1
|
Tadokoro S, Shinji Y, Yamanaka T, Hirata Y. Learning capabilities to resolve tilt-translation ambiguity in goldfish. Front Neurol 2024; 15:1304496. [PMID: 38774058 PMCID: PMC11106485 DOI: 10.3389/fneur.2024.1304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/08/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Spatial orientation refers to the perception of relative location and self-motion in space. The accurate formation of spatial orientation is essential for animals to survive and interact safely with their environment. The formation of spatial orientation involves the integration of sensory inputs from the vestibular, visual, and proprioceptive systems. Vestibular organs function as specialized head motion sensors, providing information regarding angular velocity and linear acceleration via the semicircular canals and otoliths, respectively. However, because forces arising from the linear acceleration (translation) and inclination relative to the gravitational axis (tilt) are equivalent, they are indistinguishable by accelerometers, including otoliths. This is commonly referred to as the tilt - translation ambiguity, which can occasionally lead to the misinterpretation of translation as a tilt. The major theoretical frameworks addressing this issue have proposed that the interpretation of tilt versus translation may be contingent on an animal's previous experiences of motion. However, empirical confirmation of this hypothesis is lacking. Methods In this study, we conducted a behavioral experiment using goldfish to investigate how an animal's motion experience influences its interpretation of tilt vs. translation. We examined a reflexive eye movement called the vestibulo-ocular reflex (VOR), which compensatory-rotates the eyes in response to head motion and is known to reflect an animal's three-dimensional head motion estimate. Results We demonstrated that the VORs of naïve goldfish do not differentiate between translation and tilt at 0.5 Hz. However, following prolonged visual-translation training, which provided appropriate visual stimulation in conjunction with translational head motion, the VORs were capable of distinguishing between the two types of head motion within 3 h. These results were replicated using the Kalman filter model of spatial orientation, which incorporated the variable variance of process noise corresponding to the accumulated motion experience. Discussion Based on these experimental and computational findings, we discuss the neural mechanism underlying the resolution of tilt-translation ambiguity within a context analogous to, yet distinct from, previous cross-axis VOR adaptations.
Collapse
Affiliation(s)
- Shin Tadokoro
- Department of Robotic Science and Technology, Graduate School of Engineering, Chubu University, Kasugai, Japan
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Tokorozawa, Japan
- Japan Air Self-Defense Force, Ichigaya, Japan
| | - Yusuke Shinji
- Department of Computer Science, Graduate School of Engineering, Chubu University, Kasugai, Japan
| | - Toshimi Yamanaka
- Department of Robotic Science and Technology, Graduate School of Engineering, Chubu University, Kasugai, Japan
| | - Yutaka Hirata
- Department of Robotic Science and Technology, Graduate School of Engineering, Chubu University, Kasugai, Japan
- Center for Mathematical Science and Artificial Intelligence, Chubu University, Kasugai, Japan
- Academy of Emerging Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|
2
|
De Sá Teixeira NA, Freitas RR, Silva S, Taliscas T, Mateus P, Gomes A, Lima J. Representational horizon and visual space orientation: An investigation into the role of visual contextual cues on spatial mislocalisations. Atten Percept Psychophys 2024; 86:1222-1236. [PMID: 37731084 PMCID: PMC11093852 DOI: 10.3758/s13414-023-02783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
The perceived offset position of a moving target has been found to be displaced forward, in the direction of motion (Representational Momentum; RM), downward, in the direction of gravity (Representational Gravity; RG), and, recently, further displaced along the horizon implied by the visual context (Representational Horizon; RH). The latter, while still underexplored, offers the prospect to clarify the role of visual contextual cues in spatial orientation and in the perception of dynamic events. As such, the present work sets forth to ascertain the robustness of Representational Horizon across varying types of visual contexts, particularly between interior and exterior scenes, and to clarify to what degree it reflects a perceptual or response phenomenon. To that end, participants were shown targets, moving along one out of several possible trajectories, overlaid on a randomly chosen background depicting either an interior or exterior scene rotated -22.5º, 0º, or 22.5º in relation to the actual vertical. Upon the vanishing of the target, participants were required to indicate its last seen location with a computer mouse. For half the participants, the background vanished with the target while for the remaining it was kept visible until a response was provided. Spatial localisations were subjected to a discrete Fourier decomposition procedure to obtain independent estimates of RM, RG, and RH. Outcomes showed that RH's direction was biased towards the horizon implied by the visual context, but solely for exterior scenes, and irrespective of its presence or absence during the spatial localisation response, supporting its perceptual/representational nature.
Collapse
Affiliation(s)
- Nuno Alexandre De Sá Teixeira
- William James Center for Research, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Education and Psychology, University of Aveiro, Aveiro, Portugal.
| | | | - Samuel Silva
- Institute of Electronics and Telematics Engineering of Aveiro (IEETA), Intelligent Systems Associate Laboratory (LASI), Department of Electronics, Telecommunications and Informatics (DETI), University of Aveiro, Aveiro, Portugal
| | - Tiago Taliscas
- Department of Education and Psychology, University of Aveiro, Aveiro, Portugal
| | - Pedro Mateus
- Department of Education and Psychology, University of Aveiro, Aveiro, Portugal
| | - Afonso Gomes
- Department of Education and Psychology, University of Aveiro, Aveiro, Portugal
| | - João Lima
- Department of Education and Psychology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Voros J, Kravets V, Smith K, Clark TK. Humans gradually integrate sudden gain or loss of visual information into spatial orientation perception. Front Neurosci 2024; 17:1274949. [PMID: 38260024 PMCID: PMC10800753 DOI: 10.3389/fnins.2023.1274949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Vestibular and visual information is used in determining spatial orientation. Existing computational models of orientation perception focus on the integration of visual and vestibular orientation information when both are available. It is well-known, and computational models capture, differences in spatial orientation perception with visual information or without (i.e., in the dark). For example, during earth vertical yaw rotation at constant angular velocity without visual information, humans perceive their rate of rotation to decay. However, during the same sustained rotation with visual information, humans can continue to more accurately perceive self-rotation. Prior to this study, there was no existing literature on human motion perception where visual information suddenly become available or unavailable during self-motion. Methods Via a well verified psychophysical task, we obtained perceptual reports of self-rotation during various profiles of Earth-vertical yaw rotation. The task involved transitions in the availability of visual information (and control conditions with visual information available throughout the motion or unavailable throughout). Results We found that when visual orientation information suddenly became available, subjects gradually integrated the new visual information over ~10 seconds. In the opposite scenario (visual information suddenly removed), past visual information continued to impact subject perception of self-rotation for ~30 seconds. We present a novel computational model of orientation perception that is consistent with the experimental results presented in this study. Discussion The gradual integration of sudden loss or gain of visual information is achieved via low pass filtering in the visual angular velocity sensory conflict pathway. In conclusion, humans gradually integrate sudden gain or loss of visual information into their existing perception of self-motion.
Collapse
Affiliation(s)
- Jamie Voros
- Ann and H.J. Smead Department of Aerospace Engineering Sciences, Boulder, CO, United States
| | | | | | | |
Collapse
|
4
|
Zeng Z, Zhang C, Gu Y. Visuo-vestibular heading perception: a model system to study multi-sensory decision making. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220334. [PMID: 37545303 PMCID: PMC10404926 DOI: 10.1098/rstb.2022.0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/15/2023] [Indexed: 08/08/2023] Open
Abstract
Integrating noisy signals across time as well as sensory modalities, a process named multi-sensory decision making (MSDM), is an essential strategy for making more accurate and sensitive decisions in complex environments. Although this field is just emerging, recent extraordinary works from different perspectives, including computational theory, psychophysical behaviour and neurophysiology, begin to shed new light onto MSDM. In the current review, we focus on MSDM by using a model system of visuo-vestibular heading. Combining well-controlled behavioural paradigms on virtual-reality systems, single-unit recordings, causal manipulations and computational theory based on spiking activity, recent progress reveals that vestibular signals contain complex temporal dynamics in many brain regions, including unisensory, multi-sensory and sensory-motor association areas. This challenges the brain for cue integration across time and sensory modality such as optic flow which mainly contains a motion velocity signal. In addition, new evidence from the higher-level decision-related areas, mostly in the posterior and frontal/prefrontal regions, helps revise our conventional thought on how signals from different sensory modalities may be processed, converged, and moment-by-moment accumulated through neural circuits for forming a unified, optimal perceptual decision. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Zhao Zeng
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, 200031 Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Ce Zhang
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, 200031 Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Yong Gu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, 200031 Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| |
Collapse
|
5
|
Crisafulli O, Ravizzotti E, Mezzarobba S, Cosentino C, Bonassi G, Botta A, Abbruzzese G, Marchese R, Avanzino L, Pelosin E. A gait-based paradigm to investigate central body representation in cervical dystonia patients. Neurol Sci 2023; 44:1311-1318. [PMID: 36534193 DOI: 10.1007/s10072-022-06548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cervical dystonia (CD) is a common adult-onset idiopathic form of dystonia characterized by an abnormal head posture caused by an excessive activity of the neck muscles. The position of the head is important to direct viewpoint in the rounding environment, and the body orientation, during gait, must be coherent with the subjective straight ahead (SSA). An alteration of the SSA, as in the case of CD patients, could affect gait when visual input is not available. The aim of this study was to probe the behavior of patients with CD during blindfolded walking, investigating the ability to walk straight ahead based only on somatosensory and vestibular information. METHODS In this observational cross-sectional study, patients with CD and healthy control subjects (HC) were compared. All participants were evaluated through a gait analysis during blindfolded walking on a GAITRite carpet, relying on their own sense of straightness. RESULTS Patients with CD showed lower values of path length (p < 0.001), a lower number of steps on the carpet (p < 0.001). A higher number of CD patients deviated during the task, walking out of the carpet, (p < 0.005) compared to HS. No relation was found between the dystonic side and the gait trajectory deviation. A significant correlation was found between pain symptom and gait performance. CONCLUSIONS CD patients showed dysfunctions in controlling dynamic body location during walking without visual afferences, while the dystonic side does not seem to be related to the lateral deviation of the trajectory. Our results would assume that a general proprioceptive impairment could lead to an improper body position awareness in patients with CD.
Collapse
Affiliation(s)
- O Crisafulli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - E Ravizzotti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132, Rehabilitation Genoa, Ophthalmology, Italy
| | - S Mezzarobba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132, Rehabilitation Genoa, Ophthalmology, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - C Cosentino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132, Rehabilitation Genoa, Ophthalmology, Italy
| | - G Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, Azienda Sanitaria Locale Chiavarese, 16043, Chiavari, Italy
| | - A Botta
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - G Abbruzzese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132, Rehabilitation Genoa, Ophthalmology, Italy
| | - R Marchese
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - L Avanzino
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Genoa, Italy
| | - E Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132, Rehabilitation Genoa, Ophthalmology, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
6
|
van Helvert MJL, Selen LPJ, van Beers RJ, Medendorp WP. Predictive steering: integration of artificial motor signals in self-motion estimation. J Neurophysiol 2022; 128:1395-1408. [PMID: 36350058 DOI: 10.1152/jn.00248.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The brain's computations for active and passive self-motion estimation can be unified with a single model that optimally combines vestibular and visual signals with sensory predictions based on efference copies. It is unknown whether this theoretical framework also applies to the integration of artificial motor signals, such as those that occur when driving a car, or whether self-motion estimation in this situation relies on sole feedback control. Here, we examined if training humans to control a self-motion platform leads to the construction of an accurate internal model of the mapping between the steering movement and the vestibular reafference. Participants (n = 15) sat on a linear motion platform and actively controlled the platform's velocity using a steering wheel to translate their body to a memorized visual target (motion condition). We compared their steering behavior to that of participants (n = 15) who remained stationary and instead aligned a nonvisible line with the target (stationary condition). To probe learning, the gain between the steering wheel angle and the platform or line velocity changed abruptly twice during the experiment. These gain changes were virtually undetectable in the displacement error in the motion condition, whereas clear deviations were observed in the stationary condition, showing that participants in the motion condition made within-trial changes to their steering behavior. We conclude that vestibular feedback allows not only the online control of steering but also a rapid adaptation to the gain changes to update the brain's internal model of the mapping between the steering movement and the vestibular reafference.NEW & NOTEWORTHY Perception of self-motion is known to depend on the integration of sensory signals and, when the motion is self-generated, the predicted sensory reafference based on motor efference copies. Here we show, using a closed-loop steering experiment with a direct coupling between the steering movement and the vestibular self-motion feedback, that humans are also able to integrate artificial motor signals, like the motor signals that occur when driving a car.
Collapse
Affiliation(s)
- Milou J L van Helvert
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Luc P J Selen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Robert J van Beers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Madhani A, Lewis RF, Karmali F. How Peripheral Vestibular Damage Affects Velocity Storage: a Causative Explanation. J Assoc Res Otolaryngol 2022; 23:551-566. [PMID: 35768706 PMCID: PMC9437187 DOI: 10.1007/s10162-022-00853-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/30/2022] [Indexed: 10/17/2022] Open
Abstract
Velocity storage is a centrally-mediated mechanism that processes peripheral vestibular inputs. One prominent aspect of velocity storage is its effect on dynamic responses to yaw rotation. Specifically, when normal human subjects are accelerated to constant angular yaw velocity, horizontal eye movements and perceived angular velocity decay exponentially with a time constant circa 15-30 s, even though the input from the vestibular periphery decays much faster (~ 6 s). Peripheral vestibular damage causes a time constant reduction, which is useful for clinical diagnoses, but a mechanistic explanation for the relationship between vestibular damage and changes in these behavioral dynamics is lacking. It has been hypothesized that Bayesian optimization determines ideal velocity storage dynamics based on statistics of vestibular noise and experienced motion. Specifically, while a longer time constant would make the central estimate of angular head velocity closer to actual head motion, it may also result in the accumulation of neural noise which simultaneously degrades precision. Thus, the brain may balance these two effects by determining the time constant that optimizes behavior. We applied a Bayesian optimal Kalman filter to determine the ideal velocity storage time constant for unilateral damage. Predicted time constants were substantially lower than normal and similar to patients. Building on our past work showing that Bayesian optimization explains age-related changes in velocity storage, we also modeled interactions between age-related hair cell loss and peripheral damage. These results provide a plausible mechanistic explanation for changes in velocity storage after peripheral damage. Results also suggested that even after peripheral damage, noise originating in the periphery or early central processing may remain relevant in neurocomputations. Overall, our findings support the hypothesis that the brain optimizes velocity storage based on the vestibular signal-to-noise ratio.
Collapse
Affiliation(s)
- Amsal Madhani
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, MA USA
| | - Richard F. Lewis
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, MA USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA USA
- Department of Neurology, Harvard Medical School, Boston, MA USA
| | - Faisal Karmali
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, MA USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA USA
| |
Collapse
|
8
|
Hagbi Z, Segev E, Eilam D. Keep a level head to know the way ahead: How rodents travel on inclined surfaces? iScience 2022; 25:104424. [PMID: 35663016 PMCID: PMC9157226 DOI: 10.1016/j.isci.2022.104424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Animals traveling on a horizontal surface stabilize their head in relation to the substrate in order to gather spatial information and orient. What, however, do they do when traveling on an incline? We examined how three rodent species differing in motor abilities and habitats explore a platform tilted at 0–90°, hypothesizing that they would attempt to maintain bilateral vestibular cues. We found that traveling up or down was mainly straight vertically rather than diagonally, which results in identical bilateral vestibular cues. This was also achieved when traveling horizontally through rotating the head to parallel the horizontal plane. Traveling diagonally up or down was avoided, perhaps due to different bilateral vestibular cues that could hinder orientation. Accordingly, we suggest that maintaining identical bilateral cues is an orientational necessity that overrides differences in motor abilities and habitats, and that this necessity is a general characteristic of animals in motion. Three rodent species were tested on a platform inclined at 0°–90° Increased inclination results in traveling straight vertically or horizontally Both these shapes of trajectories feature a horizontal leveled head We suggest that such posture is required for spatial orientation when in motion
Collapse
Affiliation(s)
- Zohar Hagbi
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| | - Elad Segev
- Department of Applied Mathematics, Holon Institute of Technology, Holon, Israel
| | - David Eilam
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| |
Collapse
|
9
|
Diaz-Artiles A, Karmali F. Vestibular Precision at the Level of Perception, Eye Movements, Posture, and Neurons. Neuroscience 2021; 468:282-320. [PMID: 34087393 PMCID: PMC9188304 DOI: 10.1016/j.neuroscience.2021.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022]
Abstract
Precision and accuracy are two fundamental properties of any system, including the nervous system. Reduced precision (i.e., imprecision) results from the presence of neural noise at each level of sensory, motor, and perceptual processing. This review has three objectives: (1) to show the importance of studying vestibular precision, and specifically that studying accuracy without studying precision ignores fundamental aspects of the vestibular system; (2) to synthesize key hypotheses about precision in vestibular perception, the vestibulo-ocular reflex, posture, and neurons; and (3) to show that groups of studies that are thoughts to be distinct (e.g., perceptual thresholds, subjective visual vertical variability, neuronal variability) are actually "two sides of the same coin" - because the methods used allow results to be related to the standard deviation of a Gaussian distribution describing the underlying neural noise. Vestibular precision varies with age, stimulus amplitude, stimulus frequency, body orientation, motion direction, pathology, medication, and electrical/mechanical vestibular stimulation, but does not vary with sex. The brain optimizes precision during integration of vestibular cues with visual, auditory, and/or somatosensory cues. Since a common concern with precision metrics is time required for testing, we describe approaches to optimize data collection and provide evidence that fatigue and session effects are minimal. Finally, we summarize how precision is an individual trait that is correlated with clinical outcomes in patients as well as with performance in functional tasks like balance. These findings highlight the importance of studying vestibular precision and accuracy, and that knowledge gaps remain.
Collapse
Affiliation(s)
- Ana Diaz-Artiles
- Bioastronautics and Human Performance Laboratory, Department of Aerospace Engineering, Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-3141, USA. https://bhp.engr.tamu.edu
| | - Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA, USA.
| |
Collapse
|
10
|
Kwon E, Lee JY, Kim HJ, Choi JY, Kim JS. Can Dyssynergia of Vestibulosympathetic and Baroreflexes Cause Vestibular Syncope? The Hypothesis Based on the Velocity-Storage Function. THE CEREBELLUM 2021; 21:244-252. [PMID: 34156636 DOI: 10.1007/s12311-021-01296-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
The mechanism of vestibular syncope, the syncope occurring during the vertigo attacks, remains uncertain. This study aims to clarify the mechanism of vestibular syncope by pursuing the function of vestibular system in cardiovascular autonomic control and by defining neuro-hemodynamic changes in vestibular syncope. By integrating the velocity-storage (VS) circuit in the brainstem and cerebellum, we propose that the vestibular syncope develops as a result of dyssynergia of the vestibulosympathetic and baroreflexes in which centrally estimated downward inertial acceleration during the vertigo attacks acts as a trigger. Recognition of the vestibular disorders as a possible cause of syncope would allow proper managements for prevention of further syncope and related complications in patients with vestibular disorders.
Collapse
Affiliation(s)
- Eunjin Kwon
- Department of Neurology, Chungnam National University Hospital, Daejeon, South Korea
| | - Ju Young Lee
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Hyo-Jung Kim
- Research Administration Team, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jeong-Yoon Choi
- Dizziness Center, Clinical Neuroscience Center, Department of Neurology, Seoul National University Bundang Hospital, Seongnam, South Korea. .,Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea.
| | - Ji-Soo Kim
- Dizziness Center, Clinical Neuroscience Center, Department of Neurology, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Visual Attention Modulates Glutamate-Glutamine Levels in Vestibular Cortex: Evidence from Magnetic Resonance Spectroscopy. J Neurosci 2021; 41:1970-1981. [PMID: 33452222 DOI: 10.1523/jneurosci.2018-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/12/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022] Open
Abstract
Attending to a stimulus enhances the neuronal responses to it, while responses to nonattended stimuli are not enhanced and may even be suppressed. Although the neural mechanisms of response enhancement for attended stimuli have been intensely studied, the neural mechanisms underlying attentional suppression remain largely unknown. It is uncertain whether attention acts to suppress the processing in sensory cortical areas that would otherwise process the nonattended stimulus or the subcortical input to these cortical areas. Moreover, the neurochemical mechanisms inducing a reduction or suppression of neuronal responses to nonattended stimuli are as yet unknown. Here, we investigated how attention directed toward visual processing cross-modally acts to suppress vestibular responses in the human brain. By using functional magnetic resonance spectroscopy in a group of female and male subjects, we find that attention to visual motion downregulates in a load-dependent manner the concentration of excitatory neurotransmitter (glutamate and its precursor glutamine, referred to together as Glx) within the parietoinsular vestibular cortex (PIVC), a core cortical area of the vestibular system, while leaving the concentration of inhibitory neurotransmitter (GABA) in PIVC unchanged. This makes PIVC less responsive to excitatory thalamic vestibular input, as corroborated by functional magnetic resonance imaging. Together, our results suggest that attention acts to suppress the processing of nonattended sensory cues cortically by neurochemically rendering the core cortical area of the nonattended sensory modality less responsive to excitatory thalamic input.SIGNIFICANCE STATEMENT Here, we address a fundamental problem that has eluded attention research for decades, namely, how the brain ignores irrelevant stimuli. To date, three classes of solutions to this problem have been proposed: (1) enhancement of GABAergic interneuron activity in cortex, (2) downregulation of glutamatergic cell activity in cortex; and (3) downregulation of neural activity in thalamic projection areas, which would then provide the cortex with less input. Here, we use magnetic resonance spectroscopy in humans and find support for the second hypothesis, implying that attention to one sensory modality involves the suppression of irrelevant stimuli of another sensory modality by downregulating glutamate in the cortex.
Collapse
|
12
|
Nooij SAE, Bockisch CJ, Bülthoff HH, Straumann D. Beyond sensory conflict: The role of beliefs and perception in motion sickness. PLoS One 2021; 16:e0245295. [PMID: 33465124 PMCID: PMC7815099 DOI: 10.1371/journal.pone.0245295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/25/2020] [Indexed: 11/28/2022] Open
Abstract
Illusory self-motion often provokes motion sickness, which is commonly explained in terms of an inter-sensory conflict that is not in accordance with previous experience. Here we address the influence of cognition in motion sickness and show that such a conflict is not provocative when the observer believes that the motion illusion is indeed actually occurring. Illusory self-motion and motion sickness were elicited in healthy human participants who were seated on a stationary rotary chair inside a rotating optokinetic drum. Participants knew that both chair and drum could rotate but were unaware of the actual motion stimulus. Results showed that motion sickness was correlated with the discrepancy between participants’ perceived self-motion and participants’ beliefs about the actual motion. Together with the general motion sickness susceptibility, this discrepancy accounted for 51% of the variance in motion sickness intensity. This finding sheds a new light on the causes of visually induced motion sickness and suggests that it is not governed by an inter-sensory conflict per se, but by beliefs concerning the actual self-motion. This cognitive influence provides a promising tool for the development of new countermeasures.
Collapse
Affiliation(s)
- Suzanne A. E. Nooij
- Department of Human Perception Action and Cognition, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TNO Soesterberg, Soesterberg, The Netherlands
- * E-mail:
| | - Christopher J. Bockisch
- Department of Neurology, University Hospital Zurich & University of Zurich, Zurich, Switzerland
- Department of Ophthalmology, University Hospital Zurich & University of Zurich, Zurich, Switzerland
- Department of Otorhinolaryngology, University Hospital & University of Zurich, Zurich, Switzerland
- Interdisciplinary Center for Vertigo & Neurological Visual Disorders, University Hospital Zurich & University of Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Heinrich H. Bülthoff
- Department of Human Perception Action and Cognition, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dominik Straumann
- Department of Neurology, University Hospital Zurich & University of Zurich, Zurich, Switzerland
- Interdisciplinary Center for Vertigo & Neurological Visual Disorders, University Hospital Zurich & University of Zurich, Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Swiss Concussion Center, Zurich, Switzerland
| |
Collapse
|
13
|
Vestibular Perception in Time and Space During Whole-Body Rotation in Humans. THE CEREBELLUM 2021; 20:509-517. [PMID: 33443711 DOI: 10.1007/s12311-020-01229-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
We investigated the vestibular perception of position, velocity, and time (duration) in humans with rotational stimuli including low velocities and small amplitudes. The participants were categorized into young, middle, and old age groups, and each consisted of 10 subjects. Position perception was assessed after yaw rotations ranged from 30 to 180° in both clockwise and counterclockwise directions. For each position, the rotation was delivered at two or more different velocities ranging from 15 to 120°/s. Position perception tended to underestimate the actual position and was similar during the slow and fast rotations. However, the trends of underestimation disappeared in the old age group. Velocity perception was evaluated by forcing the selection of the faster direction in each pair of rotations toward two positions (30° and 60°) with velocity differences from 0 to 20°/s. Velocity discrimination was similar between the rotation amplitudes or among the age groups. For duration perception, participants chose the rotation of longer duration for three test paradigms with different amplitudes (small vs. large) and durations (short vs. long) of rotation. The accuracy of discriminating duration was similar across the test paradigms or age groups, but the precision was lower in the older group and altered significantly according to the test paradigm. In conclusion, vestibular perception can be assessed using rotations of low velocities and small amplitudes. The perception of position and duration is affected by aging. The precision of duration perception can be influenced by the interactions between the amplitude and duration of motion.
Collapse
|
14
|
Abstract
Our research described in this article was motivated by the puzzling finding of the Skylab M131 experiments: head movements made while rotating that are nauseogenic and disorienting on Earth are innocuous in a weightless, 0-g environment. We describe a series of parabolic flight experiments that directly addressed this puzzle and discovered the gravity-dependent responses to semicircular canal stimulation, consistent with the principles of velocity storage. We describe a line of research that started in a different direction, investigating dynamic balancing, but ended up pointing to the gravity dependence of angular velocity-to-position integration of semicircular canal signals. Together, these lines of research and the theoretical framework of velocity storage provide an answer to at least part of the M131 puzzle. We also describe recently discovered neural circuits by which active, dynamic vestibular, multisensory, and motor signals are interpreted as either appropriate for action and orientation or as conflicts evoking motion sickness and disorientation.
Collapse
Affiliation(s)
- James R Lackner
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham, Massachusetts
| | - Paul DiZio
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
15
|
Kabbaligere R, Layne CS, Karmali F. Perception of threshold-level whole-body motion during mechanical mastoid vibration. J Vestib Res 2019; 28:283-294. [PMID: 30149483 DOI: 10.3233/ves-180636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vibration applied on the mastoid has been shown to be an excitatory stimulus to the vestibular receptors, but its effect on vestibular perception is unknown. OBJECTIVE Determine whether mastoid vibration affects yaw rotation perception using a self-motion perceptual direction-recognition task. METHODS We used continuous, bilateral, mechanical mastoid vibration using a stimulus with frequency content between 1 and 500 Hz. Vestibular perception of 10 healthy adults (M±S.D. = 34.3±12 years old) was tested with and without vibration. Subjects repeatedly reported the perceived direction of threshold-level yaw rotations administered at 1 Hz by a motorized platform. A cumulative Gaussian distribution function was fit to subjects' responses, which was described by two parameters: bias and threshold. Bias was defined as the mean of the Gaussian distribution, and equal to the motion perceived on average when exposed to null stimuli. Threshold was defined as the standard deviation of the distribution and corresponded to the stimulus the subject could reliably perceive. RESULTS The results show that mastoid vibration may reduce bias, although two statistical tests yield different conclusions. There was no evidence that yaw rotation thresholds were affected. CONCLUSIONS Bilateral mastoid vibration may reduce left-right asymmetry in motion perception.
Collapse
Affiliation(s)
- Rakshatha Kabbaligere
- Department of Health and Human Performance, University of Houston, Houston, TX, USA.,Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA
| | - Charles S Layne
- Department of Health and Human Performance, University of Houston, Houston, TX, USA.,Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA.,Center for Neuro-Engineering and Cognitive Science, University of Houston, Houston, TX, USA
| | - Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Khosravi‐Hashemi N, Forbes PA, Dakin CJ, Blouin J. Virtual signals of head rotation induce gravity‐dependent inferences of linear acceleration. J Physiol 2019; 597:5231-5246. [DOI: 10.1113/jp278642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Patrick A. Forbes
- Department of NeuroscienceErasmus MCUniversity Medical Center Rotterdam Rotterdam The Netherlands
| | | | | |
Collapse
|
17
|
Niehof N, Perdreau F, Koppen M, Medendorp WP. Time course of the subjective visual vertical during sustained optokinetic and galvanic vestibular stimulation. J Neurophysiol 2019; 122:788-796. [DOI: 10.1152/jn.00083.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The brain is thought to use rotation cues from both the vestibular and optokinetic system to disambiguate the gravito-inertial force, as measured by the otoliths, into components of linear acceleration and gravity direction relative to the head. Hence, when the head is stationary and upright, an erroneous percept of tilt arises during optokinetic roll stimulation (OKS) or when an artificial canal-like signal is delivered by means of galvanic vestibular stimulation (GVS). It is still unknown how this percept is affected by the combined presence of both cues or how it develops over time. Here, we measured the time course of the subjective visual vertical (SVV), as a proxy of perceived head tilt, in human participants ( n = 16) exposed to constant-current GVS (1 and 2 mA, cathodal and anodal) and constant-velocity OKS (30°/s clockwise and counterclockwise) or their combination. In each trial, participants continuously adjusted the orientation of a visual line, which drifted randomly, to Earth vertical. We found that both GVS and OKS evoke an exponential time course of the SVV. These time courses have different amplitudes and different time constants, 4 and 7 s respectively, and combine linearly when the two stimulations are presented together. We discuss these results in the framework of observer theory and Bayesian state estimation. NEW & NOTEWORTHY While it is known that both roll optokinetic stimuli and galvanic vestibular stimulation affect the percept of vertical, how their effects combine and develop over time is still unclear. Here we show that both effects combined linearly but are characterized by different time constants, which we discuss from a probabilistic perspective.
Collapse
Affiliation(s)
- Nynke Niehof
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Florian Perdreau
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Mathieu Koppen
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - W. Pieter Medendorp
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Clark TK, Newman MC, Karmali F, Oman CM, Merfeld DM. Mathematical models for dynamic, multisensory spatial orientation perception. PROGRESS IN BRAIN RESEARCH 2019; 248:65-90. [PMID: 31239146 DOI: 10.1016/bs.pbr.2019.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mathematical models have been proposed for how the brain interprets sensory information to produce estimates of self-orientation and self-motion. This process, spatial orientation perception, requires dynamically integrating multiple sensory modalities, including visual, vestibular, and somatosensory cues. Here, we review the progress in mathematical modeling of spatial orientation perception, focusing on dynamic multisensory models, and the experimental paradigms in which they have been validated. These models are primarily "black box" or "as if" models for how the brain processes spatial orientation cues. Yet, they have been effective scientifically, in making quantitative hypotheses that can be empirically assessed, and operationally, in investigating aircraft pilot disorientation, for example. The primary family of models considered, the observer model, implements estimation theory approaches, hypothesizing that internal models (i.e., neural systems replicating the behavior/dynamics of physical systems) are used to produce expected sensory measurements. Expected signals are then compared to actual sensory afference, yielding sensory conflict, which is weighted to drive central perceptions of gravity, angular velocity, and translation. This approach effectively predicts a wide range of experimental scenarios using a small set of fixed free parameters. We conclude with limitations and applications of existing mathematical models and important areas of future work.
Collapse
Affiliation(s)
- Torin K Clark
- Smead Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, United States.
| | - Michael C Newman
- Environmental Tectonics Corporation, Southampton, PA, United States
| | - Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, United States; Otolaryngology, Harvard Medical School, Boston, MA, United States
| | - Charles M Oman
- Human Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Daniel M Merfeld
- Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, United States; Naval Aerospace Medical Research Lab (NAMRL), Naval Medical Research Unit-Dayton (NAMRUD), Dayton, OH, United States
| |
Collapse
|
19
|
Dieterich M, Brandt T. Perception of Verticality and Vestibular Disorders of Balance and Falls. Front Neurol 2019; 10:172. [PMID: 31001184 PMCID: PMC6457206 DOI: 10.3389/fneur.2019.00172] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/08/2019] [Indexed: 11/16/2022] Open
Abstract
Objective: To review current knowledge of the perception of verticality, its normal function and disorders. This is based on an integrative graviceptive input from the vertical semicircular canals and the otolith organs. Methods: The special focus is on human psychophysics, neurophysiological and imaging data on the adjustments of subjective visual vertical (SVV) and the subjective postural vertical. Furthermore, examples of mathematical modeling of specific vestibular cell functions for orientation in space in rodents and in patients are briefly presented. Results: Pathological tilts of the SVV in the roll plane are most sensitive and frequent clinical vestibular signs of unilateral lesions extending from the labyrinths via the brainstem and thalamus to the parieto-insular vestibular cortex. Due to crossings of ascending graviceptive fibers, peripheral vestibular and pontomedullary lesions cause ipsilateral tilts of the SVV; ponto-mesencephalic lesions cause contralateral tilts. In contrast, SVV tilts, which are measured in unilateral vestibular lesions at thalamic and cortical levels, have two different characteristic features: (i) they may be ipsi- or contralateral, and (ii) they are smaller than those found in lower brainstem or peripheral lesions. Motor signs such as head tilt and body lateropulsion, components of ocular tilt reaction, are typical for vestibular lesions of the peripheral vestibular organ and the pontomedullary brainstem (vestibular nucleus). They are less frequent in midbrain lesions (interstitial nucleus of Cajal) and rare in cortical lesions. Isolated body lateropulsion is chiefly found in caudal lateral medullary brainstem lesions. Vestibular function in the roll plane and its disorders can be mathematically modeled by an attractor model of angular head velocity cell and head direction cell function. Disorders manifesting with misperception of the body vertical are the pusher syndrome, the progressive supranuclear palsy, or the normal pressure hydrocephalus; they may affect roll and/or pitch plane. Conclusion: Clinical determinations of the SVV are easy and reliable. They indicate acute unilateral vestibular dysfunctions, the causative lesion of which extends from labyrinth to cortex. They allow precise topographical diagnosis of side and level in unilateral brainstem or peripheral vestibular disorders. SVV tilts may coincide with or differ from the perception of body vertical, e.g., in isolated body lateropulsion.
Collapse
Affiliation(s)
- Marianne Dieterich
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany.,Department of Neurology, Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany.,Clinical Neuroscience, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
20
|
Alberts BBGT, Selen LPJ, Medendorp WP. Age-related reweighting of visual and vestibular cues for vertical perception. J Neurophysiol 2019; 121:1279-1288. [PMID: 30699005 DOI: 10.1152/jn.00481.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As we age, the acuity of our sensory organs declines, which may affect our lifestyle. Sensory deterioration in the vestibular system is typically bilateral and gradual, and could lead to problems with balance and spatial orientation. To compensate for the sensory deterioration, it has been suggested that the brain reweights the sensory information sources according to their relative noise characteristics. For rehabilitation and training programs, it is important to understand the consequences of this reweighting, preferably at the individual subject level. We psychometrically examined the age-dependent reweighting of visual and vestibular cues used in spatial orientation in a group of 32 subjects (age range: 19-76 yr). We asked subjects to indicate the orientation of a line (clockwise or counterclockwise relative to the gravitational vertical) presented within an oriented square visual frame when seated upright or with their head tilted 30° relative to the body. Results show that subjects' vertical perception is biased by the orientation of the visual frame. Both the magnitude of this bias and response variability become larger with increasing age. Deducing the underlying sensory noise characteristics, using Bayesian inference, suggests an age-dependent reweighting of sensory information, with an increasing weight of the visual contextual information. Further scrutiny of the model suggests that this shift in sensory weights is the result of an increase in the noise of the vestibular signal. Our approach quantifies how noise properties of visual and vestibular systems change over the life span, which helps to understand the aging process at the neurocomputational level. NEW & NOTEWORTHY Perception of visual vertical involves a weighted fusion of visual and vestibular tilt cues. Using a Bayesian approach and experimental psychophysics, we quantify how this fusion process changes with age. We show that, with age, the vestibular information is down-weighted whereas the visual weight is increased. This shift in sensory reweighting is primarily due to an age-related increase of the noise of vestibular signals.
Collapse
Affiliation(s)
- Bart B G T Alberts
- Radboud University , Donders Institute for Brain, Cognition and Behaviour, Nijmegen , The Netherlands
| | - Luc P J Selen
- Radboud University , Donders Institute for Brain, Cognition and Behaviour, Nijmegen , The Netherlands
| | - W Pieter Medendorp
- Radboud University , Donders Institute for Brain, Cognition and Behaviour, Nijmegen , The Netherlands
| |
Collapse
|
21
|
Farkhatdinov I, Michalska H, Berthoz A, Hayward V. Review of Anthropomorphic Head Stabilisation and Verticality Estimation in Robots. SPRINGER TRACTS IN ADVANCED ROBOTICS 2019. [DOI: 10.1007/978-3-319-93870-7_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Abstract
The cerebellum is known to support motor behaviors, including postural stability, but new research supports the view that cerebellar function is also critical for perception of spatial orientation, particularly because of its role in vestibular processing.
Collapse
Affiliation(s)
- Paul R MacNeilage
- Department of Psychology, Cognitive and Brain Sciences, University of Nevada, Reno, USA.
| | - Stefan Glasauer
- Computational Neuroscience, Institute of Medical Technology, Brandenburg University of Technology Cottbus - Senftenberg, Germany.
| |
Collapse
|
23
|
Rosenberg MJ, Galvan-Garza RC, Clark TK, Sherwood DP, Young LR, Karmali F. Human manual control precision depends on vestibular sensory precision and gravitational magnitude. J Neurophysiol 2018; 120:3187-3197. [PMID: 30379610 DOI: 10.1152/jn.00565.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Precise motion control is critical to human survival on Earth and in space. Motion sensation is inherently imprecise, and the functional implications of this imprecision are not well understood. We studied a "vestibular" manual control task in which subjects attempted to keep themselves upright with a rotational hand controller (i.e., joystick) to null out pseudorandom, roll-tilt motion disturbances of their chair in the dark. Our first objective was to study the relationship between intersubject differences in manual control performance and sensory precision, determined by measuring vestibular perceptual thresholds. Our second objective was to examine the influence of altered gravity on manual control performance. Subjects performed the manual control task while supine during short-radius centrifugation, with roll tilts occurring relative to centripetal accelerations of 0.5, 1.0, and 1.33 GC (1 GC = 9.81 m/s2). Roll-tilt vestibular precision was quantified with roll-tilt vestibular direction-recognition perceptual thresholds, the minimum movement that one can reliably distinguish as leftward vs. rightward. A significant intersubject correlation was found between manual control performance (defined as the standard deviation of chair tilt) and thresholds, consistent with sensory imprecision negatively affecting functional precision. Furthermore, compared with 1.0 GC manual control was more precise in 1.33 GC (-18.3%, P = 0.005) and less precise in 0.5 GC (+39.6%, P < 0.001). The decrement in manual control performance observed in 0.5 GC and in subjects with high thresholds suggests potential risk factors for piloting and locomotion, both on Earth and during human exploration missions to the moon (0.16 G) and Mars (0.38 G). NEW & NOTEWORTHY The functional implications of imprecise motion sensation are not well understood. We found a significant correlation between subjects' vestibular perceptual thresholds and performance in a manual control task (using a joystick to keep their chair upright), consistent with sensory imprecision negatively affecting functional precision. Furthermore, using an altered-gravity centrifuge configuration, we found that manual control precision was improved in "hypergravity" and degraded in "hypogravity." These results have potential relevance for postural control, aviation, and spaceflight.
Collapse
Affiliation(s)
- Marissa J Rosenberg
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,KBRwyle Science, Technology and Engineering, NASA Johnson Space Center , Houston, Texas.,Center for Space Medicine, Baylor College of Medicine , Houston, Texas
| | - Raquel C Galvan-Garza
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Torin K Clark
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Massachusetts Institute of Technology , Cambridge, Massachusetts.,Department of Otolaryngology, Harvard Medical School , Boston, Massachusetts.,University of Colorado at Boulder , Boulder, Colorado
| | - David P Sherwood
- Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Laurence R Young
- Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Faisal Karmali
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Massachusetts Institute of Technology , Cambridge, Massachusetts.,Department of Otolaryngology, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
24
|
Variability in the Vestibulo-Ocular Reflex and Vestibular Perception. Neuroscience 2018; 393:350-365. [PMID: 30189227 DOI: 10.1016/j.neuroscience.2018.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/24/2022]
Abstract
The vestibular system enables humans to estimate self-motion, stabilize gaze and maintain posture, but these behaviors are impacted by neural noise at all levels of processing (e.g., sensory, central, motor). Despite its essential importance, the behavioral impact of noise in human vestibular pathways is not completely understood. Here, we characterize the vestibular imprecision that results from neural noise by measuring trial-to-trial vestibulo-ocular reflex (VOR) variability and perceptual just-noticeable differences (JNDs) in the same human subjects as a function of stimulus intensity. We used head-centered yaw rotations about an Earth-vertical axis over a broad range of motion velocities (0-65°/s for VOR variability and 3-90°/s peak velocity for JNDs). We found that VOR variability increased from approximately 0.6°/s at a chair velocity of 1°/s to approximately 3°/s at 65°/s; it exhibited a stimulus-independent range below roughly 1°/s. Perceptual imprecision ("sigma") increased from 0.76°/s at 3°/s to 4.7°/s at 90°/s. Using stimuli that manipulated the relationship between velocity, displacement and acceleration, we found that velocity was the salient cue for VOR variability for our motion stimuli. VOR and perceptual imprecision both increased with stimulus intensity and were broadly similar over a range of stimulus velocities, consistent with a common noise source that affects motor and perceptual pathways. This contrasts with differing perceptual and motor stimulus-dependent imprecision in visual studies. Either stimulus-dependent noise or non-linear signal processing could explain our results, but we argue that afferent non-linearities alone are unlikely to be the source of the observed behavioral stimulus-dependent imprecision.
Collapse
|
25
|
Glasauer S, Dieterich M, Brandt T. Neuronal network-based mathematical modeling of perceived verticality in acute unilateral vestibular lesions: from nerve to thalamus and cortex. J Neurol 2018; 265:101-112. [PMID: 29845378 DOI: 10.1007/s00415-018-8909-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 11/29/2022]
Abstract
Acute unilateral lesions of vestibular graviceptive pathways from the otolith organs and semicircular canals via vestibular nuclei and the thalamus to the parieto-insular vestibular cortex regularly cause deviations of perceived verticality in the frontal roll plane. These tilts are ipsilateral in peripheral and in ponto-medullary lesions and contralateral in ponto-mesencephalic lesions. Unilateral lesions of the vestibular thalamus or cortex cause smaller tilts of the perceived vertical, which may be either ipsilateral or contralateral. Using a neural network model, we previously explained why unilateral vestibular midbrain lesions rarely manifest with rotational vertigo. We here extend this approach, focussing on the direction-specific deviations of perceived verticality in the roll plane caused by acute unilateral vestibular lesions from the labyrinth to the cortex. Traditionally, the effect of unilateral peripheral lesions on perceived verticality has been attributed to a lesion-based bias of the otolith system. We here suggest, on the basis of a comparison of model simulations with patient data, that perceived visual tilt after peripheral lesions is caused by the effect of a torsional semicircular canal bias on the central gravity estimator. We further argue that the change of gravity coding from a peripheral/brainstem vectorial representation in otolith coordinates to a distributed population coding at thalamic and cortical levels can explain why unilateral thalamic and cortical lesions have a variable effect on perceived verticality. Finally, we propose how the population-coding network for gravity direction might implement the elements required for the well-known perceptual underestimation of the subjective visual vertical in tilted body positions.
Collapse
Affiliation(s)
- S Glasauer
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany. .,German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Munich, Germany.
| | - M Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - T Brandt
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Munich, Germany.,Clinical Neuroscience, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
26
|
Davidenko N, Cheong Y, Waterman A, Smith J, Anderson B, Harmon S. The influence of visual and vestibular orientation cues in a clock reading task. Conscious Cogn 2018; 64:196-206. [PMID: 29803700 DOI: 10.1016/j.concog.2018.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/23/2018] [Accepted: 05/10/2018] [Indexed: 11/19/2022]
Abstract
We investigated how performance in the real-life perceptual task of analog clock reading is influenced by the clock's orientation with respect to egocentric, gravitational, and visual-environmental reference frames. In Experiment 1, we designed a simple clock-reading task and found that observers' reaction time to correctly tell the time depends systematically on the clock's orientation. In Experiment 2, we dissociated egocentric from environmental reference frames by having participants sit upright or lie sideways while performing the task. We found that both reference frames substantially contribute to response times in this task. In Experiment 3, we placed upright or rotated participants in an upright or rotated immersive virtual environment, which allowed us to further dissociate vestibular from visual cues to the environmental reference frame. We found evidence of environmental reference frame effects only when visual and vestibular cues were aligned. We discuss the implications for the design of remote and head-mounted displays.
Collapse
Affiliation(s)
- Nicolas Davidenko
- Psychology Department, University of California Santa Cruz, United States.
| | - Yeram Cheong
- Psychology Department, University of California Riverside, United States.
| | - Amanda Waterman
- Psychology Department, University of California Santa Cruz, United States
| | - Jacob Smith
- Psychology Department, University of California Santa Cruz, United States
| | - Barrett Anderson
- Computational Media Department, University of California Santa Cruz, United States.
| | - Sarah Harmon
- Computer Science Department, Bowdoin College, United States.
| |
Collapse
|
27
|
Forbes PA, Chen A, Blouin JS. Sensorimotor control of standing balance. HANDBOOK OF CLINICAL NEUROLOGY 2018; 159:61-83. [DOI: 10.1016/b978-0-444-63916-5.00004-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
28
|
|
29
|
Karmali F, Whitman GT, Lewis RF. Bayesian optimal adaptation explains age-related human sensorimotor changes. J Neurophysiol 2017; 119:509-520. [PMID: 29118202 DOI: 10.1152/jn.00710.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The brain uses information from different sensory systems to guide motor behavior, and aging is associated with simultaneous decline in the quality of sensory information provided to the brain and deterioration in motor control. Correlations between age-dependent decline in sensory anatomical structures and behavior have been demonstrated in many sensorimotor systems, and it has recently been suggested that a Bayesian framework could explain these relationships. Here we show that age-dependent changes in a human sensorimotor reflex, the vestibuloocular reflex, are explained by a Bayesian optimal adaptation in the brain occurring in response to death of motion-sensing hair cells. Specifically, we found that the temporal dynamics of the reflex as a function of age emerge from ( r = 0.93, P < 0.001) a Kalman filter model that determines the optimal behavioral output when the sensory signal-to-noise characteristics are degraded by death of the transducers. These findings demonstrate that the aging brain is capable of generating the ideal and statistically optimal behavioral response when provided with deteriorating sensory information. While the Bayesian framework has been shown to be a general neural principle for multimodal sensory integration and dynamic sensory estimation, these findings provide evidence of longitudinal Bayesian processing over the human life span. These results illuminate how the aging brain strives to optimize motor behavior when faced with deterioration in the peripheral and central nervous systems and have implications in the field of vestibular and balance disorders, as they will likely provide guidance for physical therapy and for prosthetic aids that aim to reduce falls in the elderly. NEW & NOTEWORTHY We showed that age-dependent changes in the vestibuloocular reflex are explained by a Bayesian optimal adaptation in the brain that occurs in response to age-dependent sensory anatomical changes. This demonstrates that the brain can longitudinally respond to age-related sensory loss in an ideal and statistically optimal way. This has implications for understanding and treating vestibular disorders caused by aging and provides insight into the structure-function relationship during aging.
Collapse
Affiliation(s)
- Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Department of Otolaryngology, Harvard Medical School , Boston, Massachusetts
| | - Gregory T Whitman
- Department of Otolaryngology, Harvard Medical School , Boston, Massachusetts.,Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Richard F Lewis
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Department of Otolaryngology, Harvard Medical School , Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Laurens J, Angelaki DE. A unified internal model theory to resolve the paradox of active versus passive self-motion sensation. eLife 2017; 6:28074. [PMID: 29043978 PMCID: PMC5839740 DOI: 10.7554/elife.28074] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/11/2017] [Indexed: 12/29/2022] Open
Abstract
Brainstem and cerebellar neurons implement an internal model to accurately estimate self-motion during externally generated (‘passive’) movements. However, these neurons show reduced responses during self-generated (‘active’) movements, indicating that predicted sensory consequences of motor commands cancel sensory signals. Remarkably, the computational processes underlying sensory prediction during active motion and their relationship to internal model computations during passive movements remain unknown. We construct a Kalman filter that incorporates motor commands into a previously established model of optimal passive self-motion estimation. The simulated sensory error and feedback signals match experimentally measured neuronal responses during active and passive head and trunk rotations and translations. We conclude that a single sensory internal model can combine motor commands with vestibular and proprioceptive signals optimally. Thus, although neurons carrying sensory prediction error or feedback signals show attenuated modulation, the sensory cues and internal model are both engaged and critically important for accurate self-motion estimation during active head movements. When seated in a car, we can detect when the vehicle begins to move even with our eyes closed. Structures in the inner ear called the vestibular, or balance, organs enable us to sense our own movement. They do this by detecting head rotations, accelerations and gravity. They then pass this information on to specialized vestibular regions of the brain. Experiments using rotating chairs and moving platforms have shown that passive movements – such as car journeys and rollercoaster rides – activate the brain’s vestibular regions. But recent work has revealed that voluntary movements – in which individuals start the movement themselves – activate these regions far less than passive movements. Does this mean that the brain ignores signals from the inner ear during voluntary movements? Another possibility is that the brain predicts in advance how each movement will affect the vestibular organs in the inner ear. It then compares these predictions with the signals it receives during the movement. Only mismatches between the two activate the brain’s vestibular regions. To test this theory, Laurens and Angelaki created a mathematical model that compares predicted signals with actual signals in the way the theory proposes. The model accurately predicts the patterns of brain activity seen during both active and passive movement. This reconciles the results of previous experiments on active and passive motion. It also suggests that the brain uses similar processes to analyze vestibular signals during both types of movement. These findings can help drive further research into how the brain uses sensory signals to refine our everyday movements. They can also help us understand how people recover from damage to the vestibular system. Most patients with vestibular injuries learn to walk again, but have difficulty walking on uneven ground. They also become disoriented by passive movement. Using the model to study how the brain adapts to loss of vestibular input could lead to new strategies to aid recovery.
Collapse
Affiliation(s)
- Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
31
|
Pomante A, Selen LPJ, Medendorp WP. Perception of the dynamic visual vertical during sinusoidal linear motion. J Neurophysiol 2017; 118:2499-2506. [PMID: 28814635 DOI: 10.1152/jn.00439.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 11/22/2022] Open
Abstract
The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravitoinertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical-as a proxy for the tilt percept-during passive sinusoidal linear motion along the interaural axis (0.33 Hz motion frequency, 1.75 m/s2 peak acceleration, 80 cm displacement). While subjects (n=10) kept fixation on a central body-fixed light, a line was briefly flashed (5 ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model's prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of nonvestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical.NEW & NOTEWORTHY A fundamental question in neuroscience is how the brain processes vestibular signals to infer the orientation of the body and objects in space. We show that, under sinusoidal linear motion, systematic error patterns appear in the disambiguation of linear acceleration and spatial orientation. We discuss the dynamics of these illusory percepts in terms of a dynamic Bayesian model that combines uncertainty in the vestibular signals with priors based on the natural statistics of head motion.
Collapse
Affiliation(s)
- A Pomante
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - L P J Selen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - W P Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Yakushin SB, Raphan T, Cohen B. Coding of Velocity Storage in the Vestibular Nuclei. Front Neurol 2017; 8:386. [PMID: 28861030 PMCID: PMC5561016 DOI: 10.3389/fneur.2017.00386] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/20/2017] [Indexed: 11/15/2022] Open
Abstract
Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Theodore Raphan
- Department of Computer and Information Science, Brooklyn College (CUNY), Brooklyn, NY, United States
| | - Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
33
|
Vestibular cognition: the effect of prior belief on vestibular perceptual decision making. J Neurol 2017; 264:74-80. [PMID: 28361254 DOI: 10.1007/s00415-017-8471-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Abstract
Vestibular cognition is a growing field of interest and relatively little is known about the underlying mechanisms. We tested the effect of prior beliefs about the relative probability (50:50 vs. 80:20) of motion direction (yaw rotation) using a direction discrimination task. We analyzed choices individually with a logistic regression model and together with response times using a cognitive process model. The results show that self-motion perception is altered by prior belief, leading to a shift of the psychometric function, without a loss of sensitivity. Hierarchical drift diffusion analysis showed that at the group level, prior belief manifests itself as an offset to the drift criterion. However, individual model fits revealed that participants vary in how they use cognitive information in perceptual decision making. At the individual level, the response bias induced by a prior belief resulted either in a change in starting point (prior to evidence accumulation) or drift rate (during evidence accumulation). Participants incorporate prior belief in a self-motion discrimination task, albeit in different ways.
Collapse
|
34
|
Ellis AW, Mast FW. Toward a Dynamic Probabilistic Model for Vestibular Cognition. Front Psychol 2017; 8:138. [PMID: 28203219 PMCID: PMC5285352 DOI: 10.3389/fpsyg.2017.00138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/19/2017] [Indexed: 11/16/2022] Open
Abstract
We suggest that research in vestibular cognition will benefit from the theoretical framework of probabilistic models. This will aid in developing an understanding of how interactions between high-level cognition and low-level sensory processing might occur. Many such interactions have been shown experimentally; however, to date, no attempt has been made to systematically explore vestibular cognition by using computational modeling. It is widely assumed that mental imagery and perception share at least in part neural circuitry, and it has been proposed that mental simulation is closely connected to the brain’s ability to make predictions. We claim that this connection has been disregarded in the vestibular domain, and we suggest ways in which future research may take this into consideration.
Collapse
Affiliation(s)
- Andrew W Ellis
- Department of Psychology, University of Bern Bern, Switzerland
| | - Fred W Mast
- Department of Psychology, University of Bern Bern, Switzerland
| |
Collapse
|
35
|
Lim K, Karmali F, Nicoucar K, Merfeld DM. Perceptual precision of passive body tilt is consistent with statistically optimal cue integration. J Neurophysiol 2017; 117:2037-2052. [PMID: 28179477 DOI: 10.1152/jn.00073.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 01/21/2023] Open
Abstract
When making perceptual decisions, humans have been shown to optimally integrate independent noisy multisensory information, matching maximum-likelihood (ML) limits. Such ML estimators provide a theoretic limit to perceptual precision (i.e., minimal thresholds). However, how the brain combines two interacting (i.e., not independent) sensory cues remains an open question. To study the precision achieved when combining interacting sensory signals, we measured perceptual roll tilt and roll rotation thresholds between 0 and 5 Hz in six normal human subjects. Primary results show that roll tilt thresholds between 0.2 and 0.5 Hz were significantly lower than predicted by a ML estimator that includes only vestibular contributions that do not interact. In this paper, we show how other cues (e.g., somatosensation) and an internal representation of sensory and body dynamics might independently contribute to the observed performance enhancement. In short, a Kalman filter was combined with an ML estimator to match human performance, whereas the potential contribution of nonvestibular cues was assessed using published bilateral loss patient data. Our results show that a Kalman filter model including previously proven canal-otolith interactions alone (without nonvestibular cues) can explain the observed performance enhancements as can a model that includes nonvestibular contributions.NEW & NOTEWORTHY We found that human whole body self-motion direction-recognition thresholds measured during dynamic roll tilts were significantly lower than those predicted by a conventional maximum-likelihood weighting of the roll angular velocity and quasistatic roll tilt cues. Here, we show that two models can each match this "apparent" better-than-optimal performance: 1) inclusion of a somatosensory contribution and 2) inclusion of a dynamic sensory interaction between canal and otolith cues via a Kalman filter model.
Collapse
Affiliation(s)
- Koeun Lim
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; .,Program in Speech and Hearing Biosciences and Technology, Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Boston, Massachusetts; and
| | - Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| | - Keyvan Nicoucar
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| | - Daniel M Merfeld
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
|
37
|
Jareonsettasin P, Otero-Millan J, Ward BK, Roberts DC, Schubert MC, Zee DS. Multiple Time Courses of Vestibular Set-Point Adaptation Revealed by Sustained Magnetic Field Stimulation of the Labyrinth. Curr Biol 2016; 26:1359-66. [PMID: 27185559 DOI: 10.1016/j.cub.2016.03.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/24/2016] [Accepted: 03/30/2016] [Indexed: 11/28/2022]
Abstract
A major focus in neurobiology is how the brain adapts its motor behavior to changes in its internal and external environments [1, 2]. Much is known about adaptively optimizing the amplitude and direction of eye and limb movements, for example, but little is known about another essential form of learning, "set-point" adaptation. Set-point adaptation balances tonic activity so that reciprocally acting, agonist and antagonist muscles have a stable platform from which to launch accurate movements. Here, we use the vestibulo-ocular reflex-a simple behavior that stabilizes the position of the eye while the head is moving-to investigate how tonic activity is adapted toward a new set point to prevent eye drift when the head is still [3, 4]. Set-point adaptation was elicited with magneto-hydrodynamic vestibular stimulation (MVS) by placing normal humans in a 7T MRI for 90 min. MVS is ideal for prolonged labyrinthine activation because it mimics constant head acceleration and induces a sustained nystagmus similar to natural vestibular lesions [5, 6]. The MVS-induced nystagmus diminished slowly but incompletely over multiple timescales. We propose a new adaptation hypothesis, using a cascade of imperfect mathematical integrators, that reproduces the response to MVS (and more natural chair rotations), including the gradual decrease in nystagmus as the set point changes over progressively longer time courses. MVS set-point adaptation is a biological model with applications to basic neurophysiological research into all types of movements [7], functional brain imaging [8], and treatment of vestibular and higher-level attentional disorders by introducing new biases to counteract pathological ones [9].
Collapse
Affiliation(s)
- Prem Jareonsettasin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TA, UK
| | - Jorge Otero-Millan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Bryan K Ward
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dale C Roberts
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael C Schubert
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David S Zee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
38
|
Bringoux L, Scotto Di Cesare C, Borel L, Macaluso T, Sarlegna FR. Do Visual and Vestibular Inputs Compensate for Somatosensory Loss in the Perception of Spatial Orientation? Insights from a Deafferented Patient. Front Hum Neurosci 2016; 10:181. [PMID: 27199704 PMCID: PMC4848302 DOI: 10.3389/fnhum.2016.00181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
The present study aimed at investigating the consequences of a massive loss of somatosensory inputs on the perception of spatial orientation. The occurrence of possible compensatory processes for external (i.e., object) orientation perception and self-orientation perception was examined by manipulating visual and/or vestibular cues. To that aim, we compared perceptual responses of a deafferented patient (GL) with respect to age-matched Controls in two tasks involving gravity-related judgments. In the first task, subjects had to align a visual rod with the gravitational vertical (i.e., Subjective Visual Vertical: SVV) when facing a tilted visual frame in a classic Rod-and-Frame Test. In the second task, subjects had to report whether they felt tilted when facing different visuo-postural conditions which consisted in very slow pitch tilts of the body and/or visual surroundings away from vertical. Results showed that, much more than Controls, the deafferented patient was fully dependent on spatial cues issued from the visual frame when judging the SVV. On the other hand, the deafferented patient did not rely at all on visual cues for self-tilt detection. Moreover, the patient never reported any sensation of tilt up to 18° contrary to Controls, hence showing that she did not rely on vestibular (i.e., otoliths) signals for the detection of very slow body tilts either. Overall, this study demonstrates that a massive somatosensory deficit substantially impairs the perception of spatial orientation, and that the use of the remaining sensory inputs available to a deafferented patient differs regarding whether the judgment concerns external vs. self-orientation.
Collapse
Affiliation(s)
- Lionel Bringoux
- Aix-Marseille Université, CNRS, ISM UMR 7287 Marseille, France
| | - Cécile Scotto Di Cesare
- Aix-Marseille Université, CNRS, ISM UMR 7287Marseille, France; Cognitive Neuroscience Department and Cognitive Interaction Technology, Center of Excellence, Bielefeld UniversityBielefeld, Germany
| | - Liliane Borel
- CNRS, LNIA UMR 7260, Aix-Marseille Université Marseille, France
| | - Thomas Macaluso
- Aix-Marseille Université, CNRS, ISM UMR 7287 Marseille, France
| | | |
Collapse
|
39
|
Thakur CS, Afshar S, Wang RM, Hamilton TJ, Tapson J, van Schaik A. Bayesian Estimation and Inference Using Stochastic Electronics. Front Neurosci 2016; 10:104. [PMID: 27047326 PMCID: PMC4796016 DOI: 10.3389/fnins.2016.00104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/03/2016] [Indexed: 11/13/2022] Open
Abstract
In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream.
Collapse
Affiliation(s)
- Chetan Singh Thakur
- Biomedical Engineering and Neuroscience, The MARCS Institute, Western Sydney University Sydney, NSW, Australia
| | - Saeed Afshar
- Biomedical Engineering and Neuroscience, The MARCS Institute, Western Sydney University Sydney, NSW, Australia
| | - Runchun M Wang
- Biomedical Engineering and Neuroscience, The MARCS Institute, Western Sydney University Sydney, NSW, Australia
| | - Tara J Hamilton
- Biomedical Engineering and Neuroscience, The MARCS Institute, Western Sydney University Sydney, NSW, Australia
| | - Jonathan Tapson
- Biomedical Engineering and Neuroscience, The MARCS Institute, Western Sydney University Sydney, NSW, Australia
| | - André van Schaik
- Biomedical Engineering and Neuroscience, The MARCS Institute, Western Sydney University Sydney, NSW, Australia
| |
Collapse
|
40
|
Aggarwal A. Neuromorphic VLSI realization of the hippocampal formation. Neural Netw 2016; 77:29-40. [PMID: 26914394 DOI: 10.1016/j.neunet.2016.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 11/25/2022]
Abstract
The medial entorhinal cortex grid cells, aided by the subicular head direction cells, are thought to provide a matrix which is utilized by the hippocampal place cells for calculation of position of an animal during spatial navigation. The place cells are thought to function as an internal GPS for the brain and provide a spatiotemporal stamp on episodic memories. Several computational neuroscience models have been proposed to explain the place specific firing patterns of the cells of the hippocampal formation - including the GRIDSmap model for grid cells and Bayesian integration for place cells. In this work, we present design and measurement results from a first ever system of silicon circuits which successfully realize the function of the hippocampal formation of brain based on these models.
Collapse
|
41
|
Dahlem K, Valko Y, Schmahmann JD, Lewis RF. Cerebellar contributions to self-motion perception: evidence from patients with congenital cerebellar agenesis. J Neurophysiol 2016; 115:2280-5. [PMID: 26888100 DOI: 10.1152/jn.00763.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] Open
Abstract
The cerebellum was historically considered a brain region dedicated to motor control, but it has become clear that it also contributes to sensory processing, particularly when sensory discrimination is required. Prior work, for example, has demonstrated a cerebellar contribution to sensory discrimination in the visual and auditory systems. The cerebellum also receives extensive inputs from the motion and gravity sensors in the vestibular labyrinth, but its role in the perception of head motion and orientation has received little attention. Drawing on the lesion-deficit approach to understanding brain function, we evaluated the contributions of the cerebellum to head motion perception by measuring perceptual thresholds in two subjects with congenital agenesis of the cerebellum. We used a set of passive motion paradigms that activated the semicircular canals or otolith organs in isolation or combination, and compared results of the agenesis patients with healthy control subjects. Perceptual thresholds for head motion were elevated in the agenesis subjects for all motion protocols, most prominently for paradigms that only activated otolith inputs. These results demonstrate that the cerebellum increases the sensitivity of the brain to the motion and orientation signals provided by the labyrinth during passive head movements.
Collapse
Affiliation(s)
- Kilian Dahlem
- Rijksuniversity Groningen University Medical Center, Groningen, The Netherlands; Jenks Vestibular Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Yulia Valko
- Jenks Vestibular Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Department of Neurology, University Hospital Zurich/University of Zurich, Zurich, Switzerland
| | - Jeremy D Schmahmann
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; and
| | - Richard F Lewis
- Jenks Vestibular Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Department of Neurology, Harvard Medical School, Boston, Massachusetts; Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Modulation of central nystagmus by vision, proprioception, and efference copy signals: a systematic evaluation. J Neurol 2016; 263:735-42. [DOI: 10.1007/s00415-016-8032-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
43
|
Mast FW, Ellis AW. Internal Models, Vestibular Cognition, and Mental Imagery: Conceptual Considerations. Multisens Res 2015; 28:443-60. [PMID: 26595951 DOI: 10.1163/22134808-00002503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vestibular cognition has recently gained attention. Despite numerous experimental and clinical demonstrations, it is not yet clear what vestibular cognition really is. For future research in vestibular cognition, adopting a computational approach will make it easier to explore the underlying mechanisms. Indeed, most modeling approaches in vestibular science include a top-down or a priori component. We review recent Bayesian optimal observer models, and discuss in detail the conceptual value of prior assumptions, likelihood and posterior estimates for research in vestibular cognition. We then consider forward models in vestibular processing, which are required in order to distinguish between sensory input that is induced by active self-motion, and sensory input that is due to passive self-motion. We suggest that forward models are used not only in the service of estimating sensory states but they can also be drawn upon in an offline mode (e.g., spatial perspective transformations), in which interaction with sensory input is not desired. A computational approach to vestibular cognition will help to discover connections across studies, and it will provide a more coherent framework for investigating vestibular cognition.
Collapse
|
44
|
Merfeld DM, Clark TK, Lu YM, Karmali F. Dynamics of individual perceptual decisions. J Neurophysiol 2015; 115:39-59. [PMID: 26467513 DOI: 10.1152/jn.00225.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/13/2015] [Indexed: 02/02/2023] Open
Abstract
Perceptual decision making is fundamental to a broad range of fields including neurophysiology, economics, medicine, advertising, law, etc. Although recent findings have yielded major advances in our understanding of perceptual decision making, decision making as a function of time and frequency (i.e., decision-making dynamics) is not well understood. To limit the review length, we focus most of this review on human findings. Animal findings, which are extensively reviewed elsewhere, are included when beneficial or necessary. We attempt to put these various findings and data sets, which can appear to be unrelated in the absence of a formal dynamic analysis, into context using published models. Specifically, by adding appropriate dynamic mechanisms (e.g., high-pass filters) to existing models, it appears that a number of otherwise seemingly disparate findings from the literature might be explained. One hypothesis that arises through this dynamic analysis is that decision making includes phasic (high pass) neural mechanisms, an evidence accumulator and/or some sort of midtrial decision-making mechanism (e.g., peak detector and/or decision boundary).
Collapse
Affiliation(s)
- Daniel M Merfeld
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts; and
| | - Torin K Clark
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts; and
| | - Yue M Lu
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts
| | - Faisal Karmali
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
45
|
Soyka F, Bülthoff HH, Barnett-Cowan M. Integration of Semi-Circular Canal and Otolith Cues for Direction Discrimination during Eccentric Rotations. PLoS One 2015; 10:e0136925. [PMID: 26322782 PMCID: PMC4555836 DOI: 10.1371/journal.pone.0136925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/09/2015] [Indexed: 11/30/2022] Open
Abstract
Humans are capable of moving about the world in complex ways. Every time we move, our self-motion must be detected and interpreted by the central nervous system in order to make appropriate sequential movements and informed decisions. The vestibular labyrinth consists of two unique sensory organs the semi-circular canals and the otoliths that are specialized to detect rotation and translation of the head, respectively. While thresholds for pure rotational and translational self-motion are well understood surprisingly little research has investigated the relative role of each organ on thresholds for more complex motion. Eccentric (off-center) rotations during which the participant faces away from the center of rotation stimulate both organs and are thus well suited for investigating integration of rotational and translational sensory information. Ten participants completed a psychophysical direction discrimination task for pure head-centered rotations, translations and eccentric rotations with 5 different radii. Discrimination thresholds for eccentric rotations reduced with increasing radii, indicating that additional tangential accelerations (which increase with radius length) increased sensitivity. Two competing models were used to predict the eccentric thresholds based on the pure rotation and translation thresholds: one assuming that information from the two organs is integrated in an optimal fashion and another assuming that motion discrimination is solved solely by relying on the sensor which is most strongly stimulated. Our findings clearly show that information from the two organs is integrated. However the measured thresholds for 3 of the 5 eccentric rotations are even more sensitive than predictions from the optimal integration model suggesting additional non-vestibular sources of information may be involved.
Collapse
Affiliation(s)
- Florian Soyka
- Max Planck Institute for Biological Cybernetics, Department: Human Perception, Cognition and Action, Tübingen, Germany
- * E-mail: (FS); (HHB)
| | - Heinrich H. Bülthoff
- Max Planck Institute for Biological Cybernetics, Department: Human Perception, Cognition and Action, Tübingen, Germany
- Department of Brain and Cognitive Engineering, Korea University, Anamdong, Seongbuk-gu, Seoul, Korea
- * E-mail: (FS); (HHB)
| | - Michael Barnett-Cowan
- Max Planck Institute for Biological Cybernetics, Department: Human Perception, Cognition and Action, Tübingen, Germany
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
46
|
Clark TK, Newman MC, Oman CM, Merfeld DM, Young LR. Modeling human perception of orientation in altered gravity. Front Syst Neurosci 2015; 9:68. [PMID: 25999822 PMCID: PMC4419856 DOI: 10.3389/fnsys.2015.00068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/12/2015] [Indexed: 11/13/2022] Open
Abstract
Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments.
Collapse
Affiliation(s)
- Torin K Clark
- Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology Cambridge, MA, USA ; Jenks Vestibular Psychology Laboratory, Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School Boston, MA, USA
| | - Michael C Newman
- National Aerospace Training and Research Center Southampton, PA, USA
| | - Charles M Oman
- Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Daniel M Merfeld
- Jenks Vestibular Psychology Laboratory, Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School Boston, MA, USA
| | - Laurence R Young
- Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
47
|
Clark TK, Newman MC, Oman CM, Merfeld DM, Young LR. Human perceptual overestimation of whole body roll tilt in hypergravity. J Neurophysiol 2014; 113:2062-77. [PMID: 25540216 DOI: 10.1152/jn.00095.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022] Open
Abstract
Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally.
Collapse
Affiliation(s)
- Torin K Clark
- Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Charles Stark Draper Laboratory, Incorporated, Cambridge, Massachusetts;
| | - Michael C Newman
- National Aerospace Training and Research Center, Southampton, Pennsylvania; and
| | - Charles M Oman
- Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Daniel M Merfeld
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| | - Laurence R Young
- Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
48
|
Zimmermann E, Born S, Fink GR, Cavanagh P. Masking produces compression of space and time in the absence of eye movements. J Neurophysiol 2014; 112:3066-76. [PMID: 25231617 PMCID: PMC4269704 DOI: 10.1152/jn.00156.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 09/17/2014] [Indexed: 11/22/2022] Open
Abstract
Whenever the visual stream is abruptly disturbed by eye movements, blinks, masks, or flashes of light, the visual system needs to retrieve the new locations of current targets and to reconstruct the timing of events to straddle the interruption. This process may introduce position and timing errors. We here report that very similar errors are seen in human subjects across three different paradigms when disturbances are caused by either eye movements, as is well known, or, as we now show, masking. We suggest that the characteristic effects of eye movements on position and time, spatial and temporal compression and saccadic suppression of displacement, are consequences of the interruption and the subsequent reconnection and are seen also when visual input is masked without any eye movements. Our data show that compression and suppression effects are not solely a product of ocular motor activity but instead can be properties of a correspondence process that links the targets of interest across interruptions in visual input, no matter what their source.
Collapse
Affiliation(s)
- Eckart Zimmermann
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany;
| | - Sabine Born
- Laboratoire Psychologie de la Perception, Centre Attention Vision, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8242, Université Paris Descartes Paris, Paris, France; and
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany; Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Patrick Cavanagh
- Laboratoire Psychologie de la Perception, Centre Attention Vision, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8242, Université Paris Descartes Paris, Paris, France; and
| |
Collapse
|
49
|
Prsa M, Jimenez-Rezende D, Blanke O. Inference of perceptual priors from path dynamics of passive self-motion. J Neurophysiol 2014; 113:1400-13. [PMID: 25505114 DOI: 10.1152/jn.00755.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The monitoring of one's own spatial orientation depends on the ability to estimate successive self-motion cues accurately. This process has become to be known as path integration. A feature of sequential cue estimation, in general, is that the history of previously experienced stimuli, or priors, biases perception. Here, we investigate how during angular path integration, the prior imparted by the displacement path dynamics affects the translation of vestibular sensations into perceptual estimates. Subjects received successive whole-body yaw rotations and were instructed to report their position within a virtual scene after each rotation. The overall movement trajectory either followed a parabolic path or was devoid of explicit dynamics. In the latter case, estimates were biased toward the average stimulus prior and were well captured by an optimal Bayesian estimator model fit to the data. However, the use of parabolic paths reduced perceptual uncertainty, and a decrease of the average size of bias and thus the weight of the average stimulus prior were observed over time. The produced estimates were, in fact, better accounted for by a model where a prediction of rotation magnitude is inferred from the underlying path dynamics on each trial. Therefore, when passively displaced, we seem to be able to build, over time, from sequential vestibular measurements an internal model of the vehicle's movement dynamics. Our findings suggest that in ecological conditions, vestibular afference can be internally predicted, even when self-motion is not actively generated by the observer, thereby augmenting both the accuracy and precision of displacement perception.
Collapse
Affiliation(s)
- Mario Prsa
- Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
| | - Danilo Jimenez-Rezende
- Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Computational Neuroscience, Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; and
| | - Olaf Blanke
- Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Neurology, University Hospital Geneva, Geneva, Switzerland
| |
Collapse
|
50
|
Kitama T, Komagata J, Ozawa K, Suzuki Y, Sato Y. Plane-specific Purkinje cell responses to vertical head rotations in the cat cerebellar nodulus and uvula. J Neurophysiol 2014; 112:644-59. [DOI: 10.1152/jn.00029.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded simple spike (SS) and complex spike (CS) firing of Purkinje cell in the cerebellar nodulus and uvula of awake, head-restrained cats during sinusoidal vertical rotation of the head in four stimulus planes (pitch, roll, and two vertical canal planes). Two SS response types (position- and velocity-types) with response phases close to those of head position and velocity, respectively, were recognized. Optimal response planes and directions for SS and CS of each cell were estimated from the response amplitudes in the four stimulus planes by fitting with a sinusoidal function. The principal findings are as follows: 1) two rostrocaudally oriented functional zones of Purkinje cells can be distinguished; 2) the medially located parasagittal band is active during rotation in the pitch plane; 3) the laterally located band is active during rotation in the roll plane. These two zones are the same as previously reported zones in the cerebellar flocculus active during head rotation in the canal planes in the point that both cerebellar sagittal zones are plane-specific functional zones, suggesting that the anatomical sagittal zones serve as functional plane-specific zones at least in the vestibulocerebellum.
Collapse
Affiliation(s)
- Toshihiro Kitama
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Junya Komagata
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Kenichi Ozawa
- Department of Occupational Therapy, Health Science University, Yamanashi, Japan
| | - Yutaka Suzuki
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Yu Sato
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan; and
| |
Collapse
|