1
|
Dickerson MT, Dadi PK, Altman MK, Verlage KR, Thorson AS, Jordan KL, Vierra NC, Amarnath G, Jacobson DA. Glucose-mediated inhibition of calcium-activated potassium channels limits α-cell calcium influx and glucagon secretion. Am J Physiol Endocrinol Metab 2019; 316:E646-E659. [PMID: 30694690 PMCID: PMC6482666 DOI: 10.1152/ajpendo.00342.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic α-cells exhibit oscillations in cytosolic Ca2+ (Ca2+c), which control pulsatile glucagon (GCG) secretion. However, the mechanisms that modulate α-cell Ca2+c oscillations have not been elucidated. As β-cell Ca2+c oscillations are regulated in part by Ca2+-activated K+ (Kslow) currents, this work investigated the role of Kslow in α-cell Ca2+ handling and GCG secretion. α-Cells displayed Kslow currents that were dependent on Ca2+ influx through L- and P/Q-type voltage-dependent Ca2+ channels (VDCCs) as well as Ca2+ released from endoplasmic reticulum stores. α-Cell Kslow was decreased by small-conductance Ca2+-activated K+ (SK) channel inhibitors apamin and UCL 1684, large-conductance Ca2+-activated K+ (BK) channel inhibitor iberiotoxin (IbTx), and intermediate-conductance Ca2+-activated K+ (IK) channel inhibitor TRAM 34. Moreover, partial inhibition of α-cell Kslow with apamin depolarized membrane potential ( Vm) (3.8 ± 0.7 mV) and reduced action potential (AP) amplitude (10.4 ± 1.9 mV). Although apamin transiently increased Ca2+ influx into α-cells at low glucose (42.9 ± 10.6%), sustained SK (38.5 ± 10.4%) or BK channel inhibition (31.0 ± 11.7%) decreased α-cell Ca2+ influx. Total α-cell Ca2+c was similarly reduced (28.3 ± 11.1%) following prolonged treatment with high glucose, but it was not decreased further by SK or BK channel inhibition. Consistent with reduced α-cell Ca2+c following prolonged Kslow inhibition, apamin decreased GCG secretion from mouse (20.4 ± 4.2%) and human (27.7 ± 13.1%) islets at low glucose. These data demonstrate that Kslow activation provides a hyperpolarizing influence on α-cell Vm that sustains Ca2+ entry during hypoglycemic conditions, presumably by preventing voltage-dependent inactivation of P/Q-type VDCCs. Thus, when α-cell Ca2+c is elevated during secretagogue stimulation, Kslow activation helps to preserve GCG secretion.
Collapse
Affiliation(s)
- Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Molly K Altman
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Kenneth R Verlage
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- School of Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas
- Department of Urology, Oregon Health and Science University , Portland, Oregon
| | - Ariel S Thorson
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Kelli L Jordan
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Nicholas C Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Department of Neurobiology, Physiology and Behavior University of California , Davis, California
| | - Gautami Amarnath
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Experimental and Clinical Neurosciences, University of Regensburg , Regensburg , Germany
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
2
|
Kirchner MK, Foehring RC, Callaway J, Armstrong WE. Specificity in the interaction of high-voltage-activated Ca 2+ channel types with Ca 2+-dependent afterhyperpolarizations in magnocellular supraoptic neurons. J Neurophysiol 2018; 120:1728-1739. [PMID: 30020842 DOI: 10.1152/jn.00285.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnocellular oxytocin (OT) and vasopressin (VP) neurons express an afterhyperpolarization (AHP) following spike trains that attenuates firing rate and contributes to burst patterning. This AHP includes contributions from an apamin-sensitive, medium-duration AHP (mAHP) and from an apamin-insensitive, slow-duration AHP (sAHP). These AHPs are Ca2+ dependent and activated by Ca2+ influx through voltage-gated Ca2+ channels. Across central nervous system neurons that generate Ca2+-dependent AHPs, the Ca2+ channels that couple to the mAHP and sAHP differ greatly, but for magnocellular neurosecretory cells this relationship is unknown. Using simultaneous whole cell recording and Ca2+ imaging, we evaluated the effect of specific high-voltage-activated (HVA) Ca2+ channel blockers on the mAHP and sAHP. Block of all HVA channels via 400 μM Cd2+ inhibited almost the entire AHP. We tested nifedipine, conotoxin GVIA, agatoxin IVA, and SNX-482, specific blockers of L-, N-, P/Q-, and R-type channels, respectively. The N-type channel blocker conotoxin GVIA (1 μM) was the only toxin that inhibited the mAHP in either OT or VP neurons although the effect on VP neurons was weaker by comparison. The sAHP was significantly inhibited by N-type block in OT neurons and by R-type block in VP neurons although neither accounted for the entirety of the sAHP. Thus the mAHP appears to be elicited by Ca2+ from mostly N-type channels in both OT and VP neurons, but the contributions of specific Ca2+ channel types to the sAHP in each cell type are different. Alternative sources to HVA channels may contribute Ca2+ for the sAHP. NEW & NOTEWORTHY Despite the importance of afterhyperpolarization (AHP) mechanisms for regulating firing behavior of oxytocin (OT) and vasopressin (VP) neurons of supraoptic nucleus, which types of high-voltage-activated Ca2+ channels elicit AHPs in these cells was unknown. We found that N-type channels couple to the medium AHP in both cell types. For the slow AHP, N-type channels contribute in OT neurons, whereas R-type contribute in VP neurons. No single Ca2+ channel blocker abolished the entire AHP, suggesting that additional Ca2+ sources are involved.
Collapse
Affiliation(s)
- Matthew K Kirchner
- University of Tennessee Health Science Center, Department of Anatomy & Neurobiology
| | - Robert C Foehring
- University of Tennessee Health Science Center, Department of Anatomy & Neurobiology
| | - Joseph Callaway
- University of Tennessee Health Science Center, Department of Anatomy & Neurobiology
| | - William E Armstrong
- University of Tennessee Health Science Center, Department of Anatomy & Neurobiology
| |
Collapse
|
3
|
Martinez-Pinna J, Soriano S, Tudurí E, Nadal A, de Castro F. A Calcium-Dependent Chloride Current Increases Repetitive Firing in Mouse Sympathetic Neurons. Front Physiol 2018; 9:508. [PMID: 29867553 PMCID: PMC5960682 DOI: 10.3389/fphys.2018.00508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/20/2018] [Indexed: 11/18/2022] Open
Abstract
Ca2+-activated ion channels shape membrane excitability in response to elevations in intracellular Ca2+. The most extensively studied Ca2+-sensitive ion channels are Ca2+-activated K+ channels, whereas the physiological importance of Ca2+-activated Cl- channels has been poorly studied. Here we show that a Ca2+-activated Cl- currents (CaCCs) modulate repetitive firing in mouse sympathetic ganglion cells. Electrophysiological recording of mouse sympathetic neurons in an in vitro preparation of the superior cervical ganglion (SCG) identifies neurons with two different firing patterns in response to long depolarizing current pulses (1 s). Neurons classified as phasic (Ph) made up 67% of the cell population whilst the remainders were tonic (T). When a high frequency train of spikes was induced by intracellular current injection, SCG sympathetic neurons reached an afterpotential mainly dependent on the ratio of activation of two Ca2+-dependent currents: the K+ [IK(Ca)] and CaCC. When the IK(Ca) was larger, an afterhyperpolarization was the predominant afterpotential but when the CaCC was larger, an afterdepolarization (ADP) was predominant. These afterpotentials can be observed after a single action potential (AP). Ph and T neurons had similar ADPs and hence, the CaCC does not seem to determine the firing pattern (Ph or T) of these neurons. However, inhibition of Ca2+-activated Cl- channels with anthracene-9'-carboxylic acid (9AC) selectively inhibits the ADP, reducing the firing frequency and the instantaneous frequency without affecting the characteristics of single- or first-spike firing of both Ph and T neurons. Furthermore, we found that the CaCC underlying the ADP was significantly larger in SCG neurons from males than from females. Furthermore, the CaCC ANO1/TMEM16A was more strongly expressed in male than in female SCGs. Blocking ADPs with 9AC did not modify synaptic transmission in either Ph or T neurons. We conclude that the CaCC responsible for ADPs increases repetitive firing in both Ph and T neurons, and it is more relevant in male mouse sympathetic ganglion neurons.
Collapse
Affiliation(s)
- Juan Martinez-Pinna
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Sergi Soriano
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Eva Tudurí
- Institute of Bioengineering and CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Miguel Hernández University of Elche, Elche, Spain
| | - Angel Nadal
- Institute of Bioengineering and CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Miguel Hernández University of Elche, Elche, Spain
| | | |
Collapse
|
4
|
Effects of K(+) channel openers on spontaneous action potentials in detrusor smooth muscle of the guinea-pig urinary bladder. Eur J Pharmacol 2016; 789:179-186. [PMID: 27455901 DOI: 10.1016/j.ejphar.2016.07.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 12/18/2022]
Abstract
The modulation of spontaneous excitability in detrusor smooth muscle (DSM) upon the pharmacological activation of different populations of K(+) channels was investigated. Effects of distinct K(+) channel openers on spontaneous action potentials in DSM of the guinea-pig bladder were examined using intracellular microelectrode techniques. NS1619 (10μM), a large conductance Ca(2+)-activated K(+) (BK) channel opener, transiently increased action potential frequency and then prevented their generation without hyperpolarizing the membrane in a manner sensitive to iberiotoxin (IbTX, 100nM). A higher concentration of NS1619 (30μM) hyperpolarized the membrane and abolished action potential firing. NS309 (10μM) and SKA31 (100μM), small conductance Ca(2+)-activated K(+) (SK) channel openers, dramatically increased the duration of the after-hyperpolarization and then abolished action potential firing in an apamin (100nM)-sensitive manner. Flupirtine (10μM), a Kv7 channel opener, inhibited action potential firing without hyperpolarizing the membrane in a manner sensitive to XE991 (10μM), a Kv7 channel blocker. BRL37344 (10μM), a β3-adrenceptor agonist, or rolipram (10nM), a phosphodiesterase 4 inhibitor, also inhibited action potential firing. A higher concentration of rolipram (100nM) hyperpolarized the DSM and abolished the action potentials. IbTX (100nM) prevented the rolipram-induced blockade of action potentials but not the hyperpolarization. BK and Kv7 channels appear to predominantly contribute to the stabilization of DSM excitability. Spare SK channels could be pharmacologically activated to suppress DSM excitability. BK channels appear to be involved in the cyclic AMP-induced inhibition of action potentials but not the membrane hyperpolarization.
Collapse
|
5
|
Albiñana E, Segura-Chama P, Baraibar AM, Hernández-Cruz A, Hernández-Guijo JM. Different contributions of calcium channel subtypes to electrical excitability of chromaffin cells in rat adrenal slices. J Neurochem 2015; 133:511-21. [DOI: 10.1111/jnc.13055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/22/2014] [Accepted: 01/22/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Elisa Albiñana
- Departament of Pharmacology and Therapeutics; University Autónoma de Madrid; Madrid Spain
- Instituto Teófilo Hernando; University Autónoma de Madrid; Madrid Spain
- Facultad de Medicina; University Autónoma de Madrid; Madrid Spain
| | - Pedro Segura-Chama
- Unidad de Investigación de Medicina Experimental; Facultad de Medicina; Universidad Nacional Autónoma de México; Ciudad Universitaria; México City México
| | - Andres M. Baraibar
- Departament of Pharmacology and Therapeutics; University Autónoma de Madrid; Madrid Spain
- Instituto Teófilo Hernando; University Autónoma de Madrid; Madrid Spain
- Facultad de Medicina; University Autónoma de Madrid; Madrid Spain
| | - Arturo Hernández-Cruz
- Departamento de Neurociencia Cognitiva; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; Ciudad Universitaria; México City México
| | - Jesus M. Hernández-Guijo
- Departament of Pharmacology and Therapeutics; University Autónoma de Madrid; Madrid Spain
- Instituto Teófilo Hernando; University Autónoma de Madrid; Madrid Spain
- Facultad de Medicina; University Autónoma de Madrid; Madrid Spain
| |
Collapse
|
6
|
Lin M, Hatcher JT, Wurster RD, Chen QH, Cheng ZJ. Characteristics of single large-conductance Ca2+-activated K+ channels and their regulation of action potentials and excitability in parasympathetic cardiac motoneurons in the nucleus ambiguus. Am J Physiol Cell Physiol 2013; 306:C152-66. [PMID: 24196530 DOI: 10.1152/ajpcell.00423.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large-conductance Ca2(+)-activated K+ channels (BK) regulate action potential (AP) properties and excitability in many central neurons. However, the properties and functional roles of BK channels in parasympathetic cardiac motoneurons (PCMNs) in the nucleus ambiguus (NA) have not yet been well characterized. In this study, the tracer X-rhodamine-5 (and 6)-isothiocyanate (XRITC) was injected into the pericardial sac to retrogradely label PCMNs in FVB mice at postnatal 7-9 days. Two days later, XRITC-labeled PCMNs in brain stem slices were identified. Using excised patch single-channel recordings, we identified voltage-gated and Ca(2+)-dependent BK channels in PCMNs. The majority of BK channels exhibited persistent channel opening during voltage holding. These BK channels had a conductance of 237 pS and a 50% opening probability at +27.9 mV, the channel open time constant was 3.37 ms at +20 mV, and dwell time increased exponentially as the membrane potential depolarized. At the +20-mV holding potential, the [Ca2+]50 was 15.2 μM with a P0.5 of 0.4. Occasionally, some BK channels showed a transient channel opening and fast inactivation. Using whole cell voltage clamp, we found that BK channel mediated outward currents and afterhyperpolarization currents (IAHP). Using whole cell current clamp, we found that application of BK channel blocker iberiotoxin (IBTX) increased spike half-width and suppressed fast afterhyperpolarization (fAHP) amplitude following single APs. In addition, IBTX application increased spike half-width and reduced the spike frequency-dependent AP broadening in trains and spike frequency adaption (SFA). Furthermore, BK channel blockade decreased spike frequency. Collectively, these results demonstrate that PCMNs have BK channels that significantly regulate AP repolarization, fAHP, SFA, and spike frequency. We conclude that activation of BK channels underlies one of the mechanisms for facilitation of PCMN excitability.
Collapse
Affiliation(s)
- Min Lin
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| | | | | | | | | |
Collapse
|
7
|
Andrade R, Foehring RC, Tzingounis AV. The calcium-activated slow AHP: cutting through the Gordian knot. Front Cell Neurosci 2012; 6:47. [PMID: 23112761 PMCID: PMC3480710 DOI: 10.3389/fncel.2012.00047] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/05/2012] [Indexed: 11/13/2022] Open
Abstract
The phenomenon known as the slow afterhyperpolarization (sAHP) was originally described more than 30 years ago in pyramidal cells as a slow, Ca(2+)-dependent afterpotential controlling spike frequency adaptation. Subsequent work showed that similar sAHPs were widely expressed in the brain and were mediated by a Ca(2+)-activated potassium current that was voltage-independent, insensitive to most potassium channel blockers, and strongly modulated by neurotransmitters. However, the molecular basis for this current has remained poorly understood. The sAHP was initially imagined to reflect the activation of a potassium channel directly gated by Ca(2+) but recent studies have begun to question this idea. The sAHP is distinct from the Ca(2+)-dependent fast and medium AHPs in that it appears to sense cytoplasmic [Ca(2+)](i) and recent evidence implicates proteins of the neuronal calcium sensor (NCS) family as diffusible cytoplasmic Ca(2+) sensors for the sAHP. Translocation of Ca(2+)-bound sensor to the plasma membrane would then be an intermediate step between Ca(2+) and the sAHP channels. Parallel studies strongly suggest that the sAHP current is carried by different potassium channel types depending on the cell type. Finally, the sAHP current is dependent on membrane PtdIns(4,5)P(2) and Ca(2+) appears to gate this current by increasing PtdIns(4,5)P(2) levels. Because membrane PtdIns(4,5)P(2) is essential for the activity of many potassium channels, these finding have led us to hypothesize that the sAHP reflects a transient Ca(2+)-induced increase in the local availability of PtdIns(4,5)P(2) which then activates a variety of potassium channels. If this view is correct, the sAHP current would not represent a unitary ionic current but the embodiment of a generalized potassium channel gating mechanism. This model can potentially explain the cardinal features of the sAHP, including its cellular heterogeneity, slow kinetics, dependence on cytoplasmic [Ca(2+)], high temperature-dependence, and modulation.
Collapse
Affiliation(s)
- Rodrigo Andrade
- Department of Pharmacology, Wayne State University School of Medicine Detroit, MI, USA
| | | | | |
Collapse
|
8
|
Vogl C, Mochida S, Wolff C, Whalley BJ, Stephens GJ. The synaptic vesicle glycoprotein 2A ligand levetiracetam inhibits presynaptic Ca2+ channels through an intracellular pathway. Mol Pharmacol 2012; 82:199-208. [PMID: 22554805 DOI: 10.1124/mol.111.076687] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Levetiracetam (LEV) is a prominent antiepileptic drug that binds to neuronal synaptic vesicle glycoprotein 2A protein and has reported effects on ion channels, but with a poorly defined mechanism of action. We investigated inhibition of voltage-dependent Ca(2+) (Ca(V)) channels as a potential mechanism through which LEV exerts effects on neuronal activity. We used electrophysiological methods to investigate the effects of LEV on cholinergic synaptic transmission and Ca(V) channel activity in superior cervical ganglion neurons (SCGNs). In parallel, we investigated the effects of the inactive LEV R-enantiomer, (R)-α-ethyl-2-oxo-1-pyrrolidine acetamide (UCB L060). LEV but not UCB L060 (each at 100 μM) inhibited synaptic transmission between SCGNs in long-term culture in a time-dependent manner, significantly reducing excitatory postsynaptic potentials after a ≥30-min application. In isolated SCGNs, LEV pretreatment (≥1 h) but not short-term application (5 min) significantly inhibited whole-cell Ba(2+) current (I(Ba)) amplitude. In current-clamp recordings, LEV reduced the amplitude of the afterhyperpolarizing potential in a Ca(2+)-dependent manner but also increased the action potential latency in a Ca(2+)-independent manner, which suggests additional mechanisms associated with reduced excitability. Intracellular LEV application (4-5 min) caused rapid inhibition of I(Ba) amplitude, to an extent comparable to that seen with extracellular LEV pretreatment (≥1 h). Neither pretreatment nor intracellular application of UCB L060 produced any inhibitory effects on I(Ba) amplitude. These results identify a stereospecific intracellular pathway through which LEV inhibits presynaptic Ca(V) channels; resultant reductions in neuronal excitability are proposed to contribute to the anticonvulsant effects of LEV.
Collapse
Affiliation(s)
- Christian Vogl
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | | | | | | | | |
Collapse
|
9
|
Guo YY, Liu SB, Cui GB, Ma L, Feng B, Xing JH, Yang Q, Li XQ, Wu YM, Xiong LZ, Zhang W, Zhao MG. Acute stress induces down-regulation of large-conductance Ca2+-activated potassium channels in the lateral amygdala. J Physiol 2011; 590:875-86. [PMID: 22199169 DOI: 10.1113/jphysiol.2011.223784] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Large-conductance Ca2+-activated potassium channels (BKCa) are highly expressed in the lateral amygdala (LA), which is closely involved in assigning stress disorders, but data on their role in the neuronal circuits of stress disorders are limited. In the present study, a significant reduction in BKCa channel expression in the amygdala of mice accompanied anxiety-like behaviour induced by acute stress. Whole-cell patch-clamp recordings from LA neurons of the anxious animals revealed a pronounced reduction in the fast after-hyperpolarization (fAHP) of action potentials mediated by BKCa channels that led to hyperexcitability of the LA neurons. Activation of BKCa channels in the LA reversed stress-induced anxiety-like behaviour after stress. Furthermore, down-regulated BKCa channels notably increased the evoked NMDA receptor-mediated excitatory postsynaptic potentials at the thalamo-LA synapses. These data demonstrate, for the first time, that restraint stress-induced anxiety-like behaviour could at least partly be explained by alterations in the functional BKCa channels in the LA.
Collapse
Affiliation(s)
- Yan-yan Guo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway. Neuroscience 2010; 167:1091-102. [PMID: 20211697 DOI: 10.1016/j.neuroscience.2010.02.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/09/2010] [Accepted: 02/23/2010] [Indexed: 11/24/2022]
Abstract
Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migraine pathophysiology. Here we study the expression and localization of BK(Ca) channels and CGRP in the rat trigeminal ganglion (TG) and the trigeminal nucleus caudalis (TNC) as these structures are involved in migraine pain. Also the effect of the BK(Ca) channel blocker iberiotoxin and the BK(Ca) channel opener NS11021 on CGRP release from isolated TG and TNC was investigated. By RT-PCR, BK(Ca) channel mRNA was detected in the TG and the TNC. A significant difference in BK(Ca) channel mRNA transcript levels were found using qPCR between the TNC as compared to the TG. The BK(Ca) channel protein was more expressed in the TNC as compared to the TG shown by western blotting. Immunohistochemistry identified BK(Ca) channels in the nerve cell bodies of the TG and the TNC. The beta2- and beta4-subunit proteins were found in the TG and the TNC. They were both more expressed in the TNC as compared to TG shown by western blotting. In isolated TNC, the BK(Ca) channel blocker iberiotoxin induced a concentration-dependent release of CGRP that was attenuated by the BK(Ca) channel opener NS11021. No effect on basal CGRP release was found by NS11021 in isolated TG or TNC or by iberiotoxin in TG. In conclusion, we found both BK(Ca) channel mRNA and protein expression in the TG and the TNC. The BK(Ca) channel protein and the modulatory beta2- and beta4-subunt proteins were more expressed in the TNC than in the TG. Iberiotoxin induced an increase in CGRP release from the TNC that was attenuated by NS11021. Thus, BK(Ca) channels might have a role in trigeminovascular pain transmission.
Collapse
|
11
|
Chen SR, Cai YQ, Pan HL. Plasticity and emerging role of BKCa channels in nociceptive control in neuropathic pain. J Neurochem 2009; 110:352-62. [PMID: 19457113 DOI: 10.1111/j.1471-4159.2009.06138.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Large-conductance Ca(2+)-activated K(+) (BK(Ca), MaxiK) channels are important for the regulation of neuronal excitability. Peripheral nerve injury causes plasticity of primary afferent neurons and spinal dorsal horn neurons, leading to central sensitization and neuropathic pain. However, little is known about changes in the BK(Ca) channels in the dorsal root ganglion (DRG) and spinal dorsal horn and their role in the control of nociception in neuropathic pain. Here we show that L5 and L6 spinal nerve ligation in rats resulted in a substantial reduction in both the mRNA and protein levels of BK(Ca) channels in the DRG but not in the spinal cord. Nerve injury primarily reduced the BK(Ca) channel immunoreactivity in small- and medium-sized DRG neurons. Furthermore, although the BK(Ca) channel immunoreactivity was decreased in the lateral dorsal horn, there was an increase in the BK(Ca) channel immunoreactivity present on dorsal horn neurons near the dorsal root entry zone. Blocking the BK(Ca) channel with iberiotoxin at the spinal level significantly reduced the mechanical nociceptive withdrawal threshold in control and nerve-injured rats. Intrathecal injection of the BK(Ca) channel opener [1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one] dose dependently reversed allodynia and hyperalgesia in nerve-ligated rats but it had no significant effect on nociception in control rats. Our study provides novel information that nerve injury suppresses BK(Ca) channel expression in the DRG and induces a redistribution of BK(Ca) channels in the spinal dorsal horn. BK(Ca) channels are increasingly involved in the control of sensory input in neuropathic pain and may represent a new target for neuropathic pain treatment.
Collapse
Affiliation(s)
- Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | |
Collapse
|
12
|
Vatanparast J, Janahmadi M. Contribution of apamin-sensitive SK channels to the firing precision but not to the slow afterhyperpolarization and spike frequency adaptation in snail neurons. Brain Res 2008; 1255:57-66. [PMID: 19100724 DOI: 10.1016/j.brainres.2008.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
Apamin-sensitive small conductance Ca(2+)-dependent K(+)(SK) channels are generally accepted as responsible for the medium afterhyperpolarization (mAHP) after single or train of action potentials. Here, we examined the functional involvement of these channels in the firing precision, post train AHP and spike frequency adaptation (SFA) in neurons of snail Caucasotachea atrolabiata. Apamin, a selective SK channel antagonist, reduced the duration of single-spike AHP and disrupted the spontaneous rhythmic activity. High frequency trains of evoked action potentials showed a time-dependent decrease in the action potential discharge rate (spike frequency adaptation) and followed by a prominent post stimulus inhibitory period (PSIP) as a marker of slow AHP (sAHP). Neither sAHP nor SFA was attenuated by apamin, suggesting that apamin-sensitive SK channels can strongly affect the rhythmicity, but are probably not involved in the SFA and sAHP. Nifedipine, antagonist of L-type Ca(2+) channels, decreased the firing frequency and neuronal rhythmicity. When PSIP was normalized to the background interspike interval, a suppressing effect of nifedipine on PSIP was also observed. Intracellular iontophoretic injection of BAPTA, a potent Ca(2+) chelator, dramatically suppressed PSIP that confirms the intracellular Ca(2+) dependence of the sAHP, but had no discernable effect on the SFA. During train-evoked activity a reduction in the action potential overshoot and maximum depolarization rate was also observed, along with a decrease in the firing frequency, while the action potential threshold increased, which indicated that Na(+) channels, rather than Ca(2+)-dependent K(+) channels, are involved in the SFA.
Collapse
Affiliation(s)
- Jafar Vatanparast
- Department of Biology, College of Sciences, Shiraz University, Adabiat Intersection, Shiraz 71454, Iran.
| | | |
Collapse
|
13
|
Lin F, Xin Y, Wang J, Ma L, Liu J, Liu C, Long L, Wang F, Jin Y, Zhou J, Chen J. Puerarin facilitates Ca(2+)-induced Ca(2+) release triggered by KCl-depolarization in primary cultured rat hippocampal neurons. Eur J Pharmacol 2007; 570:43-9. [PMID: 17610871 DOI: 10.1016/j.ejphar.2007.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Revised: 05/05/2007] [Accepted: 05/21/2007] [Indexed: 11/29/2022]
Abstract
The effects of puerarin on behaviour and brain neuronal activity in animal studies have been described previously. However, molecule mechanisms underlying these effects were poorly understood. Here, we examined the regulation of puerarin on the Ca(2+) signals in primary rat hippocampal neurons using Fura-2 based calcium imaging techniques. Application of puerarin had no effect on the basal intracellular calcium concentration ([Ca(2+)](i)), but potentiated the KCl-evoked [Ca(2+)](i) transient in 87% of recorded neurons. Dantrolene or ruthenium red, the inhibitors of ryanodine receptors, completely blocked this potentiation induced by puerarin. Moreover, in Ca(2+)-free solution, pre-application of puerarin significantly augmented the elevation of [Ca(2+)](i) evoked by caffeine (3 mM), which is a specific agent to activate the ryanodine receptors. In contrast, nifedipine failed to prevent the potentiation induced by puerarin. Similarly, in the experiments of whole-cell patch-clamp recording, puerarin did not show any effect on calcium currents generated by depolarization pulses. These data demonstrated that the potentiation induced by puerarin was attributed to the facilitation of Ca(2+)-induced Ca(2+) release (CICR) via ryanodine receptors, rather than extracellular Ca(2+) influx. Using estrogen receptor antagonist ICI 182780 and tamoxifen, we further demonstrated that the potentiation induced by puerarin was mediated by the estrogen receptor. Furthermore, the membrane-permeant inhibitor of protein kinase A (PKA) H89 completely inhibited this potentiation. However, U-73122, the inhibitor of phospholipase C (PLC) had no effect, indicating that the cyclic AMP/PKA signaling pathway was involved in the activation of CICR by puerarin.
Collapse
Affiliation(s)
- Fankai Lin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Davies PJ, Thomas EA, Bornstein JC. Different types of potassium channels underlie the long afterhyperpolarization in guinea-pig sympathetic and enteric neurons. Auton Neurosci 2006; 124:26-30. [PMID: 16325477 DOI: 10.1016/j.autneu.2005.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 10/06/2005] [Accepted: 10/27/2005] [Indexed: 11/15/2022]
Abstract
Ca(2+)-activated K(+) channels play an important role in the control of neuronal excitability via the generation of the afterhyperpolarization. While both small and large conductance Ca(2+)-activated K(+) channels underlie afterhyperpolarizations in different neuron types, the role of intermediate conductance Ca(2+)-activated K(+) channels (IK(Ca)) in the generation of afterhyperpolarizations remains unclear. The effects of blockade of IK(Ca) on guinea pig coeliac and ileal myenteric neurons were studied using single microelectrode current and voltage clamp. In coeliac neurons, TRAM-39, a selective blocker of IK(Ca), depressed the amplitude of the prolonged conductance underlying the slow afterhyperpolarization, (gKCa2) by 57%. In contrast, the conductance underlying the prolonged afterhyperpolarization in AH-type myenteric neurons was unaffected by TRAM-39, although it has been suggested that this AHP is mediated by IK(Ca). In both types of neurons, TRAM-39 did not alter the resting cell properties or the properties of the action potential. TRAM-39 had no effect on the amplitude of the fast component of the afterhyperpolarization present in sympathetic LAH neurons. The results of this study suggest that in sympathetic LAH neurons, activation of IK(Ca) underlies at least part of the prolonged afterhyperpolarization while the nature of the channel underlying the AHP in enteric neurons remains unclear.
Collapse
Affiliation(s)
- P J Davies
- Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | |
Collapse
|
15
|
Mongan LC, Hill MJ, Chen MX, Tate SN, Collins SD, Buckby L, Grubb BD. The distribution of small and intermediate conductance calcium-activated potassium channels in the rat sensory nervous system. Neuroscience 2005; 131:161-75. [PMID: 15680700 DOI: 10.1016/j.neuroscience.2004.09.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2004] [Indexed: 10/26/2022]
Abstract
Small (SK) and intermediate (IK) conductance calcium-activated potassium channels are candidate ion channels for the regulation of excitability in nociceptive neurones. We have used unique peptide-directed antisera to describe the immunocytochemical distribution of the known isoforms of these ion channels in dorsal root ganglia (DRG) and spinal cord of the rat. These investigations sought to characterize further the phenotype and hence possible functions of nociceptive neurone subpopulations in the rat. In addition, using Western blotting, we sought to determine the level of protein expression of SK and IK channels in sensory nervous tissues following induction of inflammation (Freund's Complete Adjuvant (FCA) arthritis model) or nerve injury (chronic constriction injury model). We show that SK1, SK2, SK3 and IK1 are all expressed in DRG and spinal cord. Morphometric analysis revealed that SK1, SK2 and IK1 were preferentially localized to neurones having cell bodies <1000 microm2 (putative nociceptors) in DRG. Dual labeling immunocytochemistry showed that these ion channels co-localize with both CGRP and IB4, known markers of nociceptor sub-populations. SK2 was localized almost exclusively in the superficial laminae of the spinal cord dorsal horn, the region in which many sensory afferents terminate; the distribution of SK1 and IK1 was more widespread in spinal cord, although some preferential labeling within the dorsal horn was observed in the case of IK1. Here we show evidence for a distinctive pattern of expression for certain members of the calcium-activated potassium channel family in the rat DRG.
Collapse
Affiliation(s)
- L C Mongan
- Department of Cell Physiology and Pharmacology, University of Leicester, PO Box 138, Leicester LE1 9HN, UK.
| | | | | | | | | | | | | |
Collapse
|
16
|
Lee JCF, Callaway JC, Foehring RC. Effects of temperature on calcium transients and Ca2+-dependent afterhyperpolarizations in neocortical pyramidal neurons. J Neurophysiol 2004; 93:2012-20. [PMID: 15548621 DOI: 10.1152/jn.01017.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In neocortical pyramidal neurons, the medium (mAHP) and slow AHP (sAHP) have different relationships with intracellular [Ca2+]. To further explore these differences, we varied bath temperature and compared passive and active membrane properties and Ca2+ transients in response to a single action potential (AP) or trains of APs. We tested whether Ca(2+)-dependent events are more temperature sensitive than voltage-dependent ones, the slow rise time of the sAHP is limited by diffusion, and temperature sensitivity differs between the mAHP and sAHP. The onset and decay kinetics of the sAHP were very temperature sensitive (more so than diffusion). We found that the decay time course of Ca2+ transients was also very temperature sensitive. In contrast, the mAHP (amplitude, time to peak, and exponential decay) and sAHP peak amplitude were moderately sensitive to temperature. The amplitudes of intracellular Ca2+ transients evoked either by a single spike or a train of spikes showed modest temperature sensitivities. Pyramidal neuron input resistance was increased by cooling. With the exception of threshold, which remained unchanged between 22 and 35 degrees C, action potential parameters (amplitude, half-width, maximum rates of rise and fall) were modestly affected by temperature. Collectively, these data suggest that temperature sensitivity was higher for the Ca(2+)-dependent sAHP than for voltage-dependent AP parameters or for the mAHP, diffusion of Ca2+ over distance cannot explain the slow rise of the sAHP in these cells, and the kinetics of the sAHP and mAHP are affected differently by temperature.
Collapse
Affiliation(s)
- J C F Lee
- Deptartment of Anatomy and Neurobiology, University of Tennessee, 855 Monroe Ave., Memphis, TN 38163, USA
| | | | | |
Collapse
|
17
|
OuYang W, Wang G, Hemmings HC. Distinct rat neurohypophysial nerve terminal populations identified by size, electrophysiological properties and neuropeptide content. Brain Res 2004; 1024:203-11. [PMID: 15451383 DOI: 10.1016/j.brainres.2004.07.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2004] [Indexed: 11/28/2022]
Abstract
Voltage-gated ion channels are critical to excitation-secretion coupling in nerve terminals. We have identified two distinct populations of rat neurohypophysial (NHP) terminals distinguished by size, neuropeptide content and electrophysiological properties, including resting membrane potential, action potential (AP) properties, and K+ current and Na+ current characteristics. In large terminals (10-16 microm diameter), resting membrane potential was more negative than in small terminals (5-9.9 microm; -61+/-4 mV vs. -55+/-3 mV; p<0.01), action potential amplitude was larger (69+/-4 mV vs. 53+/-3 mV; p<0.01), peak IK was larger (1460+/-90 pA vs. 1140+/-70 pA; p<0.05) with a more negative V1/2 for activation (-3.1 mV vs. -0.6 mV; p<0.05), and Na+ current density was greater (approximately 470 pA/pF vs. approximately 300 pA/pF; p<0.01) with more negative V1/2 values for activation from -70 or -90 mV holding potentials (-44 mV vs. -24 mV; p<0.01). A positive linear correlation between INa amplitude and terminal size showed an inflection at a diameter of 9.2 microm. Neuropeptide content was generally segregated into a population of small terminals (<10 microm diameter) containing predominantly vasopressin and a population of large terminals (> or =10 microm diameter) containing predominantly oxytocin (OT); a small fraction of terminals in each group contained both peptides. These findings suggest that electrophysiological differences between small vasopressin-containing and large oxytocin-containing neurohypophysial terminals may contribute to their observed differential firing and peptide release patterns.
Collapse
Affiliation(s)
- W OuYang
- Department of Anesthesiology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
18
|
Wittekindt OH, Visan V, Tomita H, Imtiaz F, Gargus JJ, Lehmann-Horn F, Grissmer S, Morris-Rosendahl DJ. An Apamin- and Scyllatoxin-Insensitive Isoform of the Human SK3 Channel. Mol Pharmacol 2004; 65:788-801. [PMID: 14978258 DOI: 10.1124/mol.65.3.788] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have isolated an hSK3 isoform from a human embryonic cDNA library that we have named hSK3_ex4. This isoform contains a 15 amino acid insertion within the S5 to P-loop segment. Transcripts encoding hSK3_ex4 are coexpressed at lower levels with hSK3 in neuronal as well as in non-neuronal tissues. To investigate the pharmacokinetic properties of hSK3_ex4, we expressed the isoforms hSK3 and hSK3_ex4 in tsA cells. Both isoforms were similarly activated by cytosolic Ca2+ (hSK3, EC50=0.91 +/- 0.4 microM; hSK3_ex4, EC50=0.78 +/- 0.2 microM) and by 1-ethyl-2-benzimidazolinone (hSK3, EC50=0.17 mM; hSK3_ex4, 0.19 mM). They were both blocked by tetraethylammonium (hSK3, Kd=2.2 mM; hSK3_ex4, 2.6 mM) and showed similar permeabilities relative to K+ for Cs+ (hSK3, 0.17 +/- 0.04, n=3; hSK3_ex4, 0.17 +/- 0.05, n=3) and Rb+ (hSK3, 0.79 +/- 0.04, n=3; hSK3_ex4, 0.8 +/- 0.07, n=3). Ba2+ blocked both isoforms, and in both cases, the block was strongest at hyperpolarizing membrane potentials. However, the voltage-dependence of hSK3 was stronger than that of hSK3_ex4. The most obvious distinguishing feature of this new isoform was that whereas hSK3 was blocked by apamin (Kd=0.8 nM), scyllatoxin (Kd=2.1 nM), and d-tubocurarine (Kd=33.4 microM), hSK3_ex4 was not affected by apamin up to 100 nM, scyllatoxin up to 500 nM, and d-tubocurarine up to 500 microM. So far, isoform hSK3_ex4 forms the only small-conductance calcium-activated potassium (SK) channels, which are insensitive to the classic SK blockers.
Collapse
|
19
|
Jobling P, Gibbins IL, Lewis RJ, Morris JL. Differential expression of calcium channels in sympathetic and parasympathetic preganglionic inputs to neurons in paracervical ganglia of guinea-pigs. Neuroscience 2004; 127:455-66. [PMID: 15262335 DOI: 10.1016/j.neuroscience.2004.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 04/27/2004] [Accepted: 05/05/2004] [Indexed: 11/24/2022]
Abstract
Neurons in pelvic ganglia receive nicotinic excitatory post-synaptic potentials (EPSPs) from sacral preganglionic neurons via the pelvic nerve, lumbar preganglionic neurons via the hypogastric nerve or both. We tested the effect of a range of calcium channel antagonists on EPSPs evoked in paracervical ganglia of female guinea-pigs after pelvic or hypogastric nerve stimulation. omega-Conotoxin GVIA (CTX GVIA, 100 nM) or the novel N-type calcium channel antagonist, CTX CVID (100 nM) reduced the amplitude of EPSPs evoked after pelvic nerve stimulation by 50-75% but had no effect on EPSPs evoked by hypogastric nerve stimulation. Combined addition of CTX GVIA and CTX CVID was no more effective than either antagonist alone. EPSPs evoked by stimulating either nerve trunk were not inhibited by the P/Q calcium channel antagonist, omega-agatoxin IVA (100 nM), nor the L-type calcium channel antagonist, nifedipine (30 microM). SNX 482 (300 nM), an antagonist at some R-type calcium channels, inhibited EPSPs after hypogastric nerve stimulation by 20% but had little effect on EPSPs after pelvic nerve stimulation. Amiloride (100 microM) inhibited EPSPs after stimulation of either trunk by 40%, while nickel (100 microM) was ineffective. CTX GVIA or CTX CVID (100 nM) also slowed the rate of action potential repolarization and reduced afterhyperpolarization amplitude in paracervical neurons. Thus, release of transmitter from the terminals of sacral preganglionic neurons is largely dependent on calcium influx through N-type calcium channels, although an unknown calcium channel which is resistant to selective antagonists also contributes to release. Release of transmitter from lumbar preganglionic neurons does not require calcium entry through either conventional N-type calcium channels or the variant CTX CVID-sensitive N-type calcium channel and seems to be mediated largely by a novel calcium channel.
Collapse
Affiliation(s)
- P Jobling
- Department of Anatomy and Histology, Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| | | | | | | |
Collapse
|
20
|
Comparison of Hermissenda type a and type B photoreceptors: response to light as a function of intensity and duration. J Neurosci 2003. [PMID: 12954863 DOI: 10.1523/jneurosci.23-22-08020.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hermissenda crassicornis is an invertebrate model used to study classical conditioning using light as the conditioned stimulus. The memory of the association is stored in type B photoreceptors, the output of which depends on interactions with type A photoreceptors. To understand the effect of classical conditioning on the output of type B photoreceptors in response to light, we measured the effect of light duration and intensity on membrane potential in both photoreceptor types of Hermissenda. The results show that, independent of light stimulus, the afterhyperpolarization is significantly greater in type A than in type B photoreceptors. In response to light, the generator potential (GP) rises linearly with an increase in either intensity or duration for both type A and type B photoreceptors. However, the difference between type A and type B photoreceptors depends on the time after light onset; the increase in peak GP with intensity is steeper in type A than type B, but by 14 sec after light onset, membrane potential is greater in type B than type A photoreceptors. Similarly, firing frequency increases with intensity and duration in both photoreceptor types but with a difference that is time dependent. During the first second after light onset, type A photoreceptors have a significantly higher firing frequency than type B photoreceptors; after this time, firing frequency is higher in type B than type A photoreceptors. Although membrane potential is correlated with firing frequency, this correlation is much lower in type A than type B photoreceptors, suggesting that some other conductance influences firing frequency in type A photoreceptors.
Collapse
|
21
|
Zhang XF, Gopalakrishnan M, Shieh CC. Modulation of action potential firing by iberiotoxin and NS1619 in rat dorsal root ganglion neurons. Neuroscience 2003; 122:1003-11. [PMID: 14643767 DOI: 10.1016/j.neuroscience.2003.08.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The present study investigated the effects of iberiotoxin (IbTx), a peptide toxin blocker of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels and NS1619, a BK(Ca) channel opener, on action potential firing of small and medium size afferent neurons from L6 and S1 dorsal root ganglia of adult rats. Application of IbTx (100 nM) reduced whole-cell outward currents in 67% of small and medium size neurons. Analysis of action potential profile revealed that IbTx significantly prolonged the duration of action potential and increased firing frequency of afferent neurons. IbTx did not significantly alter the resting membrane potential, threshold for action potential activation and action potential amplitude. The benzimidazolone NS1619 (10 microM) increased opening activity of a Ca(2+)-dependent channel as assessed by single channel measurements. In contrast to IbTx, NS1619 reversibly suppressed action potential firing, attributable to increases in threshold for evoking action potential, reduction in action potential amplitude and increases in amplitude of afterhyperpolarization. The effect of NS1619 on neuronal firing was sensitive to IbTx, indicating the attenuation of neuronal firing by NS1619 was mediated by opening BK(Ca) channels. NS1619 also reduced neuronal hyperexcitability evoked by 4-aminopyridine (4-AP), a transient-inactivated K(+) channel (A-current) blocker, in an IbTx-sensitive manner. These results indicate that IbTx-sensitive BK(Ca) channels exist in both small and medium diameter dorsal root ganglion (DRG) neurons and play important roles in the repolarization of action potential and firing frequency. NS1619 modulates action potential firing and suppresses 4-AP-evoked hyperexcitability in DRG neurons, in part, by opening BK(Ca) channels. These results suggest that opening BK(Ca) channels might be sufficient to suppress hyperexcitability of afferent neurons as those evoked by stimulants or by disease states.
Collapse
Affiliation(s)
- X-F Zhang
- Neuroscience Research, Global Pharmaceutical Research and Development, Department R4PM, Building AP9A, 100 Abbott Park Road, Abbott Park, IL 60064-6125, USA
| | | | | |
Collapse
|
22
|
Vogalis F, Harvey JR, Neylon CB, Furness JB. Regulation of K+ channels underlying the slow afterhyperpolarization in enteric afterhyperpolarization-generating myenteric neurons: role of calcium and phosphorylation. Clin Exp Pharmacol Physiol 2002; 29:935-43. [PMID: 12207575 DOI: 10.1046/j.1440-1681.2002.03755.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Myenteric afterhyperpolarization-generating myenteric (AH) neurons serve as intrinsic primary afferent neurons of the enteric nervous system and generate prolonged or slow afterhyperpolarizing potentials (slow AHP). The slow AHP is generated by an increase in a Ca2+-activated K+ conductance (gK-Ca) and is inhibited by enteric neurotransmitters leading to increased excitability. 2. Using cell-attached patch-clamp recordings from AH neurons, we have shown that K+ channels with an intermediate unitary conductance (IK channels) open following action potential firing. 3. In excised patches from AH neurons, we have identified an IK-like channel that can be activated by submicromolar levels of cytoplasmic Ca2+ and is not voltage dependent. 4. Application of the catalytic subunit of cAMP-dependent protein kinase to the cytoplasmic surface of inside-out patches inhibits the opening of IK-like channels previously activated by Ca2+. 5. The IK-like channels are resistant to external tetraethylammonium (5 mmol/L) and apamin (0.3-1 micro mol/L), but are inhibited by clotrimazole (10 micro mol/L). 6. Our present data support the idea that an increase in the open probability of IK-like channels in AH neurons following an increase in cytoplasmic [Ca2+] is responsible for the slow AHP and their opening is modulated by kinases.
Collapse
Affiliation(s)
- Fivos Vogalis
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
23
|
Gollasch M, Tank J, Luft FC, Jordan J, Maass P, Krasko C, Sharma AM, Busjahn A, Bähring S. The BK channel beta1 subunit gene is associated with human baroreflex and blood pressure regulation. J Hypertens 2002; 20:927-33. [PMID: 12011654 DOI: 10.1097/00004872-200205000-00028] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The baroreflex, which is important for the minute-to-minute regulation of blood pressure and heart rate, is influenced by genetic variance. Ion channels are important to baroreflex afferent and efferent function. Mice missing the beta1 subunit of the Ca2+-sensitive potassium channel (BK) are hypertensive and have a reset baroreflex. We tested the hypothesis that variants in the gene (KCNMB1) coding for the BK beta1 subunit are associated with baroreflex function. METHODS We studied six single-nucleotide polymorphisms (SNPs) in KCNMB1. RESULTS Four SNPs in intron 3, exon 4a, exon 4b and exon 4c gave significant results. For instance, exon 4b SNP AA individuals had higher heart rate variability, compared to CA, or CC persons, in particular in the high-frequency range. The low-frequency range showed no association. Consistent with the heart rate variability data, homozygous AA persons had greater baroreflex slopes than CA or CC persons, also in the high-frequency range. These associations could not be shown in the low-frequency range for heart rate variability and baroreflex slopes. CONCLUSIONS These data support the notion that variants in channel genes may be responsible for the great range in heart rate variability and baroreflex function observed in humans. Such variation may also play a role in the development of hypertension.
Collapse
Affiliation(s)
- Maik Gollasch
- HELIOS Klinikum-Berlin Franz Volhard Clinic and Max Delbrück Center for Molecular Medicine, Medical Faculty of the Charité, Humboldt University of Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Anderson RL, Jobling P, Gibbins IL. Development of electrophysiological and morphological diversity in autonomic neurons. J Neurophysiol 2001; 86:1237-51. [PMID: 11535673 DOI: 10.1152/jn.2001.86.3.1237] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The generation of neuronal diversity requires the coordinated development of differential patterns of ion channel expression along with characteristic differences in dendritic geometry, but the relations between these phenotypic features are not well known. We have used a combination of intracellular recordings, morphological analysis of dye-filled neurons, and stereological analysis of immunohistochemically labeled sections to investigate the development of characteristic electrical and morphological properties of functionally distinct populations of sympathetic neurons that project from the celiac ganglion to the splanchnic vasculature or the gastrointestinal tract of guinea pigs. At early fetal stages, neurons were significantly more depolarized at rest compared with neurons at later stages, and they generally fired only a single action potential. By mid fetal stages, rapidly and slowly adapting neurons could be distinguished with a topographic distribution matching that found in adult ganglia. Most rapidly adapting neurons (phasic neurons) at this age had a long afterhyperpolarization (LAH) characteristic of mature vasomotor neurons and were preferentially located in the lateral poles of the ganglion, where most neurons contained neuropeptide Y. Most early and mid fetal neurons showed a weak M current, which was later expressed only by rapidly-adapting and LAH neurons. Two different A currents were present in a subset of early fetal neurons and may indicate neurons destined to develop a slowly adapting phenotype (tonic neurons). The size of neuronal cell bodies increased at a similar rate throughout development regardless of their electrical or neurochemical phenotype or their topographical location. In contrast, the rate of dendritic growth of neurons in medial regions of the ganglion was significantly higher than that of neurons in lateral regions. The apparent cell capacitance was highly correlated with the surface area of the soma but not the dendritic tree of the developing neurons. These results demonstrate that the well-defined functional populations of neurons in the celiac ganglion develop their characteristic electrophysiological and morphological properties during early fetal stages of development. This is after the neuronal populations can be recognized by their neurochemical and topographical characteristics but long before the neurons have finished growing. Our data provide strong circumstantial evidence that the development of the full phenotype of different functional classes of autonomic final motor neurons is a multi-step process likely to involve a regulated sequence of trophic interactions.
Collapse
Affiliation(s)
- R L Anderson
- Centre for Neuroscience, Department of Anatomy and Histology, Flinders University, Adelaide, SA 5001, Australia.
| | | | | |
Collapse
|
25
|
Jobling P, Messenger JP, Gibbins IL. Differential Expression of Functionally Identified and Immunohistochemically Identified NK1 Receptors on Sympathetic Neurons. J Neurophysiol 2001; 85:1888-98. [PMID: 11353005 DOI: 10.1152/jn.2001.85.5.1888] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have used multiple-labeling immunohistochemistry, intracellular dye-filling, and intracellular microelectrode recordings to characterize the distribution of tachykinin receptors and substance P boutons on subpopulations of neurons within the guinea pig celiac ganglion. Superfusion of substance P (SP, 1 μM for 1 min) depolarized 42% of tonic neurons and inhibited afterhyperpolarizations in 66% of long afterhyperpolarizing (LAH) neurons without significant desensitization. Twenty-one percent of tonic neurons and 24% of LAH neurons responded to the NK3 agonist senktide but did not respond to SP, indicating SP did not activate NK3 receptors at this concentration. All effects of SP were abolished by the selective NK1 receptor antagonist, SR140333, but not by the selective NK3 receptor antagonist, SR142801, suggesting that exogenous SP activated a receptor with NK1 pharmacology. No dye-filled LAH neuron and only 50% of tonic neurons responding to SP expressed NK1 receptor immunoreactivity (NK1-IR). All neurons responding to SP had SP immunoreactive fibers within one cell diameter, indicating good spatial matching between SP release sites and target neurons. These results indicate that SP may act via a receptor with NK1-like pharmacology that has a C terminus not recognized by antibodies to the intracellular domain of the conventional NK1 receptor. Inward currents evoked by SP acting on this NK1-like receptor or senktide acting through NK3 receptors had identical current-voltage relationships. In LAH neurons, both agonists suppressed I sAHP without reducing I AHP. Responses evoked by SP and senktide were resistant to PKC inhibitors, suggesting that the transduction mechanisms for the NK1-like receptor and the NK3 receptor may be similar.
Collapse
Affiliation(s)
- P Jobling
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, SA 5001, Australia.
| | | | | |
Collapse
|