1
|
Mikhalkin AA, Nikitina NI, Merkulyeva NS. Age-Related Changes in Soma Size of Y Neurons in the Cat Dorsal Lateral Geniculate Nucleus: Dorsoventral and Centroperipheral Gradients. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Wahlbom A, Mogensen H, Jörntell H. Widely Different Correlation Patterns Between Pairs of Adjacent Thalamic Neurons In vivo. Front Neural Circuits 2021; 15:692923. [PMID: 34276316 PMCID: PMC8278214 DOI: 10.3389/fncir.2021.692923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
We have previously reported different spike firing correlation patterns among pairs of adjacent pyramidal neurons within the same layer of S1 cortex in vivo, which was argued to suggest that acquired synaptic weight modifications would tend to differentiate adjacent cortical neurons despite them having access to near-identical afferent inputs. Here we made simultaneous single-electrode loose patch-clamp recordings from 14 pairs of adjacent neurons in the lateral thalamus of the ketamine-xylazine anesthetized rat in vivo to study the correlation patterns in their spike firing. As the synapses on thalamic neurons are dominated by a high number of low weight cortical inputs, which would be expected to be shared for two adjacent neurons, and as far as thalamic neurons have homogenous membrane physiology and spike generation, they would be expected to have overall similar spike firing and therefore also correlation patterns. However, we find that across a variety of thalamic nuclei the correlation patterns between pairs of adjacent thalamic neurons vary widely. The findings suggest that the connectivity and cellular physiology of the thalamocortical circuitry, in contrast to what would be expected from a straightforward interpretation of corticothalamic maps and uniform intrinsic cellular neurophysiology, has been shaped by learning to the extent that each pair of thalamic neuron has a unique relationship in their spike firing activity.
Collapse
Affiliation(s)
- Anders Wahlbom
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hannes Mogensen
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Tang R, Chen W, Wang Y. Different roles of subcortical inputs in V1 responses to luminance and contrast. Eur J Neurosci 2021; 53:3710-3726. [PMID: 33848389 DOI: 10.1111/ejn.15233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023]
Abstract
Cells in the primary visual cortex (V1) generally respond weakly to large uniform luminance stimuli. Only a subset of V1 cells is thought to encode uniform luminance information. In natural scenes, local luminance is an important feature for defining an object that varies and coexists with local spatial contrast. However, the strategies used by V1 cells to encode local mean luminance for spatial contrast stimuli remain largely unclear. Here, using extracellular recordings in anesthetized cats, we investigated the responses of V1 cells by comparing with those of retinal ganglion (RG) cells and lateral geniculate nucleus (LGN) cells to simultaneous and rapid changes in luminance and spatial contrast. Almost all V1 cells exhibited a strong monotonic increasing luminance tuning when they were exposed to high spatial contrast. Thus, V1 cells encode the luminance carried by spatial contrast stimuli with the monotonically increasing response function. Moreover, high contrast decreased luminance tuning of OFF cells but increased that of in ON cells in RG and LGN. The luminance and contrast tunings of LGN ON cells were highly separable as V1 cells, whereas those of LGN OFF cells were lowly separable. These asymmetrical effects of spatial contrast on ON/OFF channels might underlie the robust ability of V1 cells to perform luminance tuning when exposed to spatial contrast stimuli.
Collapse
Affiliation(s)
- Rendong Tang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhen Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Jang J, Song M, Paik SB. Retino-Cortical Mapping Ratio Predicts Columnar and Salt-and-Pepper Organization in Mammalian Visual Cortex. Cell Rep 2021; 30:3270-3279.e3. [PMID: 32160536 DOI: 10.1016/j.celrep.2020.02.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
In the mammalian primary visual cortex, neural tuning to stimulus orientation is organized in either columnar or salt-and-pepper patterns across species. For decades, this sharp contrast has spawned fundamental questions about the origin of functional architectures in visual cortex. However, it is unknown whether these patterns reflect disparate developmental mechanisms across mammalian taxa or simply originate from variation of biological parameters under a universal development process. In this work, after the analysis of data from eight mammalian species, we show that cortical organization is predictable by a single factor, the retino-cortical mapping ratio. Groups of species with or without columnar clustering are distinguished by the feedforward sampling ratio, and model simulations with controlled mapping conditions reproduce both types of organization. Prediction from the Nyquist theorem explains this parametric division of the patterns with high accuracy. Our results imply that evolutionary variation of physical parameters may induce development of distinct functional circuitry.
Collapse
Affiliation(s)
- Jaeson Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min Song
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
5
|
Liang L, Chen C. Organization, Function, and Development of the Mouse Retinogeniculate Synapse. Annu Rev Vis Sci 2020; 6:261-285. [DOI: 10.1146/annurev-vision-121219-081753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual information is encoded in distinct retinal ganglion cell (RGC) types in the eye tuned to specific features of the visual space. These streams of information project to the visual thalamus, the first station of the image-forming pathway. In the mouse, this connection between RGCs and thalamocortical neurons, the retinogeniculate synapse, has become a powerful experimental model for understanding how circuits in the thalamus are constructed to process these incoming lines of information. Using modern molecular and genetic tools, recent studies have suggested a more complex circuit organization than was previously understood. In this review, we summarize the current understanding of the structural and functional organization of the retinogeniculate synapse in the mouse. We discuss a framework by which a seemingly complex circuit can effectively integrate and parse information to downstream stations of the visual pathway. Finally, we review how activity and visual experience can sculpt this exquisite connectivity.
Collapse
Affiliation(s)
- Liang Liang
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Monavarfeshani A, Stanton G, Van Name J, Su K, Mills WA, Swilling K, Kerr A, Huebschman NA, Su J, Fox MA. LRRTM1 underlies synaptic convergence in visual thalamus. eLife 2018; 7:e33498. [PMID: 29424692 PMCID: PMC5826289 DOI: 10.7554/elife.33498] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/08/2018] [Indexed: 11/13/2022] Open
Abstract
It has long been thought that the mammalian visual system is organized into parallel pathways, with incoming visual signals being parsed in the retina based on feature (e.g. color, contrast and motion) and then transmitted to the brain in unmixed, feature-specific channels. To faithfully convey feature-specific information from retina to cortex, thalamic relay cells must receive inputs from only a small number of functionally similar retinal ganglion cells. However, recent studies challenged this by revealing substantial levels of retinal convergence onto relay cells. Here, we sought to identify mechanisms responsible for the assembly of such convergence. Using an unbiased transcriptomics approach and targeted mutant mice, we discovered a critical role for the synaptic adhesion molecule Leucine Rich Repeat Transmembrane Neuronal 1 (LRRTM1) in the emergence of retinothalamic convergence. Importantly, LRRTM1 mutant mice display impairment in visual behaviors, suggesting a functional role of retinothalamic convergence in vision.
Collapse
Affiliation(s)
- Aboozar Monavarfeshani
- Developmental and Translational Neurobiology CenterVirginia Tech Carilion Research InstituteRoanokeUnited States
- Department of Biological SciencesVirginia TechBlacksburgUnited States
| | - Gail Stanton
- Developmental and Translational Neurobiology CenterVirginia Tech Carilion Research InstituteRoanokeUnited States
- Virginia Tech Carilion School of MedicineRoanokeUnited States
| | - Jonathan Van Name
- Developmental and Translational Neurobiology CenterVirginia Tech Carilion Research InstituteRoanokeUnited States
| | - Kaiwen Su
- Developmental and Translational Neurobiology CenterVirginia Tech Carilion Research InstituteRoanokeUnited States
| | - William A Mills
- Developmental and Translational Neurobiology CenterVirginia Tech Carilion Research InstituteRoanokeUnited States
- Translational Biology, Medicine, and Health Graduate ProgramVirginia TechBlacksburgUnited States
| | - Kenya Swilling
- Developmental and Translational Neurobiology CenterVirginia Tech Carilion Research InstituteRoanokeUnited States
| | - Alicia Kerr
- Developmental and Translational Neurobiology CenterVirginia Tech Carilion Research InstituteRoanokeUnited States
- Translational Biology, Medicine, and Health Graduate ProgramVirginia TechBlacksburgUnited States
| | | | - Jianmin Su
- Developmental and Translational Neurobiology CenterVirginia Tech Carilion Research InstituteRoanokeUnited States
| | - Michael A Fox
- Developmental and Translational Neurobiology CenterVirginia Tech Carilion Research InstituteRoanokeUnited States
- Department of Biological SciencesVirginia TechBlacksburgUnited States
- Virginia Tech Carilion School of MedicineRoanokeUnited States
| |
Collapse
|
7
|
Sánchez E, Ferreiroa R, Arias A, Martínez LM. Image Sharpness and Contrast Tuning in the Early Visual Pathway. Int J Neural Syst 2017; 27:1750045. [PMID: 29046110 DOI: 10.1142/s0129065717500459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The center-surround organization of the receptive fields (RFs) of retinal ganglion cells highlights the presence of local contrast in visual stimuli. As RF of thalamic relay cells follow the same basic functional organization, it is often assumed that they contribute very little to alter the retinal output. However, in many species, thalamic relay cells largely outnumber their retinal inputs, which diverge to contact simultaneously several units at thalamic level. This gain in cell population as well as retinothalamic convergence opens the door to question how information about contrast is transformed at the thalamic stage. Here, we address this question using a realistic dynamic model of the retinothalamic circuit. Our results show that different components of the thalamic RF might implement filters that are analogous to two types of well-known image processing techniques to preserve the quality of a higher resolution version of the image on its way to the primary visual cortex.
Collapse
Affiliation(s)
- Eduardo Sánchez
- Grupo de Sistemas Inteligentes (GSI), Centro Singular de Investigación en Tecnologías, de la Informacin (CITIUS), University of Santiago de Compostela, Rua Jenaro de la Fuente, Santiago de Compostela 15782, Spain
| | - Rubén Ferreiroa
- Grupo de Sistemas Inteligentes (GSI), Centro Singular de Investigación en Tecnologías, de la Informacin (CITIUS), University of Santiago de Compostela, Rua Jenaro de la Fuente, Santiago de Compostela 15782, Spain
| | - Adrián Arias
- Grupo de Sistemas Inteligentes (GSI), Centro Singular de Investigación en Tecnologías, de la Informacin (CITIUS), University of Santiago de Compostela, Rua Jenaro de la Fuente, Santiago de Compostela 15782, Spain
| | - Luis M. Martínez
- Instituto de Neurociencias de Alicante, CSIC-Universidad Miguel Hernández, Avenida de Ramón y Cajal s/n, San Juan de Alicante 03550, Spain
| |
Collapse
|
8
|
Litvina EY, Chen C. Functional Convergence at the Retinogeniculate Synapse. Neuron 2017; 96:330-338.e5. [PMID: 29024658 DOI: 10.1016/j.neuron.2017.09.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/01/2017] [Accepted: 09/22/2017] [Indexed: 01/03/2023]
Abstract
Precise connectivity between retinal ganglion cells (RGCs) and thalamocortical (TC) relay neurons is thought to be essential for the transmission of visual information. Consistent with this view, electrophysiological measurements have previously estimated that 1-3 RGCs converge onto a mouse geniculate TC neuron. Recent advances in connectomics and rabies tracing have yielded much higher estimates of retinogeniculate convergence, although not all identified contacts may be functional. Here we use optogenetics and a computational simulation to determine the number of functionally relevant retinogeniculate inputs onto TC neurons in mice. We find an average of ten RGCs converging onto a mature TC neuron, in contrast to >30 inputs before developmental refinement. However, only 30% of retinogeniculate inputs exceed the threshold for dominating postsynaptic activity. These results signify a greater role for the thalamus in visual processing and provide a functional perspective of anatomical connectivity data.
Collapse
Affiliation(s)
- Elizabeth Y Litvina
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role. Prog Neurobiol 2017. [DOI: 10.1016/j.pneurobio.2017.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Different Modes of Visual Integration in the Lateral Geniculate Nucleus Revealed by Single-Cell-Initiated Transsynaptic Tracing. Neuron 2017; 93:767-776.e6. [PMID: 28231464 PMCID: PMC5330803 DOI: 10.1016/j.neuron.2017.01.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/31/2016] [Accepted: 01/26/2017] [Indexed: 11/25/2022]
Abstract
The thalamus receives sensory input from different circuits in the periphery. How these sensory channels are integrated at the level of single thalamic cells is not well understood. We performed targeted single-cell-initiated transsynaptic tracing to label the retinal ganglion cells that provide input to individual principal cells in the mouse lateral geniculate nucleus (LGN). We identified three modes of sensory integration by single LGN cells. In the first, 1–5 ganglion cells of mostly the same type converged from one eye, indicating a relay mode. In the second, 6–36 ganglion cells of different types converged from one eye, revealing a combination mode. In the third, up to 91 ganglion cells converged from both eyes, revealing a binocular combination mode in which functionally specialized ipsilateral inputs joined broadly distributed contralateral inputs. Thus, the LGN employs at least three modes of visual input integration, each exhibiting different degrees of specialization. Individual LGN cells integrate retinal inputs in one of three distinct modes Relay-mode cells integrate inputs from few retinal ganglion cells of mostly one type Combination- and binocular-mode cells combine inputs from many ganglion cell types The three integration modes exhibit different degrees of cell-type specialization
Collapse
|
11
|
Intracellular, In Vivo, Dynamics of Thalamocortical Synapses in Visual Cortex. J Neurosci 2017; 37:5250-5262. [PMID: 28438969 DOI: 10.1523/jneurosci.3370-16.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/24/2017] [Accepted: 04/01/2017] [Indexed: 11/21/2022] Open
Abstract
Seminal studies of the thalamocortical circuit in the visual system of the cat have been central to our understanding of sensory encoding. However, thalamocortical synaptic properties remain poorly understood. We used paired recordings, in the lateral geniculate nucleus (LGN) and primary visual cortex (V1), to provide the first in vivo characterization of sensory-driven thalamocortical potentials in V1. The amplitudes of EPSPs we characterized were smaller than those previously reported in vitro Consistent with prior findings, connected LGN-V1 pairs were only found when their receptive fields (RFs) overlapped, and the probability of connection increased steeply with degree of RF overlap and response similarity. However, surprisingly, we found no relationship between EPSP amplitudes and the similarity of RFs or responses, suggesting different connectivity models for intracortical and thalamocortical circuits. Putative excitatory regular-spiking (RS) and inhibitory fast-spiking (FS) V1 cells had similar EPSP characteristics, showing that in the visual system, feedforward excitation and inhibition are driven with equal strength by the thalamus. Similar to observations in the somatosensory cortex, FS V1 cells received less specific input from LGN. Finally, orientation tuning in V1 was not inherited from single presynaptic LGN cells, suggesting that it must emerge exclusively from the combined input of all presynaptic LGN cells. Our results help to decipher early visual encoding circuits and have immediate utility in providing physiological constraints to computational models of the visual system.SIGNIFICANCE STATEMENT To understand how the brain encodes the visual environment, we must understand the transfer of visual signals between various regions of the brain. Therefore, understanding synaptic dynamics is critical to our understanding of sensory encoding. This study provides the first characterization of visually evoked synaptic potentials between the visual thalamus and visual cortex in an intact animal. To record these potentials, we simultaneously recorded the extracellular potential of presynaptic thalamic cells and the intracellular potential of postsynaptic cortical cells in input layers of primary visual cortex. Our characterization of synaptic potentials in vivo disagreed with prior findings in vitro This study will increase our understanding of thalamocortical circuits and will improve computational models of visual encoding.
Collapse
|
12
|
Abstract
The thalamocortical (TC) relay neuron of the dorsoLateral Geniculate Nucleus (dLGN) has borne its imprecise label for many decades in spite of strong evidence that its role in visual processing transcends the implied simplicity of the term "relay". The retinogeniculate synapse is the site of communication between a retinal ganglion cell and a TC neuron of the dLGN. Activation of retinal fibers in the optic tract causes reliable, rapid, and robust postsynaptic potentials that drive postsynaptics spikes in a TC neuron. Cortical and subcortical modulatory systems have been known for decades to regulate retinogeniculate transmission. The dynamic properties that the retinogeniculate synapse itself exhibits during and after developmental refinement further enrich the role of the dLGN in the transmission of the retinal signal. Here we consider the structural and functional substrates for retinogeniculate synaptic transmission and plasticity, and reflect on how the complexity of the retinogeniculate synapse imparts a novel dynamic and influential capacity to subcortical processing of visual information.
Collapse
Affiliation(s)
- Elizabeth Y Litvina
- Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115
| | - Chinfei Chen
- Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115
| |
Collapse
|
13
|
Butts DA, Cui Y, Casti ARR. Nonlinear computations shaping temporal processing of precortical vision. J Neurophysiol 2016; 116:1344-57. [PMID: 27334959 DOI: 10.1152/jn.00878.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 06/17/2016] [Indexed: 11/22/2022] Open
Abstract
Computations performed by the visual pathway are constructed by neural circuits distributed over multiple stages of processing, and thus it is challenging to determine how different stages contribute on the basis of recordings from single areas. In the current article, we address this problem in the lateral geniculate nucleus (LGN), using experiments combined with nonlinear modeling capable of isolating various circuit contributions. We recorded cat LGN neurons presented with temporally modulated spots of various sizes, which drove temporally precise LGN responses. We utilized simultaneously recorded S-potentials, corresponding to the primary retinal ganglion cell (RGC) input to each LGN cell, to distinguish the computations underlying temporal precision in the retina from those in the LGN. Nonlinear models with excitatory and delayed suppressive terms were sufficient to explain temporal precision in the LGN, and we found that models of the S-potentials were nearly identical, although with a lower threshold. To determine whether additional influences shaped the response at the level of the LGN, we extended this model to use the S-potential input in combination with stimulus-driven terms to predict the LGN response. We found that the S-potential input "explained away" the major excitatory and delayed suppressive terms responsible for temporal patterning of LGN spike trains but revealed additional contributions, largely PULL suppression, to the LGN response. Using this novel combination of recordings and modeling, we were thus able to dissect multiple circuit contributions to LGN temporal responses across retina and LGN, and set the foundation for targeted study of each stage.
Collapse
Affiliation(s)
- Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland; and
| | - Yuwei Cui
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland; and
| | - Alexander R R Casti
- Department of Mathematics, Gildart-Haase School of Engineering and Computer Sciences, Fairleigh Dickinson University, Teaneck, New Jersey
| |
Collapse
|
14
|
Abstract
Inhibitory neurons dominate the intrinsic circuits in the visual thalamus. Interneurons in the lateral geniculate nucleus innervate relay cells and each other densely to provide powerful inhibition. The visual sector of the overlying thalamic reticular nucleus receives input from relay cells and supplies feedback inhibition to them in return. Together, these two inhibitory circuits influence all information transmitted from the retina to the primary visual cortex. By contrast, relay cells make few local connections. This review explores the role of thalamic inhibition from the dual perspectives of feature detection and information theory. For example, we describe how inhibition sharpens tuning for spatial and temporal features of the stimulus and how it might enhance image perception. We also discuss how inhibitory circuits help to reduce redundancy in signals sent downstream and, at the same time, are adapted to maximize the amount of information conveyed to the cortex.
Collapse
Affiliation(s)
- Judith A Hirsch
- Department of Biological Sciences/Neurobiology, University of Southern California, Los Angeles, California 90089-2520;
| | | | | | | |
Collapse
|
15
|
Columnar organization of spatial phase in visual cortex. Nat Neurosci 2014; 18:97-103. [PMID: 25420070 PMCID: PMC4281281 DOI: 10.1038/nn.3878] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022]
Abstract
Images are processed in the primary visual cortex by neurons that encode different stimulus orientations and spatial phases. In primates and carnivores, neighboring cortical neurons share similar orientation preferences but spatial phases were thought to be randomly distributed. Here we reveal a columnar organization for spatial phase in cats that shares resemblances with the columnar organization for orientation. For both orientation and phase, the mean difference across vertically aligned neurons was less than 1/4 of a cycle. Cortical neurons showed three times more diversity in phase than orientation preference, however, the average phase of local neuronal populations was similar through the depth of layer 4. We conclude that columnar organization for visual space is not only defined by the spatial location of the stimulus but also by absolute phase. Taken together with previous studies, our results suggest that this phase-visuotopy is responsible for the emergence of orientation maps.
Collapse
|
16
|
Martinez LM, Molano-Mazón M, Wang X, Sommer FT, Hirsch JA. Statistical wiring of thalamic receptive fields optimizes spatial sampling of the retinal image. Neuron 2014; 81:943-956. [PMID: 24559681 DOI: 10.1016/j.neuron.2013.12.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2013] [Indexed: 11/27/2022]
Abstract
It is widely assumed that mosaics of retinal ganglion cells establish the optimal representation of visual space. However, relay cells in the visual thalamus often receive convergent input from several retinal afferents and, in cat, outnumber ganglion cells. To explore how the thalamus transforms the retinal image, we built a model of the retinothalamic circuit using experimental data and simple wiring rules. The model shows how the thalamus might form a resampled map of visual space with the potential to facilitate detection of stimulus position in the presence of sensor noise. Bayesian decoding conducted with the model provides support for this scenario. Despite its benefits, however, resampling introduces image blur, thus impairing edge perception. Whole-cell recordings obtained in vivo suggest that this problem is mitigated by arrangements of excitation and inhibition within the receptive field that effectively boost contrast borders, much like strategies used in digital image processing.
Collapse
Affiliation(s)
- Luis M Martinez
- Instituto de Neurociencias de Alicante, CSIC-Universidad Miguel Hernandez. Sant Joan d'Alacant, Alicante, 03550; SPAIN
| | - Manuel Molano-Mazón
- Instituto de Neurociencias de Alicante, CSIC-Universidad Miguel Hernandez. Sant Joan d'Alacant, Alicante, 03550; SPAIN
| | - Xin Wang
- Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; USA
| | - Friedrich T Sommer
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA 94720-3198; USA
| | - Judith A Hirsch
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520; USA
| |
Collapse
|
17
|
|
18
|
Burnat K, Van Der Gucht E, Waleszczyk WJ, Kossut M, Arckens L. Lack of early pattern stimulation prevents normal development of the alpha (Y) retinal ganglion cell population in the cat. J Comp Neurol 2012; 520:2414-29. [PMID: 22237852 DOI: 10.1002/cne.23045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Binocular deprivation of pattern vision (BD) early in life permanently impairs global motion perception. With the SMI-32 antibody against neurofilament protein (NFP) as a marker of the motion-sensitive Y-cell pathway (Van der Gucht et al. [2001] Cereb. Cortex 17:2805-2819), we analyzed the impact of early BD on the retinal circuitry in adult, perceptually characterized cats (Burnat et al. [2005] Neuroreport 16:751-754). In controls, large retinal ganglion cells exhibited a strong NFP signal in the soma and in the proximal parts of the dendritic arbors. The NFP-immunoreactive dendrites typically branched into sublamina a of the inner plexiform layer (IPL), i.e., the OFF inner plexiform sublamina. In the retina of adult BD cats, however, most of the NFP-immunoreactive ganglion cell dendrites branched throughout the entire IPL. The NFP-immunoreactive cell bodies were less regularly distributed, often appeared in pairs, and had a significantly larger diameter compared with NFP-expressing cells in control retinas. These remarkable differences in the immunoreactivity pattern were typically observed in temporal retina. In conclusion, we show that the anatomical organization typical of premature Y-type retinal ganglion cells persists into adulthood even if normal visual experience follows for years upon an initial 6-month period of BD. Binocular pattern deprivation possibly induces a lifelong OFF functional domination, normally apparent only during development, putting early high-quality vision forward as a premise for proper ON-OFF pathway segregation. These new observations for pattern-deprived animals provide an anatomical basis for the well-described motion perception deficits in congenital cataract patients.
Collapse
Affiliation(s)
- Kalina Burnat
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Thalamic neurons respond to visual scenes by generating synchronous spike trains on the timescale of 10-20 ms that are very effective at driving cortical targets. Here we demonstrate that this synchronous activity contains unexpectedly rich information about fundamental properties of visual stimuli. We report that the occurrence of synchronous firing of cat thalamic cells with highly overlapping receptive fields is strongly sensitive to the orientation and the direction of motion of the visual stimulus. We show that this stimulus selectivity is robust, remaining relatively unchanged under different contrasts and temporal frequencies (stimulus velocities). A computational analysis based on an integrate-and-fire model of the direct thalamic input to a layer 4 cortical cell reveals a strong correlation between the degree of thalamic synchrony and the nonlinear relationship between cortical membrane potential and the resultant firing rate. Together, these findings suggest a novel population code in the synchronous firing of neurons in the early visual pathway that could serve as the substrate for establishing cortical representations of the visual scene.
Collapse
|
20
|
Agmon A. A novel, jitter-based method for detecting and measuring spike synchrony and quantifying temporal firing precision. NEURAL SYSTEMS & CIRCUITS 2012; 2:5. [PMID: 22551243 PMCID: PMC3423071 DOI: 10.1186/2042-1001-2-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/02/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Precise spike synchrony, at the millisecond or even sub-millisecond time scale, has been reported in different brain areas, but its neurobiological meaning and its underlying mechanisms remain unknown or controversial. Studying these questions is complicated by the lack of a validated, well-normalized and robust index for quantifying synchrony. Previously used measures of synchrony are often improperly normalized and thereby are not comparable between different experimental conditions, are sensitive to variations in firing rate or to the firing rate differential between the two neurons, and/or rely on untenable assumptions of firing rate stationarity and Poisson statistics. I describe here a novel measure, the Jitter-Based Synchrony Index (JBSI), that overcomes these issues. RESULTS AND DISCUSSION The JBSI method is based on the introduction of virtual spike jitter. While previous implementations of the jitter method used it only to detect synchrony, the JBSI method also quantifies synchrony. Previous implementations of the jitter method used computationally intensive Monte Carlo simulations to generate surrogate spike trains, whereas the JBSI is computed analytically. The JBSI method does not assume any specific firing model, and does not require that the spike trains be locked to a repeating external stimulus. The JBSI can assume values from 1 (maximal possible synchrony) to -1 (minimal possible synchrony) and is therefore properly normalized. Using simulated Poisson spike trains with introduced controlled spike coincidences, I demonstrate that the JBSI is a linear measure of the spike coincidence rate, is independent of the mean firing frequency or the firing frequency differential between the two neurons, and is not sensitive to co-modulations in the firing rates of the two neurons. In contrast, several commonly used synchrony indices fail under one or more of these scenarios. I also demonstrate how the JBSI can be used to estimate the spike timing precision in the system. CONCLUSIONS The JBSI is a conceptually simple and computationally efficient method that can be used to compute the statistical significance of firing synchrony, to quantify synchrony as a well-normalized index, and to estimate the degree of temporal precision in the system.
Collapse
Affiliation(s)
- Ariel Agmon
- Department of Neurobiology and Anatomy and the Sensory Neuroscience Research Center, West Virginia University, Morgantown, WV, 26506-9303, USA.
| |
Collapse
|
21
|
Abstract
ON and OFF visual pathways originate in the retina at the synapse between photoreceptor and bipolar cells. OFF bipolar cells are shorter in length and use receptors with faster kinetics than ON bipolar cells and, therefore, process information faster. Here, we demonstrate that this temporal advantage is maintained through thalamocortical processing, with OFF visual responses reaching cortex ~3-6 ms before ON visual responses. Faster OFF visual responses could be demonstrated in recordings from large populations of cat thalamic neurons representing the center of vision (both X and Y) and from subpopulations making connection with the same cortical orientation column. While the OFF temporal advantage diminished as visual responses reached their peak, the integral of the impulse response was greater in OFF than ON neurons. Given the stimulus preferences from OFF and ON channels, our results indicate that darks are processed faster than lights in the thalamocortical pathway.
Collapse
|
22
|
Jin J, Wang Y, Swadlow HA, Alonso JM. Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex. Nat Neurosci 2011; 14:232-8. [DOI: 10.1038/nn.2729] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/30/2010] [Indexed: 11/09/2022]
|
23
|
Desbordes G, Jin J, Alonso JM, Stanley GB. Modulation of temporal precision in thalamic population responses to natural visual stimuli. Front Syst Neurosci 2010; 4:151. [PMID: 21151356 PMCID: PMC2992450 DOI: 10.3389/fnsys.2010.00151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/06/2010] [Indexed: 11/13/2022] Open
Abstract
Natural visual stimuli have highly structured spatial and temporal properties which influence the way visual information is encoded in the visual pathway. In response to natural scene stimuli, neurons in the lateral geniculate nucleus (LGN) are temporally precise - on a time scale of 10-25 ms - both within single cells and across cells within a population. This time scale, established by non stimulus-driven elements of neuronal firing, is significantly shorter than that of natural scenes, yet is critical for the neural representation of the spatial and temporal structure of the scene. Here, a generalized linear model (GLM) that combines stimulus-driven elements with spike-history dependence associated with intrinsic cellular dynamics is shown to predict the fine timing precision of LGN responses to natural scene stimuli, the corresponding correlation structure across nearby neurons in the population, and the continuous modulation of spike timing precision and latency across neurons. A single model captured the experimentally observed neural response, across different levels of contrasts and different classes of visual stimuli, through interactions between the stimulus correlation structure and the nonlinearity in spike generation and spike history dependence. Given the sensitivity of the thalamocortical synapse to closely timed spikes and the importance of fine timing precision for the faithful representation of natural scenes, the modulation of thalamic population timing over these time scales is likely important for cortical representations of the dynamic natural visual environment.
Collapse
Affiliation(s)
- Gaëlle Desbordes
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | | | | | | |
Collapse
|
24
|
Ito H, Maldonado PE, Gray CM. Dynamics of stimulus-evoked spike timing correlations in the cat lateral geniculate nucleus. J Neurophysiol 2010; 104:3276-92. [PMID: 20881200 DOI: 10.1152/jn.01000.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Precisely synchronized neuronal activity has been commonly observed in the mammalian visual pathway. Spike timing correlations in the lateral geniculate nucleus (LGN) often take the form of phase synchronized oscillations in the high gamma frequency range. To study the relations between oscillatory activity, synchrony, and their time-dependent properties, we recorded activity from multiple single units in the cat LGN under stimulation by stationary spots of light. Autocorrelation analysis showed that approximately one third of the cells exhibited oscillatory firing with a mean frequency ∼80 Hz. Cross-correlation analysis showed that 30% of unit pairs showed significant synchronization, and 61% of these pairs consisted of synchronous oscillations. Cross-correlation analysis assumes that synchronous firing is stationary and maintained throughout the period of stimulation. We tested this assumption by applying unitary events analysis (UEA). We found that UEA was more sensitive to weak and transient synchrony than cross-correlation analysis and detected a higher incidence (49% of cell pairs) of significant synchrony (unitary events). In many unit pairs, the unitary events were optimally characterized at a bin width of 1 ms, indicating that neural synchrony has a high degree of temporal precision. We also found that approximately one half of the unit pairs showed nonstationary changes in synchrony that could not be predicted by the modulation of firing rates. Population statistics showed that the onset of synchrony between LGN cells occurred significantly later than that observed between retinal afferents and LGN cells. The synchrony detected among unit pairs recorded on separate tetrodes tended to be more transient and have a later onset than that observed between adjacent units. These findings show that stimulus-evoked synchronous activity within the LGN is often rhythmic, highly nonstationary, and modulated by endogenous processes that are not tightly correlated with firing rate.
Collapse
Affiliation(s)
- Hiroyuki Ito
- Faculty of Computer Science and Engineering, Kyoto Sangyo Univ., Kamigamo, Kita-ku, Kyoto 603-8555, Japan.
| | | | | |
Collapse
|
25
|
Coleman JE, Law K, Bear MF. Anatomical origins of ocular dominance in mouse primary visual cortex. Neuroscience 2009; 161:561-71. [PMID: 19327388 DOI: 10.1016/j.neuroscience.2009.03.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 02/23/2009] [Accepted: 03/14/2009] [Indexed: 11/19/2022]
Abstract
Ocular dominance (OD) plasticity is a classic paradigm for studying the effect of experience and deprivation on cortical development, and is manifested as shifts in the relative strength of binocular inputs to primary visual cortex (V1). The mouse has become an increasingly popular model for mechanistic studies of OD plasticity and, consequently, it is important that we understand how binocularity is constructed in this species. One puzzling feature of the mouse visual system is the gross disparity between the physiological strength of each eye in V1 and their anatomical representation in the projection from retina to the dorsal lateral geniculate nucleus (dLGN). While the contralateral-to-ipsilateral (C/I) ratio of visually evoked responses in binocular V1 is approximately 2:1, the ipsilateral retinal projection is weakly represented in terms of retinal ganglion cell (RGC) density where the C/I ratio is approximately 9:1. The structural basis for this relative amplification of ipsilateral eye responses between retina and V1 is not known. Here we employed neuroanatomical tracing and morphometric techniques to quantify the relative magnitude of each eye's input to and output from the binocular segment of dLGN. Our data are consistent with the previous suggestion that a point in space viewed by both eyes will activate 9 times as many RGCs in the contralateral retina as in the ipsilateral retina. Nonetheless, the volume of the dLGN binocular segment occupied by contralateral retinogeniculate inputs is only 2.4 times larger than the volume occupied by ipsilateral retinogeniculate inputs and recipient relay cells are evenly distributed among the input layers. The results from our morphometric analyses show that this reduction in input volume can be accounted for by a three-to-one convergence of contralateral eye RGC inputs to dLGN neurons. Together, our findings establish that the relative density of feed-forward dLGN inputs determines the C/I response ratio of mouse binocular V1.
Collapse
Affiliation(s)
- J E Coleman
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Howard Hughes Medical Institute, Massachusetts Institute of Technology 46-3301, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|