1
|
Koster KP, Sherman SM. Convergence of inputs from the basal ganglia with layer 5 of motor cortex and cerebellum in mouse motor thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584958. [PMID: 38559179 PMCID: PMC10979938 DOI: 10.1101/2024.03.14.584958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A key to motor control is the motor thalamus, where several inputs converge. One excitatory input originates from layer 5 of primary motor cortex (M1L5), while another arises from the deep cerebellar nuclei (Cb). M1L5 terminals distribute throughout the motor thalamus and overlap with GABAergic inputs from the basal ganglia output nuclei, the internal segment of the globus pallidus (GPi) and substantia nigra pars reticulata (SNr). In contrast, it is thought that Cb and basal ganglia inputs are segregated. Therefore, we hypothesized that one potential function of the GABAergic inputs from basal ganglia is to selectively inhibit, or gate, excitatory signals from M1L5 in the motor thalamus. Here, we tested this possibility and determined the circuit organization of mouse (both sexes) motor thalamus using an optogenetic strategy in acute slices. First, we demonstrated the presence of a feedforward transthalamic pathway from M1L5 through motor thalamus. Importantly, we discovered that GABAergic inputs from the GPi and SNr converge onto single motor thalamic cells with excitatory synapses from M1L5 and, unexpectedly, Cb as well. We interpret these results to indicate that a role of the basal ganglia is to gate the thalamic transmission of M1L5 and Cb information to cortex.
Collapse
Affiliation(s)
- Kevin P. Koster
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - S. Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
2
|
Tekriwal A, Felsen G, Ojemann SG, Abosch A, Thompson JA. Motor context modulates substantia nigra pars reticulata spike activity in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry 2022; 93:386-394. [PMID: 35193951 PMCID: PMC10593310 DOI: 10.1136/jnnp-2021-326962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The severity of motor symptoms in Parkinson's disease (PD) depends on environmental conditions. For example, the presence of external patterns such as a rhythmic tone can attenuate bradykinetic impairments. However, the neural mechanisms for this context-dependent attenuation (e.g., paradoxical kinesis) remain unknown. Here, we investigate whether context-dependent symptom attenuation is reflected in single-unit activity recorded in the operating room from the substantia nigra pars reticulata (SNr) of patients with PD undergoing deep brain stimulation surgery. The SNr is known to influence motor planning and execution in animal models, but its role in humans remains understudied. METHODS We recorded SNr activity while subjects performed cued directional movements in response to auditory stimuli under interleaved 'patterned' and 'unpatterned' contexts. SNr localisation was independently confirmed with expert intraoperative assessment as well as post hoc imaging-based reconstructions. RESULTS As predicted, we found that motor performance was improved in the patterned context, reflected in increased reaction speed and accuracy compared with the unpatterned context. These behavioural differences were associated with enhanced responsiveness of SNr neurons-that is, larger changes in activity from baseline-in the patterned context. Unsupervised clustering analysis revealed two distinct subtypes of SNr neurons: one exhibited context-dependent enhanced responsiveness exclusively during movement preparation, whereas the other showed enhanced responsiveness during portions of the task associated with both motor and non-motor processes. CONCLUSIONS Our findings indicate the SNr participates in motor planning and execution, as well as warrants greater attention in the study of human sensorimotor integration and as a target for neuromodulatory therapies.
Collapse
Affiliation(s)
- Anand Tekriwal
- Departments of Neurosurgery and Physiology and Biophysics, Neuroscience Graduate Program, Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gidon Felsen
- Department of Physiology and Biophysics, Neuroscience Graduate Program, Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - John A Thompson
- Departments of Neurosurgery and Neurology, Neuroscience Graduate Program, Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Phillips JM, Kambi NA, Redinbaugh MJ, Mohanta S, Saalmann YB. Disentangling the influences of multiple thalamic nuclei on prefrontal cortex and cognitive control. Neurosci Biobehav Rev 2021; 128:487-510. [PMID: 34216654 DOI: 10.1016/j.neubiorev.2021.06.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/13/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
The prefrontal cortex (PFC) has a complex relationship with the thalamus, involving many nuclei which occupy predominantly medial zones along its anterior-to-posterior extent. Thalamocortical neurons in most of these nuclei are modulated by the affective and cognitive signals which funnel through the basal ganglia. We review how PFC-connected thalamic nuclei likely contribute to all aspects of cognitive control: from the processing of information on internal states and goals, facilitating its interactions with mnemonic information and learned values of stimuli and actions, to their influence on high-level cognitive processes, attentional allocation and goal-directed behavior. This includes contributions to transformations such as rule-to-choice (parvocellular mediodorsal nucleus), value-to-choice (magnocellular mediodorsal nucleus), mnemonic-to-choice (anteromedial nucleus) and sensory-to-choice (medial pulvinar). Common mechanisms appear to be thalamic modulation of cortical gain and cortico-cortical functional connectivity. The anatomy also implies a unique role for medial PFC in modulating processing in thalamocortical circuits involving other orbital and lateral PFC regions. We further discuss how cortico-basal ganglia circuits may provide a mechanism through which PFC controls cortico-cortical functional connectivity.
Collapse
Affiliation(s)
- Jessica M Phillips
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States.
| | - Niranjan A Kambi
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Michelle J Redinbaugh
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Sounak Mohanta
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States; Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1202 Capitol Ct., Madison, WI 53715, United States.
| |
Collapse
|
4
|
Ghazizadeh A, Hikosaka O. Common coding of expected value and value uncertainty memories in the prefrontal cortex and basal ganglia output. SCIENCE ADVANCES 2021; 7:eabe0693. [PMID: 33980480 PMCID: PMC8115923 DOI: 10.1126/sciadv.abe0693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/23/2021] [Indexed: 05/12/2023]
Abstract
Recent evidence implicates both basal ganglia and ventrolateral prefrontal cortex (vlPFC) in encoding value memories. However, comparative roles of cortical and basal nodes in value memory are not well understood. Here, single-unit recordings in vlPFC and substantia nigra reticulata (SNr), within macaque monkeys, revealed a larger value signal in SNr that was nevertheless correlated with and had a comparable onset to the vlPFC value signal. The value signal was maintained for many objects (>90) many weeks after reward learning and was resistant to extinction in both regions and to repetition suppression in vlPFC. Both regions showed comparable granularity in encoding expected value and value uncertainty, which was paralleled by enhanced gaze bias during free viewing. The value signal dynamics in SNr could be predicted by combining responses of vlPFC neurons according to their value preferences consistent with a scheme in which cortical neurons reached SNr via direct and indirect pathways.
Collapse
Affiliation(s)
- Ali Ghazizadeh
- Bio-intelligence Research Unit, Electrical Engineering Department, Sharif University of Technology, Tehran 11365-11155, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran 19395-5746, Iran
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892, USA
- National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
5
|
Soh C, Wessel JR. Unexpected Sounds Nonselectively Inhibit Active Visual Stimulus Representations. Cereb Cortex 2021; 31:1632-1646. [PMID: 33140100 DOI: 10.1093/cercor/bhaa315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
The brain's capacity to process unexpected events is key to cognitive flexibility. The most well-known effect of unexpected events is the interruption of attentional engagement (distraction). We tested whether unexpected events interrupt attentional representations by activating a neural mechanism for inhibitory control. This mechanism is most well characterized within the motor system. However, recent work showed that it is automatically activated by unexpected events and can explain some of their nonmotor effects (e.g., on working memory representations). Here, human participants attended to lateralized flickering visual stimuli, producing steady-state visual evoked potentials (SSVEPs) in the scalp electroencephalogram. After unexpected sounds, the SSVEP was rapidly suppressed. Using a functional localizer (stop-signal) task and independent component analysis, we then identified a fronto-central EEG source whose activity indexes inhibitory motor control. Unexpected sounds in the SSVEP task also activated this source. Using single-trial analyses, we found that subcomponents of this source differentially relate to sound-induced SSVEP changes: While its N2 component predicted the subsequent suppression of the attended-stimulus SSVEP, the P3 component predicted the suppression of the SSVEP to the unattended stimulus. These results shed new light on the processes underlying fronto-central control signals and have implications for phenomena such as distraction and the attentional blink.
Collapse
Affiliation(s)
- Cheol Soh
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52245, USA
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52245, USA.,Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Georgescu IA, Popa D, Zagrean L. The Anatomical and Functional Heterogeneity of the Mediodorsal Thalamus. Brain Sci 2020; 10:brainsci10090624. [PMID: 32916866 PMCID: PMC7563683 DOI: 10.3390/brainsci10090624] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
The mediodorsal nucleus (MD) represents just one piece of a complex relay structure situated within the brain, called the thalamus. MD is characterized by its robust interconnections with other brain areas, especially with limbic-related structures. Given the close anatomo-functional relationship between the MD and the limbic system, this particular thalamic nucleus can directly influence various affective behaviors and participate in cognition. In this work, we review data collected from multiple anatomical studies conducted in rodent, human, and non-human primates, highlighting the complexity of this structure and of the neural networks in which it takes part. We provide proof that the MD is involved in the unification of several anatomical structures, being able to process the information and influence the activity in numerous cortical and subcortical neural circuits. Moreover, we uncover intrinsic and extrinsic mechanisms that offer MD the possibility to execute and control specific high functions of the nervous system. The collected data indicate the great importance of the MD in the limbic system and offer relevant insight into the organization of thalamic circuits that support MD functions.
Collapse
Affiliation(s)
- Ioana Antoaneta Georgescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, nr 8, Sector 5, 050474 Bucharest, Romania;
| | - Daniela Popa
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, nr 8, Sector 5, 050474 Bucharest, Romania;
- Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Correspondence: (D.P.); (L.Z.)
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, nr 8, Sector 5, 050474 Bucharest, Romania;
- Correspondence: (D.P.); (L.Z.)
| |
Collapse
|
7
|
Kim HF, Griggs WS, Hikosaka O. Long-Term Value Memory in the Primate Posterior Thalamus for Fast Automatic Action. Curr Biol 2020; 30:2901-2911.e3. [PMID: 32531286 DOI: 10.1016/j.cub.2020.05.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 11/29/2022]
Abstract
The thalamus is known to process information from various brain regions and relay it to other brain regions, serving an essential role in sensory perception and motor execution. The thalamus also receives inputs from basal ganglia nuclei (BG) involved in value-based decision making, suggesting a role in the value process. We found that neurons in a particular area of the rhesus macaque posterior thalamus encoded the historical value memory of visual objects. Many of these value-coding neurons were located in the suprageniculate nucleus (SGN). This thalamic area directly received anatomical input from the superior colliculus (SC), and the neurons showed visual responses with contralateral preferences. Notably, the value discrimination activity of these thalamic neurons increased during learning, with the learned values stably retained even more than 200 days after learning. Our data indicate that single neurons in the posterior thalamus not only processed simple visual information but also represented historical values. Furthermore, our data suggest an SC-posterior thalamus-BG-SC subcortical loop circuit that encodes the historical value, enabling a quick automatic gaze by bypassing the visual cortex.
Collapse
Affiliation(s)
- Hyoung F Kim
- School of Biological Sciences, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Whitney S Griggs
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Urban P, Falkenburger B, Jost WH, Ransmayr G, Riederer P, Winkler C. [Structure and efferences of the substantia nigra pars compacta in Parkinson's disease]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2020; 88:591-599. [PMID: 32396943 DOI: 10.1055/a-1149-9280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is consensus that the neuropathological characteristic of Parkinson's disease (PD) is the neuronal cell loss of the substantia nigra pars compacta (SNc) in connection with a Lewy pathology. The transsynaptic spread of Lewy pathology is considered essential in PD pathogenesis. Therefore, the knowledge of pre-existing neuroanatomical connections of the SNc is essential. We describe recent animal experiments on the afferent and efferent projections of the SNc and discuss the evidence for and against the sequential transsynaptic spread of Lewy pathology in the pathogenesis of PD.
Collapse
Affiliation(s)
- Peter Urban
- Abteilung für Neurologie, Asklepios Klinik Barmbek
| | | | | | - Gerhard Ransmayr
- Klinik für Neurologie 2, Kepler Universitätsklinikum, Linz/Austria
| | - Peter Riederer
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie, Universitätsklinikum Würzburg
| | | |
Collapse
|
9
|
Differential Roles of Mediodorsal Nucleus of the Thalamus and Prefrontal Cortex in Decision-Making and State Representation in a Cognitive Control Task Measuring Deficits in Schizophrenia. J Neurosci 2020; 40:1650-1667. [PMID: 31941665 DOI: 10.1523/jneurosci.1703-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/12/2019] [Accepted: 01/05/2020] [Indexed: 11/21/2022] Open
Abstract
The mediodorsal nucleus of the thalamus (MD) is reciprocally connected with the prefrontal cortex (PFC), and although the MD has been implicated in a range of PFC-dependent cognitive functions (Watanabe and Funahashi, 2012; Mitchell and Chakraborty, 2013; Parnaudeau et al., 2018), little is known about how MD neurons in the primate participate specifically in cognitive control, a capability that reflects the ability to use contextual information (such as a rule) to modify responses to environmental stimuli. To learn how the MD-PFC thalamocortical network is engaged to mediate forms of cognitive control that are selectively disrupted in schizophrenia, we trained male monkeys to perform a variant of the AX continuous performance task, which reliably measures cognitive control deficits in patients (Henderson et al., 2012) and used linear multielectrode arrays to record neural activity in the MD and PFC simultaneously. We found that the two structures made clearly different contributions to distributed processing for cognitive control: MD neurons were specialized for decision-making and response selection, whereas prefrontal neurons were specialized to preferentially encode the environmental state on which the decision was based. In addition, we observed that functional coupling between MD and PFC was strongest when the decision as to which of the two responses in the task to execute was being made. These findings delineate unique contributions of MD and PFC to distributed processing for cognitive control and characterized neural dynamics in this network associated with normative cognitive control performance.SIGNIFICANCE STATEMENT Cognitive control is fundamental to healthy human executive functioning (Miller and Cohen, 2001) and deficits in patients with schizophrenia relate to decreased functional activation of the MD thalamus and the prefrontal cortex (Minzenberg et al., 2009), which are reciprocally linked (Goldman-Rakic and Porrino, 1985; Xiao et al., 2009). We carry out simultaneous neural recordings in the MD and PFC while monkeys perform a cognitive control task translated from patients with schizophrenia to relate thalamocortical dynamics to cognitive control performance. Our data suggest that state representation and decision-making computations for cognitive control are preferentially performed by PFC and MD, respectively. This suggests experiments to parse decision-making and state representation deficits in patients while providing novel computational targets for future therapies.
Collapse
|
10
|
Yasuda M, Hikosaka O. Medial thalamus in the territory of oculomotor basal ganglia represents stable object value. Eur J Neurosci 2018; 49:672-686. [PMID: 30307646 PMCID: PMC6426671 DOI: 10.1111/ejn.14202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 09/11/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022]
Abstract
Many visual objects are attached with values which were created by our long rewarding history. Such stable object values attract gaze. We previously found that the output pathway of basal ganglia from caudal‐dorsal‐lateral portion of substantia nigra pars reticulata (cdlSNr) to superior colliculus (SC) carries robust stable value signal to execute the automatic choice of valuable objects. An important question here is whether stable value signal in basal ganglia can influence on other inner processing such as perception, attention, emotion, or arousal than motor execution. The key brain circuit is another output path of basal ganglia: the pathway from SNr to temporal and frontal lobes through thalamus. To examine the existence of stable value signal in this pathway, we explored thalamus in a wide range. We found that many neurons in the medial thalamus represented stable value. Histological examination showed that the recorded sites of those neurons included ventral anterior nucleus, pars magnocellularis (VAmc) which is the main target of nigrothalamic projection. Consistent with the SNr GABArgic projection, the latency of value signal in the medial thalamus was later than cdlSNr, and the sign of value coding in the medial thalamus was opposite to cdlSNr. As is the case with cdlSNr neurons, the medial thalamus neurons showed no sensitivity to frequently updated value (flexible value). These results suggest that the pathway from cdlSNr to the medial thalamus influences on various aspects of cognitive processing by propagating stable value signal to the wide cortical area.
Collapse
Affiliation(s)
- Masaharu Yasuda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Physiology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-0101, Japan
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Abstract
Basal ganglia interact in a complex way which is still not completely understood. The model generally used to explain basal ganglia interactions is based on experimental data in animals, but its validation in humans has been hampered by methodological restrictions. The time-relationship (partial correlation) of the fluctuations of the blood-oxygen-level-dependent signals recorded in the main basal ganglia was used here (32 healthy volunteers; 18-72 years of age; 16 males and 16 females) to test whether the interaction of the main basal ganglia in humans follows the pattern of functional connectivity in animals. Data showed that most basal ganglia have a functional connectivity which is compatible with that of the established closed-loop model. The strength of the connectivity of some basal ganglia changed with finger motion, suggesting that the functional interactions between basal ganglia are quickly restructured by the motor tasks. The present study with the motor cortico-BG loop centers supports the circling dynamic of the basal ganglia model in humans, showing that motor tasks may change the functional connectivity of these centers.
Collapse
|
12
|
Thalamic interactions of cerebellum and basal ganglia. Brain Struct Funct 2017; 223:569-587. [PMID: 29224175 DOI: 10.1007/s00429-017-1584-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/29/2017] [Indexed: 01/04/2023]
Abstract
Cerebellum and basal ganglia are reciprocally interconnected with the neocortex via oligosynaptic loops. The signal pathways of these loops predominantly converge in motor areas of the frontal cortex and are mainly segregated on subcortical level. Recent evidence, however, indicates subcortical interaction of these systems. We have reviewed literature that addresses the question whether, and to what extent, projections of main output nuclei of basal ganglia (reticular part of the substantia nigra, internal segment of the globus pallidus) and cerebellum (deep cerebellar nuclei) interact with each other in the thalamus. To this end, we compiled data from electrophysiological and anatomical studies in rats, cats, dogs, and non-human primates. Evidence suggests the existence of convergence of thalamic projections originating in basal ganglia and cerebellum, albeit sparse and restricted to certain regions. Four regions come into question to contain converging inputs: (1) lateral parts of medial dorsal nucleus (MD); (2) parts of anterior intralaminar nuclei and centromedian and parafascicular nuclei (CM/Pf); (3) ventromedial nucleus (VM); and (4) border regions of cerebellar and ganglia terminal territories in ventral anterior and ventral lateral nuclei (VA-VL). The amount of convergences was found to exhibit marked interspecies differences. To explain the rather sparse convergences of projection territories and to estimate their physiological relevance, we present two conceivable principles of anatomical organization: (1) a "core-and-shell" organization, in which a central core is exclusive to one projection system, while peripheral shell regions intermingle and occasionally converge with other projection systems and (2) convergences that are characteristic to distinct functional networks. The physiological relevance of these convergences is not yet clear. An oculomotor network proposed in this work is an interesting candidate to examine potential ganglia and cerebellar subcortical interactions.
Collapse
|
13
|
Rodriguez-Sabate C, Morales I, Sanchez A, Rodriguez M. The Multiple Correspondence Analysis Method and Brain Functional Connectivity: Its Application to the Study of the Non-linear Relationships of Motor Cortex and Basal Ganglia. Front Neurosci 2017; 11:345. [PMID: 28676738 PMCID: PMC5477566 DOI: 10.3389/fnins.2017.00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/02/2017] [Indexed: 01/09/2023] Open
Abstract
The complexity of basal ganglia (BG) interactions is often condensed into simple models mainly based on animal data and that present BG in closed-loop cortico-subcortical circuits of excitatory/inhibitory pathways which analyze the incoming cortical data and return the processed information to the cortex. This study was aimed at identifying functional relationships in the BG motor-loop of 24 healthy-subjects who provided written, informed consent and whose BOLD-activity was recorded by MRI methods. The analysis of the functional interaction between these centers by correlation techniques and multiple linear regression showed non-linear relationships which cannot be suitably addressed with these methods. The multiple correspondence analysis (MCA), an unsupervised multivariable procedure which can identify non-linear interactions, was used to study the functional connectivity of BG when subjects were at rest. Linear methods showed different functional interactions expected according to current BG models. MCA showed additional functional interactions which were not evident when using lineal methods. Seven functional configurations of BG were identified with MCA, two involving the primary motor and somatosensory cortex, one involving the deepest BG (external-internal globus pallidum, subthalamic nucleus and substantia nigral), one with the input-output BG centers (putamen and motor thalamus), two linking the input-output centers with other BG (external pallidum and subthalamic nucleus), and one linking the external pallidum and the substantia nigral. The results provide evidence that the non-linear MCA and linear methods are complementary and should be best used in conjunction to more fully understand the nature of functional connectivity of brain centers.
Collapse
Affiliation(s)
- Clara Rodriguez-Sabate
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La LagunaTenerife, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasTenerife, Spain
| | - Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La LagunaTenerife, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasTenerife, Spain
| | - Alberto Sanchez
- Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasTenerife, Spain.,Department of Pharmacology and Physical Medicine, Faculty of Medicine, University of La LagunaTenerife, Spain
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La LagunaTenerife, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasTenerife, Spain
| |
Collapse
|
14
|
Garcia-Munoz M, Arbuthnott GW. Basal ganglia-thalamus and the "crowning enigma". Front Neural Circuits 2015; 9:71. [PMID: 26582979 PMCID: PMC4631818 DOI: 10.3389/fncir.2015.00071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/22/2015] [Indexed: 11/13/2022] Open
Abstract
When Hubel (1982) referred to layer 1 of primary visual cortex as "… a 'crowning mystery' to keep area-17 physiologists busy for years to come …" he could have been talking about any cortical area. In the 80's and 90's there were no methods to examine this neuropile on the surface of the cortex: a tangled web of axons and dendrites from a variety of different places with unknown specificities and doubtful connections to the cortical output neurons some hundreds of microns below. Recently, three changes have made the crowning enigma less of an impossible mission: the clear presence of neurons in layer 1 (L1), the active conduction of voltage along apical dendrites and optogenetic methods that might allow us to look at one source of input at a time. For all of those reasons alone, it seems it is time to take seriously the function of L1. The functional properties of this layer will need to wait for more experiments but already L1 cells are GAD67 positive, i.e., inhibitory! They could reverse the sign of the thalamic glutamate (GLU) input for the entire cortex. It is at least possible that in the near future normal activity of individual sources of L1 could be detected using genetic tools. We are at the outset of important times in the exploration of thalamic functions and perhaps the solution to the crowning enigma is within sight. Our review looks forward to that solution from the solid basis of the anatomy of the basal ganglia output to motor thalamus. We will focus on L1, its afferents, intrinsic neurons and its influence on responses of pyramidal neurons in layers 2/3 and 5. Since L1 is present in the whole cortex we will provide a general overview considering evidence mainly from the somatosensory (S1) cortex before focusing on motor cortex.
Collapse
Affiliation(s)
| | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| |
Collapse
|
15
|
Abstract
The basal ganglia are equipped with inhibitory and disinhibitory mechanisms that enable a subject to choose valuable objects and actions. Notably, a value can be determined flexibly by recent experience or stably by prolonged experience. Recent studies have revealed that the head and tail of the caudate nucleus selectively and differentially process flexible and stable values of visual objects. These signals are sent to the superior colliculus through different parts of the substantia nigra so that the animal looks preferentially at high-valued objects, but in different manners. Thus, relying on short-term value memories, the caudate head circuit allows the subject's gaze to move expectantly to recently valued objects. Relying on long-term value memories, the caudate tail circuit allows the subject's gaze to move automatically to previously valued objects. The basal ganglia also contain an equivalent parallel mechanism for action values. Such flexible-stable parallel mechanisms for object and action values create a highly adaptable system for decision making.
Collapse
Affiliation(s)
- Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892;
| | | | | | | |
Collapse
|
16
|
Vukadinovic Z. Elevated striatal dopamine attenuates nigrothalamic inputs and impairs transthalamic cortico-cortical communication in schizophrenia: A hypothesis. Med Hypotheses 2015; 84:47-52. [DOI: 10.1016/j.mehy.2014.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/28/2014] [Accepted: 11/11/2014] [Indexed: 12/12/2022]
|
17
|
Yasuda M, Hikosaka O. Functional territories in primate substantia nigra pars reticulata separately signaling stable and flexible values. J Neurophysiol 2014; 113:1681-96. [PMID: 25540224 DOI: 10.1152/jn.00674.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gaze is strongly attracted to visual objects that have been associated with rewards. Key to this function is a basal ganglia circuit originating from the caudate nucleus (CD), mediated by the substantia nigra pars reticulata (SNr), and aiming at the superior colliculus (SC). Notably, subregions of CD encode values of visual objects differently: stably by CD tail [CD(T)] vs. flexibly by CD head [CD(H)]. Are the stable and flexible value signals processed separately throughout the CD-SNr-SC circuit? To answer this question, we identified SNr neurons by their inputs from CD and outputs to SC and examined their sensitivity to object values. The direct input from CD was identified by SNr neuron's inhibitory response to electrical stimulation of CD. We found that SNr neurons were separated into two groups: 1) neurons inhibited by CD(T) stimulation, located in the caudal-dorsal-lateral SNr (cdlSNr), and 2) neurons inhibited by CD(H) stimulation, located in the rostral-ventral-medial SNr (rvmSNr). Most of CD(T)-recipient SNr neurons encoded stable values, whereas CD(H)-recipient SNr neurons tended to encode flexible values. The output to SC was identified by SNr neuron's antidromic response to SC stimulation. Among the antidromically activated neurons, many encoded only stable values, while some encoded only flexible values. These results suggest that CD(T)-cdlSNr-SC circuit and CD(H)-rvmSNr-SC circuit transmit stable and flexible value signals, largely separately, to SC. The speed of signal transmission was faster through CD(T)-cdlSNr-SC circuit than through CD(H)-rvmSNr-SC circuit, which may reflect automatic and controlled gaze orienting guided by these circuits.
Collapse
Affiliation(s)
- Masaharu Yasuda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Bosch-Bouju C, Hyland BI, Parr-Brownlie LC. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front Comput Neurosci 2013; 7:163. [PMID: 24273509 PMCID: PMC3822295 DOI: 10.3389/fncom.2013.00163] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/24/2013] [Indexed: 12/23/2022] Open
Abstract
Motor thalamus (Mthal) is implicated in the control of movement because it is strategically located between motor areas of the cerebral cortex and motor-related subcortical structures, such as the cerebellum and basal ganglia (BG). The role of BG and cerebellum in motor control has been extensively studied but how Mthal processes inputs from these two networks is unclear. Specifically, there is considerable debate about the role of BG inputs on Mthal activity. This review summarizes anatomical and physiological knowledge of the Mthal and its afferents and reviews current theories of Mthal function by discussing the impact of cortical, BG and cerebellar inputs on Mthal activity. One view is that Mthal activity in BG and cerebellar-receiving territories is primarily "driven" by glutamatergic inputs from the cortex or cerebellum, respectively, whereas BG inputs are modulatory and do not strongly determine Mthal activity. This theory is steeped in the assumption that the Mthal processes information in the same way as sensory thalamus, through interactions of modulatory inputs with a single driver input. Another view, from BG models, is that BG exert primary control on the BG-receiving Mthal so it effectively relays information from BG to cortex. We propose a new "super-integrator" theory where each Mthal territory processes multiple driver or driver-like inputs (cortex and BG, cortex and cerebellum), which are the result of considerable integrative processing. Thus, BG and cerebellar Mthal territories assimilate motivational and proprioceptive motor information previously integrated in cortico-BG and cortico-cerebellar networks, respectively, to develop sophisticated motor signals that are transmitted in parallel pathways to cortical areas for optimal generation of motor programmes. Finally, we briefly review the pathophysiological changes that occur in the BG in parkinsonism and generate testable hypotheses about how these may affect processing of inputs in the Mthal.
Collapse
Affiliation(s)
- Clémentine Bosch-Bouju
- 1Department of Anatomy, Otago School of Medical Science, University of Otago Dunedin, New Zealand ; 2Brain Health Research Centre, Otago School of Medical Science, University of Otago Dunedin, New Zealand
| | | | | |
Collapse
|
19
|
Goldberg JH, Farries MA, Fee MS. Basal ganglia output to the thalamus: still a paradox. Trends Neurosci 2013; 36:695-705. [PMID: 24188636 DOI: 10.1016/j.tins.2013.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
Abstract
The basal ganglia (BG)-recipient thalamus controls motor output but it remains unclear how its activity is regulated. Several studies report that thalamic activation occurs via disinhibition during pauses in the firing of inhibitory pallidal inputs from the BG. Other studies indicate that thalamic spiking is triggered by pallidal inputs via post-inhibitory 'rebound' calcium spikes. Finally excitatory cortical inputs can drive thalamic activity, which becomes entrained, or time-locked, to pallidal spikes. We present a unifying framework where these seemingly distinct results arise from a continuum of thalamic firing 'modes' controlled by excitatory inputs. We provide a mechanistic explanation for paradoxical pallidothalamic coactivations observed during behavior that raises new questions about what information is integrated in the thalamus to control behavior.
Collapse
Affiliation(s)
- Jesse H Goldberg
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | |
Collapse
|
20
|
Goldberg JH, Farries MA, Fee MS. Integration of cortical and pallidal inputs in the basal ganglia-recipient thalamus of singing birds. J Neurophysiol 2012; 108:1403-29. [PMID: 22673333 PMCID: PMC3544964 DOI: 10.1152/jn.00056.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/05/2012] [Indexed: 11/22/2022] Open
Abstract
The basal ganglia-recipient thalamus receives inhibitory inputs from the pallidum and excitatory inputs from cortex, but it is unclear how these inputs interact during behavior. We recorded simultaneously from thalamic neurons and their putative synaptically connected pallidal inputs in singing zebra finches. We find, first, that each pallidal spike produces an extremely brief (∼5 ms) pulse of inhibition that completely suppresses thalamic spiking. As a result, thalamic spikes are entrained to pallidal spikes with submillisecond precision. Second, we find that the number of thalamic spikes that discharge within a single pallidal interspike interval (ISI) depends linearly on the duration of that interval but does not depend on pallidal activity prior to the interval. In a detailed biophysical model, our results were not easily explained by the postinhibitory "rebound" mechanism previously observed in anesthetized birds and in brain slices, nor could most of our data be characterized as "gating" of excitatory transmission by inhibitory pallidal input. Instead, we propose a novel "entrainment" mechanism of pallidothalamic transmission that highlights the importance of an excitatory conductance that drives spiking, interacting with brief pulses of pallidal inhibition. Building on our recent finding that cortical inputs can drive syllable-locked rate modulations in thalamic neurons during singing, we report here that excitatory inputs affect thalamic spiking in two ways: by shortening the latency of a thalamic spike after a pallidal spike and by increasing thalamic firing rates within individual pallidal ISIs. We present a unifying biophysical model that can reproduce all known modes of pallidothalamic transmission--rebound, gating, and entrainment--depending on the amount of excitation the thalamic neuron receives.
Collapse
Affiliation(s)
- Jesse H Goldberg
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
21
|
Watanabe Y, Funahashi S. Thalamic mediodorsal nucleus and working memory. Neurosci Biobehav Rev 2012; 36:134-42. [DOI: 10.1016/j.neubiorev.2011.05.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/17/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
22
|
Zhou FM, Lee CR. Intrinsic and integrative properties of substantia nigra pars reticulata neurons. Neuroscience 2011; 198:69-94. [PMID: 21839148 PMCID: PMC3221915 DOI: 10.1016/j.neuroscience.2011.07.061] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/07/2011] [Accepted: 07/14/2011] [Indexed: 11/27/2022]
Abstract
The GABA projection neurons of the substantia nigra pars reticulata (SNr) are output neurons for the basal ganglia and thus critical for movement control. Their most striking neurophysiological feature is sustained, spontaneous high frequency spike firing. A fundamental question is: what are the key ion channels supporting the remarkable firing capability in these neurons? Recent studies indicate that these neurons express tonically active type 3 transient receptor potential (TRPC3) channels that conduct a Na-dependent inward current even at hyperpolarized membrane potentials. When the membrane potential reaches -60 mV, a voltage-gated persistent sodium current (I(NaP)) starts to activate, further depolarizing the membrane potential. At or slightly below -50 mV, the large transient voltage-activated sodium current (I(NaT)) starts to activate and eventually triggers the rapid rising phase of action potentials. SNr GABA neurons have a higher density of I(NaT), contributing to the faster rise and larger amplitude of action potentials, compared with the slow-spiking dopamine neurons. I(NaT) also recovers from inactivation more quickly in SNr GABA neurons than in nigral dopamine neurons. In SNr GABA neurons, the rising phase of the action potential triggers the activation of high-threshold, inactivation-resistant Kv3-like channels that can rapidly repolarize the membrane. These intrinsic ion channels provide SNr GABA neurons with the ability to fire spontaneous and sustained high frequency spikes. Additionally, robust GABA inputs from direct pathway medium spiny neurons in the striatum and GABA neurons in the globus pallidus may inhibit and silence SNr GABA neurons, whereas glutamate synaptic input from the subthalamic nucleus may induce burst firing in SNr GABA neurons. Thus, afferent GABA and glutamate synaptic inputs sculpt the tonic high frequency firing of SNr GABA neurons and the consequent inhibition of their targets into an integrated motor control signal that is further fine-tuned by neuromodulators including dopamine, serotonin, endocannabinoids, and H₂O₂.
Collapse
Affiliation(s)
- F-M Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA.
| | | |
Collapse
|
23
|
Tanaka M, Kunimatsu J. Contribution of the central thalamus to the generation of volitional saccades. Eur J Neurosci 2011; 33:2046-57. [PMID: 21645100 DOI: 10.1111/j.1460-9568.2011.07699.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lesions in the motor thalamus can cause deficits in somatic movements. However, the involvement of the thalamus in the generation of eye movements has only recently been elucidated. In this article, we review recent advances into the role of the thalamus in eye movements. Anatomically, the anterior group of the intralaminar nuclei and paralaminar portion of the ventrolateral, ventroanterior and mediodorsal nuclei of the thalamus send massive projections to the frontal eye field and supplementary eye field. In addition, these parts of the thalamus, collectively known as the 'oculomotor thalamus', receive inputs from the cerebellum, the basal ganglia and virtually all stages of the saccade-generating pathways in the brainstem. In their pioneering work in the 1980s, Schlag and Schlag-Rey found a variety of eye movement-related neurons in the oculomotor thalamus, and proposed that this region might constitute a 'central controller' playing a role in monitoring eye movements and generating self-paced saccades. This hypothesis has been evaluated by recent experiments in non-human primates and by clinical observations of subjects with thalamic lesions. In addition, several recent studies have also addressed the involvement of the oculomotor thalamus in the generation of anti-saccades and the selection of targets for saccades. These studies have revealed the impact of subcortical signals on the higher-order cortical processing underlying saccades, and suggest the possibility of future studies using the oculomotor system as a model to explore the neural mechanisms of global cortico-subcortical loops and the neural basis of a local network between the thalamus and cortex.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan.
| | | |
Collapse
|
24
|
Abstract
The basal ganglia (BG) are a group of subcortical structures involved in diverse functions, such as motor, cognition and emotion. However, the BG do not control these functions directly, but rather modulate functional processes occurring in structures outside the BG. The BG form multiple functional loops, each of which controls different functions with similar architectures. Accordingly, to understand the modulatory role of the BG, it is strategic to uncover the mechanisms of signal processing within specific functional loops that control simple neural circuits outside the BG, and then extend the knowledge to other BG loops. The saccade control system is one of the best-understood neural circuits in the brain. Furthermore, sophisticated saccade paradigms have been used extensively in clinical research in patients with BG disorders as well as in basic research in behaving monkeys. In this review, we describe recent advances of BG research from the viewpoint of saccade control. Specifically, we account for experimental results from neuroimaging and clinical studies in humans based on the updated knowledge of BG functions derived from neurophysiological experiments in behaving monkeys by taking advantage of homologies in saccade behavior. It has become clear that the traditional BG network model for saccade control is too limited to account for recent evidence emerging from the roles of subcortical nuclei not incorporated in the model. Here, we extend the traditional model and propose a new hypothetical framework to facilitate clinical and basic BG research and dialogue in the future.
Collapse
Affiliation(s)
- Masayuki Watanabe
- Department of Physiology, Kansai Medical University, Fumizonocho 10-15, Moriguchi, Osaka 570-8506, Japan
| | | |
Collapse
|
25
|
Tanibuchi I, Kitano H, Jinnai K. Substantia Nigra Output to Prefrontal Cortex Via Thalamus in Monkeys. II. Activity of Thalamic Relay Neurons in Delayed Conditional Go/No-Go Discrimination Task. J Neurophysiol 2009; 102:2946-54. [DOI: 10.1152/jn.91288.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present report investigated the involvement of primate nigro-thalamo-cortical projections in discrimination of visual signals with behavioral meaning. We tested the extracellular unit activity of mediodorsal (MD) and ventral anterior (VA) thalamic neurons monosynaptically receiving inhibitory input from the substantia nigra pars reticulata (SNr) and projecting to the frontal cortex in Japanese monkeys performing a delayed conditional go/no-go discrimination task. In the task two colored stimuli (S1, S2) intervened by delay period required the monkeys lifting a lever (go) or not (no-go); the same and different colored pairs of S1 and S2 meant go and no-go signals, respectively. Prominent task-relevant responses were sustained activity with color preference to S1 during delay period and S2-related activity with different firing rates between go and no-go trials. In particular, a high proportion of such go/no-go differential S2-related activity was found in thalamic relay neurons, receiving input from the caudolateral SNr and projecting to the prefrontal area (PSv) ventral to the principal sulcus, in the rostrolateral MD. The findings suggest that the caudolateral SNr–rostrolateral MD–PSv pathways may be possible conduits of signals coding the behavioral meaning of the visual stimuli and thus may be responsible for generating similar neuronal activity in the PSv.
Collapse
Affiliation(s)
| | - Hiroyuki Kitano
- Departments of Physiology and
- Neurosurgery, Shiga University of Medical Science, Ohtsu, Japan
| | | |
Collapse
|