1
|
Xu M, Hu B, Wang Z, Zhu L, Lin J, Wang D. Mathematical derivation and mechanism analysis of beta oscillations in a cortex-pallidum model. Cogn Neurodyn 2024; 18:1359-1378. [PMID: 38826645 PMCID: PMC11143146 DOI: 10.1007/s11571-023-09951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 06/04/2024] Open
Abstract
In this paper, we develop a new cortex-pallidum model to study the origin mechanism of Parkinson's oscillations in the cortex. In contrast to many previous models, the globus pallidus internal (GPi) and externa (GPe) both exert direct inhibitory feedback to the cortex. Using Hopf bifurcation analysis, two new critical conditions for oscillations, which can include the self-feedback projection of GPe, are obtained. In this paper, we find that the average discharge rate (ADR) is an important marker of oscillations, which can divide Hopf bifurcations into two types that can uniformly be used to explain the oscillation mechanism. Interestingly, the ADR of the cortex first increases and then decreases with increasing coupling weights that are projected to the GPe. Regarding the Hopf bifurcation critical conditions, the quantitative relationship between the inhibitory projection and excitatory projection to the GPe is monotonically increasing; in contrast, the relationship between different coupling weights in the cortex is monotonically decreasing. In general, the oscillation amplitude is the lowest near the bifurcation points and reaches the maximum value with the evolution of oscillations. The GPe is an effective target for deep brain stimulation to alleviate oscillations in the cortex.
Collapse
Affiliation(s)
- Minbo Xu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Bing Hu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Zhizhi Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Luyao Zhu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Jiahui Lin
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Dingjiang Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| |
Collapse
|
2
|
Toker D, Müller E, Miyamoto H, Riga MS, Lladó-Pelfort L, Yamakawa K, Artigas F, Shine JM, Hudson AE, Pouratian N, Monti MM. Criticality supports cross-frequency cortical-thalamic information transfer during conscious states. eLife 2024; 13:e86547. [PMID: 38180472 PMCID: PMC10805384 DOI: 10.7554/elife.86547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Consciousness is thought to be regulated by bidirectional information transfer between the cortex and thalamus, but the nature of this bidirectional communication - and its possible disruption in unconsciousness - remains poorly understood. Here, we present two main findings elucidating mechanisms of corticothalamic information transfer during conscious states. First, we identify a highly preserved spectral channel of cortical-thalamic communication that is present during conscious states, but which is diminished during the loss of consciousness and enhanced during psychedelic states. Specifically, we show that in humans, mice, and rats, information sent from either the cortex or thalamus via δ/θ/α waves (∼1-13 Hz) is consistently encoded by the other brain region by high γ waves (52-104 Hz); moreover, unconsciousness induced by propofol anesthesia or generalized spike-and-wave seizures diminishes this cross-frequency communication, whereas the psychedelic 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) enhances this low-to-high frequency interregional communication. Second, we leverage numerical simulations and neural electrophysiology recordings from the thalamus and cortex of human patients, rats, and mice to show that these changes in cross-frequency cortical-thalamic information transfer may be mediated by excursions of low-frequency thalamocortical electrodynamics toward/away from edge-of-chaos criticality, or the phase transition from stability to chaos. Overall, our findings link thalamic-cortical communication to consciousness, and further offer a novel, mathematically well-defined framework to explain the disruption to thalamic-cortical information transfer during unconscious states.
Collapse
Affiliation(s)
- Daniel Toker
- Department of Neurology, University of California, Los AngelesLos AngelesUnited States
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Eli Müller
- Brain and Mind Centre, University of SydneySydneyAustralia
| | - Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceSaitamaJapan
- PRESTO, Japan Science and Technology AgencySaitamaJapan
- International Research Center for Neurointelligence, University of TokyoNagoyaJapan
| | - Maurizio S Riga
- Andalusian Center for Molecular Biology and Regenerative MedicineSevilleSpain
| | - Laia Lladó-Pelfort
- Departament de Ciències Bàsiques, Universitat de Vic-Universitat Central de CatalunyaBarcelonaSpain
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceSaitamaJapan
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical ScienceNagoyaJapan
| | - Francesc Artigas
- Departament de Neurociències i Terapèutica Experimental, CSIC-Institut d’Investigacions Biomèdiques de BarcelonaBarcelonaSpain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos IIIMadridSpain
| | - James M Shine
- Brain and Mind Centre, University of SydneySydneyAustralia
| | - Andrew E Hudson
- Department of Anesthesiology, Veterans Affairs Greater Los Angeles Healthcare SystemLos AngelesUnited States
- Department of Anesthesiology and Perioperative Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical CenterDallasUnited States
| | - Martin M Monti
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Department of Neurosurgery, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
3
|
Kromer JA, Bokil H, Tass PA. Synaptic network structure shapes cortically evoked spatio-temporal responses of STN and GPe neurons in a computational model. Front Neuroinform 2023; 17:1217786. [PMID: 37675246 PMCID: PMC10477454 DOI: 10.3389/fninf.2023.1217786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction The basal ganglia (BG) are involved in motor control and play an essential role in movement disorders such as hemiballismus, dystonia, and Parkinson's disease. Neurons in the motor part of the BG respond to passive movement or stimulation of different body parts and to stimulation of corresponding cortical regions. Experimental evidence suggests that the BG are organized somatotopically, i.e., specific areas of the body are associated with specific regions in the BG nuclei. Signals related to the same body part that propagate along different pathways converge onto the same BG neurons, leading to characteristic shapes of cortically evoked responses. This suggests the existence of functional channels that allow for the processing of different motor commands or information related to different body parts in parallel. Neurological disorders such as Parkinson's disease are associated with pathological activity in the BG and impaired synaptic connectivity, together with reorganization of somatotopic maps. One hypothesis is that motor symptoms are, at least partly, caused by an impairment of network structure perturbing the organization of functional channels. Methods We developed a computational model of the STN-GPe circuit, a central part of the BG. By removing individual synaptic connections, we analyzed the contribution of signals propagating along different pathways to cortically evoked responses. We studied how evoked responses are affected by systematic changes in the network structure. To quantify the BG's organization in the form of functional channels, we suggested a two-site stimulation protocol. Results Our model reproduced the cortically evoked responses of STN and GPe neurons and the contributions of different pathways suggested by experimental studies. Cortical stimulation evokes spatio-temporal response patterns that are linked to the underlying synaptic network structure. Our two-site stimulation protocol yielded an approximate functional channel width. Discussion/conclusion The presented results provide insight into the organization of BG synaptic connectivity, which is important for the development of computational models. The synaptic network structure strongly affects the processing of cortical signals and may impact the generation of pathological rhythms. Our work may motivate further experiments to analyze the network structure of BG nuclei and their organization in functional channels.
Collapse
Affiliation(s)
- Justus A. Kromer
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Hemant Bokil
- Boston Scientific Neuromodulation, Valencia, CA, United States
| | - Peter A. Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Zang Z, Song T, Li J, Nie B, Mei S, Zhang C, Wu T, Zhang Y, Lu J. Simultaneous PET/fMRI revealed increased motor area input to subthalamic nucleus in Parkinson's disease. Cereb Cortex 2022; 33:167-175. [PMID: 35196709 DOI: 10.1093/cercor/bhac059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
Invasive electrophysiological recordings in patients with Parkinson's disease (PD) are extremely difficult for cross-sectional comparisons with healthy controls. Noninvasive approaches for identifying information flow between the motor area and the subthalamic nucleus (STN) are critical for evaluation of treatment strategy. We aimed to investigate the direction of the cortical-STN hyperdirect pathway using simultaneous 18F-FDG-PET/functional magnetic resonance imaging (fMRI). Data were acquired during resting state on 34 PD patients and 25 controls. The ratio of standard uptake value for PET images and the STN functional connectivity (FC) maps for fMRI data were generated. The metabolic connectivity mapping (MCM) approach that combines PET and fMRI data was used to evaluate the direction of the connectivity. Results showed that PD patients exhibited both increased FDG uptake and STN-FC in the sensorimotor area (PFDR < 0.05). MCM analysis showed higher cortical-STN MCM value in the PD group (F = 6.63, P = 0.013) in the left precentral gyrus. There was a high spatial overlap between the increased glucose metabolism and increased STN-FC in the sensorimotor area in PD. The MCM approach further revealed an exaggerated cortical input to the STN in PD, supporting the precentral gyrus as a target for treatment such as the repetitive transcranial magnetic stimulation.
Collapse
Affiliation(s)
- Zhenxiang Zang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Changchun Rd. 45, Xicheng district, Beijing 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| | - Tianbin Song
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Changchun Rd. 45, Xicheng district, Beijing 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| | - Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Rd. 19, Shijingshan district, Beijing 100049, China
| | - Shanshan Mei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| | - Chun Zhang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Changchun Rd. 45, Xicheng district, Beijing 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| | - Tao Wu
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Disorders, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Changchun Rd. 45, Xicheng district, Beijing 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Changchun Rd. 45, Xicheng district, Beijing 100053, China
| |
Collapse
|
5
|
Parr-Brownlie LC, Itoga CA, Walters JR, Underwood CF. Oscillatory waveform sharpness asymmetry changes in motor thalamus and motor cortex in a rat model of Parkinson's disease. Exp Neurol 2022; 354:114089. [PMID: 35461830 PMCID: PMC11345867 DOI: 10.1016/j.expneurol.2022.114089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022]
Abstract
Parkinson's disease (PD) causes bursty and oscillatory activity in basal ganglia output that is thought to contribute to movement deficits through impact on motor thalamus and motor cortex (MCx). We examined the effect of dopamine loss on motor thalamus and motor cortex activity by recording neuronal and LFP activities in ventroanterior-ventrolateral (VAVL) thalamus and MCx in urethane-anesthetised control and parkinsonian rats. Dopamine lesion decreased the firing rate and increased the bursting of putative pyramidal neurons in layer V, but not layer VI, of the MCx without changing other aspects of firing pattern. In contrast, dopamine lesion did not affect VAVL firing rate, pattern or low threshold calcium spike bursts. Slow-wave (~1 Hz) oscillations in LFP recordings were analyzed with conventional power and waveform shape analyses. While dopamine lesion did not influence total power, it was consistently associated with an increase in oscillatory waveform sharpness asymmetry (i.e., sharper troughs vs. peaks) in both motor thalamus and MCx. Furthermore, we found that measures of sharpness asymmetry were positively correlated in paired motor thalamus-MCx recordings, and that correlation coefficients were larger in dopamine lesioned rats. These data support the idea that dysfunctional MCx activity in parkinsonism emerges from subsets of cell groups (e.g. layer V pyramidal neurons) and is evident in the shape but not absolute power of slow-wave oscillations. Hypoactive layer V pyramidal neuron firing in dopamine lesioned rats is unlikely to be driven by VAVL thalamus and may, therefore, reflect the loss of mesocortical dopaminergic afferents and/or changes in intrinsic excitability.
Collapse
Affiliation(s)
- Louise C Parr-Brownlie
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand; Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Building 35 Room 1C 903, Bethesda, MD 20892-3702, USA.
| | - Christy A Itoga
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Building 35 Room 1C 903, Bethesda, MD 20892-3702, USA
| | - Judith R Walters
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Building 35 Room 1C 903, Bethesda, MD 20892-3702, USA
| | - Conor F Underwood
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Gibson WS, Rusheen AE, Oh Y, In MH, Gorny KR, Felmlee JP, Klassen BT, Jung SJ, Min HK, Lee KH, Jo HJ. Symptom-specific differential motor network modulation by deep brain stimulation in Parkinson's disease. J Neurosurg 2021; 135:1771-1779. [PMID: 33990083 PMCID: PMC10193504 DOI: 10.3171/2020.10.jns202277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/06/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established neurosurgical treatment for the motor symptoms of Parkinson's disease (PD). While often highly effective, DBS does not always yield optimal therapeutic outcomes, and stimulation-induced adverse effects, including paresthesia, muscle contractions, and nausea/lightheadedness, commonly occur and can limit the efficacy of stimulation. Currently, objective metrics do not exist for monitoring neural changes associated with stimulation-induced therapeutic and adverse effects. METHODS In the present study, the authors combined intraoperative functional MRI (fMRI) with STN DBS in 20 patients with PD to test the hypothesis that stimulation-induced blood oxygen level-dependent signals contained predictive information concerning the therapeutic and adverse effects of stimulation. RESULTS As expected, DBS resulted in blood oxygen level-dependent activation in myriad motor regions, including the primary motor cortex, caudate, putamen, thalamus, midbrain, and cerebellum. Across the patients, DBS-induced improvements in contralateral Unified Parkinson's Disease Rating Scale tremor subscores correlated with activation of thalamic, brainstem, and cerebellar regions. In addition, improvements in rigidity and bradykinesia subscores correlated with activation of the primary motor cortex. Finally, activation of specific sensorimotor-related subregions correlated with the presence of DBS-induced adverse effects, including paresthesia and nausea (cerebellar cortex, sensorimotor cortex) and unwanted muscle contractions (caudate and putamen). CONCLUSIONS These results suggest that DBS-induced activation patterns revealed by fMRI contain predictive information with respect to the therapeutic and adverse effects of DBS. The use of fMRI in combination with DBS therefore may hold translational potential to guide and improve clinical stimulator optimization in patients.
Collapse
Affiliation(s)
- William S. Gibson
- Departments of Neurologic Surgery
- Department of Neurological Surgery, Northwestern University, Evanston, Illinois; and
| | - Aaron E. Rusheen
- Departments of Neurologic Surgery
- Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota
| | - Yoonbae Oh
- Departments of Neurologic Surgery
- Biomedical Engineering
| | | | | | | | | | - Sung Jun Jung
- Department of Physiology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | | | | | - Hang Joon Jo
- Departments of Neurologic Surgery
- Radiology, and
- Neurology, and
- Department of Physiology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Shi K, Liu X, Hou L, Qiao D, Peng Y. Exercise Improves Movement by Regulating the Plasticity of Cortical Function in Hemiparkinsonian Rats. Front Aging Neurosci 2021; 13:695108. [PMID: 34194319 PMCID: PMC8236842 DOI: 10.3389/fnagi.2021.695108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
Aberrant cortical spike-local field potential (LFP) coupling leads to abnormal basal ganglia activity, disruption of cortical function, and impaired movement in Parkinson's disease (PD). Here, the primary motor cortex mediated plasticity mechanism underlying behavioral improvement by exercise intervention was investigated. Exercise alleviates motor dysfunction and induces neuroplasticity in PD. In this study, Sprague-Dawley (SD) rats were injected with 6-hydroxydopamine (6-OHDA) to induce unilateral nigrostriatal dopamine depletion. Two weeks later, a 4-week exercise intervention was initiated in the PD + exercise (Ex) group. Multichannel recording technology recorded spikes and LFPs in rat motor cortices, and balanced ability tests evaluated behavioral performance. The balanced ability test showed that the total crossing time/front leg error/input latency time was significantly lower in PD + Ex rats than in PD rats (P < 0.05). Scalograms and LFP power spectra indicated increased beta-range LFP power in lesioned hemispheres, with exercise reducing LFP power spectral density. Spike-triggered LFP waveform averages showed strong phase-locking in PD motor cortex cells, and exercise reduced spike-LFP synchronization. Our results suggest that exercise can suppress overexcitability of LFPs and minimize spike-LFP synchronization in the motor cortex, leading to motor-improving effects in PD.
Collapse
Affiliation(s)
- Kaixuan Shi
- Department of Physical Education, China University of Geosciences, Beijing, China
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Xiaoli Liu
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Decai Qiao
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Yuan Peng
- Department of Physical Education, China University of Geosciences, Beijing, China
| |
Collapse
|
8
|
Brazhnik E, Novikov N, McCoy AJ, Ilieva NM, Ghraib MW, Walters JR. Early decreases in cortical mid-gamma peaks coincide with the onset of motor deficits and precede exaggerated beta build-up in rat models for Parkinson's disease. Neurobiol Dis 2021; 155:105393. [PMID: 34000417 DOI: 10.1016/j.nbd.2021.105393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022] Open
Abstract
Evidence suggests that exaggerated beta range local field potentials (LFP) in basal ganglia-thalamocortical circuits constitute an important biomarker for feedback for deep brain stimulation in Parkinson's disease patients, although the role of this phenomenon in triggering parkinsonian motor symptoms remains unclear. A useful model for probing the causal role of motor circuit LFP synchronization in motor dysfunction is the unilateral dopamine cell-lesioned rat, which shows dramatic motor deficits walking contralaterally to the lesion but can walk steadily ipsilaterally on a circular treadmill. Within hours after 6-OHDA injection, rats show marked deficits in ipsilateral walking with early loss of significant motor cortex (MCx) LFP peaks in the mid-gamma 41-45 Hz range in the lesioned hemisphere; both effects were reversed by dopamine agonist administration. Increases in MCx and substantia nigra pars reticulata (SNpr) coherence and LFP power in the 29-40 Hz range emerged more gradually over 7 days, although without further progression of walking deficits. Twice-daily chronic dopamine antagonist treatment induced rapid onset of catalepsy and also reduced MCx 41-45 Hz LFP activity at 1 h, with increases in MCx and SNpr 29-40 Hz power/coherence emerging over 7 days, as assessed during periods of walking before the morning treatments. Thus, increases in high beta power in these parkinsonian models emerge gradually and are not linearly correlated with motor deficits. Earlier changes in cortical circuits, reflected in the rapid decreases in MCx LFP mid-gamma LFP activity, may contribute to evolving plasticity supporting increased beta range synchronized activity in basal ganglia-thalamocortical circuits after loss of dopamine receptor stimulation.
Collapse
Affiliation(s)
- Elena Brazhnik
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3702, United States of America
| | - Nikolay Novikov
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3702, United States of America
| | - Alex J McCoy
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3702, United States of America
| | - Neda M Ilieva
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3702, United States of America
| | - Marian W Ghraib
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3702, United States of America
| | - Judith R Walters
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3702, United States of America.
| |
Collapse
|
9
|
Altered Sensory Representations in Parkinsonian Cortical and Basal Ganglia Networks. Neuroscience 2021; 466:10-25. [PMID: 33965505 DOI: 10.1016/j.neuroscience.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/22/2022]
Abstract
In parkinsonian conditions, network dynamics in the cortical and basal ganglia circuits present abnormal oscillations and periods of high synchrony, affecting the functionality of multiple striatal regions including the sensorimotor striatum. However, it is still unclear how these altered dynamics impact on sensory processing, a key feature for motor control that is severely impaired in parkinsonian patients. A major confound is that pathological dynamics in sensorimotor networks may elicit unspecific motor responses that may alter sensory representations through sensory feedback, making it difficult to disentangle motor and sensory components. To address this issue, we studied sensory processing using an anesthetized model with robust sensory representations throughout cortical and basal ganglia sensory regions and limited motor confounds in control and hemiparkinsonian rats. A general screening of sensory-evoked activity in large populations of neurons recorded in the primary sensory cortex (S1), dorsolateral striatum (DLS) and substantia nigra pars reticulata (SNr) revealed increased excitability and altered sensory representations in the three regions. Further analysis revealed uncoordinated population dynamics between DLS and S1/SNr. Finally, DLS lesions in hemiparkinsonian animals partially recovered population dynamics and execution in the rotarod.
Collapse
|
10
|
Liu W, Zhang R, Feng H, Zhu H. Fluoxetine tunes the abnormal hippocampal oscillations in association with cognitive impairments in 6-OHDA lesioned rats. Behav Brain Res 2021; 409:113314. [PMID: 33894299 DOI: 10.1016/j.bbr.2021.113314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
Cognitive decline is a common clinical symptom in Parkinson's disease (PD) patients. Fluoxetine (FLU), a selective serotonin reuptake inhibitor, can improve cognitive deficits in demented patients. The present study investigated the effects of FLU on spatial learning and memory cognitions in 6-OHDA lesioned rats. Morris water maze (MWM) test showed that FLU significantly improved spatial cognitive deficits in rats with unilateral 6-OHDA injection at 4 and 7 weeks after 6-OHDA injection. Electrophysiological recordings demonstrated that the number and duration of high voltage spindles(HVSs)in the ipsilateral hippocampus of 6-OHDA lesioned rats were decreased by the administration of FLU. Furthermore, the spectral analysis of per frequency revealed increases in δ and θ rhythm power and decreases in α, β and γ rhythm power in the ipsilateral hippocampus of 6-OHDA lesioned rats in contrast to the saline-treated rats. Acute FLU treatment can reduce δ and θ rhythm power, and enhance α, β and γ rhythm power in the ipsilateral hippocampus of 6-OHDA lesioned rats. These findings suggest that FLU improves impaired cognition by tuning oscillatory activities in the hippocampus of 6-OHDA lesioned rats.
Collapse
Affiliation(s)
- Weitang Liu
- School of Life Science, Shanghai University, Shanghai, China
| | - Renxing Zhang
- School of Life Science, Shanghai University, Shanghai, China
| | - Hu Feng
- School of Life Science, Shanghai University, Shanghai, China
| | - Hongyan Zhu
- School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
11
|
A Computationally-Efficient, Online-Learning Algorithm for Detecting High-Voltage Spindles in the Parkinsonian Rats. Ann Biomed Eng 2020; 48:2809-2820. [PMID: 33200261 DOI: 10.1007/s10439-020-02680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
Abnormally-synchronized, high-voltage spindles (HVSs) are associated with motor deficits in 6-hydroxydopamine-lesioned parkinsonian rats. The non-stationary, spike-and-wave HVSs (5-13 Hz) represent the cardinal parkinsonian state in the local field potentials (LFPs). Although deep brain stimulation (DBS) is an effective treatment for the Parkinson's disease, continuous stimulation results in cognitive and neuropsychiatric side effects. Therefore, an adaptive stimulator able to stimulate the brain only upon the occurrence of HVSs is demanded. This paper proposes an algorithm not only able to detect the HVSs with low latency but also friendly for hardware realization of an adaptive stimulator. The algorithm is based on autoregressive modeling at interval, whose parameters are learnt online by an adaptive Kalman filter. In the LFPs containing 1131 HVS episodes from different brain regions of four parkinsonian rats, the algorithm detects all HVSs with 100% sensitivity. The algorithm also achieves higher precision (96%) and lower latency (61 ms), while requiring less computation time than the continuous wavelet transform method. As the latency is much shorter than the mean duration of an HVS episode (4.3 s), the proposed algorithm is suitable for realization of a smart neuromodulator for mitigating HVSs effectively by closed-loop DBS.
Collapse
|
12
|
Primary motor cortex in Parkinson's disease: Functional changes and opportunities for neurostimulation. Neurobiol Dis 2020; 147:105159. [PMID: 33152506 DOI: 10.1016/j.nbd.2020.105159] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Movement abnormalities of Parkinson's disease (PD) arise from disordered neural activity in multiple interconnected brain structures. The planning and execution of movement requires recruitment of a heterogeneous collection of pyramidal projection neurons in the primary motor cortex (M1). The neural representations of movement in M1 single-cell and field potential recordings are directly and indirectly influenced by the midbrain dopaminergic neurons that degenerate in PD. This review examines M1 functional alterations in PD as uncovered by electrophysiological recordings and neurostimulation studies in patients and experimental animal models. Dysfunction of the parkinsonian M1 depends on the severity and/or duration of dopamine-depletion and the species examined, and is expressed as alterations in movement-related firing dynamics; functional reorganisation of local circuits; and changes in field potential beta oscillations. Neurostimulation methods that modulate M1 activity directly (e.g., transcranial magnetic stimulation) or indirectly (subthalamic nucleus deep brain stimulation) improve motor function in PD patients, showing that targeted neuromodulation of M1 is a realistic therapy. We argue that the therapeutic profile of M1 neurostimulation is likely to be greatly enhanced with alternative technologies that permit cell-type specific control and incorporate feedback from electrophysiological biomarkers measured locally.
Collapse
|
13
|
Sprengers M, Raedt R, Larsen LE, Delbeke J, Wadman WJ, Boon P, Vonck K. Deep brain stimulation reduces evoked potentials with a dual time course in freely moving rats: Potential neurophysiological basis for intermittent as an alternative to continuous stimulation. Epilepsia 2020; 61:903-913. [DOI: 10.1111/epi.16498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/18/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Mathieu Sprengers
- 4Brain Department of Neurology Ghent University Hospital Ghent Belgium
| | - Robrecht Raedt
- 4Brain Department of Neurology Ghent University Hospital Ghent Belgium
| | - Lars Emil Larsen
- 4Brain Department of Neurology Ghent University Hospital Ghent Belgium
| | - Jean Delbeke
- 4Brain Department of Neurology Ghent University Hospital Ghent Belgium
| | - Wytse Jan Wadman
- Swammerdam Institute of Life Sciences University of Amsterdam Amsterdam The Netherlands
| | - Paul Boon
- 4Brain Department of Neurology Ghent University Hospital Ghent Belgium
| | - Kristl Vonck
- 4Brain Department of Neurology Ghent University Hospital Ghent Belgium
| |
Collapse
|
14
|
Abstract
Psychiatric disorders are disturbances of cognitive and behavioral processes mediated by the brain. Emerging evidence suggests that accurate biomarkers for psychiatric disorders might benefit from incorporating information regarding multiple brain regions and their interactions with one another, rather than considering local perturbations in brain structure and function alone. Recent advances in the field of applied mathematics generally - and network science specifically - provide a language to capture the complexity of interacting brain regions, and the application of this language to fundamental questions in neuroscience forms the emerging field of network neuroscience. This chapter provides an overview of the use and utility of network neuroscience for building biomarkers in psychiatry. The chapter begins with an overview of the theoretical frameworks and tools that encompass network neuroscience before describing applications of network neuroscience to the study of schizophrenia and major depressive disorder. With reference to work on genetic, molecular, and environmental correlates of network neuroscience features, the promises and challenges of network neuroscience for providing tools that aid in the diagnosis and the evaluation of treatment response in psychiatric disorders are discussed.
Collapse
|
15
|
Stefani A, Cerroni R, Mazzone P, Liguori C, Di Giovanni G, Pierantozzi M, Galati S. Mechanisms of action underlying the efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson's disease: central role of disease severity. Eur J Neurosci 2018; 49:805-816. [DOI: 10.1111/ejn.14088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | - Rocco Cerroni
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | | | - Claudio Liguori
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry Faculty of Medicine and Surgery University of Malta La Valletta Malta
| | - Mariangela Pierantozzi
- Department of System Medicine UOSD Parkinson Center University of Rome “Tor Vergata” Fondazione Policlinico Tor Vergata viale Oxford 81 Rome 00133 Italy
| | - Salvatore Galati
- Movement disorders service Neurocenter of Southern Switzerland Lugano Switzerland
| |
Collapse
|
16
|
Altered functional connectivity of the subthalamic nucleus during self-initiated movement in Parkinson's disease. J Neuroradiol 2018; 45:249-255. [DOI: 10.1016/j.neurad.2017.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/07/2017] [Accepted: 11/25/2017] [Indexed: 11/18/2022]
|
17
|
Liu C, Wang J, Li H, Fietkiewicz C, Loparo KA. Modeling and Analysis of Beta Oscillations in the Basal Ganglia. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:1864-1875. [PMID: 28422667 DOI: 10.1109/tnnls.2017.2688426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Enhanced beta (12-30 Hz) oscillatory activity in the basal ganglia (BG) is a prominent feature of the Parkinsonian state in animal models and in patients with Parkinson's disease. Increased beta oscillations are associated with severe dopaminergic striatal depletion. However, the mechanisms underlying these pathological beta oscillations remain elusive. Inspired by the experimental observation that only subsets of neurons within each nucleus in the BG exhibit oscillatory activities, a computational model of the BG-thalamus neuronal network is proposed, which is characterized by subdivided nuclei within the BG. Using different currents externally applied to the neurons within a given nucleus, neurons behave according to one of the two subgroups, named "-N" and "-P," where "-N" and "-P" denote the normal and the Parkinsonian states, respectively. The ratio of "-P" to "-N" neurons indicates the degree of the Parkinsonian state. Simulation results show that if "-P" neurons have a high degree of connectivity in the subthalamic nucleus (STN), they will have a significant downstream effect on the generation of beta oscillations in the globus pallidus. Interestingly, however, the generation of beta oscillations in the STN is independent of the selection of the "-P" neurons in the external segment of the globus pallidus (GPe), despite the reciprocal structure between STN and GPe. This computational model may pave the way to revealing the mechanism of such pathological behaviors in a realistic way that can replicate experimental observations. The simulation results suggest that the STN is more suitable than GPe as a deep brain stimulation target.
Collapse
|
18
|
Retailleau A, Morris G. Spatial Rule Learning and Corresponding CA1 Place Cell Reorientation Depend on Local Dopamine Release. Curr Biol 2018; 28:836-846.e4. [DOI: 10.1016/j.cub.2018.01.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/17/2017] [Accepted: 01/29/2018] [Indexed: 11/25/2022]
|
19
|
Loss of Balance between Striatal Feedforward Inhibition and Corticostriatal Excitation Leads to Tremor. J Neurosci 2018; 38:1699-1710. [PMID: 29330326 DOI: 10.1523/jneurosci.2821-17.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/30/2017] [Accepted: 01/05/2018] [Indexed: 11/21/2022] Open
Abstract
Fast-spiking interneurons (FSIs) exert powerful inhibitory control over the striatum and are hypothesized to balance the massive excitatory cortical and thalamic input to this structure. We recorded neuronal activity in the dorsolateral striatum and globus pallidus (GP) concurrently with the detailed movement kinematics of freely behaving female rats before and after selective inhibition of FSI activity using IEM-1460 microinjections. The inhibition led to the appearance of episodic rest tremor in the body part that depended on the somatotopic location of the injection within the striatum. The tremor was accompanied by coherent oscillations in the local field potential (LFP). Individual neuron activity patterns became oscillatory and coherent in the tremor frequency. Striatal neurons, but not GP neurons, displayed additional temporal, nonoscillatory correlations. The subsequent reduction in the corticostriatal input following muscimol injection to the corresponding somatotopic location in the primary motor cortex led to disruption of the tremor and a reduction of the LFP oscillations and individual neuron's phase-locked activity. The breakdown of the normal balance of excitation and inhibition in the striatum has been shown previously to be related to different motor abnormalities. Our results further indicate that the balance between excitatory corticostriatal input and feedforward FSI inhibition is sufficient to break down the striatal decorrelation process and generate oscillations resulting in rest tremor typical of multiple basal ganglia disorders.SIGNIFICANCE STATEMENT Fast-spiking interneurons (FSIs) play a key role in normal striatal processing by exerting powerful inhibitory control over the network. FSI malfunctions have been associated with abnormal processing of information within the striatum that leads to multiple movement disorders. Here, we study the changes in neuronal activity and movement kinematics following selective inhibition of these neurons. The injections led to the appearance of episodic rest tremor, accompanied by coherent oscillations in neuronal activity, which was reversed following corticostriatal inhibition. These results suggest that the balance between corticostriatal excitation and feedforward FSI inhibition is crucial for maintaining the striatal decorrelation process, and that its breakdown leads to the formation of oscillations resulting in rest tremor typical of multiple basal ganglia disorders.
Collapse
|
20
|
Non-human primate models of PD to test novel therapies. J Neural Transm (Vienna) 2017; 125:291-324. [PMID: 28391443 DOI: 10.1007/s00702-017-1722-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Non-human primate (NHP) models of Parkinson disease show many similarities with the human disease. They are very useful to test novel pharmacotherapies as reviewed here. The various NHP models of this disease are described with their characteristics including the macaque, the marmoset, and the squirrel monkey models. Lesion-induced and genetic models are described. There is no drug to slow, delay, stop, or cure Parkinson disease; available treatments are symptomatic. The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-Dopa) still remains the gold standard symptomatic treatment of Parkinson. However, involuntary movements termed L-Dopa-induced dyskinesias appear in most patients after chronic treatment and may become disabling. Dyskinesias are very difficult to manage and there is only amantadine approved providing only a modest benefit. In this respect, NHP models have been useful to seek new drug targets, since they reproduce motor complications observed in parkinsonian patients. Therapies to treat motor symptoms in NHP models are reviewed with a discussion of their translational value to humans. Disease-modifying treatments tested in NHP are reviewed as well as surgical treatments. Many biochemical changes in the brain of post-mortem Parkinson disease patients with dyskinesias are reviewed and compare well with those observed in NHP models. Non-motor symptoms can be categorized into psychiatric, autonomic, and sensory symptoms. These symptoms are present in most parkinsonian patients and are already installed many years before the pre-motor phase of the disease. The translational usefulness of NHP models of Parkinson is discussed for non-motor symptoms.
Collapse
|
21
|
Shen B, Gao Y, Zhang W, Lu L, Zhu J, Pan Y, Lan W, Xiao C, Zhang L. Resting State fMRI Reveals Increased Subthalamic Nucleus and Sensorimotor Cortex Connectivity in Patients with Parkinson's Disease under Medication. Front Aging Neurosci 2017; 9:74. [PMID: 28420978 PMCID: PMC5378760 DOI: 10.3389/fnagi.2017.00074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/10/2017] [Indexed: 11/13/2022] Open
Abstract
Functional connectivity (FC) between the subthalamic nucleus (STN) and the sensorimotor cortex is increased in off-medication patients with Parkinson's disease (PD). However, the status of FC between STN and sensorimotor cortex in on-medication PD patients remains unclear. In this study, resting state functional magnetic resonance imaging was employed on 31 patients with PD under medication and 31 healthy controls. Two-sample t-test was used to study the change in FC pattern of the STN, the FC strength of the bilateral STN was correlated with overall motor symptoms, while unilateral STN was correlated with offside motor symptoms. Both bilateral and right STN showed increased FC with the right sensorimotor cortex, whereas only right STN FC was correlated with left-body rigidity scores in all PD patients. An additional subgroup analysis was performed according to the ratio of mean tremor scores and mean postural instability and gait difficulty (PIGD) scores, only the PIGD subgroup showed the increased FC between right STN and sensorimotor cortex under medication. Increased FC between the STN and the sensorimotor cortex was found, which was related to motor symptom severity in on-medication PD patients. Anti-PD drugs may influence the hyperdirect pathway to alleviate motor symptoms with the more effect on the tremor subtype.
Collapse
Affiliation(s)
- Bo Shen
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Yang Gao
- Department of Computer Science and Technology, Nanjing UniversityNanjing, China
| | - Wenbin Zhang
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Liyu Lu
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Jun Zhu
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Yang Pan
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Wenya Lan
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Chaoyong Xiao
- Department of Radiology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Li Zhang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| |
Collapse
|
22
|
Liu C, Zhu Y, Liu F, Wang J, Li H, Deng B, Fietkiewicz C, Loparo KA. Neural mass models describing possible origin of the excessive beta oscillations correlated with Parkinsonian state. Neural Netw 2017; 88:65-73. [PMID: 28192762 DOI: 10.1016/j.neunet.2017.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/18/2016] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
Abstract
In Parkinson's disease, the enhanced beta rhythm is closely associated with akinesia/bradykinesia and rigidity. An increase in beta oscillations (12-35 Hz) within the basal ganglia (BG) nuclei does not proliferate throughout the cortico-basal ganglia loop in uniform fashion; rather it can be subdivided into two distinct frequency bands, i.e. the lower beta (12-20 Hz) and upper beta (21-35 Hz). A computational model of the excitatory and inhibitory neural network that focuses on the population properties is proposed to explore the mechanism underlying the pathological beta oscillations. Simulation results show several findings. The upper beta frequency in the BG originates from a high frequency cortical beta, while the emergence of exaggerated lower beta frequency in the BG depends greatly on the enhanced excitation of a reciprocal network consisting of the globus pallidus externus (GPe) and the subthalamic nucleus (STN). There is also a transition mechanism between the upper and lower beta oscillatory activities, and we explore the impact of self-inhibition within the GPe on the relationship between the upper beta and lower beta oscillations. It is shown that increased self-inhibition within the GPe contributes to increased upper beta oscillations driven by the cortical rhythm, while decrease in the self-inhibition within the GPe facilitates an enhancement of the lower beta oscillations induced by the increased excitability of the BG. This work provides an analysis for understanding the mechanism underlying pathological synchronization in neurological diseases.
Collapse
Affiliation(s)
- Chen Liu
- School of Electrical Engineering and Automation, Tianjin University, 300072, Tianjin, China; Department of Electrical Engineering and Computer Science, Case Western Reserve University, 44106, Cleveland, OH, USA
| | - Yulin Zhu
- School of Electrical Engineering and Automation, Tianjin University, 300072, Tianjin, China
| | - Fei Liu
- School of Electrical Engineering and Automation, Tianjin University, 300072, Tianjin, China
| | - Jiang Wang
- School of Electrical Engineering and Automation, Tianjin University, 300072, Tianjin, China
| | - Huiyan Li
- School of Automation and Electrical Engineering, Tianjin University of Technology and Educations, 300222, Tianjin, China
| | - Bin Deng
- School of Electrical Engineering and Automation, Tianjin University, 300072, Tianjin, China.
| | - Chris Fietkiewicz
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, 44106, Cleveland, OH, USA
| | - Kenneth A Loparo
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, 44106, Cleveland, OH, USA
| |
Collapse
|
23
|
Oswal A, Beudel M, Zrinzo L, Limousin P, Hariz M, Foltynie T, Litvak V, Brown P. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease. Brain 2016; 139:1482-96. [PMID: 27017189 PMCID: PMC4845255 DOI: 10.1093/brain/aww048] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/25/2016] [Indexed: 11/13/2022] Open
Abstract
Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment.
Collapse
Affiliation(s)
- Ashwini Oswal
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK Medical Research Council Brain Network Dynamics Unit, University of Oxford, UK Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London, UK
| | - Martijn Beudel
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK University Medical Centre Groningen, Department of Neurology, University of Groningen, The Netherlands
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Marwan Hariz
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Tom Foltynie
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Vladimir Litvak
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London, UK
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK Medical Research Council Brain Network Dynamics Unit, University of Oxford, UK
| |
Collapse
|
24
|
Davidson CM, de Paor AM, Cagnan H, Lowery MM. Analysis of Oscillatory Neural Activity in Series Network Models of Parkinson's Disease During Deep Brain Stimulation. IEEE Trans Biomed Eng 2015; 63:86-96. [PMID: 26340768 DOI: 10.1109/tbme.2015.2475166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parkinson's disease is a progressive, neurodegenerative disorder, characterized by hallmark motor symptoms. It is associated with pathological, oscillatory neural activity in the basal ganglia. Deep brain stimulation (DBS) is often successfully used to treat medically refractive Parkinson's disease. However, the selection of stimulation parameters is based on qualitative assessment of the patient, which can result in a lengthy tuning period and a suboptimal choice of parameters. This study explores fourth-order, control theory-based models of oscillatory activity in the basal ganglia. Describing function analysis is applied to examine possible mechanisms for the generation of oscillations in interacting nuclei and to investigate the suppression of oscillations with high-frequency stimulation. The theoretical results for the suppression of the oscillatory activity obtained using both the fourth-order model, and a previously described second-order model, are optimized to fit clinically recorded local field potential data obtained from Parkinsonian patients with implanted DBS. Close agreement between the power of oscillations recorded for a range of stimulation amplitudes is observed ( R(2)=0.69-0.99 ). The results suggest that the behavior of the system and the suppression of pathological neural oscillations with DBS is well described by the macroscopic models presented. The results also demonstrate that in this instance, a second-order model is sufficient to model the clinical data, without the need for added complexity. Describing the system behavior with computationally efficient models could aid in the identification of optimal stimulation parameters for patients in a clinical environment.
Collapse
|
25
|
Decreased HCN2 expression in STN contributes to abnormal high-voltage spindles in the cortex and globus pallidus of freely moving rats. Brain Res 2015; 1618:17-28. [DOI: 10.1016/j.brainres.2015.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/23/2022]
|
26
|
Yang C, Zhang JR, Chen L, Ge SN, Wang JL, Yan ZQ, Jia D, Zhu JL, Gao GD. High frequency stimulation of the STN restored the abnormal high-voltage spindles in the cortex and the globus pallidus of 6-OHDA lesioned rats. Neurosci Lett 2015; 595:122-7. [DOI: 10.1016/j.neulet.2015.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/29/2015] [Accepted: 04/04/2015] [Indexed: 11/26/2022]
|
27
|
Nambu A, Tachibana Y, Chiken S. Cause of parkinsonian symptoms: Firing rate, firing pattern or dynamic activity changes? ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.baga.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Skelin I, Needham MA, Molina LM, Metz GAS, Gruber AJ. Multigenerational prenatal stress increases the coherence of brain signaling among cortico-striatal-limbic circuits in adult rats. Neuroscience 2015; 289:270-8. [PMID: 25595989 DOI: 10.1016/j.neuroscience.2015.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/23/2014] [Accepted: 01/04/2015] [Indexed: 11/28/2022]
Abstract
Prenatal stress (PNS) is a significant risk factor for the development of psychopathology in adulthood such as anxiety, depression, schizophrenia and addiction. Animal models of PNS resemble many of the effects of PNS on humans and provide a means to study the accumulated effects of PNS over several generations on brain function. Here, we examined how mild PNS delivered during the third week in utero over four consecutive generations affects behavioral flexibility and functional signaling among cortical and limbic structures. These multi-generational prenatally stressed (MGPNS) rats were not impaired on an odor-cued reversal learning task as compared to control animals. Unilateral field potential (FP) recordings from the medial prefrontal cortex, basolateral amygdala, ventral hippocampus, and striatal territories revealed widespread differences in brain signaling between these groups during the odor sampling phase of the task. The FP power was significantly lower in most structures across most frequency bands in MGPNS animals, and the relative increase in power from baseline during the task was lower for the beta band (12-30Hz) in MGPNS animals as compared to controls. The coherence of FPs between brain regions, however, was much higher in MGPNS animals among all structures and for most frequency bands. We propose that this pattern of changes in brain signaling reflects a simplification of network processing, which is consistent with reports of reduced spine density and dendritic complexity in the brains of animals receiving PNS. Our data support the proposal that recurrent ancestral stress leads to adaptations in the brain, and that these may confer adaptive behavior in some circumstances as compared to single-generation PNS.
Collapse
Affiliation(s)
- I Skelin
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - M A Needham
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - L M Molina
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - G A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - A J Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
29
|
Greene JG. Causes and consequences of degeneration of the dorsal motor nucleus of the vagus nerve in Parkinson's disease. Antioxid Redox Signal 2014; 21:649-67. [PMID: 24597973 DOI: 10.1089/ars.2014.5859] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Parkinson's disease (PD) is no longer considered merely a movement disorder caused by degeneration of dopamine neurons in the midbrain. It is now recognized as a widespread neuropathological syndrome accompanied by a variety of motor and nonmotor clinical symptoms. As such, any hypothesis concerning PD pathogenesis and pathophysiology must account for the entire spectrum of disease and not solely focus on the dopamine system. RECENT ADVANCES Based on its anatomy and the intrinsic properties of its neurons, the dorsal motor nucleus of the vagus nerve (DMV) is uniquely vulnerable to damage from PD. Fibers in the vagus nerve course throughout the gastrointestinal (GI) tract to and from the brainstem forming a close link between the peripheral and central nervous systems and a point of proximal contact between the environment and areas where PD pathology is believed to start. In addition, DMV neurons are under high levels of oxidative stress due to their high level of α-synuclein expression, fragile axons, and specific neuronal physiology. Moreover, several consequences of DMV damage, namely, GI dysfunction and unrestrained inflammation, may propagate a vicious cycle of injury affecting vulnerable brain regions. CRITICAL ISSUES Current evidence to suggest the vagal system plays a pivotal role in PD pathogenesis is circumstantial, but given the current state of the field, the time is ripe to obtain direct experimental evidence to better delineate it. FUTURE DIRECTIONS Better understanding of the DMV and vagus nerve may provide insight into PD pathogenesis and a neural highway with direct brain access that could be harnessed for novel therapeutic interventions.
Collapse
Affiliation(s)
- James G Greene
- Department of Neurology, Emory University , Atlanta, Georgia
| |
Collapse
|
30
|
Fling BW, Cohen RG, Mancini M, Carpenter SD, Fair DA, Nutt JG, Horak FB. Functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS One 2014; 9:e100291. [PMID: 24937008 PMCID: PMC4061081 DOI: 10.1371/journal.pone.0100291] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/21/2014] [Indexed: 01/12/2023] Open
Abstract
Freezing of gait (FoG) is a transient inability to initiate or maintain stepping that often accompanies advanced Parkinson’s disease (PD) and significantly impairs mobility. The current study uses a multimodal neuroimaging approach to assess differences in the functional and structural locomotor neural network in PD patients with and without FoG and relates these findings to measures of FoG severity. Twenty-six PD patients and fifteen age-matched controls underwent resting-state functional magnetic resonance imaging and diffusion tensor imaging along with self-reported and clinical assessments of FoG. After stringent movement correction, fifteen PD patients and fourteen control participants were available for analysis. We assessed functional connectivity strength between the supplementary motor area (SMA) and the following locomotor hubs: 1) subthalamic nucleus (STN), 2) mesencephalic and 3) cerebellar locomotor region (MLR and CLR, respectively) within each hemisphere. Additionally, we quantified structural connectivity strength between locomotor hubs and assessed relationships with metrics of FoG. FoG+ patients showed greater functional connectivity between the SMA and bilateral MLR and between the SMA and left CLR compared to both FoG− and controls. Importantly, greater functional connectivity between the SMA and MLR was positively correlated with i) clinical, ii) self-reported and iii) objective ratings of freezing severity in FoG+, potentially reflecting a maladaptive neural compensation. The current findings demonstrate a re-organization of functional communication within the locomotor network in FoG+ patients whereby the higher-order motor cortex (SMA) responsible for gait initiation communicates with the MLR and CLR to a greater extent than in FoG− patients and controls. The observed pattern of altered connectivity in FoG+ may indicate a failed attempt by the CNS to compensate for the loss of connectivity between the STN and SMA and may reflect a loss of lower-order, automatic control of gait by the basal ganglia.
Collapse
Affiliation(s)
- Brett W. Fling
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| | - Rajal G. Cohen
- Department of Psychology and Communication Studies, University of Idaho Moscow, Idaho, United States of America
| | - Martina Mancini
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Samuel D. Carpenter
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Damien A. Fair
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Psychiatry, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - John G. Nutt
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Fay B. Horak
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland VA Medical Center, Portland, Oregon, United States of America
| |
Collapse
|
31
|
|
32
|
Delaville C, Cruz AV, McCoy AJ, Brazhnik E, Avila I, Novikov N, Walters JR. Oscillatory Activity in Basal Ganglia and Motor Cortex in an Awake Behaving Rodent Model of Parkinson's Disease. ACTA ACUST UNITED AC 2014; 3:221-227. [PMID: 25667820 DOI: 10.1016/j.baga.2013.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Exaggerated beta range (15-30 Hz) oscillatory activity is observed in the basal ganglia of Parkinson's disease (PD) patients during implantation of deep brain stimulation electrodes. This activity has been hypothesized to contribute to motor dysfunction in PD patients. However, it remains unclear how these oscillations develop and how motor circuits become entrained into a state of increased synchronization in this frequency range after loss of dopamine. It is also unclear whether this increase in neuronal synchronization actually plays a significant role in inducing the motor symptoms of this disorder. The hemiparkinsonian rat has emerged as a useful model for investigating relationships between loss of dopamine, increases in oscillatory activity in motor circuits and behavioral state. Chronic recordings from these animals show exaggerated activity in the high beta/low gamma range (30-35 Hz) in the dopamine cell-lesioned hemisphere. This activity is not evident when the animals are in an inattentive rest state, but it can be stably induced and monitored in the motor cortex and basal ganglia when they are engaged in an on-going activity such as treadmill walking. This review discusses data obtained from this animal model and the implications and limitations of this data for obtaining further insight into the significance of beta range activity in PD.
Collapse
Affiliation(s)
- Claire Delaville
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke National Institutes of Health, Bethesda, MD20892-3702USA
| | - Ana V Cruz
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke National Institutes of Health, Bethesda, MD20892-3702USA
| | - Alex J McCoy
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke National Institutes of Health, Bethesda, MD20892-3702USA
| | - Elena Brazhnik
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke National Institutes of Health, Bethesda, MD20892-3702USA
| | - Irene Avila
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke National Institutes of Health, Bethesda, MD20892-3702USA
| | - Nikolay Novikov
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke National Institutes of Health, Bethesda, MD20892-3702USA
| | - Judith R Walters
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke National Institutes of Health, Bethesda, MD20892-3702USA
| |
Collapse
|
33
|
Xu X, Tian Y, Li S, Li Y, Wang G, Tian X. Inhibition of propofol anesthesia on functional connectivity between LFPs in PFC during rat working memory task. PLoS One 2013; 8:e83653. [PMID: 24386243 PMCID: PMC3873953 DOI: 10.1371/journal.pone.0083653] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 11/06/2013] [Indexed: 11/20/2022] Open
Abstract
Working memory (WM) refers to the temporary storage and manipulation of information necessary for performance of complex cognitive tasks. There is a growing interest in whether and how propofol anesthesia inhibits WM function. The aim of this study is to investigate the possible inhibition mechanism of propofol anesthesia based on the functional connections of multi-local field potentials (LFPs) and behavior during WM tasks. Adult SD rats were randomly divided into 3 groups: pro group (0.5 mg·kg−1·min−1,2 h), PRO group (0.9 mg·kg−1·min−1, 2 h) and control group. The experimental data were 16-channel LFPs obtained at prefrontal cortex with implanted microelectrode array in SD rats during WM tasks in Y-maze at 24, 48, 72, 96, 120 hours (day 1-day 5) after propofol anesthesia, and the behavior results of WM were recoded at the same time. Directed transfer function (DTF) method was applied to analyze the connections among LFPs directly. Furthermore, the causal networks were identified by DTF. The clustering coefficient (C), network density (D) and global efficiency (Eglobal) were selected to describe the functional connectivity quantitatively. The results show that: comparing with the control group, the LFPs functional connectivity in pro group were no significantly difference (p>0.05); the connectivity in PRO group were significantly decreased (p<0.05 at 24 hours, p<0.05 at 48 hours), while no significant difference at 72, 96 and 120 hours for rats (p>0.05), which were consistent with the behavior results. These findings could lead to improved understanding the mechanism of inhibition of anesthesia on WM functions from the view of connections among LFPs.
Collapse
Affiliation(s)
- Xinyu Xu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yu Tian
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Shuangyan Li
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Tian
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
- * E-mail:
| |
Collapse
|
34
|
Yael D, Zeef DH, Sand D, Moran A, Katz DB, Cohen D, Temel Y, Bar-Gad I. Haloperidol-induced changes in neuronal activity in the striatum of the freely moving rat. Front Syst Neurosci 2013; 7:110. [PMID: 24379762 PMCID: PMC3864134 DOI: 10.3389/fnsys.2013.00110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/25/2013] [Indexed: 11/13/2022] Open
Abstract
The striatum is the main input structure of the basal ganglia, integrating input from the cerebral cortex and the thalamus, which is modulated by midbrain dopaminergic input. Dopamine modulators, including agonists and antagonists, are widely used to relieve motor and psychiatric symptoms in a variety of pathological conditions. Haloperidol, a dopamine D2 antagonist, is commonly used in multiple psychiatric conditions and motor abnormalities. This article reports the effects of haloperidol on the activity of three major striatal subpopulations: medium spiny neurons (MSNs), fast spiking interneurons (FSIs), and tonically active neurons (TANs). We implanted multi-wire electrode arrays in the rat dorsal striatum and recorded the activity of multiple single units in freely moving animals before and after systemic haloperidol injection. Haloperidol decreased the firing rate of FSIs and MSNs while increasing their tendency to fire in an oscillatory manner in the high voltage spindle (HVS) frequency range of 7-9 Hz. Haloperidol led to an increased firing rate of TANs but did not affect their non-oscillatory firing pattern and their typical correlated firing activity. Our results suggest that dopamine plays a key role in tuning both single unit activity and the interactions within and between different subpopulations in the striatum in a differential manner. These findings highlight the heterogeneous striatal effects of tonic dopamine regulation via D2 receptors which potentially enable the treatment of diverse pathological states associated with basal ganglia dysfunction.
Collapse
Affiliation(s)
- Dorin Yael
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan UniversityRamat-Gan, Israel
| | - Dagmar H. Zeef
- Departments of Neuroscience and Neurosurgery, Maastricht University Medical CenterMaastricht, Netherlands
| | - Daniel Sand
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan UniversityRamat-Gan, Israel
| | - Anan Moran
- Department of Psychology, Volen National Center for Complex Systems, Brandeis UniversityWaltham, MA, USA
| | - Donald B. Katz
- Department of Psychology, Volen National Center for Complex Systems, Brandeis UniversityWaltham, MA, USA
| | - Dana Cohen
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan UniversityRamat-Gan, Israel
| | - Yasin Temel
- Departments of Neuroscience and Neurosurgery, Maastricht University Medical CenterMaastricht, Netherlands
| | - Izhar Bar-Gad
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan UniversityRamat-Gan, Israel
| |
Collapse
|
35
|
Bosch-Bouju C, Hyland BI, Parr-Brownlie LC. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front Comput Neurosci 2013; 7:163. [PMID: 24273509 PMCID: PMC3822295 DOI: 10.3389/fncom.2013.00163] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/24/2013] [Indexed: 12/23/2022] Open
Abstract
Motor thalamus (Mthal) is implicated in the control of movement because it is strategically located between motor areas of the cerebral cortex and motor-related subcortical structures, such as the cerebellum and basal ganglia (BG). The role of BG and cerebellum in motor control has been extensively studied but how Mthal processes inputs from these two networks is unclear. Specifically, there is considerable debate about the role of BG inputs on Mthal activity. This review summarizes anatomical and physiological knowledge of the Mthal and its afferents and reviews current theories of Mthal function by discussing the impact of cortical, BG and cerebellar inputs on Mthal activity. One view is that Mthal activity in BG and cerebellar-receiving territories is primarily "driven" by glutamatergic inputs from the cortex or cerebellum, respectively, whereas BG inputs are modulatory and do not strongly determine Mthal activity. This theory is steeped in the assumption that the Mthal processes information in the same way as sensory thalamus, through interactions of modulatory inputs with a single driver input. Another view, from BG models, is that BG exert primary control on the BG-receiving Mthal so it effectively relays information from BG to cortex. We propose a new "super-integrator" theory where each Mthal territory processes multiple driver or driver-like inputs (cortex and BG, cortex and cerebellum), which are the result of considerable integrative processing. Thus, BG and cerebellar Mthal territories assimilate motivational and proprioceptive motor information previously integrated in cortico-BG and cortico-cerebellar networks, respectively, to develop sophisticated motor signals that are transmitted in parallel pathways to cortical areas for optimal generation of motor programmes. Finally, we briefly review the pathophysiological changes that occur in the BG in parkinsonism and generate testable hypotheses about how these may affect processing of inputs in the Mthal.
Collapse
Affiliation(s)
- Clémentine Bosch-Bouju
- 1Department of Anatomy, Otago School of Medical Science, University of Otago Dunedin, New Zealand ; 2Brain Health Research Centre, Otago School of Medical Science, University of Otago Dunedin, New Zealand
| | | | | |
Collapse
|
36
|
Valencia M, Chavez M, Artieda J, Bolam JP, Mena-Segovia J. Abnormal functional connectivity between motor cortex and pedunculopontine nucleus following chronic dopamine depletion. J Neurophysiol 2013; 111:434-40. [PMID: 24174651 DOI: 10.1152/jn.00555.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of the basal ganglia is altered in Parkinson's disease (PD) as a consequence of the degeneration of dopamine neurons in the substantia nigra pars compacta. This results in aberrant discharge patterns and expression of exaggerated oscillatory activity across the basal ganglia circuit. Altered activity has also been reported in some of the targets of the basal ganglia, including the pedunculopontine nucleus (PPN), possibly due to its close interconnectivity with most regions of the basal ganglia. However, the nature of the involvement of the PPN in the pathophysiology of PD has not been fully elucidated. Here, we recorded local field potentials in the motor cortex and the PPN in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD under urethane anesthesia. By means of linear and nonlinear statistics, we analyzed the synchrony between the motor cortex and the PPN and the delay in the interaction between these two structures. We observed the presence of coherent activity between the cortex and the PPN in low (5-15 Hz)- and high (25-35 Hz)-frequency bands during episodes of cortical activation. In each case, the cortex led the PPN. Dopamine depletion strengthened the interaction of the low-frequency activities by increasing the coherence specifically in the theta and alpha ranges and reduced the delay of the interaction in the gamma band. Our data show that cortical inputs play a determinant role in leading the coherent activity with the PPN and support the involvement of the PPN in the pathophysiology of PD.
Collapse
Affiliation(s)
- Miguel Valencia
- Neurophysiology Laboratory, Neuroscience Area, CIMA, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
37
|
Retailleau A, Dejean C, Fourneaux B, Leinekugel X, Boraud T. Why am I lost without dopamine? Effects of 6-OHDA lesion on the encoding of reward and decision process in CA3. Neurobiol Dis 2013; 59:151-64. [PMID: 23911573 DOI: 10.1016/j.nbd.2013.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/24/2013] [Accepted: 07/24/2013] [Indexed: 11/28/2022] Open
Abstract
There is growing evidence that Parkinson's disease, generally characterized by motor symptoms, also causes cognitive impairment such as spatial disorientation. The hippocampus is a critical structure for spatial navigation and receives sparse but comprehensive dopamine (DA) innervation. DA loss is known to be the cause of Parkinson's disease and therefore it has been hypothesized that the associated spatial disorientation could result from hippocampal dysfunction. Because DA is involved in the prediction of reward expectation, it is possible to infer that spatial disorientation in DA depleted subjects results from the loss of the ability to detect the rewarding features within the environment. Amongst hippocampal formation subdivisions, CA3 properties such as the high liability of its place fields make it a serious candidate for interfacing DA reward system and spatial information encoding. We addressed this issue using multiple electrode recordings of CA3 in normal and dopamine depleted rats performing a spatial learning in a Y-maze. Our data confirm that DA is essential to spatial learning as its depletion results in spatial impairments. The present work also shows that CA3 involvement in the detection of spatial feature contextual significance is under DA control. Finally, it also shows that CA3 contributes to the decision making processes of navigation tasks. The data also reveal a lateralization effect of DA depletion underlined by neural correlates.
Collapse
Affiliation(s)
- Aude Retailleau
- University of Bordeaux, Institut des Maladies Neurodegeneratives UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodegeneratives UMR 5293, Bordeaux, France
| | | | | | | | | |
Collapse
|
38
|
Yang H, Zhou XJ, Zhang MM, Zheng XN, Zhao YL, Wang J. Changes in spontaneous brain activity in early Parkinson's disease. Neurosci Lett 2013; 549:24-8. [DOI: 10.1016/j.neulet.2013.05.080] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 04/08/2013] [Accepted: 05/29/2013] [Indexed: 11/29/2022]
|
39
|
Yang C, Ge SN, Zhang JR, Chen L, Yan ZQ, Heng LJ, Zhao TZ, Li WX, Jia D, Zhu JL, Gao GD. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats. PLoS One 2013; 8:e64637. [PMID: 23755132 PMCID: PMC3674001 DOI: 10.1371/journal.pone.0064637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/09/2013] [Indexed: 12/02/2022] Open
Abstract
High-voltage spindles (HVSs) have been reported to appear spontaneously and widely in the cortical–basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP) and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D1-like receptors or D2-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1) in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D2-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D2-like receptor antagonists. On the contrary, the selective dopamine D1-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D2-like receptors, but not D1-like receptors, were involved in HVS regulation. This supports the important role of dopamine D2-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.
Collapse
Affiliation(s)
- Chen Yang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Shun-Nan Ge
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Jia-Rui Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Lei Chen
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Zhi-Qiang Yan
- Department of Neurosurgery, Urumqi General Hospital of Lanzhou Military Command, Urumqi, People’s Republic of China
| | - Li-Jun Heng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Tian-Zhi Zhao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Wei-Xin Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Dong Jia
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Jun-Ling Zhu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
- * E-mail: (GDG); (JLZ)
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
- * E-mail: (GDG); (JLZ)
| |
Collapse
|
40
|
Tsiokos C, Hu X, Pouratian N. 200-300Hz movement modulated oscillations in the internal globus pallidus of patients with Parkinson's Disease. Neurobiol Dis 2013; 54:464-74. [PMID: 23388190 DOI: 10.1016/j.nbd.2013.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/17/2013] [Accepted: 01/28/2013] [Indexed: 11/15/2022] Open
Abstract
Symptoms in Parkinson's Disease (PD) have been linked to oscillatory activity within the basal ganglia. In humans, such activity has been detected mainly in the local field potentials (LFPs) recorded from electrode contacts used for deep brain stimulation. Although most studies have focused on activity within the subthalamic nucleus (STN), the internal part of the globus pallidus (GPi) is considered an equally efficacious site for therapeutic neuromodulation. Moreover, while most investigations have evaluated changes in oscillatory activity in the beta (12-35Hz) and gamma (35-100Hz) bands, our preliminary spectral analysis of LFP signals in the GPi suggested distinct activity at higher frequencies as well. We hypothesized there is a unique LFP signature in the GPi that consists of movement modulated spectral power increases above 100Hz. Using invasive recordings from the GPi of patients undergoing DBS, in addition to confirming increased beta band activity within the GPi of patients with PD, we have identified and characterized a previously undescribed peak between 200 and 300Hz centered at approximately 235Hz, whose height and width but not center frequency are movement modulated. An increase in peak height is not transient, but rather persists for the duration of movement. The 200-300Hz rhythms in the GPi could have a functional role in the basal ganglia reentrant circuits by encoding output information entering the thalamo-cortical network or by organizing downstream activity for the successful execution of tasks.
Collapse
Affiliation(s)
- Christos Tsiokos
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
41
|
Abstract
The standard pharmacological treatment for Parkinson's disease using the dopamine precursor levodopa is unfortunately limited by gradual development of disabling involuntary movements for which the underlying causes are poorly understood. Here we show that levodopa-induced dyskinesia in hemiparkinsonian rats is strongly associated with pronounced 80 Hz local field potential oscillations in the primary motor cortex following levodopa treatment. When this oscillation is interrupted by application of a dopamine antagonist onto the cortical surface the dyskinetic symptoms disappear. The finding that abnormal cortical oscillations are a key pathophysiological mechanism calls for a revision of the prevailing hypothesis that links levodopa-induced dyskinesia to an altered sensitivity to dopamine only in the striatum. Apart from having important implications for the treatment of Parkinson's disease, the discovered pathophysiological mechanism may also play a role in several other psychiatric and neurological conditions involving cortical dysfunction.
Collapse
|
42
|
Striatal GABAergic and cortical glutamatergic neurons mediate contrasting effects of cannabinoids on cortical network synchrony. Proc Natl Acad Sci U S A 2012; 110:719-24. [PMID: 23269835 DOI: 10.1073/pnas.1217144110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Activation of type 1 cannabinoid receptors (CB1R) decreases GABA and glutamate release in cortical and subcortical regions, with complex outcomes on cortical network activity. To date there have been few attempts to disentangle the region- and cell-specific mechanisms underlying the effects of cannabinoids on cortical network activity in vivo. Here we addressed this issue by combining in vivo electrophysiological recordings with local and systemic pharmacological manipulations in conditional mutant mice lacking CB1R expression in different neuronal populations. First we report that cannabinoids induce hypersynchronous thalamocortical oscillations while decreasing the amplitude of faster cortical oscillations. Then we demonstrate that CB1R at striatonigral synapses (basal ganglia direct pathway) mediate the thalamocortical hypersynchrony, whereas activation of CB1R expressed in cortical glutamatergic neurons decreases cortical synchrony. Finally we show that activation of CB1 expressed in cortical glutamatergic neurons limits the cannabinoid-induced thalamocortical hypersynchrony. By reporting that CB1R activations in cortical and subcortical regions have contrasting effects on cortical synchrony, our study bridges the gap between cellular and in vivo network effects of cannabinoids. Incidentally, the thalamocortical hypersynchrony we report suggests a potential mechanism to explain the sensory "high" experienced during recreational consumption of marijuana.
Collapse
|
43
|
Marreiros AC, Cagnan H, Moran RJ, Friston KJ, Brown P. Basal ganglia-cortical interactions in Parkinsonian patients. Neuroimage 2012; 66:301-10. [PMID: 23153964 PMCID: PMC3573233 DOI: 10.1016/j.neuroimage.2012.10.088] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/08/2012] [Accepted: 10/29/2012] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease is a common and debilitating condition, caused by aberrant activity in a complex basal ganglia–thalamocortical circuit. Therapeutic advances rely on characterising interactions in this circuit. However, recording electrophysiological responses over the entire circuit is impractical. Dynamic causal modelling offers large-scale models of predictive value based on a limited or partial sampling of complex networks. Using dynamic causal modelling, we determined the network changes underlying the pathological excess of beta oscillations that characterise the Parkinsonian state. We modelled data from five patients undergoing surgery for deep brain stimulation of more than one target. We found that connections to and from the subthalamic nucleus were strengthened and promoted beta synchrony, in the untreated compared to the treated Parkinsonian state. Dynamic causal modelling was able to replicate the effects of lesioning this nucleus and may provide a new means of directing the search for therapeutic targets.
Collapse
Affiliation(s)
- André C Marreiros
- Nuffield Department of Clinical Neurology, University of Oxford, UK; Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, UK
| | - Hayriye Cagnan
- Nuffield Department of Clinical Neurology, University of Oxford, UK
| | - Rosalyn J Moran
- The Wellcome Trust Centre for Neuroimaging, University College London, UK
| | - Karl J Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, UK
| | - Peter Brown
- Nuffield Department of Clinical Neurology, University of Oxford, UK.
| |
Collapse
|
44
|
Tobón-Velasco JC, Vázquez-Victorio G, Macías-Silva M, Cuevas E, Ali SF, Maldonado PD, González-Trujano ME, Cuadrado A, Pedraza-Chaverrí J, Santamaría A. RETRACTED: S-allyl cysteine protects against 6-hydroxydopamine-induced neurotoxicity in the rat striatum: involvement of Nrf2 transcription factor activation and modulation of signaling kinase cascades. Free Radic Biol Med 2012; 53:1024-40. [PMID: 22781654 DOI: 10.1016/j.freeradbiomed.2012.06.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/22/2012] [Accepted: 06/30/2012] [Indexed: 12/19/2022]
Abstract
Pharmacological activation at the basal ganglia of the transcription factor Nrf2, guardian of redox homeostasis, holds a strong promise for the slow progression of Parkinson's disease (PD). However, a potent Nrf2 activator in the brain still must be found. In this study, we have investigated the potential use of the antioxidant compound S-allyl cysteine (SAC) in the activation of Nrf2 in 6-hydoxydopamine (6-OHDA)-intoxicated rats. In the rat striatum, SAC by itself promoted the Nrf2 dissociation of Keap-1, its nuclear translocation, the subsequent association with small MafK protein, and further binding of the Nrf2/MafK complex to ARE sequence, as well as the up-regulation of Nrf2-dependent genes encoding the antioxidant enzymes HO-1, NQO-1, GR, and SOD-1. In vivo and in vitro experiments to identify signaling pathways activated by SAC pointed to Akt as the most likely kinase participating in Nrf2 activation by SAC. In PC12 cells, SAC stimulated the activation of Akt and ERK1/2 and inhibited JNK1/2/3 activation. In the rat striatum, the SAC-induced activation of Nrf2 is likely to contribute to inhibit the toxic effects of 6-OHDA evidenced by phase 2 antioxidant enzymes up-regulation, glutathione recovery, and attenuation of reactive oxygen species (ROS), nitric oxide (NO), and lipid peroxides formation. These early protective effects correlated with the long-term preservation of the cellular redox status, the striatal dopamine (DA) and tyrosine hydroxylase (TH) levels, and the improvement of motor skills. Therefore, this study indicates that, in addition to direct scavenging actions, the activation of Nrf2 by SAC might confer neuroprotective responses through the modulation of kinase signaling pathways in rodent models of PD, and suggests that this antioxidant molecule may have a therapeutic value in this human pathology.
Collapse
Affiliation(s)
- Julio César Tobón-Velasco
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía - S.S.A., México City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zold CL, Escande MV, Pomata PE, Riquelme LA, Murer MG. Striatal NMDA receptors gate cortico-pallidal synchronization in a rat model of Parkinson's disease. Neurobiol Dis 2012; 47:38-48. [DOI: 10.1016/j.nbd.2012.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/06/2012] [Accepted: 03/10/2012] [Indexed: 11/26/2022] Open
|
46
|
Ge S, Yang C, Li M, Li J, Chang X, Fu J, Chen L, Chang C, Wang X, Zhu J, Gao G. Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats. Brain Res 2012; 1465:66-79. [DOI: 10.1016/j.brainres.2012.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 04/24/2012] [Accepted: 05/02/2012] [Indexed: 11/29/2022]
|
47
|
Rubchinsky LL, Park C, Worth RM. Intermittent neural synchronization in Parkinson's disease. NONLINEAR DYNAMICS 2012; 68:329-346. [PMID: 22582010 PMCID: PMC3347643 DOI: 10.1007/s11071-011-0223-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Motor symptoms of Parkinson's disease are related to the excessive synchronized oscillatory activity in the beta frequency band (around 20Hz) in the basal ganglia and other parts of the brain. This review explores the dynamics and potential mechanisms of these oscillations employing ideas and methods from nonlinear dynamics. We present extensive experimental documentation of the relevance of synchronized oscillations to motor behavior in Parkinson's disease, and we discuss the intermittent character of this synchronization. The reader is introduced to novel time-series analysis techniques aimed at the detection of the fine temporal structure of intermittent phase locking observed in the brains of parkinsonian patients. Modeling studies of brain networks are reviewed, which may describe the observed intermittent synchrony, and we discuss what these studies reveal about brain dynamics in Parkinson's disease. The parkinsonian brain appears to exist on the boundary between phase-locked and nonsynchronous dynamics. Such a situation may be beneficial in the healthy state, as it may allow for easy formation and dissociation of transient patterns of synchronous activity which are required for normal motor behavior. Dopaminergic degeneration in Parkinson's disease may shift the brain networks closer to this boundary, which would still permit some motor behavior while accounting for the associated motor deficits. Understanding the mechanisms of the intermittent synchrony in Parkinson's disease is also important for biomedical engineering since efficient control strategies for suppression of pathological synchrony through deep brain stimulation require knowledge of the dynamics of the processes subjected to control.
Collapse
Affiliation(s)
- Leonid L. Rubchinsky
- Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Choongseok Park
- Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Robert M. Worth
- Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
48
|
Mure H, Tang CC, Argyelan M, Ghilardi MF, Kaplitt MG, Dhawan V, Eidelberg D. Improved sequence learning with subthalamic nucleus deep brain stimulation: evidence for treatment-specific network modulation. J Neurosci 2012; 32:2804-13. [PMID: 22357863 PMCID: PMC4557784 DOI: 10.1523/jneurosci.4331-11.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/14/2011] [Accepted: 11/22/2011] [Indexed: 11/21/2022] Open
Abstract
We used a network approach to study the effects of anti-parkinsonian treatment on motor sequence learning in humans. Eight Parkinson's disease (PD) patients with bilateral subthalamic nucleus (STN) deep brain stimulation underwent H(2)(15)O positron emission tomography (PET) imaging to measure regional cerebral blood flow (rCBF) while they performed kinematically matched sequence learning and movement tasks at baseline and during stimulation. Network analysis revealed a significant learning-related spatial covariance pattern characterized by consistent increases in subject expression during stimulation (p = 0.008, permutation test). The network was associated with increased activity in the lateral cerebellum, dorsal premotor cortex, and parahippocampal gyrus, with covarying reductions in the supplementary motor area (SMA) and orbitofrontal cortex. Stimulation-mediated increases in network activity correlated with concurrent improvement in learning performance (p < 0.02). To determine whether similar changes occurred during dopaminergic pharmacotherapy, we studied the subjects during an intravenous levodopa infusion titrated to achieve a motor response equivalent to stimulation. Despite consistent improvement in motor ratings during infusion, levodopa did not alter learning performance or network activity. Analysis of learning-related rCBF in network regions revealed improvement in baseline abnormalities with STN stimulation but not levodopa. These effects were most pronounced in the SMA. In this region, a consistent rCBF response to stimulation was observed across subjects and trials (p = 0.01), although the levodopa response was not significant. These findings link the cognitive treatment response in PD to changes in the activity of a specific cerebello-premotor cortical network. Selective modulation of overactive SMA-STN projection pathways may underlie the improvement in learning found with stimulation.
Collapse
Affiliation(s)
- Hideo Mure
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York 11030
| | - Chris C. Tang
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York 11030
| | - Miklos Argyelan
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York 11030
| | - Maria-Felice Ghilardi
- Department of Physiology and Pharmacology, City University of New York Medical School, New York, NY 10031, and
| | - Michael G. Kaplitt
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York 10065
| | - Vijay Dhawan
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York 11030
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York 11030
| |
Collapse
|
49
|
Evolution of the dynamic properties of the cortex-basal ganglia network after dopaminergic depletion in rats. Neurobiol Dis 2012; 46:402-13. [PMID: 22353564 DOI: 10.1016/j.nbd.2012.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/18/2012] [Accepted: 02/04/2012] [Indexed: 11/20/2022] Open
Abstract
It is well established that parkinsonian syndrome is associated with alterations of neuronal activity temporal pattern basal ganglia (BG). An increase in synchronized oscillations has been observed in different BG nuclei in Parkinson's disease patients as well as animal models such as 6-hydroxydopamine treated rats. We recently demonstrated that this increase in oscillatory synchronization is present during high-voltage spindles (HVS) probably underpinned by the disorganization of cortex-BG interactions. Here we investigated the time course of both oscillatory and motor alterations. For that purpose we performed daily simultaneous recordings of neuronal activity in motor cortex, striatum and substantia nigra pars reticulata (SNr), before and after 6-hydroxydopamine lesion in awake rats. After a brief non-dopamine-specific desynchronization, oscillatory activity first increased during HVS followed by progressive motor impairment and the shortening of SNr activation delay. While the oscillatory firing increase reflects dopaminergic depletion, response alteration in SNr neurons is closely related to motor symptom.
Collapse
|
50
|
Alcaro A, Panksepp J. The SEEKING mind: Primal neuro-affective substrates for appetitive incentive states and their pathological dynamics in addictions and depression. Neurosci Biobehav Rev 2011; 35:1805-20. [DOI: 10.1016/j.neubiorev.2011.03.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 01/25/2023]
|