinforced.
Collapse
Affiliation(s)
- Ryden Armstrong
- a The Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada
| | - Fenglian Xu
- a The Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada.,b Department of Biology , Saint Louis University , Saint Louis , MO , USA , and
| | - Anish Arora
- a The Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada
| | - Nivez Rasic
- c Pediatric Anesthesia and Pain Medicine, Alberta Children's Hospital , Calgary , Alberta , Canada
| | - Naweed I Syed
- a The Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
5
|
Onizuka S, Tamura R, Yonaha T, Oda N, Kawasaki Y, Shirasaka T, Shiraishi S, Tsuneyoshi I. Clinical dose of lidocaine destroys the cell membrane and induces both necrosis and apoptosis in an identified Lymnaea neuron. J Anesth 2011; 26:54-61. [DOI: 10.1007/s00540-011-1260-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 10/06/2011] [Indexed: 11/30/2022]
|
6
|
Onizuka S, Kasaba T, Takasaki M. The Effect of Lidocaine on Cholinergic Neurotransmission in an Identified Reconstructed Synapse. Anesth Analg 2008; 107:1236-42. [DOI: 10.1213/ane.0b013e31818064f6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Onizuka S, Kasaba T, Hamakawa T, Takasaki M. Lidocaine Excites Both Pre- and Postsynaptic Neurons of Reconstructed Respiratory Pattern Generator in Lymnaea stagnalis. Anesth Analg 2005; 100:175-182. [PMID: 15616074 DOI: 10.1213/01.ane.0000139307.91617.6d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lidocaine causes both inhibition and excitation in the central nervous system, including the respiratory pattern. The excitation induced by an excessive dose of local anesthetic is thought to be the result of an initial blockade of an inhibitory pathway in the cerebral cortex. To clarify the effect of lidocaine on the pre- and postsynaptic neurons of an inhibitory synapse, a cultured soma-soma respiratory pattern generator model consisting of two neurons from the snail Lymnaea stagnalis were reconstructed in vitro. First we investigated the effects of lidocaine on single presynaptic (RPeD1) or postsynaptic (VD4) neurons. While RPeD1 and VD4 were simultaneously recorded, the number of action potentials, the membrane potential, and the wavelength of the action potential were compared before and after lidocaine (0.01, 0.1, and 1 mM) administration. Lidocaine increased the number of action potentials and the wavelength of a single action potential, and it depolarized the resting membrane potential in both RPeD1 and VD4 neurons in a dose-dependent manner. Furthermore, lidocaine decreased outward potassium currents. In soma-soma pairs, RPeD1 excitation and VD4 suppression occurred in 0.01 mM lidocaine, whereas both RPeD1 and VD4 neurons were excited by 0.1 and 1 mM lidocaine. In conclusion, lidocaine causes a reduction in synaptic transmission and general neuronal excitation in both presynaptic and postsynaptic neurons.
Collapse
Affiliation(s)
- Shin Onizuka
- Department of Anesthesiology, Miyazaki Medical College, University of Miyazaki, Kiyotake-Cho, Miyazaki, Japan
| | | | | | | |
Collapse
|
8
|
Szabo TM, Faber DS, Zoran MJ. Transient electrical coupling delays the onset of chemical neurotransmission at developing synapses. J Neurosci 2004; 24:112-20. [PMID: 14715944 PMCID: PMC6729585 DOI: 10.1523/jneurosci.4336-03.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation and subsequent elimination of electrical coupling between neurons has been demonstrated in many developing vertebrate and invertebrate nervous systems. The relationship between the disappearance of electrical synaptic connectivity and the appearance of chemical neurotransmission is not well understood. We report here that identified motoneurons from the snail Helisoma formed transient electrical and chemical connections during regeneration both in vivo and in vitro. Electrical connections that formed in vivo were strongest by day 2 and no longer detectable by day 7. During elimination of this electrical connection, an inhibitory chemical connection from 110 onto 19 formed. This sequence of synaptic development was recapitulated in cell culture with a similar time course. The relationship between the appearance of transient electrical coupling and its possible effects on the subsequent chemical synaptogenesis were examined by reducing transient intercellular coupling. Trophic factor-deprived medium resulted in a 66% reduction in coupling coefficient. In these conditions, the unidirectional chemical connection formed readily; in contrast, chemical synaptogenesis was delayed in cell pairs exposed to trophic factors where transient electrical coupling was strong. Dye coupling and synaptic vesicle cycling studies supported electrophysiological results. Exposure to cholinergic antagonists, curare and hexamethonium bromide, which block chemical neurotransmission in these synapses, resulted in prolonged maintenance of the electrical connection. These studies demonstrated an inverse relationship between chemical and electrical connectivity at early stages of synaptic development and suggest a dynamic interaction between these forms of neuronal communication as adult neural networks are constructed or regenerated.
Collapse
Affiliation(s)
- Theresa M Szabo
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10465, USA
| | | | | |
Collapse
|
9
|
Woodall AJ, Naruo H, Prince DJ, Feng ZP, Winlow W, Takasaki M, Syed NI. Anesthetic treatment blocks synaptogenesis but not neuronal regeneration of cultured Lymnaea neurons. J Neurophysiol 2003; 90:2232-9. [PMID: 12815022 DOI: 10.1152/jn.00347.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trauma and injury necessitate the use of various surgical interventions, yet such procedures themselves are invasive and often interrupt synaptic communications in the nervous system. Because anesthesia is required during surgery, it is important to determine whether long-term exposure of injured nervous tissue to anesthetics is detrimental to regeneration of neuronal processes and synaptic connections. In this study, using identified molluscan neurons, we provide direct evidence that the anesthetic propofol blocks cholinergic synaptic transmission between soma-soma paired Lymnaea neurons in a dose-dependent and reversible manner. These effects do not involve presynaptic secretory machinery, but rather postsynaptic acetylcholine receptors were affected by the anesthetic. Moreover, we discovered that long-term (18-24 h) anesthetic treatment of soma-soma paired neurons blocked synaptogenesis between these cells. However, after several hours of anesthetic washout, synapses developed between the neurons in a manner similar to that seen in vivo. Long-term anesthetic treatment of the identified neurons visceral dorsal 4 (VD4) and left pedal dorsal 1 (LPeD1) and the electrically coupled Pedal A cluster neurons (PeA) did not affect nerve regeneration in cell culture as the neurons continued to exhibit extensive neurite outgrowth. However, these sprouted neurons failed to develop chemical (VD4 and LPeD1) and electrical (PeA) synapses as observed in their control counterparts. After drug washout, appropriate synapses did reform between the cells, although this synaptogenesis required several days. Taken together, this study provides the first direct evidence that the clinically used anesthetic propofol does not affect nerve regeneration. However, the formation of both chemical and electrical synapses is severely compromised in the presence of this drug. This study emphasizes the importance of short-term anesthetic treatment, which may be critical for the restoration of synaptic connections between injured neurons.
Collapse
Affiliation(s)
- Alyson J Woodall
- Biological Sciences, University of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
10
|
Feng ZP, Grigoriev N, Munno D, Lukowiak K, MacVicar BA, Goldberg JI, Syed NI. Development of Ca2+ hotspots between Lymnaea neurons during synaptogenesis. J Physiol 2002; 539:53-65. [PMID: 11850501 PMCID: PMC2290139 DOI: 10.1113/jphysiol.2001.013125] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Calcium (Ca2+) channel clustering at specific presynaptic sites is a hallmark of mature synapses. However, the spatial distribution patterns of Ca2+ channels at newly formed synapses have not yet been demonstrated. Similarly, it is unclear whether Ca2+ 'hotspots' often observed at the presynaptic sites are indeed target cell contact specific and represent a specialized mechanism by which Ca2+ channels are targeted to select synaptic sites. Utilizing both soma-soma paired (synapsed) and single neurons from the mollusk Lymnaea, we have tested the hypothesis that differential gradients of voltage-dependent Ca2+ signals develop in presynaptic neuron at its contact point with the postsynaptic neuron; and that these Ca2+ hotspots are target cell contact specific. Fura-2 imaging, or two-photon laser scanning microscopy of Calcium Green, was coupled with electrophysiological techniques to demonstrate that voltage-induced Ca2+ gradients (hotspots) develop in the presynaptic cell at its contact point with the postsynaptic neuron, but not in unpaired single cells. The incidence of Ca2+ hotspots coincided with the appearance of synaptic transmission between the paired cells, and these gradients were target cell contact specific. In contrast, the voltage-induced Ca2+ signal in unpaired neurons was uniformly distributed throughout the somata; a similar pattern of Ca2+ gradient was observed in the presynaptic neuron when it was soma-soma paired with a non-synaptic partner cell. Moreover, voltage clamp recording techniques, in conjunction with a fast, optical differential perfusion system, were used to demonstrate that the total whole-cell Ca2+ (or Ba2+) current density in single and paired cells was not significantly different. However, the amplitude of Ba2+ current was significantly higher in the presynaptic cell at its contact side with the postsynaptic neurons, compared with non-contacted regions. In summary, this study demonstrates that voltage-induced Ca2+ hotspots develop in the presynaptic cell, concomitant with the appearance of synaptic transmission between the soma-soma paired cells. The appearance of Ca2+ gradients in presynaptic neurons is target cell contact specific and is probably due to a spatial redistribution of existing channels during synaptogenesis.
Collapse
Affiliation(s)
- Zhong-Ping Feng
- Respiratory and Neuroscience Research Groups, Faculty of Medicine, University of Calgary, 3330-Hospital Drive, NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | |
Collapse
|