1
|
The lamprey respiratory network: Some evolutionary aspects. Respir Physiol Neurobiol 2021; 294:103766. [PMID: 34329767 DOI: 10.1016/j.resp.2021.103766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 01/25/2023]
Abstract
Breathing is a complex behaviour that involves rhythm generating networks. In this review, we examine the main characteristics of respiratory rhythm generation in vertebrates and, in particular, we describe the main results of our studies on the role of neural mechanisms involved in the neuromodulation of the lamprey respiration. The lamprey respiratory rhythm generator is located in the paratrigeminal respiratory group (pTRG) and shows similarities with the mammalian preBötzinger complex. In fact, within the pTRG a major role is played by glutamate, but also GABA and glycine display important contributions. In addition, neuromodulatory influences are exerted by opioids, substance P, acetylcholine and serotonin. Both structures respond to exogenous ATP with a biphasic response and astrocytes there located strongly contribute to the modulation of the respiratory pattern. The results emphasize that some important characteristics of the respiratory rhythm generating network are, to a great extent, maintained throughout evolution.
Collapse
|
2
|
Katsuki S, Ikeda K, Onimaru H, Dohi K, Izumizaki M. Effects of acetylcholine on hypoglossal and C4 nerve activity in brainstem-spinal cord preparations from newborn rat. Respir Physiol Neurobiol 2021; 293:103737. [PMID: 34229065 DOI: 10.1016/j.resp.2021.103737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022]
Abstract
Effects of acetylcholine (ACh) on respiratory activity have been an intriguing theme especially in relation to central chemoreception and the control of hypoglossal nerve activity. We studied the effects of ACh on hypoglossal and phrenic (C4) nerve activities and inspiratory and pre-inspiratory neurons in the rostral ventrolateral medulla in brainstem-spinal cord preparations from newborn rats. ACh application increased respiratory rhythm, decreased inspiratory hypoglossal and C4 nerve burst amplitude, and enhanced pre-inspiratory hypoglossal activity. ACh induced membrane depolarization of pre-inspiratory neurons that might be involved in facilitation of respiratory rhythm by ACh. Effects of ACh on hypoglossal and C4 nerve activity were partially reversed by a nicotinic receptor blocker, mecamylamine. Further application of a muscarinic receptor antagonist, oxybutynin, resulted in slight increase of hypoglossal (but not C4) burst amplitude. Thus, ACh induced different effects on hypoglossal and C4 nerve activity in the brainstem-spinal cord preparation.
Collapse
Affiliation(s)
- Shino Katsuki
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan; Department of Emergency, Disaster and Critical Care Medicine, Showa University, Tokyo 142-8555, Japan
| | - Keiko Ikeda
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan.
| | - Kenji Dohi
- Department of Emergency, Disaster and Critical Care Medicine, Showa University, Tokyo 142-8555, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan
| |
Collapse
|
3
|
Juárez-Vidales JDJ, Pérez-Ortega J, Lorea-Hernández JJ, Méndez-Salcido F, Peña-Ortega F. Configuration and dynamics of dominant inspiratory multineuronal activity patterns during eupnea and gasping generation in vitro. J Neurophysiol 2021; 125:1289-1306. [PMID: 33502956 DOI: 10.1152/jn.00563.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pre-Bötzinger complex (preBötC), located within the ventral respiratory column, produces inspiratory bursts in varying degrees of synchronization/amplitude. This wide range of population burst patterns reflects the flexibility of the preBötC neurons, which is expressed in variations in the onset/offset times of their activations and their activity during the population bursts, with respiratory neurons exhibiting a large cycle-to-cycle timing jitter both at the population activity onset and at the population activity peak, suggesting that respiratory neurons are stochastically activated before and during the inspiratory bursts. However, it is still unknown whether this stochasticity is maintained while evaluating the coactivity of respiratory neuronal ensembles. Moreover, the preBötC topology also remains unknown. In this study, by simultaneously recording tens of preBötC neurons and using coactivation analysis during the inspiratory periods, we found that the preBötC has a scale-free configuration (mixture of not many highly connected nodes, hubs, with abundant poorly connected elements) exhibiting the rich-club phenomenon (hubs more likely interconnected with each other). PreBötC neurons also produce multineuronal activity patterns (MAPs) that are highly stable and change during the hypoxia-induced reconfiguration. Moreover, preBötC contains a coactivating core network shared by all its MAPs. Finally, we found a distinctive pattern of sequential coactivation of core network neurons at the beginning of the inspiratory periods, indicating that, when evaluated at the multicellular level, the coactivation of respiratory neurons seems not to be stochastic.NEW & NOTEWORTHY By means of multielectrode recordings of preBötC neurons, we evaluated their configuration in normoxia and hypoxia, finding that the preBötC exhibits a scale-free configuration with a rich-club phenomenon. preBötC neurons produce multineuronal activity patterns that are highly stable but change during hypoxia. The preBötC contains a coactivating core network that exhibit a distinctive pattern of coactivation at the beginning of inspirations. These results reveal some network basis of inspiratory rhythm generation and its reconfiguration during hypoxia.
Collapse
Affiliation(s)
- Josué de Jesús Juárez-Vidales
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Jesús Pérez-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Jonathan Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Felipe Méndez-Salcido
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| |
Collapse
|
4
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
5
|
Inhibitory modulation of the cough reflex by acetylcholine in the caudal nucleus tractus solitarii of the rabbit. Respir Physiol Neurobiol 2018; 257:93-99. [PMID: 29369803 DOI: 10.1016/j.resp.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Abstract
A cholinergic system has been described in the nucleus tractus solitarii (NTS). However, no information is available on the role played by acetylcholine (ACh) in the modulation of the cough reflex within the caudal NTS that has an important function in cough regulation. We addressed this issue making use of bilateral microinjections (30-50 nl) of 10 mM ACh combined with 5 mM physostigmine as well as of 10 mM mecamylamine or 10 mM scopolamine into the caudal NTS of pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Microinjections of ACh/physostigmine caused depressant effects on the cough reflex induced by mechanical and chemical stimulation of the tracheobronchial tree. They also elicited transient increases in respiratory frequency and decreases in abdominal activity. These effects were prevented by scopolamine, but not by mecamylamine. The results show for the first time that ACh exerts an inhibitory modulation of the cough reflex through muscarinic receptors within the caudal NTS. They also may provide hints for novel antitussive approaches.
Collapse
|
6
|
Muhammad N, Sharif M, Amin J, Mehboob R, Gilani SA, Bibi N, Javed H, Ahmed N. Neurochemical Alterations in Sudden Unexplained Perinatal Deaths-A Review. Front Pediatr 2018; 6:6. [PMID: 29423392 PMCID: PMC5788892 DOI: 10.3389/fped.2018.00006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/09/2018] [Indexed: 01/05/2023] Open
Abstract
Sudden unexpected perinatal collapse is a major trauma for the parents of victims. Sudden infant death syndrome (SIDS) is unexpected and mysterious death of an apparently healthy neonate from birth till 1 year of age without any known causes, even after thorough postmortem investigations. However, the incidence of sudden intrauterine unexplained death syndrome (SIUDS) is seven times higher as compared with SIDS. This observation is approximated 40-80%. Stillbirth is defined as death of a fetus after 20th week of gestation or just before delivery at full term without a known reason. Pakistan has the highest burden of stillbirth in the world. This basis of SIDS, SIUDS, and stillbirths eludes specialists. The purpose of this study is to investigate factors behind failure in control of these unexplained deaths and how research may go ahead with improved prospects. Animal models and physiological data demonstrate that sleep, arousal, and cardiorespiratory malfunctioning are abnormal mechanisms in SIUDS risk factors or in newborn children who subsequently die from SIDS. This review focuses on insights in neuropathology and mechanisms of SIDS and SIUDS in terms of different receptors involved in this major perinatal demise. Several studies conducted in the past decade have confirmed neuropathological and neurochemical anomalies related to serotonin transporter, substance P, acetylcholine α7 nicotine receptors, etc., in sudden unexplained fetal and infant deaths. There is need to focus more on research in this area to unveil the major curtain to neuroprotection by underlying mechanisms leading to such deaths.
Collapse
Affiliation(s)
- Nazeer Muhammad
- COMSATS Institute of Information Technology, Wah Cantonment, Pakistan
| | - Muhammad Sharif
- COMSATS Institute of Information Technology, Wah Cantonment, Pakistan
| | - Javeria Amin
- COMSATS Institute of Information Technology, Wah Cantonment, Pakistan
| | - Riffat Mehboob
- Research Unit, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan.,University Institute of Physical Therapy, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Syed Amir Gilani
- Research Unit, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Nargis Bibi
- COMSATS Institute of Information Technology, Wah Cantonment, Pakistan.,Department of Computer Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Hasnain Javed
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Naseer Ahmed
- Research Unit, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan.,Medical School, University of Verona, Verona, Italy.,Faculty of Health Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
Modification of Hypoxic Respiratory Response by Protein Tyrosine Kinase in Brainstem Ventral Respiratory Neuron Group. PLoS One 2016; 11:e0165895. [PMID: 27798679 PMCID: PMC5087851 DOI: 10.1371/journal.pone.0165895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 10/19/2016] [Indexed: 12/04/2022] Open
Abstract
Protein tyrosine kinase (PTK) mediated the tyrosine phosphorylation modification of neuronal receptors and ion channels. Whether such modification resulted in changes of physiological functions was not sufficiently studied. In this study we examined whether the hypoxic respiratory response—which is the enhancement of breathing in hypoxic environment could be affected by the inhibition of PTK at brainstem ventral respiratory neuron column (VRC). Experiments were performed on urethane anesthetized adult rabbits. Phrenic nerve discharge was recorded as the central respiratory motor output. Hypoxic respiratory response was produced by ventilating the rabbit with 10% O2-balance 90% N2 for 5 minutes. The responses of phrenic nerve discharge to hypoxia were observed before and after microinjecting PTK inhibitor genistein, AMPA receptor antagonist CNQX, or inactive PTK inhibitor analogue daidzein at the region of ambiguus nucleus (NA) at levels 0–2 mm rostral to obex where the inspiratory subgroup of VRC were recorded. Results were as follows: 1. the hypoxic respiratory response was significantly attenuated after microinjection of genistein and/or CNQX, and no additive effect (i.e., further attenuation of hypoxic respiratory response) was observed when genistein and CNQX were microinjected one after another at the same injection site. Microinjection of daidzein had no effect on hypoxic respiratory response. 2. Fluorescent immunostaining showed that hypoxia significantly increased the number of phosphotyrosine immunopositive neurons in areas surrounding NA and most of these neurons were also immunopositive to glutamate AMPA receptor subunit GluR1. These results suggested that PTK played an important role in regulating the hypoxic respiratory response, possibly through the tyrosine phosphorylation modification of glutamate AMPA receptors on the respiratory neurons of ventral respiratory neuron column.
Collapse
|
8
|
Kubin L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr Physiol 2016; 6:1801-1850. [PMID: 27783860 DOI: 10.1002/cphy.c160002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upper airway muscles subserve many essential for survival orofacial behaviors, including their important role as accessory respiratory muscles. In the face of certain predisposition of craniofacial anatomy, both tonic and phasic inspiratory activation of upper airway muscles is necessary to protect the upper airway against collapse. This protective action is adequate during wakefulness, but fails during sleep which results in recurrent episodes of hypopneas and apneas, a condition known as the obstructive sleep apnea syndrome (OSA). Although OSA is almost exclusively a human disorder, animal models help unveil the basic principles governing the impact of sleep on breathing and upper airway muscle activity. This article discusses the neuroanatomy, neurochemistry, and neurophysiology of the different neuronal systems whose activity changes with sleep-wake states, such as the noradrenergic, serotonergic, cholinergic, orexinergic, histaminergic, GABAergic and glycinergic, and their impact on central respiratory neurons and upper airway motoneurons. Observations of the interactions between sleep-wake states and upper airway muscles in healthy humans and OSA patients are related to findings from animal models with normal upper airway, and various animal models of OSA, including the chronic-intermittent hypoxia model. Using a framework of upper airway motoneurons being under concurrent influence of central respiratory, reflex and state-dependent inputs, different neurotransmitters, and neuropeptides are considered as either causing a sleep-dependent withdrawal of excitation from motoneurons or mediating an active, sleep-related inhibition of motoneurons. Information about the neurochemistry of state-dependent control of upper airway muscles accumulated to date reveals fundamental principles and may help understand and treat OSA. © 2016 American Physiological Society. Compr Physiol 6:1801-1850, 2016.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Grant RA, Cielen N, Maes K, Heulens N, Galli GL, Janssens W, Gayan-Ramirez G, Degens H. The effects of smoking on whisker movements: A quantitative measure of exploratory behaviour in rodents. Behav Processes 2016; 128:17-23. [DOI: 10.1016/j.beproc.2016.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 01/15/2023]
|
10
|
Wollman LB, Haggerty J, Pilarski JQ, Levine RB, Fregosi RF. Developmental nicotine exposure alters cholinergic control of respiratory frequency in neonatal rats. Dev Neurobiol 2016; 76:1138-49. [PMID: 26818254 DOI: 10.1002/dneu.22380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/15/2015] [Accepted: 01/06/2016] [Indexed: 11/11/2022]
Abstract
Prenatal nicotine exposure with continued exposure through breast milk over the first week of life (developmental nicotine exposure, DNE) alters the development of brainstem circuits that control breathing. Here, we test the hypothesis that DNE alters the respiratory motor response to endogenous and exogenous acetylcholine (ACh) in neonatal rats. We used the brainstem-spinal cord preparation in the split-bath configuration, and applied drugs to the brainstem compartment while measuring the burst frequency and amplitude of the fourth cervical ventral nerve roots (C4VR), which contain the axons of phrenic motoneurons. We applied ACh alone; the nicotinic acetylcholine receptor (nAChR) antagonist curare, either alone or in the presence of ACh; and the muscarinic acetylcholine receptor (mAChR) antagonist atropine, either alone or in the presence of ACh. The main findings include: (1) atropine reduced frequency similarly in controls and DNE animals, while curare caused modest slowing in controls but no consistent change in DNE animals; (2) DNE greatly attenuated the increase in C4VR frequency mediated by exogenous ACh; (3) stimulation of nAChRs with ACh in the presence of atropine increased frequency markedly in controls, but not DNE animals; (4) stimulation of mAChRs with ACh in the presence of curare caused a modest increase in frequency, with no treatment group differences. DNE blunts the response of the respiratory central pattern generator to exogenous ACh, consistent with reduced availability of functionally competent nAChRs; DNE did not alter the muscarinic control of respiratory motor output. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1138-1149, 2016.
Collapse
Affiliation(s)
- Lila B Wollman
- Department of Physiology, The University of Arizona, Tucson, Arizona, 85724.,Department of Neuroscience, Tucson, Arizona, 85724
| | - Jarl Haggerty
- Department of Physiology, The University of Arizona, Tucson, Arizona, 85724
| | - Jason Q Pilarski
- Department of Physiology, The University of Arizona, Tucson, Arizona, 85724
| | - Richard B Levine
- Department of Physiology, The University of Arizona, Tucson, Arizona, 85724.,Department of Neuroscience, Tucson, Arizona, 85724
| | - Ralph F Fregosi
- Department of Physiology, The University of Arizona, Tucson, Arizona, 85724.,Department of Neuroscience, Tucson, Arizona, 85724
| |
Collapse
|
11
|
Sobrinho CR, Kuo FS, Barna BF, Moreira TS, Mulkey DK. Cholinergic control of ventral surface chemoreceptors involves Gq/inositol 1,4,5-trisphosphate-mediated inhibition of KCNQ channels. J Physiol 2015; 594:407-19. [PMID: 26572090 DOI: 10.1113/jp271761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/12/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS ACh is an important modulator of breathing, including at the level of the retrotrapezoid nucleus (RTN), where evidence suggests that ACh is essential for the maintenance of breathing. Despite this potentially important physiological role, little is known about the mechanisms responsible for the cholinergic control of RTN function. In the present study, we show at the cellular level that ACh increases RTN chemoreceptor activity by a CO2/H(+) independent mechanism involving M1/M3 receptor-mediated inositol 1,4,5-trisphosphate/Ca(+2) signalling and downstream inhibition of KCNQ channels. These results dispel the theory that ACh is required for RTN chemoreception by showing that ACh, similar to serotonin and other modulators, controls the activity of RTN chemoreceptors without interfering with the mechanisms by which these cells sense H(+). By identifying the mechanisms by which wake-on neurotransmitters such as ACh modulate RTN chemoreception, the results of the present study provide a framework for understanding the molecular basis of the sleep-wake state-dependent control of breathing. ABSTRACT ACh has long been considered important for the CO2/H(+)-dependent drive to breathe produced by chemosensitive neurons in the retrotrapezoid nucleus (RTN). However, despite this potentially important physiological role, almost nothing is known about the mechanisms responsible for the cholinergic control of RTN function. In the present study, we used slice-patch electrophysiology and pharmacological tools to characterize the effects of ACh on baseline activity and CO2/H(+)-sensitivity of RTN chemoreceptors, as well as to dissect the signalling pathway by which ACh activates these neurons. We found that ACh activates RTN chemoreceptors in a dose-dependent manner (EC50 = 1.2 μm). The firing response of RTN chemoreceptors to ACh was mimicked by a muscarinic receptor agonist (oxotremorine; 1 μm), and blunted by M1- (pirezenpine; 2 μm) and M3- (diphenyl-acetoxy-N-methyl-piperidine; 100 nm) receptor blockers, but not by a nicotinic-receptor blocker (mecamylamine; 10 μm). Furthermore, pirenzepine, diphenyl-acetoxy-N-methyl-piperidine and mecamylamine had no measurable effect on the CO2/H(+)-sensitivity of RTN chemoreceptors. The effects of ACh on RTN chemoreceptor activity were also blunted by inhibition of inositol 1,4,5-trisphosphate receptors with 2-aminoethoxydiphenyl borate (100 μm), depletion of intracellular Ca(2+) stores with thapsigargin (10 μm), inhibition of casein kinase 2 (4,5,6,7-tetrabromobenzotriazole; 10 μm) and blockade of KCNQ channels (XE991; 10 μm). These results show that ACh activates RTN chemoreceptors by a CO2/H(+) independent mechanism involving M1/M3 receptor-mediated inositol 1,4,5-trisphosphate/Ca(+2) signalling and downstream inhibition of KCNQ channels. Identifying the components of the signalling pathway coupling muscarinic receptor activation to changes in chemoreceptor activity may provide new potential therapeutic targets for the treatment of respiratory control disorders.
Collapse
Affiliation(s)
- Cleyton R Sobrinho
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Fu-Shan Kuo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Barbara F Barna
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
12
|
Ramirez JM, Doi A, Garcia AJ, Elsen FP, Koch H, Wei AD. The cellular building blocks of breathing. Compr Physiol 2013; 2:2683-731. [PMID: 23720262 DOI: 10.1002/cphy.c110033] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of "inspiring behaviors" such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general.
Collapse
Affiliation(s)
- J M Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institut, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Carey JL, Dunn C, Gaspari RJ. Central respiratory failure during acute organophosphate poisoning. Respir Physiol Neurobiol 2013; 189:403-10. [PMID: 23933009 DOI: 10.1016/j.resp.2013.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 01/30/2023]
Abstract
Organophosphate (OP) pesticide poisoning is a global health problem with over 250,000 deaths per year. OPs affect neuronal signaling through acetylcholine (Ach) neurotransmission via inhibition of acetylcholinesterase (AChE), leading to accumulation of Ach at the synaptic cleft and excessive stimulation at post-synaptic receptors. Mortality due to OP agents is attributed to respiratory dysfunction, including central apnea. Cholinergic circuits are integral to many aspects of the central control of respiration, however it is unclear which mechanisms predominate during acute OP intoxication. A more complete understanding of the cholinergic aspects of both respiratory control as well as neural modification of pulmonary function is needed to better understand OP-induced respiratory dysfunction. In this article, we review the physiologic mechanisms of acute OP exposure in the context of the known cholinergic contributions to the central control of respiration. We also discuss the potential central cholinergic contributions to the known peripheral physiologic effects of OP intoxication.
Collapse
Affiliation(s)
- Jennifer L Carey
- Department of Emergency Medicine, UMASS Memorial Medical Center, United States.
| | | | | |
Collapse
|
14
|
Disruption of cerebellar cholinergic system in hypoxic neonatal rats and its regulation with glucose, oxygen and epinephrine resuscitations. Neuroscience 2013; 236:253-61. [DOI: 10.1016/j.neuroscience.2012.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/05/2012] [Accepted: 12/17/2012] [Indexed: 11/15/2022]
|
15
|
The rhythmic, transverse medullary slice preparation in respiratory neurobiology: contributions and caveats. Respir Physiol Neurobiol 2013; 186:236-53. [PMID: 23357617 DOI: 10.1016/j.resp.2013.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 11/23/2022]
Abstract
Our understanding of the sites and mechanisms underlying rhythmic breathing as well as the neuromodulatory control of respiratory rhythm, pattern, and respiratory motoneuron excitability during perinatal development has advanced significantly over the last 20 years. A major catalyst was the development in 1991 of the rhythmically-active medullary slice preparation, which provided precise mechanical and chemical control over the network as well as enhanced physical and optical access to key brainstem regions. Insights obtained in vitro have informed multiple mechanistic hypotheses. In vivo tests of these hypotheses, performed under conditions of reduced control and precision but more obvious physiological relevance, have clearly established the significance for respiratory neurobiology of the rhythmic slice preparation. We review the contributions of this preparation to current understanding/concepts in respiratory control, and outline the limitations of this approach in the context of studying rhythm and pattern generation, homeostatic control mechanisms and murine models of human genetic disorders that feature prominent breathing disturbances.
Collapse
|
16
|
Ireland MF, Funk GD, Bellingham MC. Muscarinic acetylcholine receptors enhance neonatal mouse hypoglossal motoneuron excitability in vitro. J Appl Physiol (1985) 2012; 113:1024-39. [DOI: 10.1152/japplphysiol.00699.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In brain stem slices from neonatal ( postnatal days 0–4) CD-1 mice, muscarinic ACh receptors (MAChRs) increased rhythmic inspiratory-related and tonic hypoglossal nerve discharge and depolarized single hypoglossal motoneurons (HMs) via an inward current without changing input resistance. These responses were blocked by the MAChR antagonist 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP; 100 nM). MAChRs shifted voltage-dependent activation of the hyperpolarization-activated cation current to more positive levels. MAChRs increased the HM repetitive firing rate and decreased rheobase, with both effects being blocked by 4-DAMP. Muscarinic agonists reduced the afterhyperpolarization of single action potentials (APs), suggesting that small-conductance Ca2+-dependent K+ current inhibition increased the HM firing rate. Muscarinic agonists also reduced the AP amplitude and slowed its time course, suggesting that MAChRs inhibited voltage-gated Na+ channels. To compare muscarinic excitation of single HMs to muscarinic excitatory effects on motor output in thicker brain stem slices requiring higher extracellular K+ for rhythmic activity, we tested the effects of muscarinic agonists on single HM excitability in high-K+ artificial cerebrospinal fluid (aCSF). In high-K+ aCSF, muscarinic agonists still depolarized HMs and altered AP size and shape, as in standard aCSF, but did not increase the steady-state firing rate, decrease afterhyperpolarization, or alter threshold potential. These results indicate that the basic cellular response of HMs to muscarinic receptors is excitatory, via a number of distinct mechanisms, and that this excitatory response will be largely preserved in rhythmically active brain stem slices.
Collapse
Affiliation(s)
- Matthew F. Ireland
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia; and
| | - Gregory D. Funk
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Mark C. Bellingham
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia; and
| |
Collapse
|
17
|
Clark CG, Sun Z, Meininger GA, Potts JT. Atomic force microscopy to characterize binding properties of α7-containing nicotinic acetylcholine receptors on neurokinin-1 receptor-expressing medullary respiratory neurons. Exp Physiol 2012; 98:415-24. [PMID: 22962286 DOI: 10.1113/expphysiol.2012.067660] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, we used atomic force microscopy (AFM) to examine the ligand-binding properties of α7-containing nicotinic acetylcholine receptors (nAChRs) expressed on neurons from the ventral respiratory group. We also determined the effect of acute and prolonged exposure to nicotine on the binding probability of nAChRs. Neurons from neonatal (postnatal day 5-10) and juvenile rats (3-4 weeks old) were cultured. Internalization of Alexa Fluor 488-conjugated substance P was used to identify respiratory neurons that expressed the neurokinin-1 receptor (NK1-R), a recognized marker of ventral respiratory group neurons. To assess functional changes in nAChRs, AFM probes conjugated with anti-α7 subunit nAChR antibody were used to interact cyclically with the surface of the soma of NK1-R-positive neurons. Measurements were made of the frequency of antibody adhesion to the α7 receptor subunit and of the detachment forces between the membrane-attached receptor and the AFM probe tip. Addition of α-bungarotoxin (a specific antagonist of α7 subunit-containing nAChRs) to the cell bath produced a 69% reduction in binding to the α7 subunit (P < 0.05, n = 10), supporting specificity of binding. Acute exposure to nicotine (1 μM added to culture media) produced an 80% reduction in nAChR antibody binding to the α7 subunit (P < 0.05, n = 9). Prolonged incubation (72 h) of the cell culture in nicotine significantly reduced α7 binding in a concentration-dependent manner. Collectively, these findings demonstrate that AFM is a sensitive tool for assessment of functional changes in nAChRs expressed on the surface of living NK1-R-expressing medullary neurons. Moreover, these data demonstrate that nicotine exposure decreases the binding probability of α7 subunit-containing nAChRs.
Collapse
Affiliation(s)
- Catharine G Clark
- Dalton Cardiovascular Research Center and Departments of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
18
|
Zhou X, Chen Y, Ge D, Yuan W, Wang J. Nicotine enhances both excitatory and inhibitory synaptic inputs to inspiratory-activated airway vagal preganglionic neurons. Exp Physiol 2012; 98:67-80. [PMID: 22750421 DOI: 10.1113/expphysiol.2012.066589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The airway vagal preganglionic neurons (AVPNs) supply the essential excitatory drive to the postganglionic neurons and dominate the neural control of the airway both physiologically and pathophysiologically. The AVPNs express multiple subunits of nicotinic acetylcholine receptors (nAChRs), but the influences of exogenous nicotine and endogenous acetylcholine are unknown. This study examined the effects of nicotine and endogenous acetylcholine on retrogradely labelled, functionally identified inspiratory-activated AVPNs (IA-AVPNs) using the patch-clamp technique. Nicotine (10 μmol l(-1)) significantly increased the frequency and amplitude of the spontaneous EPSCs of IA-AVPNs, and these effects were insensitive to methyllycaconitine (MLA, 100 nmol l(-1)), an antagonist of the α7 type of nAChR, but was prevented by dihydro-β-erythroidine (DHβE, 3 μmol l(-1)), an antagonist of the α4β2 type of nAChR. Nicotine caused a tonic inward current in IA-AVPNs, which was reduced by MLA or DHβE alone, but was not abolished by co-application of MLA and DHβE. Nicotine caused a significant increase in the frequency of GABAergic and glycinergic spontaneous IPSCs and significantly increased the amplitude of glycinergic spontaneous IPSCs, all of which were prevented by DHβE. Nicotine had no effects on the miniature EPSCs or miniature IPSCs following pretreatment with TTX. Under current clamp, nicotine caused depolarization and increased the firing rate of IA-AVPNs during inspiratory intervals. Neostigmine (10 μmol l(-1)), an acetylcholinesterase inhibitor, mimicked the effects of nicotine. These results demonstrate that nicotine and endogenous ACh enhance the excitatory and inhibitory synaptic inputs of IA-AVPNs and cause a postsynaptic excitatory current and that the nicotinic effects are mediated presynaptically by activation of the α4β2 type of nAChR and postsynaptically by activation of multiple nAChRs, including α7 and α4β2 types.
Collapse
Affiliation(s)
- Xujiao Zhou
- The State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University Shanghai Medical College, 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
19
|
Frank JG, Mendelowitz D. Synaptic and intrinsic activation of GABAergic neurons in the cardiorespiratory brainstem network. PLoS One 2012; 7:e36459. [PMID: 22570717 PMCID: PMC3343022 DOI: 10.1371/journal.pone.0036459] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/06/2012] [Indexed: 11/18/2022] Open
Abstract
GABAergic pathways in the brainstem play an essential role in respiratory rhythmogenesis and interactions between the respiratory and cardiovascular neuronal control networks. However, little is known about the identity and function of these GABAergic inhibitory neurons and what determines their activity. In this study we have identified a population of GABAergic neurons in the ventrolateral medulla that receive increased excitatory post-synaptic potentials during inspiration, but also have spontaneous firing in the absence of synaptic input. Using transgenic mice that express GFP under the control of the Gad1 (GAD67) gene promoter, we determined that this population of GABAergic neurons is in close apposition to cardioinhibitory parasympathetic cardiac neurons in the nucleus ambiguus (NA). These neurons fire in synchronization with inspiratory activity. Although they receive excitatory glutamatergic synaptic inputs during inspiration, this excitatory neurotransmission was not altered by blocking nicotinic receptors, and many of these GABAergic neurons continue to fire after synaptic blockade. The spontaneous firing in these GABAergic neurons was not altered by the voltage-gated calcium channel blocker cadmium chloride that blocks both neurotransmission to these neurons and voltage-gated Ca2+ currents, but spontaneous firing was diminished by riluzole, demonstrating a role of persistent sodium channels in the spontaneous firing in these cardiorespiratory GABAergic neurons that possess a pacemaker phenotype. The spontaneously firing GABAergic neurons identified in this study that increase their activity during inspiration would support respiratory rhythm generation if they acted primarily to inhibit post-inspiratory neurons and thereby release inspiration neurons to increase their activity. This population of inspiratory-modulated GABAergic neurons could also play a role in inhibiting neurons that are most active during expiration and provide a framework for respiratory sinus arrhythmia as there is an increase in heart rate during inspiration that occurs via inhibition of premotor parasympathetic cardioinhibitory neurons in the NA during inspiration.
Collapse
Affiliation(s)
- Julie G. Frank
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States of America
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
20
|
Identification of a cholinergic modulatory and rhythmogenic mechanism within the lamprey respiratory network. J Neurosci 2011; 31:13323-32. [PMID: 21917815 DOI: 10.1523/jneurosci.2764-11.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Acetylcholine (ACh) is well known to be involved in the control of breathing. However, no information is available on the role of ACh receptors (AChRs) within the lamprey respiratory network. The present study was performed on in vitro brainstem preparations of adult lampreys to investigate whether ACh affects respiratory activity possibly through an action on the paratrigeminal respiratory group (pTRG) that has been identified as an essential component of the respiratory network. Respiratory activity was monitored as vagal motor output. Bath application of 100 μM physostigmine or 1 μM nicotine increased respiratory frequency, while bath application of 100 μM D-tubocurarine or 0.25 μM α-bungarotoxin reduced respiratory frequency and increased the duration of vagal bursts. Since these effects were mimicked by microinjections of the same drugs into the pTRG, ACh proved to influence respiratory activity by acting on α7 nicotinic AChRs located within the pTRG. During apnea caused by partial blockade of ionotropic glutamate receptors at the level of the pTRG, bath application of bicuculline and strychnine restored the respiratory rhythm, although at reduced frequency. Similar results were obtained by the concurrent removal of both fast synaptic excitatory and inhibitory transmission. Blockade of pTRG α7 nicotinic AChRs suppressed this respiratory activity, thus indicating that pTRG neurons expressing these receptors contribute to respiratory rhythm generation. Together, these findings identify a novel cholinergic modulatory and possibly subsidiary rhythmogenic mechanism within the respiratory network of the adult lamprey and encourage further studies on the respiratory role of cholinergic receptors in different animal species.
Collapse
|
21
|
Machaalani R, Say M, Waters KA. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem. Toxicol Appl Pharmacol 2011; 257:396-404. [PMID: 22000980 DOI: 10.1016/j.taap.2011.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/23/2011] [Accepted: 09/25/2011] [Indexed: 11/29/2022]
Abstract
It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared α7 and β2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n=46) and non-SIDS infants (n=14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased α7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased β2 in the cNTS and increased β2 in the facial. When considering only the SIDS cohort: 1-cigarette smoke exposure was associated with increased α7 in the vestibular nucleus and increased β2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2-there was a gender interaction for α7 in the gracile and cuneate, and β2 in the cNTS and rostral arcuate nucleus, and 3-there was no effect of sleep position on α7, but prone sleep was associated with decreased β2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of α7 and β2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure (β2), gender (α7 and β2) and sleep position (β2) evident.
Collapse
Affiliation(s)
- Rita Machaalani
- Department of Medicine, The University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
22
|
Thomé GR, Spanevello RM, Mazzanti A, Fiorenza AM, Duarte MMMF, da Luz SCA, Pereira ME, Morsch VM, Schetinger MRC, Mazzanti CM. Vitamin E decreased the activity of acetylcholinesterase and level of lipid peroxidation in brain of rats exposed to aged and diluted sidestream smoke. Nicotine Tob Res 2011; 13:1210-9. [PMID: 21896885 DOI: 10.1093/ntr/ntr154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The biological systems of both smoker and passive smoking suffer changes caused by toxic compounds from cigarette smoke such as inflammation, lipid peroxidation, and deficiency of vitamin E. The aim of the present study was to evaluate the effect of vitamin E on acetylcholinesterase (AChE) activity and the lipid peroxidation level in the brain of rats in the model of exposure to aged and diluted sidestream smoke (ADSS). METHODS Adult male Wistar rats (200-300 g) were exposed to ADSS for 4 weeks and treated with vitamin E (50 mg/kg/day) loaded by gavage. In the first, second, third, and fourth weeks, animals were concomitantly exposed to the smoke of 1, 2, 3, and 4 cigarettes/day, respectively. The duration of each exposure was 15 min, daily. RESULTS For rats exposed to ADSS, the AChE activity and lipid peroxidation level increased in the striatum, cerebral cortex, and cerebellum. In contrast, the activity of AChE and the level of lipid peroxidation decreased in the smoke group treated with vitamin E. CONCLUSIONS The results suggest that the rats exposed to ADSS and treated with vitamin E significantly reduced the raised activity of AChE and level lipid peroxidation from the brain structures studied. The study, therefore, concludes that vitamin E could be considered as a therapeutic agent in this type of exposure.
Collapse
Affiliation(s)
- Gustavo Roberto Thomé
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria-RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The role of spiking and bursting pacemakers in the neuronal control of breathing. J Biol Phys 2011; 37:241-61. [PMID: 22654176 DOI: 10.1007/s10867-011-9214-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/06/2011] [Indexed: 12/19/2022] Open
Abstract
Breathing is controlled by a distributed network involving areas in the neocortex, cerebellum, pons, medulla, spinal cord, and various other subcortical regions. However, only one area seems to be essential and sufficient for generating the respiratory rhythm: the preBötzinger complex (preBötC). Lesioning this area abolishes breathing and following isolation in a brain slice the preBötC continues to generate different forms of respiratory activities. The use of slice preparations led to a thorough understanding of the cellular mechanisms that underlie the generation of inspiratory activity within this network. Two types of inward currents, the persistent sodium current (I(NaP)) and the calcium-activated non-specific cation current (I(CAN)), play important roles in respiratory rhythm generation. These currents give rise to autonomous pacemaker activity within respiratory neurons, leading to the generation of intrinsic spiking and bursting activity. These membrane properties amplify as well as activate synaptic mechanisms that are critical for the initiation and maintenance of inspiratory activity. In this review, we describe the dynamic interplay between synaptic and intrinsic membrane properties in the generation of the respiratory rhythm and we relate these mechanisms to rhythm generating networks involved in other behaviors.
Collapse
|
24
|
Pilarski JQ, Wakefield HE, Fuglevand AJ, Levine RB, Fregosi RF. Developmental nicotine exposure alters neurotransmission and excitability in hypoglossal motoneurons. J Neurophysiol 2011; 105:423-33. [PMID: 21068261 PMCID: PMC3023378 DOI: 10.1152/jn.00876.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 11/09/2010] [Indexed: 01/24/2023] Open
Abstract
Hypoglossal motoneurons (XII MNs) control muscles of the mammalian tongue and are rhythmically active during breathing. Acetylcholine (ACh) modulates XII MN activity by promoting the release of glutamate from neurons that express nicotinic ACh receptors (nAChRs). Chronic nicotine exposure alters nAChRs on neurons throughout the brain, including brain stem respiratory neurons. Here we test the hypothesis that developmental nicotine exposure (DNE) reduces excitatory synaptic input to XII MNs. Voltage-clamp experiments in rhythmically active medullary slices showed that the frequency of excitatory postsynaptic currents (EPSCs) onto XII MNs from DNE animals is reduced by 61% (DNE = 1.7 ± 0.4 events/s; control = 4.4 ± 0.6 events/s; P < 0.002). We also examine the intrinsic excitability of XII MNs to test whether cells from DNE animals have altered membrane properties. Current-clamp experiments showed XII MNs from DNE animals had higher intrinsic excitability, as evaluated by measuring their response to injected current. DNE cells had high-input resistances (DNE = 131.9 ± 13.7 MΩ, control = 78.6 ± 9.7 MΩ, P < 0.008), began firing at lower current levels (DNE = 144 ± 22 pA, control = 351 ± 45 pA, P < 0.003), and exhibited higher frequency-current gain values (DNE = 0.087 ± 0.012 Hz/pA, control = 0.050 ± 0.004 Hz/pA, P < 0.02). Taken together, our data show previously unreported effects of DNE on XII MN function and may also help to explain the association between DNE and the incidence of central and obstructive apneas.
Collapse
Affiliation(s)
- Jason Q Pilarski
- The University of Arizona, College of Medicine, Department of Physiology, P.O. Box 210093, Tucson, AZ 85721-0093, USA.
| | | | | | | | | |
Collapse
|
25
|
Bartman ME, Wilkerson JER, Johnson SM. 5-HT3 receptor-dependent modulation of respiratory burst frequency, regularity, and episodicity in isolated adult turtle brainstems. Respir Physiol Neurobiol 2010; 172:42-52. [PMID: 20399913 DOI: 10.1016/j.resp.2010.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 04/10/2010] [Accepted: 04/11/2010] [Indexed: 11/19/2022]
Abstract
To determine the role of central serotonin 5-HT(3) receptors in respiratory motor control, respiratory motor bursts were recorded from hypoglossal (XII) nerve rootlets on isolated adult turtle brainstems during bath-application of 5-HT(3) receptor agonists and antagonists. mCPBG and PBG (5-HT(3) receptor agonists) acutely increased XII burst frequency and regularity, and decreased bursts/episode. Tropisetron and MDL72222 (5-HT(3) antagonists) increased bursts/episode, suggesting endogenous 5-HT(3) receptor activation modulates burst timing in vitro. Tropisetron blocked all mCPBG effects, and the PBG-induced reduction in bursts/episode. Tropisetron application following mCPBG application did not reverse the long-lasting (2h) mCPBG-induced decrease in bursts/episode. We conclude that endogenous 5-HT(3) receptor activation regulates respiratory frequency, regularity, and episodicity in turtles and may induce a form of respiratory plasticity with the long-lasting changes in respiratory regularity.
Collapse
Affiliation(s)
- Michelle E Bartman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
26
|
Coddou C, Bravo E, Eugenín J. Alterations in cholinergic sensitivity of respiratory neurons induced by pre-natal nicotine: a mechanism for respiratory dysfunction in neonatal mice. Philos Trans R Soc Lond B Biol Sci 2009; 364:2527-35. [PMID: 19651654 DOI: 10.1098/rstb.2009.0078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nicotine may link cigarette smoking during pregnancy with sudden infant death syndrome (SIDS). Pre-natal nicotine leads to diminished ventilatory responses to hypercarbia and reduced central chemoreception in mice at post-natal days 0-3. We studied how pre-natal nicotine exposure changes the cholinergic contribution to central respiratory chemoreception in neonatal isolated brainstem-spinal cord and slice preparations. Osmotic minipumps, implanted subcutaneously into 5-7 days pregnant mice, delivered saline or nicotine ditartrate 60 mg kg(-1) d(-1) for up to 28 days. In control preparations, acidification of the superfusion medium from pH 7.4 to 7.3 increased the frequency and reduced the amplitude of fictive respiration. In nicotine-exposed neonatal mice, the reduction in amplitude induced by acidification was reduced. In control preparations, atropine suppressed respiratory responses to acidification, while hexamethonium did not. By contrast, in nicotine-exposed preparations, hexamethonium blocked chemosensory responses but atropine did not. Our results indicate that pre-natal nicotine exposure switches cholinergic mechanisms of central chemosensory responses from muscarinic receptors to nicotinic receptors. Modification of the cholinergic contribution to central chemoreception may produce respiratory dysfunctions, as suggested by receptor-binding studies in victims of SIDS.
Collapse
Affiliation(s)
- Claudio Coddou
- Faculty of Chemistry and Biology, Department of Biology, Universidad de Santiago, USACH, Chile, Casilla 40, Correo 33, Santiago, Chile
| | | | | |
Collapse
|
27
|
Pilowsky PM, Lung MSY, Spirovski D, McMullan S. Differential regulation of the central neural cardiorespiratory system by metabotropic neurotransmitters. Philos Trans R Soc Lond B Biol Sci 2009; 364:2537-52. [PMID: 19651655 DOI: 10.1098/rstb.2009.0092] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Central neurons in the brainstem and spinal cord are essential for the maintenance of sympathetic tone, the integration of responses to the activation of reflexes and central commands, and the generation of an appropriate respiratory motor output. Here, we will discuss work that aims to understand the role that metabotropic neurotransmitter systems play in central cardiorespiratory mechanisms. It is well known that blockade of glutamatergic, gamma-aminobutyric acidergic and glycinergic pathways causes major or even complete disruption of cardiorespiratory systems, whereas antagonism of other neurotransmitter systems barely affects circulation or ventilation. Despite the lack of an 'all-or-none' role for metabotropic neurotransmitters, they are nevertheless significant in modulating the effects of central command and peripheral adaptive reflexes. Finally, we propose that a likely explanation for the plethora of neurotransmitters and their receptors on cardiorespiratory neurons is to enable differential regulation of outputs in response to reflex inputs, while at the same time maintaining a tonic level of sympathetic activity that supports those organs that significantly autoregulate their blood supply, such as the heart, brain, retina and kidney. Such an explanation of the data now available enables the generation of many new testable hypotheses.
Collapse
Affiliation(s)
- Paul M Pilowsky
- Australian School of Advanced Medicine, Dow-Corning Building, Level 1, 3 Innovation Road, Macquarie University, 2109 NSW, Australia.
| | | | | | | |
Collapse
|
28
|
Pilarski JQ, Fregosi RF. Prenatal nicotine exposure alters medullary nicotinic and AMPA-mediated control of respiratory frequency in vitro. Respir Physiol Neurobiol 2009; 169:1-10. [PMID: 19651248 DOI: 10.1016/j.resp.2009.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/22/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
Abstract
Prenatal nicotine exposure (PNE) is correlated with breathing abnormalities in humans and other animals. Despite evidence that this relationship results from alterations in nicotinic acetylcholine receptors (nAChRs), the mechanisms are poorly understood. Here, we hypothesize that PNE blunts nAChR-mediated respiratory-related motor output. We also hypothesize that the PNE-induced changes in nAChRs leads to secondary alterations in glutamatergic neurotransmission. To test these hypotheses, we used an in vitro brainstem-spinal cord preparation and recorded C4 ventral root (C4 VR) nerve bursts from 0 to 4-day-old rats that were exposed to either nicotine (6mgkg(-1)day(-1)) or saline (control) in utero. Nicotine bitartrate, nAChR antagonists, NMDA and AMPA were applied to the brainstem compartment of a "split-bath" configuration, which physically separated the medulla from the spinal cord. Nicotine (0.2 or 0.5microM) increased peak C4 VR burst frequency by over 230% in control pups, but only 140% in PNE animals. The application of nAChR antagonists showed that these effects were mediated by the alpha4beta2 nAChR subtype with no effect on alpha7 nAChRs in either group. We also show that AMPA-mediated excitatory neurotransmission is enhanced by PNE, but NMDA-mediated neurotransmission is unaltered. These data and the work of others suggest that the PNE may functionally desensitize alpha4beta2 nAChRs located on the presynaptic terminals of glutamatergic neurons leading to less neurotransmitter release, which in turn up-regulates AMPA receptors on rhythm generating neurons.
Collapse
Affiliation(s)
- Jason Q Pilarski
- Department of Physiology, The University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
29
|
Shao XM, Feldman JL. Central cholinergic regulation of respiration: nicotinic receptors. Acta Pharmacol Sin 2009; 30:761-70. [PMID: 19498418 PMCID: PMC4002383 DOI: 10.1038/aps.2009.88] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 05/05/2009] [Indexed: 12/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are expressed in brainstem and spinal cord regions involved in the control of breathing. These receptors mediate central cholinergic regulation of respiration and effects of the exogenous ligand nicotine on respiratory pattern. Activation of alpha4* nAChRs in the preBötzinger Complex (preBötC), an essential site for normal respiratory rhythm generation in mammals, modulates excitatory glutamatergic neurotransmission and depolarizes preBötC inspiratory neurons, leading to increases in respiratory frequency. nAChRs are also present in motor nuclei innervating respiratory muscles. Activation of post- and/or extra-synaptic alpha4* nAChRs on hypoglossal (XII) motoneurons depolarizes these neurons, potentiating tonic and respiratory-related rhythmic activity. As perinatal nicotine exposure may contribute to the pathogenesis of sudden infant death syndrome (SIDS), we discuss the effects of perinatal nicotine exposure on development of the cholinergic and other neurotransmitter systems involved in control of breathing. Advances in understanding of the mechanisms underlying central cholinergic/nicotinic modulation of respiration provide a pharmacological basis for exploiting nAChRs as therapeutic targets for neurological disorders related to neural control of breathing such as sleep apnea and SIDS.
Collapse
Affiliation(s)
- Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
30
|
Campos M, Bravo E, Eugenín J. Respiratory dysfunctions induced by prenatal nicotine exposure. Clin Exp Pharmacol Physiol 2009; 36:1205-17. [PMID: 19473189 DOI: 10.1111/j.1440-1681.2009.05214.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Maternal tobacco smoking is the principal risk factor associated with sudden infant death syndrome (SIDS), a leading cause of death of infants under 1 year of age. Victims of SIDS show a higher incidence of respiratory control abnormalities, including central apnoeas, delayed arousal responses and diminished ventilatory chemoreflexes. 2. Nicotine is likely the link between maternal tobacco smoking and SIDS. Prenatal nicotine exposure can alter the breathing pattern and can reduce hypoxia- and hypercarbia-induced ventilatory chemoreflexes. In vitro approaches have revealed that prenatal nicotine exposure impairs central chemosensitivity, switching the cholinergic contribution from a muscarinic to a nicotinic receptor-based drive. In addition, serotonergic, noradrenergic, GABAergic, glycinergic and glutamatergic, among others, are affected by prenatal nicotine. 3. Here we propose that prenatal nicotine affects the respiratory network through two main processes: (i) reorganization of neurotransmitter systems; and (ii) remodelling of neural circuits. These changes make breathing more vulnerable to fail in early postnatal life, which could be related to the pathogenesis of SIDS.
Collapse
Affiliation(s)
- Marlys Campos
- Laboratory of Neural Systems, Department of Biology, Universidad de Santiago, USACH, Santiago, Chile
| | | | | |
Collapse
|
31
|
Fregosi RF, Pilarski JQ. Prenatal nicotine exposure and development of nicotinic and fast amino acid-mediated neurotransmission in the control of breathing. Respir Physiol Neurobiol 2009; 164:80-6. [PMID: 18585984 DOI: 10.1016/j.resp.2008.05.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/08/2008] [Accepted: 05/13/2008] [Indexed: 10/22/2022]
Abstract
There is mounting evidence that neonatal animals exposed to nicotine in the prenatal period exhibit a variety of anatomic and functional abnormalities that adversely affect their respiratory and cardiovascular control systems, but how nicotine causes these developmental alterations is unknown. The principle that guides our work is that PNE impairs the ability of nicotinic acetylcholine receptors (nAChRs) to modulate the pre-synaptic release of both inhibitory (particularly GABA) and excitatory (glutamate) neurotransmitters, leading to marked alterations in the density and/or function of receptors on the (post-synaptic) membrane of respiratory neurons. Such changes could lead to impaired ventilatory responses to sensory afferent stimulation, and altered breathing patterns, including central apneic events. In this brief review we summarize the work that lead to the development of this hypothesis, and introduce some new data that support and extend it.
Collapse
Affiliation(s)
- Ralph F Fregosi
- Department of Physiology, The University ofArizona, College of Medicine, Tucson, AZ 85721-0093, USA.
| | | |
Collapse
|
32
|
Volgin DV, Rukhadze I, Kubin L. Hypoglossal premotor neurons of the intermediate medullary reticular region express cholinergic markers. J Appl Physiol (1985) 2008; 105:1576-84. [PMID: 18772326 DOI: 10.1152/japplphysiol.90670.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inspiratory drive to hypoglossal (XII) motoneurons originates in the caudal medullary intermediate reticular (IRt) region. This drive is mainly glutamatergic, but little is known about the neurochemical features of IRt XII premotor neurons. Prompted by the evidence that XII motoneuronal activity is controlled by both muscarinic (M) and nicotinic cholinergic inputs and that the IRt region contains cells that express choline acetyltransferase (ChAT), a marker of cholinergic neurons, we investigated whether some IRt XII premotor neurons are cholinergic. In seven rats, we applied single-cell reverse transcription-polymerase chain reaction to acutely dissociated IRt neurons retrogradely labeled from the XII nucleus. We found that over half (21/37) of such neurons expressed mRNA for ChAT and one-third (13/37) also had M2 receptor mRNA. In contrast, among the IRt neurons not retrogradely labeled, only 4 of 29 expressed ChAT mRNA (P < 0.0008) and only 3 of 29 expressed M2 receptor mRNA (P < 0.04). The distributions of other cholinergic receptor mRNAs (M1, M3, M4, M5, and nicotinic alpha4-subunit) did not differ between IRt XII premotor neurons and unlabeled IRt neurons. In an additional three rats with retrograde tracers injected into the XII nucleus and ChAT immunohistochemistry, 5-11% of IRt XII premotor neurons located at, and caudal to, the area postrema were ChAT positive, and 27-48% of ChAT-positive caudal IRt neurons were retrogradely labeled from the XII nucleus. Thus the pre- and postsynaptic cholinergic effects previously described in XII motoneurons may originate, at least in part, in medullary IRt neurons.
Collapse
Affiliation(s)
- Denys V Volgin
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104-6046, USA
| | | | | |
Collapse
|
33
|
Alpha4* nicotinic receptors in preBotzinger complex mediate cholinergic/nicotinic modulation of respiratory rhythm. J Neurosci 2008; 28:519-28. [PMID: 18184794 DOI: 10.1523/jneurosci.3666-07.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Acetylcholine and nicotine can modulate respiratory patterns by acting on nicotinic acetylcholine receptors (nAChRs) in the preBötzinger complex (preBötC). To further explore the molecular composition of these nAChRs, we studied a knock-in mouse strain with a leucine-to-alanine mutation in the M2 pore-lining region (L9'A) of the nAChR alpha4 subunit; this mutation renders alpha4-containing receptors hypersensitive to agonists. We recorded respiratory-related rhythmic motor activity from hypoglossal nerve (XIIn) and patch-clamped preBötC inspiratory neurons in an in vitro medullary slice preparation from neonatal mice. Nicotine affected respiratory rhythm at concentrations approximately 100-fold lower in the homozygous L9'A knock-in mice compared with wild-type mice. Bath application of 5 nm nicotine increased the excitability of preBötC inspiratory neurons, increased respiratory frequency, and induced tonic/seizure-like activities in XIIn in L9'A mice, effects similar to those induced by 1 microM nicotine in wild-type mice. In L9'A mice, microinjection of low nanomolar concentrations of nicotine into the preBötC increased respiratory frequency, whereas injection into the ipsilateral hypoglossal (XII) nucleus induced tonic/seizure-like activity. The alpha4*-selective nAChR antagonist dihydro-beta-erythroidine produced opposite effects and blocked the nicotinic responses. These data, showing that nAChRs in the preBötC and XII nucleus in L9'A mice are hypersensitive to nicotine and endogenous ACh, suggest that functional alpha4* nAChRs are present in the preBötC. They mediate cholinergic/nicotinic modulation of the excitability of preBötC inspiratory neurons and of respiratory rhythm. Furthermore, functional alpha4* nAChRs are present in XII nucleus and mediate cholinergic/nicotinic modulation of tonic activity in XIIn.
Collapse
|
34
|
Boudinot E, Champagnat J, Foutz AS. M(1)/M(3) and M(2)/M(4) muscarinic receptor double-knockout mice present distinct respiratory phenotypes. Respir Physiol Neurobiol 2007; 161:54-61. [PMID: 18206430 DOI: 10.1016/j.resp.2007.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/14/2007] [Accepted: 12/01/2007] [Indexed: 11/27/2022]
Abstract
We investigated the role of muscarinic acetylcholine receptors in the control of breathing. Baseline breathing at rest and ventilatory responses to brief exposures to hypoxia (10% O(2)) and hypercapnia (3% and 5% CO(2)), measured by whole-body plethysmography in partially restrained animals, were compared in mice lacking either M(1) and M(3) or M(2) and M(4) muscarinic receptors, and in wild-type matched controls. M(1/3)R double-knockout mice showed at rest an elevated ventilation (V (E)) due to a large (57%) increase in tidal volume (V(T)). Chemosensory ventilatory responses were unaltered. M(2/4)R double-knockout mice were agitated and showed elevated V (E) and breathing frequency (f(R)) at rest when partially restrained, but unaltered V (E) and low f(R) when recorded unrestrained. Chemosensory ventilatory responses were unaltered. The results suggest that M(1) and M(3) receptors are involved in the control of tidal volume, while M(2) and M(4) receptors may be involved in the control of breathing frequency at rest and response to stress.
Collapse
Affiliation(s)
- E Boudinot
- Neurobiologie Génétique et Intégrative, Institut de Neurobiologie Alfred Fessard, C.N.R.S., 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
35
|
Zanella S, Viemari JC, Hilaire G. Muscarinic receptors and alpha2-adrenoceptors interact to modulate the respiratory rhythm in mouse neonates. Respir Physiol Neurobiol 2006; 157:215-25. [PMID: 17267295 DOI: 10.1016/j.resp.2006.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 12/01/2006] [Accepted: 12/01/2006] [Indexed: 11/27/2022]
Abstract
The respiratory rhythm generator (RRG) is modulated by several endogenous substances, including acetylcholine (ACh) and noradrenaline (NA) that interact in several modulatory processes. To know whether ACh and NA interacted to modulate the RRG activity, we used medullary "en bloc" and slice preparations from neonatal mice where the RRG has been shown to receive a facilitatory modulation from A1/C1 neurons, via a continuous release of endogenous NA and activation of alpha2 adrenoceptors. Applying ACh at 25 microM activated the RRG but ACh had no effects at 50 microM. Applying the ACh receptor agonists nicotine and muscarine facilitated and depressed the RRG, respectively. After yohimbine pre-treatment that blocked the alpha2 facilitation, the nicotinic facilitation was not altered, the muscarinic depression was reversed and ACh 50 microM significantly facilitated the RRG. After L-tyrosine pre-treatment that potentiated the alpha2 facilitation, the muscarinic depression was enhanced. Thus, ACh regulates the RRG activity via nicotinic and muscarinic receptors, the muscarinic receptors interacting with alpha2 adrenoceptors.
Collapse
Affiliation(s)
- Sébastien Zanella
- Formation de Recherche en Fermeture, FRE CNRS 2722, 280 Boulevard Sainte Marguerite, 13009 Marseille, France
| | | | | |
Collapse
|
36
|
Wu M, Kc P, Mack SO, Haxhiu MA. Ablation of vagal preganglionic neurons innervating the extra-thoracic trachea affects ventilatory responses to hypercapnia and hypoxia. Respir Physiol Neurobiol 2005; 152:36-50. [PMID: 16099224 DOI: 10.1016/j.resp.2005.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 07/01/2005] [Accepted: 07/04/2005] [Indexed: 10/25/2022]
Abstract
This study tested the hypothesis that during hypercapnia or hypoxia, airway-related vagal preganglionic neurons (AVPNs) of the nucleus ambiguus (NA) release acetylcholine (ACh), which in a paracrine fashion, activates ACh receptors expressed by inspiratory rhythm generating cells. AVPNs in the NA were ablated by injecting a saporin- (SA) cholera toxin b subunit (CTb-SA) conjugate into the extra-thoracic trachea (n=6). Control animals were injected with free CTb (n=6). In CTb treated rats, baseline ventilation and ventilatory responses to hypercapnia (5 and 12% CO(2) in O(2)) or hypoxia (8% O(2) in N(2)) were similar (p>0.05) prior to and 5 days after injection. CTb-SA injected rats maintained rhythmic breathing patterns 5 days post injection, however, tachypneic responses to hypercapnia or hypoxia were significantly reduced. The number of choline acetyltransferase (ChAT) immunoreactive cells in the NA was much lower (p<0.05) in CTb-SA rats as compared to animals receiving CTb only. These results suggest that AVPNs participate in the respiratory frequency response to hypercapnia or hypoxia.
Collapse
Affiliation(s)
- Mingfei Wu
- Specialized Neuroscience Research Program, Department of Physiology and Biophysics, Howard University College of Medicine, 520 'W' Street NW, Washington, DC 20059, USA
| | | | | | | |
Collapse
|
37
|
Travers JB, Yoo JE, Chandran R, Herman K, Travers SP. Neurotransmitter phenotypes of intermediate zone reticular formation projections to the motor trigeminal and hypoglossal nuclei in the rat. J Comp Neurol 2005; 488:28-47. [PMID: 15912497 DOI: 10.1002/cne.20604] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Numerous studies suggest an essential role for the intermediate (IRt) and parvocellular (PCRt) reticular formation (RF) in consummatory ingestive responses. Although the IRt and PCRt contain a large proportion of neurons with projections to the oromotor nuclei, these areas of the RF are heterogeneous with respect to neurotransmitter phenotypes. Glutamatergic, GABAergic, cholinergic, and nitrergic neurons are all found in the PCRt and IRt, but the projections of neurons with these phenotypes to the motor trigeminal (mV) and hypoglossal nucleus (mXII) has not been fully evaluated. In the present study, after small injections of Fluorogold (FG) into mV and mXII, sections were processed immunohistochemically to detect retrogradely labeled FG neurons in combination with the synthetic enzymes for nitric oxide (nitric oxide synthase) or acetylcholine (choline acetyltransferase) or in situ hybridization for the synthetic enzyme for GABA (GAD65/67) or the brainstem vesicular transporter for glutamate (VGLUT2). In three additional cases, FG injections were made into one motor nucleus and cholera toxin (subunit b) injected in the other to determine the presence of dual projection neurons. Premotor neurons to mXII (pre-mXII) were highly concentrated in the IRt. In contrast, there were nearly equal proportions of premotor-trigeminal neurons (pre-mV) in the IRt and PCRt. A high proportion of pre-oromotor neurons were positive for VGLUT2 (pre-mXII: 68%; pre-mV: 53%) but GABAergic projections were differentially distributed with a greater projection to mV (25%) compared to mXII (8%). Significant populations of cholinergic and nitrergic neurons overlapped pre-oromotor neurons, but there was sparse double-labeling (<10%). The IRt also contained a high proportion of neurons that projected to both mV and MXII. These different classes of premotor neurons in the IRt and PCRt provide a substrate for the rhythmic activation of lingual and masticatory muscles.
Collapse
Affiliation(s)
- Joseph B Travers
- College of Dentistry, Ohio State University, Section of Oral Biology, Columbus, 43210, USA.
| | | | | | | | | |
Collapse
|
38
|
Greer JJ, Funk GD. Perinatal development of respiratory motoneurons. Respir Physiol Neurobiol 2005; 149:43-61. [PMID: 15951250 DOI: 10.1016/j.resp.2005.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/09/2005] [Accepted: 03/09/2005] [Indexed: 01/19/2023]
Abstract
Breathing movements require the coordinated recruitment of cranial and spinal motoneurons innervating muscles of the upper airway and ribcage. A significant part of respiratory motoneuron development and maturation occurs prenatally to support the generation of fetal breathing movements in utero and sustained breathing at birth. Postnatally, motoneuron properties are further refined and match changes in the maturing respiratory musculoskeletal system. In this review, we outline developmental changes in key respiratory motoneuronal populations occurring from the time of motoneuron birth in the embryo through the postnatal period. We will also bring attention to major deficiencies in the current knowledge of perinatal respiratory motoneuron development. To date, our understanding of processes occurring during the prenatal period comes primarily from analysis of phrenic motoneurons (PMNs), whereas information about postnatal development derives largely from studies of PMN and hypoglossal motoneuron properties.
Collapse
Affiliation(s)
- John J Greer
- Department of Physiology, Division of Neuroscience, 513 HMRC, Perinatal Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2.
| | | |
Collapse
|
39
|
Shao XM, Feldman JL. Cholinergic neurotransmission in the preBötzinger Complex modulates excitability of inspiratory neurons and regulates respiratory rhythm. Neuroscience 2005; 130:1069-81. [PMID: 15653001 PMCID: PMC4342058 DOI: 10.1016/j.neuroscience.2004.10.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2004] [Indexed: 12/21/2022]
Abstract
We investigated whether there is endogenous acetylcholine (ACh) release in the preBötzinger Complex (preBötC), a medullary region hypothesized to contain neurons generating respiratory rhythm, and how endogenous ACh modulates preBötCneuronal function and regulates respiratory pattern. Using a medullary slice preparation from neonatal rat, we recorded spontaneous respiratory-related rhythm from the hypoglossal nerve roots (XIIn) and patch-clamped preBötC inspiratory neurons. Unilateral microinjection of physostigmine, an acetylcholinesterase inhibitor, into the preBötC increased the frequency of respiratory-related rhythmic activity from XIIn to 116+/-13% (mean+/-S.D.) of control. Ipsilateral physostigmine injection into the hypoglossal nucleus (XII nucleus) induced tonic activity, increased the amplitude and duration of the integrated inspiratory bursts of XIIn to 122+/-17% and 117+/-22% of control respectively; but did not alter frequency. In preBötC inspiratory neurons, bath application of physostigmine (10 microM) induced an inward current of 6.3+/-10.6 pA, increased the membrane noise, decreased the amplitude of phasic inspiratory drive current to 79+/-16% of control, increased the frequency of spontaneous excitatory postsynaptic currents to 163+/-103% and decreased the whole cell input resistance to 73+/-22% of control without affecting the threshold for generation of action potentials. Bath application of physostigmine concurrently induced tonic activity, increased the frequency, amplitude and duration of inspiratory bursts of XIIn motor output. Bath application of 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, 2 microM), a M3 muscarinic acetylcholine receptor (mAChR) selective antagonist, increased the input resistance of preBötC inspiratory neurons to 116+/-9% of control and blocked all of the effects of physostigmine except for the increase in respiratory frequency. Dihydro-beta-erythroidine (DH-beta-E; 0.2 microM), an alpha4beta2 nicotinic receptor (nAChR) selective antagonist, blocked all the effects of physostigmine except for the increase in inspiratory burst amplitude. In the presence of both 4-DAMP and DH-beta-E, physostigmine induced opposite effects, i.e. a decrease in frequency and amplitude of XIIn rhythmic activity. These results suggest that there is cholinergic neurotransmission in the preBötC which regulates respiratory frequency, and in XII nucleus which regulates tonic activity, and the amplitude and duration of inspiratory bursts of XIIn in neonatal rats. Physiologically relevant levels of ACh release, via mAChRs antagonized by 4-DAMP and nAChRs antagonized by DH-beta-E, modulate the excitability of inspiratory neurons and excitatory neurotransmission in the preBötC, consequently regulating respiratory rhythm.
Collapse
Affiliation(s)
- X M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Box 951763, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
40
|
Liu X, Sood S, Liu H, Horner RL. Opposing muscarinic and nicotinic modulation of hypoglossal motor output to genioglossus muscle in rats in vivo. J Physiol 2005; 565:965-80. [PMID: 15817635 PMCID: PMC1464543 DOI: 10.1113/jphysiol.2005.084657] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The genioglossus (GG) muscle of the tongue, innervated by the hypoglossal motor nucleus (HMN), helps maintain an open airway for effective breathing. In vitro studies in neonatal rodents have separately characterized muscarinic and nicotinic receptor influences at the HMN but the net effects of combined nicotinic and muscarinic receptor activation and increased endogenous acetylcholine have not been determined in adult animals in vivo. Urethane-anaesthetized, tracheotomized and vagotomised rats were studied. Microdialysis perfusion of acetylcholine into the HMN significantly decreased respiratory-related GG activity (28.5 +/- 11.0% at a threshold dose of 0.1 mm). Application of the cholinergic agonists carbachol and muscarine have similar suppression effects (GG activity was decreased 11.8 +/- 4.3 and 20.5 +/- 5.8%, respectively, at 0.01 microm). Eserine, an acetylcholinesterase inhibitor, also decreased the amplitude of respiratory-related GG activity (36.4 +/- 11.3% at 1.0 microm) indicating that endogenous acetylcholine modulates GG activity. Although these results showed that suppression of GG activity predominates during cholinergic stimulation at the HMN, application of the nicotinic receptor agonist dimethyl-4-phenylpiperazinium iodide significantly increased tonic and respiratory-related GG activity (156 +/- 33% for respiratory activity at 1.0 mm) showing that excitatory responses are also present. Consistent with this, 100 microm carbachol decreased GG activity by 44.2 +/- 7.5% of control, with atropine (10 microm) reducing this suppression to 13.8 +/- 4.0% (P < 0.001). However, the nicotinic receptor antagonist dihydro-beta-erythroidine (100 microm) increased the carbachol-mediated suppression to 69.5 +/- 5.9% (P = 0.011), consistent with a role for nicotinic receptors in limiting the overall suppression of GG activity during cholinergic stimulation. Application of eserine to increase endogenous acetylcholine also showed that inhibitory muscarinic and excitatory nicotinic receptors together determine the net level of GG activity during cholinergic stimulation at the HMN. The results suggest that acetylcholine has mixed effects at the HMN with muscarinic-mediated GG suppression masking nicotinic excitation.
Collapse
Affiliation(s)
| | | | | | - Richard L Horner
- Corresponding author R. L. Horner: Room 6368 Medical Sciences Building, 1 Kings College Circle, Toronto, Ontario, Canada, M5S 1A8.
| |
Collapse
|
41
|
Chatonnet F, Boudinot E, Chatonnet A, Champagnat J, Foutz AS. Breathing without acetylcholinesterase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 551:165-70. [PMID: 15602959 DOI: 10.1007/0-387-27023-x_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Fabrice Chatonnet
- NGI-Institut de Neurobiologie A Fessard--CNRS, Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
42
|
Pagnotta SE, Lape R, Quitadamo C, Nistri A. Pre- and postsynaptic modulation of glycinergic and gabaergic transmission by muscarinic receptors on rat hypoglossal motoneurons in vitro. Neuroscience 2005; 130:783-95. [PMID: 15590160 DOI: 10.1016/j.neuroscience.2004.09.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2004] [Indexed: 11/16/2022]
Abstract
The motor output of hypoglossal motoneurons to tongue muscles takes place in concert with the respiratory rhythm and is determined by the balance between excitatory glutamatergic transmission and inhibitory transmission mediated by glycine or GABA. The relative contribution by these transmitters is a phasic phenomenon modulated by other transmitters. We examined how metabotropic muscarinic receptors, widely expressed in the brainstem where they excite cranial motor nuclei, might influence synaptic activity mediated by GABA or glycine. For this purpose, using thin slices of the neonatal rat brainstem, we recorded (under whole-cell patch clamp) glycinergic or GABAergic responses from visually identified hypoglossal motoneurons after pharmacological block of glutamatergic transmission. Muscarine inhibited spontaneous and electrically induced events mediated by GABA or glycine. The amplitude of glycinergic miniature inhibitory postsynaptic currents was slightly reduced by muscarine, while GABAergic miniature inhibitory postsynaptic currents were unaffected. Motoneuron currents induced by focally applied GABA and glycine were depressed by muscarine with stronger reduction in glycine-mediated responses. Histochemical observations indicated the presence of M1, M2 and M5 subtypes of muscarinic receptors in the neonatal hypoglossal nucleus. These results suggest that muscarine potently depressed inhibitory neurotransmission on brainstem motoneurons, and that this action was exerted via preterminal and extrasynaptic receptors. Since the large reduction in inhibitory neurotransmission may contribute to overall excitation of brainstem motoneurons by muscarinic receptors, these data might help to understand the central components of action of antimuscarinic agents in preanesthetic medication or against motion sickness.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Data Interpretation, Statistical
- Electric Stimulation
- Electrophysiology
- Excitatory Postsynaptic Potentials
- Glycine/physiology
- Hypoglossal Nerve/drug effects
- Hypoglossal Nerve/physiology
- Immunohistochemistry
- In Vitro Techniques
- Motor Neurons/drug effects
- Motor Neurons/physiology
- Muscarine/pharmacology
- Muscarinic Agonists/pharmacology
- Patch-Clamp Techniques
- Rats
- Rats, Wistar
- Receptors, GABA/drug effects
- Receptors, GABA/physiology
- Receptors, Glycine/drug effects
- Receptors, Glycine/physiology
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Synapses/drug effects
- Synapses/physiology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- gamma-Aminobutyric Acid/physiology
Collapse
Affiliation(s)
- S E Pagnotta
- Neurobiology Sector and INFM Unit, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | | | | | | |
Collapse
|
43
|
Dauger S, Durand E, Cohen G, Lagercrantz H, Changeux JP, Gaultier C, Gallego J. Control of breathing in newborn mice lacking the beta-2 nAChR subunit. ACTA ACUST UNITED AC 2005; 182:205-12. [PMID: 15450117 DOI: 10.1111/j.1365-201x.2004.01345.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To study the ventilatory and arousal/defence responses to hypoxia in newborn mutant mice lacking the beta2 subunit of the nicotinic acetylcholine receptors. METHODS Breathing variables were measured non-invasively in mutant (n = 31) and wild-type age-matched mice (n = 57) at 2 and 8 days of age using flow barometric whole-body plethysmography. The arousal/defence response to hypoxia was determined using behavioural criteria. RESULTS On day 2, mutant pups had significantly greater baseline ventilation (16%) than wild-type pups (P < 0.02). Mutant pups had a decreased hypoxic ventilatory declines. Arousal latency was significantly shorter in mutant than in wild-type pups (133 +/- 40 vs. 146 +/- 20 s, respectively, P < 0.026). However, the duration of movement elicited by hypoxia was shorter in mutant than in wild-type pups (14.7 +/- 5.9 vs. 23.0 +/- 10.7 s, respectively, P < 0.0005). Most differences disappeared on P8, suggesting a high degree of functional plasticity. CONCLUSION The blunted hypoxic ventilatory decline and the shorter arousal latency on day 2 suggested that disruption of the beta2 nicotinic acetylcholine receptors impaired inhibitory processes affecting both the ventilatory and the arousal response to hypoxia during postnatal development.
Collapse
Affiliation(s)
- S Dauger
- Laboratoire de Neurologie et Physiologie du Développement, INSERM E9935, Hôpital Robert-Debré, Boulevard Sérurier, Paris, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Huang YH, Brown AR, Costy-Bennett S, Luo Z, Fregosi RF. Influence of prenatal nicotine exposure on postnatal development of breathing pattern. Respir Physiol Neurobiol 2004; 143:1-8. [PMID: 15477168 DOI: 10.1016/j.resp.2004.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
To determine if prenatal nicotine exposure alters the postnatal development of the ventilatory pattern and the frequency and duration of apneas, we recorded respiratory airflow with head-out body plethysmography in awake neonates on postnatal days 1, 2, 6, 10, 14, and 18. Data from 12 nicotine-exposed animals were compared with data from 12 saline-exposed animals. Nicotine (6 mg/kg of nicotine tartrate per day) or saline exposure was induced by osmotic minipumps that were implanted subdermally on the fifth day of gestation in Sprague-Dawley Dams. Although both saline- and nicotine-exposed pups gained weight at the same rate throughout the studies, there were subtle differences in ventilatory indices between the two groups. Nicotine-exposed animals had a significantly higher breathing frequency on day 10, and a lower tidal volume on days 14 and 18. Although ventilation tended to be lower in the nicotine-exposed animals, the difference was not significant. There was a significantly higher frequency of apneas in the nicotine-exposed compared with the saline-exposed animals on postnatal days 1 and 2, but the apnea duration did not differ between the groups. No apneas were observed in any of the animals after the sixth postnatal day. Prenatal nicotine exposure is associated with a greater incidence of apneas on the first two postnatal days, and then an altered breathing pattern that manifests at a later stage of development.
Collapse
Affiliation(s)
- Yu-Hsien Huang
- Department of Physiology, The University of Arizona, Tucson, AZ 85721-0093, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Cigarette smoking is the most important cause of preventable disease, disability, and premature death in the United States. In addition to adverse effects on respiratory, cardiovascular, cerebrovascular, and other systems, accumulating evidence indicates that cigarette smoking may also increase morbidity by adversely affecting sleep. This article focuses on the effects of cigarette smoking, nicotine, and pharmacologic agents used for smoking cessation on neuronal systems regulating sleep and clinically apparent sleep disorders.
Collapse
Affiliation(s)
- Aung Htoo
- Sleep Disorders Center, North Shore Long Island Jewish Health System, 150 Community Drive, Manhasset, NY 11030, USA
| | | | | | | |
Collapse
|
46
|
Kubin L, Fenik V. Pontine cholinergic mechanisms and their impact on respiratory regulation. Respir Physiol Neurobiol 2004; 143:235-49. [PMID: 15519558 DOI: 10.1016/j.resp.2004.04.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2004] [Indexed: 10/26/2022]
Abstract
Activation of pontomedullary cholinergic neurons may directly and indirectly cause depression of respiratory motoneuronal activity, activation of respiratory premotor neurons and acceleration of the respiratory rate during REM sleep, as well as activation of breathing during active wakefulness. These effects may be mediated by distinct subpopulations of cholinergic neurons. The relative inactivity of cholinergic neurons during slow-wave sleep also may contribute to the depressant effects of this state on breathing. Cholinergic muscarinic and nicotinic receptors are expressed in central respiratory neurons and motoneurons, thus allowing cholinergic neurons to act on the respiratory system directly. Additional effects of cholinergic activation are mediated indirectly by noradrenergic, serotonergic and other neurons of the reticular formation. Excitatory and suppressant respiratory effects with features of natural states of REM sleep or active wakefulness can be elicited in urethane-anesthetized rats by pontine microinjections of the cholinergic agonist, carbachol. Carbachol models help elucidate the neural basis of respiratory disorders associated with central cholinergic activation.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Animal Biology 209E/VET, School of Veterinary Medicine and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6046, USA.
| | | |
Collapse
|
47
|
Boudinot E, Emery MJ, Mouisel E, Chatonnet A, Champagnat J, Escourrou P, Foutz AS. Increased ventilation and CO2 chemosensitivity in acetylcholinesterase knockout mice. Respir Physiol Neurobiol 2004; 140:231-41. [PMID: 15186785 DOI: 10.1016/j.resp.2004.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2004] [Indexed: 11/17/2022]
Abstract
To investigate the effects of a permanent excess of acetylcholine (AChE) on respiration, breathing and chemosensitivity were analyzed from birth to adulthood in mice lacking the AChE gene (AChE-/-), in heterozygotes, and in control wild-type (AChE+/+) littermates. Breathing at rest and ventilatory responses to brief exposures to hypoxia (10% O2) and hypercapnia (3-5% CO2) were measured by whole-body plethysmography. At rest AChE-/- mice show larger tidal volumes (VT, + 96% in adults), overall ventilation (VE, + 70%), and mean inspiratory flow (+270%) than wild-type mice, with no change in breathing frequency (fR). AChE-/- mice have a slightly blunted response to hypoxia, but increased VE and fR responses to hypercapnia. Heterozygous animals present no consistent alterations of breathing at rest and chemosensitivity is normal. Adult AChE-/- mice have an increased VE/VO2 and a marginally higher normalized VO2. The results suggest that the hyperventilation and altered chemosensitivity in AChE-/- mice largely reflect alterations of central respiratory control.
Collapse
Affiliation(s)
- E Boudinot
- Neurobiologie Génétique et Intégrative, Institut de Neurobiologie Alfred Fessard, C.N.R.S., 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Caldirola D, Bellodi L, Cammino S, Perna G. Smoking and respiratory irregularity in panic disorder. Biol Psychiatry 2004; 56:393-8. [PMID: 15364036 DOI: 10.1016/j.biopsych.2004.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 03/17/2004] [Accepted: 06/14/2004] [Indexed: 11/24/2022]
Abstract
BACKGROUND The biological mechanisms underlying the link between smoking and panic attacks are unknown. Smoking might increase the risk of panic by impairing respiratory system function. METHODS We evaluated the effect of smoking on respiratory irregularity in patients with panic disorder (PD) and healthy comparison subjects and the role of the respiratory disorders in this effect. We applied the Approximate Entropy index (ApEn), a nonlinear measure of irregularity, to study breath-by-breath baseline respiratory patterns in our sample. RESULTS Both smoker and nonsmoker patients had more irregular respiratory patterns than healthy subjects. Smoker patients showed higher ApEn indices of baseline respiratory rate and tidal volume than nonsmoker patients (R = 5.4, df = 2,55, p < .01), whereas smoking in healthy subjects did not influence the regularity of respiratory patterns. Respiratory disorders did not account for the influence of smoking on respiratory irregularity. Smokers had more severe panic attacks than nonsmokers. CONCLUSIONS Smoking may impair vulnerable respiratory function and act as disruptive factor on intrinsic baseline respiratory instability in patients with PD, possibly influencing the onset or maintenance of the disorder.
Collapse
Affiliation(s)
- Daniela Caldirola
- Anxiety Disorder Clinical and Research Unit, S. Raffaele Turro, Vita-Salute University, Milan, Italy.
| | | | | | | |
Collapse
|
49
|
Dehkordi O, Haxhiu MA, Millis RM, Dennis GC, Kc P, Jafri A, Khajavi M, Trouth CO, Zaidi SI. Expression of α-7 nAChRs on spinal cord–brainstem neurons controlling inspiratory drive to the diaphragm. Respir Physiol Neurobiol 2004; 141:21-34. [PMID: 15234673 DOI: 10.1016/j.resp.2004.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2004] [Indexed: 01/05/2023]
Abstract
In the present study, we determined whether alpha-7 subunit containing nicotinic acetylcholine receptors (nAChRs) are expressed by neurons within the pre-Botzinger complex (pre-BotC), bulbospinal, and phrenic motor nuclei in the rat. alpha-7 Immunohistochemistry combined with cholera toxin B (CTB), a retrograde tracer was used to detect expression of alpha-7 nAChRs by phrenic motor and bulbospinal neurons. Neurokinin-1 receptor immunoreactivity was used as a marker for pre-BotC neurons. Of the CTB-positive neurons in the phrenic nuclei, 60% exhibited immunoreactivity for alpha-7 nAChRs. Of the bulbospinal neurons in the paramedian reticular nuclei (PMn), gigantocellular nuclei (Gi), raphe nuclei, rostral ventrolateral medulla (RVLM) and nucleus tractus solitarius, 20-50% were found to express alpha-7 nAChR immunoreactivity. Of the peudorabies virus (PRV) labeled bulbospinal neurons in PMn, Gi, raphe and RVLM, 9-12% co-expressed alpha-7 nAChRs. Immunoreactivity for alpha-7 nAChRs was also detected in 57% of the neurokinin-1 receptor containing neurons presumed to reside in pre-BotC. These findings suggest that nicotinic cholinergic regulation of the chest wall pumping muscles may occur at multiple levels of the central nervous system.
Collapse
Affiliation(s)
- Ozra Dehkordi
- Department of Surgery, Howard University Hospital, Washington, DC 20060, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Boudinot E, Yamada M, Wess J, Champagnat J, Foutz AS. Ventilatory pattern and chemosensitivity in M1 and M3 muscarinic receptor knockout mice. Respir Physiol Neurobiol 2004; 139:237-45. [PMID: 15122990 DOI: 10.1016/j.resp.2003.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2003] [Indexed: 10/26/2022]
Abstract
Acetylcholine (ACh) acting through muscarinic receptors is thought to be involved in the control of breathing, notably in central and peripheral chemosensory afferents and in regulations related to sleep-wake states. By using whole-body plethysmography, we compared baseline breathing at rest and ventilatory responses to acute exposure (5 min) to moderate hypoxia (10% O(2)) and hypercapnia (3 and 5% CO(2)) in mice lacking either the M(1) or the M(3) muscarinic receptor, and in wild-type matched controls. M(1) knockout mice showed normal minute ventilation (V(E)) but elevated tidal volume (V(T)) at rest, and normal chemosensory ventilatory responses to hypoxia and hypercapnia. M(3) knockout mice had elevated V(E) and V(T) at rest, a reduced V(T) response slope to hypercapnia, and blunted V(E) and frequency responses to hypoxia. The results suggest that M(1) and M(3) muscarinic receptors play significant roles in the regulation of tidal volume at rest and that the afferent pathway originating from peripheral chemoreceptors involves M(3) receptors.
Collapse
Affiliation(s)
- Eliane Boudinot
- Neurobiologie Génétique et Intégrative, Institut de Neurobiologie Alfred Fessard, C.N.R.S., 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|