1
|
Carli G, Kanel P, Roytman S, Pongmala C, Albin RL, Raffel DM, Scott PJH, Bohnen NI. Noradrenergic cardiac denervation is associated with gait velocity in Parkinson disease: a dual ligand PET study. Eur J Nucl Med Mol Imaging 2024; 51:3978-3989. [PMID: 38958681 DOI: 10.1007/s00259-024-06822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Preliminary data suggest that gait abnormalities in Parkinson disease (PD) may be associated with sympathetic cardiac denervation. No kinematic gait studies were performed to confirm this observation. We aimed to correlate spatiotemporal kinematic gait parameters with cardiac sympathetic denervation as determined by cardiac [11C]HED PET in PD. METHODS Retrospective database analysis of 27 PD patients with cardiac sympathetic denervation. All patients underwent spatiotemporal kinematic gait assessment (medication 'off' state), cardiac [11C]HED and dopaminergic brain [11C]DTBZ PET scans. We employed a hierarchical regression approach to examine associations between the extent of cardiac denervation, dopaminergic nigrostriatal neurodegeneration, and three gait parameters - velocity, step length and cadence. RESULTS More extensive cardiac denervation was associated with slower velocity (estimate: -1.034, 95% CI [-1.65, -0.42], p = 0.002), shorter step length (estimate: -0.818, 95% CI [-1.43, -0.21], p = 0.011) and lower cadence (estimate: -0.752, 95% CI [-1.28, -0.23], p = 0.007) explaining alone 30% (Adjusted-R²: 0.297), 20% (Adjusted-R²: 0.202) and 23% (Adjusted-R²: 0.227) of the variability, respecivetly. These associations remained independent of striatal dopaminergic impairment and confounding factors such as age, Hoehn and Yahr (HY) stages, peripheral neuropathy, cognition, and autonomic symptoms. In contrast, striatal dopaminergic denervation was significantly associated with step length (estimate: 0.883, 95% CI [0.29, 1.48], p = 0.005), explaining about 24% of the variability but was dependent of HY stage. CONCLUSIONS More severe cardiac noradrenergic denervation was associated with lower gait velocity, independent of striatal dopaminergic denervation and HY stage, impacting both step length and cadence. These results suggest independent contributions of the peripheral autonomic system degeneration on gait dynsfunction in PD.
Collapse
Affiliation(s)
- G Carli
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, 48109, USA.
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| | - P Kanel
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - S Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - C Pongmala
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - R L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA
| | - D M Raffel
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - P J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - N I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Pellegrini F, Pozzi NG, Palmisano C, Marotta G, Buck A, Haufe S, Isaias IU. Cortical networks of parkinsonian gait: a metabolic and functional connectivity study. Ann Clin Transl Neurol 2024; 11:2597-2608. [PMID: 39186320 PMCID: PMC11514930 DOI: 10.1002/acn3.52173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Locomotion is an automated voluntary movement sustained by coordinated neural synchronization across a distributed brain network. The cerebral cortex is central for adapting the locomotion pattern to the environment and alterations of cortical network dynamics can lead to gait impairments. Gait problems are a common symptom with a still unclear pathophysiology and represent an unmet therapeutical need in Parkinson's disease. Little is known about the cortical network dynamics of locomotor control in these patients. METHODS We studied the cortical basis of parkinsonian gait by combining metabolic brain imaging with high-density EEG recordings and kinematic measurements performed at rest and during unperturbed overground walking. RESULTS We found significant changes in functional connectivity between frontal, sensorimotor, and visuomotor cortical areas during walking as compared to resting. Specifically, hypokinetic gait was associated with poor information flow from the supplementary motor area (SMA) to precuneus and from calcarine to lingual gyrus, as well as high information flow from calcarine to cuneus. INTERPRETATION Our findings support a role for visuomotor integration processes in PD-related hypokinetic gait and suggest that reinforcing visual information may act as a compensatory strategy to allow SMA-mediated feedforward locomotor control in PD.
Collapse
Affiliation(s)
- Franziska Pellegrini
- Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlin Center for Advanced Neuroimaging (BCAN)BerlinGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
| | - Nicoló G. Pozzi
- Department of NeurologyUniversity Hospital of Würzburg and The Julius Maximilian University of WürzburgWürzburgGermany
| | - Chiara Palmisano
- Department of NeurologyUniversity Hospital of Würzburg and The Julius Maximilian University of WürzburgWürzburgGermany
- Parkinson Institute of MilanASST G. Pini‐CTOMilanoItaly
| | - Giorgio Marotta
- Department of Nuclear MedicineFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanoItaly
| | - Andreas Buck
- Department of Nuclear MedicineUniversity Hospital of WürzburgWürzburgGermany
| | - Stefan Haufe
- Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlin Center for Advanced Neuroimaging (BCAN)BerlinGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
- Uncertainty, Inverse Modeling and Machine Learning Group, Faculty IV Electrical Engineering and Computer ScienceTechnische Universität BerlinBerlinGermany
- Physikalisch‐Technische Bundesanstalt Braunschweig und BerlinBerlinGermany
| | - Ioannis U. Isaias
- Department of NeurologyUniversity Hospital of Würzburg and The Julius Maximilian University of WürzburgWürzburgGermany
- Parkinson Institute of MilanASST G. Pini‐CTOMilanoItaly
| |
Collapse
|
3
|
Ohara M, Hirata K, Matsubayashi T, Chen Q, Shimano K, Hanazawa R, Hirakawa A, Yokota T, Hattori T. Circular walking is useful for assessing the risk of falls in early progressive supranuclear palsy. J Neurol 2024; 271:6349-6358. [PMID: 39009736 DOI: 10.1007/s00415-024-12551-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is characterized by early onset postural instability and frequent falls. Circular walking necessitates dynamic postural control, which is impaired in patients with PSP. We aimed to explore gait parameters associated with the risk of falls in patients with PSP, focusing on circular walking. METHODS Sixteen drug-naïve patients with PSP, 22 drug-naïve patients with Parkinson's disease (PD), and 23 healthy controls were enrolled. Stride lengths/velocities and their coefficients of variation (CV) during straight and circular walking (walking around a circle of 1-m diameter) were measured under single-task and cognitive dual-task conditions. Correlation analysis was performed between gait parameters and postural instability and gait difficulty (PIGD) motor subscores, representing the risk of falls. RESULTS Patients with PSP had significantly higher CVs of stride lengths/velocities during circular walking than those during straight walking, and the extent of exacerbation of CVs in patients with PSP was larger than that in patients with PD under single-task conditions. Stride lengths/velocities and their CVs were significantly correlated with PIGD motor subscores in patients with PSP only during single-task circular walking. In addition, patients with PSP showed progressive decrements of stride lengths/velocities over steps only during single-task circular walking. CONCLUSIONS Worse gait parameters during circular walking are associated with an increased risk of falls in patients with PSP. Circular walking is a challenging task to demand the compromised motor functions of patients with PSP, unmasking impaired postural control and manifesting sequence effect. Assessing circular walking is useful for evaluating the risk of falls in patients with early PSP.
Collapse
Affiliation(s)
- Masahiro Ohara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kosei Hirata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Taiki Matsubayashi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Qingmeng Chen
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kaoru Shimano
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Ryoichi Hanazawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takaaki Hattori
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
4
|
Peto D, Schmidmeier F, Katzdobler S, Fietzek UM, Levin J, Wuehr M, Zwergal A. No evidence for effects of low-intensity vestibular noise stimulation on mild-to-moderate gait impairments in patients with Parkinson's disease. J Neurol 2024; 271:5489-5497. [PMID: 38884790 PMCID: PMC11319499 DOI: 10.1007/s00415-024-12504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Gait impairment is a key feature in later stages of Parkinson's disease (PD), which often responds poorly to pharmacological therapies. Neuromodulatory treatment by low-intensity noisy galvanic vestibular stimulation (nGVS) has indicated positive effects on postural instability in PD, which may possibly be conveyed to improvement of dynamic gait dysfunction. OBJECTIVE To investigate the effects of individually tuned nGVS on normal and cognitively challenged walking in PD patients with mild-to-moderate gait dysfunction. METHODS Effects of nGVS of varying intensities (0-0.7 mA) on body sway were examined in 32 patients with PD (ON medication state, Hoehn and Yahr: 2.3 ± 0.5), who were standing with eyes closed on a posturographic force plate. Treatment response and optimal nGVS stimulation intensity were determined on an individual patient level. In a second step, the effects of optimal nGVS vs. sham treatment on walking with preferred speed and with a cognitive dual task were investigated by assessment of spatiotemporal gait parameters on a pressure-sensitive gait carpet. RESULTS Evaluation of individual balance responses yielded that 59% of patients displayed a beneficial balance response to nGVS treatment with an average optimal improvement of 23%. However, optimal nGVS had no effects on gait parameters neither for the normal nor the cognitively challenged walking condition compared to sham stimulation irrespective of the nGVS responder status. CONCLUSIONS Low-intensity nGVS seems to have differential treatment effects on static postural imbalance and continuous gait dysfunction in PD, which could be explained by a selective modulation of midbrain-thalamic circuits of balance control.
Collapse
Affiliation(s)
- Daniela Peto
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Florian Schmidmeier
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Urban M Fietzek
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Schön Klinik München Schwabing, Munich, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany.
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
van Midden V, Simončič U, Pirtošek Z, Kojović M. The Effect of taVNS at 25 Hz and 100 Hz on Parkinson's Disease Gait-A Randomized Motion Sensor Study. Mov Disord 2024; 39:1375-1385. [PMID: 38757756 DOI: 10.1002/mds.29826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Transcutaneous electrostimulation of the auricular branch of the vagal nerve (taVNS) has the propensity to reach diffuse neuromodulatory networks, which are dysfunctional in Parkinson's disease (PD). Previous studies support the use of taVNS as an add-on treatment for gait in PD. OBJECTIVES We assessed the effect of taVNS at 25 Hz (taVNS25), taVNS at 100 Hz (taVNS100), and sham earlobe stimulation (sVNS) on levodopa responsive (arm swing velocity, arm range of motion, stride length, gait speed) and non-responsive gait characteristics (arm range of motion asymmetry, anticipatory postural adjustment [APA] duration, APA first step duration, APA first step range of motion), and turns (first turn duration, double 360° turn duration, steps per turn) in advanced PD. METHODS In our double blind sham controlled within-subject randomized trial, we included 30 PD patients (modified Hoehn and Yahr stage, 2.5-4) to assess the effect of taVNS25, taVNS100, and sVNS on gait characteristics measured with inertial motion sensors during the instrumented stand and walk test and a double 360° turn. Separate generalized mixed models were built for each gait characteristic. RESULTS During taVNS100 compared to sVNS arm swing velocity (P = 0.030) and stride length increased (P = 0.027), and APA duration decreased (P = 0.050). During taVNS25 compared to sVNS stride length (P = 0.024) and gait speed (P = 0.021) increased and double 360° turn duration decreased (P = 0.039). CONCLUSIONS We have found that taVNS has a frequency specific propensity to improve stride length, arm swing velocity, and gait speed and double 360° turn duration in PD patients. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Vesna van Midden
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Simončič
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jozef Stefan Institute, Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Bowman T, Pergolini A, Carrozza MC, Lencioni T, Marzegan A, Meloni M, Vitiello N, Crea S, Cattaneo D. Wearable biofeedback device to assess gait features and improve gait pattern in people with parkinson's disease: a case series. J Neuroeng Rehabil 2024; 21:110. [PMID: 38926876 PMCID: PMC11202340 DOI: 10.1186/s12984-024-01403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION People with Parkinson's Disease (PD) show abnormal gait patterns compromising their independence and quality of life. Among all gait alterations due to PD, reduced step length, increased cadence, and decreased ground-reaction force during the loading response and push-off phases are the most common. Wearable biofeedback technologies offer the possibility to provide correlated single or multi-modal stimuli associated with specific gait events or gait performance, hence promoting subjects' awareness of their gait disturbances. Moreover, the portability and applicability in clinical and home settings for gait rehabilitation increase the efficiency in the management of PD. The Wearable Vibrotactile Bidirectional Interface (BI) is a biofeedback device designed to extract gait features in real-time and deliver a customized vibrotactile stimulus at the waist of PD subjects synchronously with specific gait phases. The aims of this study were to measure the effect of the BI on gait parameters usually compromised by the typical bradykinetic gait and to assess its usability and safety in clinical practice. METHODS In this case series, seven subjects (age: 70.4 ± 8.1 years; H&Y: 2.7 ± 0.3) used the BI and performed a test on a 10-meter walkway (10mWT) and a two-minute walk test (2MWT) as pre-training (Pre-trn) and post-training (Post-trn) assessments. Gait tests were executed in random order with (Bf) and without (No-Bf) the activation of the biofeedback stimulus. All subjects performed three training sessions of 40 min to familiarize themselves with the BI during walking activities. A descriptive analysis of gait parameters (i.e., gait speed, step length, cadence, walking distance, double-support phase) was carried out. The 2-sided Wilcoxon sign-test was used to assess differences between Bf and No-Bf assessments (p < 0.05). RESULTS After training subjects improved gait speed (Pre-trn_No-Bf: 0.72(0.59,0.72) m/sec; Post-trn_Bf: 0.95(0.69,0.98) m/sec; p = 0.043) and step length (Pre-trn_No-Bf: 0.87(0.81,0.96) meters; Post-trn_Bf: 1.05(0.96,1.14) meters; p = 0.023) using the biofeedback during the 10mWT. Similarly, subjects' walking distance improved (Pre-trn_No-Bf: 97.5 (80.3,110.8) meters; Post-trn_Bf: 118.5(99.3,129.3) meters; p = 0.028) and the duration of the double-support phase decreased (Pre-trn_No-Bf: 29.7(26.8,31.7) %; Post-trn_Bf: 27.2(24.6,28.7) %; p = 0.018) during the 2MWT. An immediate effect of the BI was detected in cadence (Pre-trn_No-Bf: 108(103.8,116.7) step/min; Pre-trn_Bf: 101.4(96.3,111.4) step/min; p = 0.028) at Pre-trn, and in walking distance at Post-trn (Post-trn_No-Bf: 112.5(97.5,124.5) meters; Post-trn_Bf: 118.5(99.3,129.3) meters; p = 0.043). SUS scores were 77.5 in five subjects and 80.3 in two subjects. In terms of safety, all subjects completed the protocol without any adverse events. CONCLUSION The BI seems to be usable and safe for PD users. Temporal gait parameters have been measured during clinical walking tests providing detailed outcomes. A short period of training with the BI suggests improvements in the gait patterns of people with PD. This research serves as preliminary support for future integration of the BI as an instrument for clinical assessment and rehabilitation in people with PD, both in hospital and remote environments. TRIAL REGISTRATION The study protocol was registered (DGDMF.VI/P/I.5.i.m.2/2019/1297) and approved by the General Directorate of Medical Devices and Pharmaceutical Service of the Italian Ministry of Health and by the ethics committee of the Lombardy region (Milan, Italy).
Collapse
Affiliation(s)
- Thomas Bowman
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, 56127, Italy.
| | - Andrea Pergolini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Maria Chiara Carrozza
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- National Research Council of Italy (CNR), Rome, Italy
| | | | | | - Mario Meloni
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Davide Cattaneo
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Physiopathology and Transplants, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Elbatanouny H, Kleanthous N, Dahrouj H, Alusi S, Almajali E, Mahmoud S, Hussain A. Insights into Parkinson's Disease-Related Freezing of Gait Detection and Prediction Approaches: A Meta Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:3959. [PMID: 38931743 PMCID: PMC11207947 DOI: 10.3390/s24123959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Parkinson's Disease (PD) is a complex neurodegenerative disorder characterized by a spectrum of motor and non-motor symptoms, prominently featuring the freezing of gait (FOG), which significantly impairs patients' quality of life. Despite extensive research, the precise mechanisms underlying FOG remain elusive, posing challenges for effective management and treatment. This paper presents a comprehensive meta-analysis of FOG prediction and detection methodologies, with a focus on the integration of wearable sensor technology and machine learning (ML) approaches. Through an exhaustive review of the literature, this study identifies key trends, datasets, preprocessing techniques, feature extraction methods, evaluation metrics, and comparative analyses between ML and non-ML approaches. The analysis also explores the utilization of cueing devices. The limited adoption of explainable AI (XAI) approaches in FOG prediction research represents a significant gap. Improving user acceptance and comprehension requires an understanding of the logic underlying algorithm predictions. Current FOG detection and prediction research has a number of limitations, which are identified in the discussion. These include issues with cueing devices, dataset constraints, ethical and privacy concerns, financial and accessibility restrictions, and the requirement for multidisciplinary collaboration. Future research avenues center on refining explainability, expanding and diversifying datasets, adhering to user requirements, and increasing detection and prediction accuracy. The findings contribute to advancing the understanding of FOG and offer valuable guidance for the development of more effective detection and prediction methodologies, ultimately benefiting individuals affected by PD.
Collapse
Affiliation(s)
- Hagar Elbatanouny
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | | | - Hayssam Dahrouj
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | - Sundus Alusi
- The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK;
| | - Eqab Almajali
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| | - Soliman Mahmoud
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
- University of Khorfakkan, Khorfakkan, Sharjah 18119, United Arab Emirates
| | - Abir Hussain
- Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (H.D.); (E.A.); (S.M.)
| |
Collapse
|
8
|
Wu KM, Kuo K, Deng YT, Yang L, Zhang YR, Chen SD, Tan L, Dong Q, Feng JF, Cheng W, Yu JT. Association of grip strength and walking pace with the risk of incident Parkinson's disease: a prospective cohort study of 422,531 participants. J Neurol 2024; 271:2529-2538. [PMID: 38265471 DOI: 10.1007/s00415-024-12194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Muscle weakness is a prominent feature of Parkinson's disease, but whether the occurrence of this deficit in healthy adults is associated with subsequent PD diagnosis remains unclear. OBJECTIVE This study sought to examine the relationship between muscle strength, represented by grip strength and walking pace, and the risk of incident PD. METHODS A total of 422,531 participants from the UK biobank were included in this study. Longitudinal associations of grip strength and walking pace with the risk of incident PD were investigated by Cox proportional hazard models adjusting for several well-established risk factors. Subgroup and sensitivity analyses were also conducted for further validation. RESULTS After a median follow-up of 9.23 years, 2,118 (0.5%) individuals developed incident PD. For per 5 kg increment of absolute grip strength, there was a significant 10.2% reduction in the risk of incident PD (HR = 0.898, 95% CI [0.872-0.924], P < 0.001). Similarly, per 0.05 kg/kg increment of relative grip strength was related to a 9.2% reduced risk of incident PD (HR = 0.908, 95% CI [0.887-0.929], P < 0.001). Notably, the associations remained consistent when grip strength was calculated as quintiles. Moreover, participants with a slower walking pace demonstrated an elevated risk of incident PD (HR = 1.231, 95%CI [1.075-1.409], P = 0.003). Subgroup and sensitivity analyses further validated the robustness of the observed associations. CONCLUSION Our findings showed a negative association of grip strength and walking pace with the risk of incident PD independent of important confounding factors. These results hold potential implications for the early screening of people at high-risk of PD.
Collapse
Affiliation(s)
- Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Kevin Kuo
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yue-Ting Deng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Ya-Ru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Cheng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, National Center for Neurological Disorders, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
9
|
Penedo T, Kalva-Filho CA, Cursiol JA, Faria MH, Coelho DB, Barbieri FA. Spatial-temporal parameters during unobstructed walking in people with Parkinson's disease and healthy older people: a public data set. Front Aging Neurosci 2024; 16:1354738. [PMID: 38605861 PMCID: PMC11007149 DOI: 10.3389/fnagi.2024.1354738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Affiliation(s)
- Tiago Penedo
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, São Paulo State University (Unesp), Bauru, Brazil
| | - Carlos Augusto Kalva-Filho
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, São Paulo State University (Unesp), Bauru, Brazil
| | - Jônatas Augusto Cursiol
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, São Paulo State University (Unesp), Bauru, Brazil
| | - Murilo Henrique Faria
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, São Paulo State University (Unesp), Bauru, Brazil
| | - Daniel Boari Coelho
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Fabio Augusto Barbieri
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, São Paulo State University (Unesp), Bauru, Brazil
| |
Collapse
|
10
|
Jasimi Zindashti N, Rahmati Z, Mohebbi A, Behzadipour S. A neuromechanical model characterizing the motor planning and posture control in the voluntary lean in Parkinson's disease. J Neuroeng Rehabil 2024; 21:25. [PMID: 38360634 PMCID: PMC10870456 DOI: 10.1186/s12984-024-01321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024] Open
Abstract
Parkinson's disease targets patients' cognitive and motor abilities, including postural control. Many studies have been carried out to introduce mathematical models for a better understanding of postural control in such patients and the relation between the model parameters and the clinical assessments. So far, these studies have addressed this connection merely in static tests, such as quiet stance. The aim of this study is to develop a model for voluntary lean, and as such, identify the model parameters for both PD patients and healthy subjects from experimental data. The proposed model comprises planning and control sections. The model parameters for the planning section were extracted from the time response characteristics. Parameters for the control section were identified based on the spatial characteristics of the center-of-pressure (COP) response using an optimization process. 24 PD patients along with 24 matched healthy subjects participated in the study. The results showed a significant difference between the two groups in terms of temporal parameters for the planning section. This difference emphasizes bradykinesia as an essential symptom of PD. Also, differences were found for the postural control section. In all directions, the proportional gain of the feedback controller was significantly larger in PD patients; however, the gain of the feedforward controller was significantly smaller in PD patients. Furthermore, the control gains were strongly correlated with the clinical scales (Functional Reach Test and Unified Parkinson's Disease Rating Scale) in certain directions. In conclusion, the new model helps to better understand and quantify some PD symptoms in voluntary lean tasks.
Collapse
Affiliation(s)
- Niromand Jasimi Zindashti
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
- Djawad Movafaghian Research Center in Rehab Technologies, Sharif University of Technology, Tehran, Iran
| | - Zahra Rahmati
- Djawad Movafaghian Research Center in Rehab Technologies, Sharif University of Technology, Tehran, Iran
| | - Abolfazl Mohebbi
- Department of Mechanical Engineering, École Polytechnique de Montréal, Montréal, Quebec, Canada
| | - Saeed Behzadipour
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran.
- Djawad Movafaghian Research Center in Rehab Technologies, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
11
|
Salaorni F, Bonardi G, Schena F, Tinazzi M, Gandolfi M. Wearable devices for gait and posture monitoring via telemedicine in people with movement disorders and multiple sclerosis: a systematic review. Expert Rev Med Devices 2024; 21:121-140. [PMID: 38124300 DOI: 10.1080/17434440.2023.2298342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Wearable devices and telemedicine are increasingly used to track health-related parameters across patient populations. Since gait and postural control deficits contribute to mobility deficits in persons with movement disorders and multiple sclerosis, we thought it interesting to evaluate devices in telemedicine for gait and posture monitoring in such patients. METHODS For this systematic review, we searched the electronic databases MEDLINE (PubMed), SCOPUS, Cochrane Library, and SPORTDiscus. Of the 452 records retrieved, 12 met the inclusion/exclusion criteria. Data about (1) study characteristics and clinical aspects, (2) technical, and (3) telemonitoring and teleconsulting were retrieved, The studies were quality assessed. RESULTS All studies involved patients with Parkinson's disease; most used triaxial accelerometers for general assessment (n = 4), assessment of motor fluctuation (n = 3), falls (n = 2), and turning (n = 3). Sensor placement and count varied widely across studies. Nine used lab-validated algorithms for data analysis. Only one discussed synchronous patient feedback and asynchronous teleconsultation. CONCLUSIONS Wearable devices enable real-world patient monitoring and suggest biomarkers for symptoms and behaviors related to underlying gait disorders. thus enriching clinical assessment and personalized treatment plans. As digital healthcare evolves, further research is needed to enhance device accuracy, assess user acceptability, and integrate these tools into telemedicine infrastructure. PROSPERO REGISTRATION CRD42022355460.
Collapse
Affiliation(s)
- Francesca Salaorni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giulia Bonardi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marialuisa Gandolfi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), University of Verona, Verona, Italy
- Neurorehabilitation Unit - Azienda Ospedaliera Universitaria Integrata, Verona
| |
Collapse
|
12
|
de Rond V, D'Cruz N, Hulzinga F, McCrum C, Verschueren S, de Xivry JJO, Nieuwboer A. Neural correlates of weight-shift training in older adults: a randomized controlled study. Sci Rep 2023; 13:19609. [PMID: 37949995 PMCID: PMC10638445 DOI: 10.1038/s41598-023-46645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Mediolateral weight-shifting is an important aspect of postural control. As it is currently unknown whether a short training session of mediolateral weight-shifting in a virtual reality (VR) environment can improve weight-shifting, we investigated this question and also probed the impact of practice on brain activity. Forty healthy older adults were randomly allocated to a training (EXP, n = 20, age = 70.80 (65-77), 9 females) or a control group (CTR, n = 20, age = 71.65 (65-82), 10 females). The EXP performed a 25-min weight-shift training in a VR-game, whereas the CTR rested for the same period. Weight-shifting speed in both single- (ST) and dual-task (DT) conditions was determined before, directly after, and 24 h after intervention. Functional Near-Infrared Spectroscopy (fNIRS) assessed the oxygenated hemoglobin (HbO2) levels in five cortical regions of interest. Weight-shifting in both ST and DT conditions improved in EXP but not in CTR, and these gains were retained after 24 h. Effects transferred to wider limits of stability post-training in EXP versus CTR. HbO2 levels in the left supplementary motor area were significantly increased directly after training in EXP during ST (change < SEM), and in the left somatosensory cortex during DT (change > SEM). We interpret these changes in the motor coordination and sensorimotor integration areas of the cortex as possibly learning-related.
Collapse
Affiliation(s)
- Veerle de Rond
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Nicholas D'Cruz
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Motor Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Femke Hulzinga
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Christopher McCrum
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Sabine Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Jean-Jacques Orban de Xivry
- Motor Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute (LBI), Leuven, Belgium.
| |
Collapse
|
13
|
Legutke BR, Gobbi LTB, Orcioli-Silva D, Santos PCRD, Moraca GAG, Vitório R, Beretta VS. Transcranial direct current stimulation suggests not improving postural control during adapted tandem position in people with Parkinson's disease: A pilot study. Behav Brain Res 2023; 452:114581. [PMID: 37453515 DOI: 10.1016/j.bbr.2023.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Balance impairments in people with Parkinson's disease (PD) demonstrated mainly in challenging postural tasks, such as increased body oscillation may be attributed to the deficits in the brain structures functionality involved in postural control (e.g., motor cortex, midbrain, and brainstem). Although promising results, the effect of transcranial direct current stimulation (tDCS) on postural control in people with PD is unclear, especially in objective measures such as the center of pressure (CoP) parameters. Thus, we analyzed the effects of a single session of tDCS on the CoP parameters during the adapted tandem position in people with PD. METHODS Nineteen people with PD participated in this crossover, randomized, and double-blind study. Anodal tDCS was applied over the primary motor cortex in two conditions of stimulation (2 mA/active and sham) on two different days for 20 min immediately before the postural control evaluation. Participants remained standing in an adapted tandem position for the postural control assessment for 30 s (three trials). CoP parameters were acquired by a force plate. RESULTS No significant differences were demonstrated between stimulation conditions (p-value range = 0.15-0.89). CONCLUSIONS Our results suggested that a single session of tDCS with 2 mA does not improve the postural control of people with PD during adapted tandem.
Collapse
Affiliation(s)
- Beatriz Regina Legutke
- São Paulo State University (Unesp), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (Unesp), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Graduate Program in Movement Sciences, São Paulo State University - UNESP, Brazil
| | - Diego Orcioli-Silva
- São Paulo State University (Unesp), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; University of Campinas (UNICAMP), School of Applied Sciences (FCA), Laboratory of Applied Sport Physiology (LAFAE), Limeira, Brazil
| | - Paulo Cezar Rocha Dos Santos
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Israel; The Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Israel
| | - Gabriel Antonio Gazziero Moraca
- São Paulo State University (Unesp), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Graduate Program in Movement Sciences, São Paulo State University - UNESP, Brazil
| | - Rodrigo Vitório
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Victor Spiandor Beretta
- São Paulo State University (Unesp), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Graduate Program in Movement Sciences, São Paulo State University - UNESP, Brazil; São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, São Paulo, Brazil.
| |
Collapse
|
14
|
Stangl M, Maoz SL, Suthana N. Mobile cognition: imaging the human brain in the 'real world'. Nat Rev Neurosci 2023; 24:347-362. [PMID: 37046077 PMCID: PMC10642288 DOI: 10.1038/s41583-023-00692-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/14/2023]
Abstract
Cognitive neuroscience studies in humans have enabled decades of impactful discoveries but have primarily been limited to recording the brain activity of immobile participants in a laboratory setting. In recent years, advances in neuroimaging technologies have enabled recordings of human brain activity to be obtained during freely moving behaviours in the real world. Here, we propose that these mobile neuroimaging methods can provide unique insights into the neural mechanisms of human cognition and contribute to the development of novel treatments for neurological and psychiatric disorders. We further discuss the challenges associated with studying naturalistic human behaviours in complex real-world settings as well as strategies for overcoming them. We conclude that mobile neuroimaging methods have the potential to bring about a new era of cognitive neuroscience in which neural mechanisms can be studied with increased ecological validity and with the ability to address questions about natural behaviour and cognitive processes in humans engaged in dynamic real-world experiences.
Collapse
Affiliation(s)
- Matthias Stangl
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Sabrina L Maoz
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Vitório R, Lirani-Silva E, Orcioli-Silva D, Beretta VS, Oliveira AS, Gobbi LTB. Electrocortical Dynamics of Usual Walking and the Planning to Step over Obstacles in Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2023; 23:4866. [PMID: 37430780 DOI: 10.3390/s23104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
The neural correlates of locomotion impairments observed in people with Parkinson's disease (PD) are not fully understood. We investigated whether people with PD present distinct brain electrocortical activity during usual walking and the approach phase of obstacle avoidance when compared to healthy individuals. Fifteen people with PD and fourteen older adults walked overground in two conditions: usual walking and obstacle crossing. Scalp electroencephalography (EEG) was recorded using a mobile 64-channel EEG system. Independent components were clustered using a k-means clustering algorithm. Outcome measures included absolute power in several frequency bands and alpha/beta ratio. During the usual walk, people with PD presented a greater alpha/beta ratio in the left sensorimotor cortex than healthy individuals. While approaching obstacles, both groups reduced alpha and beta power in the premotor and right sensorimotor cortices (balance demand) and increased gamma power in the primary visual cortex (visual demand). Only people with PD reduced alpha power and alpha/beta ratio in the left sensorimotor cortex when approaching obstacles. These findings suggest that PD affects the cortical control of usual walking, leading to a greater proportion of low-frequency (alpha) neuronal firing in the sensorimotor cortex. Moreover, the planning for obstacle avoidance changes the electrocortical dynamics associated with increased balance and visual demands. People with PD rely on increased sensorimotor integration to modulate locomotion.
Collapse
Affiliation(s)
- Rodrigo Vitório
- Institute of Biosciences, Sao Paulo State University (UNESP), Rio Claro 13506-900, Brazil
- Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro 13506-900, Brazil
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Ellen Lirani-Silva
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Diego Orcioli-Silva
- Institute of Biosciences, Sao Paulo State University (UNESP), Rio Claro 13506-900, Brazil
- Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro 13506-900, Brazil
| | - Victor Spiandor Beretta
- Institute of Biosciences, Sao Paulo State University (UNESP), Rio Claro 13506-900, Brazil
- Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro 13506-900, Brazil
- School of Technology and Sciences, Sao Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil
| | | | - Lilian Teresa Bucken Gobbi
- Institute of Biosciences, Sao Paulo State University (UNESP), Rio Claro 13506-900, Brazil
- Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro 13506-900, Brazil
| |
Collapse
|
16
|
Molina-Mateo D, Valderrama BP, Zárate RV, Hidalgo S, Tamayo-Leiva J, Soto A, Guerra S, Arriagada V, Oliva C, Diez B, Campusano JM. Kanamycin treatment in the pre-symptomatic stage of a Drosophila PD model prevents the onset of non-motor alterations. Neuropharmacology 2023; 236:109573. [PMID: 37196855 DOI: 10.1016/j.neuropharm.2023.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor alterations, which is preceded by a prodromal stage where non-motor symptoms are observed. Over recent years, it has become evident that this disorder involves other organs that communicate with the brain like the gut. Importantly, the microbial community that lives in the gut plays a key role in this communication, the so-called microbiota-gut-brain axis. Alterations in this axis have been associated to several disorders including PD. Here we proposed that the gut microbiota is different in the presymptomatic stage of a Drosophila model for PD, the Pink1B9 mutant fly, as compared to that observed in control animals. Our results show this is the case: there is basal dysbiosis in mutant animals evidenced by substantial difference in the composition of midgut microbiota in 8-9 days old Pink1B9 mutant flies as compared with control animals. Further, we fed young adult control and mutant flies kanamycin and analyzed motor and non-motor behavioral parameters in these animals. Data show that kanamycin treatment induces the recovery of some of the non-motor parameters altered in the pre-motor stage of the PD fly model, while there is no substantial change in locomotor parameters recorded at this stage. On the other hand, our results show that feeding young animals the antibiotic, results in a long-lasting improvement of locomotion in control flies. Our data support that manipulations of gut microbiota in young animals could have beneficial effects on PD progression and age-dependent motor impairments.
Collapse
Affiliation(s)
- D Molina-Mateo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Centro Interdisciplinario de Neurociencia UC, Pontificia Universidad Católica de Chile, Chile
| | - B P Valderrama
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - R V Zárate
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - S Hidalgo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - J Tamayo-Leiva
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Center for Genome Regulation, Faculty of Science, University of Chile, Santiago, Chile
| | - A Soto
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - S Guerra
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - V Arriagada
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - C Oliva
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - B Diez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Center for Genome Regulation, Faculty of Science, University of Chile, Santiago, Chile; Center for Climate and Resilience Research, University of Chile, Santiago, Chile
| | - J M Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Centro Interdisciplinario de Neurociencia UC, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
17
|
Kim E, Kim H, Yun SJ, Kang MG, Shin HI, Oh BM, Seo HG. Effects of gait training on structural brain changes in Parkinson's disease. Restor Neurol Neurosci 2023:RNN221295. [PMID: 37066925 DOI: 10.3233/rnn-221295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Gait training may lead to functional brain changes in Parkinson's disease (PD); however, there is a lack of studies investigating structural brain changes after gait training in PD. OBJECTIVE To investigate structural brain changes induced by 4 weeks of gait training in individuals with PD. METHODS Diffusion tensor imaging and structural T1 images were acquired in PD group before and after robot-assisted gait training or treadmill training, and in healthy control group. Tract-based spatial statistics and tensor-based morphometry were conducted to analyze the data. The outcome of gait training was assessed by gait speed and dual-task interference of cognitive or physical tests of the 10-meter walking test representing gait automaticity. The associations between structural brain changes and these outcomes were investigated using correlation analysis. RESULTS A total of 31 individuals with PD (68.5±8.7 years, the Hoehn & Yahr stage of 2.5 or 3) and 28 healthy controls (66.6±8.8 years) participated in this study. Compared to the controls, PD group at baseline showed a significant increased fractional anisotropy (FA) in the right forceps minor and bilateral brainstem and reduced radial diffusivity (RD) in the right superior longitudinal fasciculus, as well as the expanded structural volumes in the several brain areas. After gait training, FA increased in the left internal capsule and it decreased in the left cerebellar Crus I, while the structural volume did not change. The increased FA in the left internal capsule positively correlated with the baseline gait speed and negatively correlated with gait speed improvement; moreover, the decreased FA in the left cerebellum Crus I negatively correlated with the baseline gait speed during the cognitive task. CONCLUSIONS Gait training induces white matter changes in the brain of individuals with PD, which suggests the improvement of brain structural pathology to mitigate the impact of neurodegenerative consequences.
Collapse
Affiliation(s)
- Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Heejae Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seo Jung Yun
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min-Gu Kang
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun Iee Shin
- Department of Physical Medicine and Rehabilitation, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
18
|
Darendeli A, Ertan H, Cuğ M, Wikstrom E, Enoka RM. Comparison of EMG activity in shank muscles between individuals with and without chronic ankle instability when running on a treadmill. J Electromyogr Kinesiol 2023; 70:102773. [PMID: 37058920 DOI: 10.1016/j.jelekin.2023.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023] Open
Abstract
Changes in movement capabilities after an injury to the ankle may impose adaptations in the peripheral and central nervous system. The purpose of our study was to compare the electromyogram (EMG) profile of ankle stabilizer muscles and stride-time variation during treadmill running in individuals with and without chronic ankle instability (CAI). Recreationally active individuals with (n = 12) and without (n = 15) CAI ran on a treadmill at two speeds. EMG activity of four shank muscles as well as tibial acceleration data were recorded during the running trials. EMG amplitude, timing of EMG peaks, and variation in stride-time were analyzed from 30 consecutive stride cycles. EMG data were time-normalized to stride duration and amplitude was normalized relative to the appropriate maximal voluntary contraction (MVC) task. Individuals with CAI had similar EMG amplitudes and peak timing, but an altered order of peak EMG activity in ankle stabilizer muscles, a significantly greater EMG amplitude for PL with an increase in speed, and a greater stride-time variability during treadmill running compared with individuals who had no history of ankle sprains. The results of our study indicate that individuals with CAI exhibit altered activation strategies for ankle stabilizer muscles when running on a treadmill.
Collapse
Affiliation(s)
- Abdulkerim Darendeli
- Faculty of Sport Sciences, Sivas Cumhuriyet University, Sivas, Turkey; Department of Integrative Physiology, University of Colorado, Boulder, CO, USA.
| | - Hayri Ertan
- Faculty of Sport Sciences, Eskisehir Technical University, Eskisehir, Turkey
| | - Mutlu Cuğ
- Faculty of Sport Sciences, Kocaeli University, Kocaeli, Turkey
| | - Erik Wikstrom
- MOTION Science Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Roger Maro Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
19
|
Imbesi S, Corzani M. Multisensory Cues for Gait Rehabilitation with Smart Glasses: Methodology, Design, and Results of a Preliminary Pilot. SENSORS (BASEL, SWITZERLAND) 2023; 23:874. [PMID: 36679671 PMCID: PMC9867182 DOI: 10.3390/s23020874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Recent advances in mobile technology have shown that augmented unisensory feedback can be leveraged to improve gait using wearable systems, but less is known about the possible benefits and usability of multisensory (i.e., multimodal) feedback. This paper introduces the preliminary results of an innovative research project aiming to develop an mHealth system including Android smart glasses, and providing multisensory cues for gait rehabilitation of people affected by Parkinson's disease in and out of the medical context. In particular, the paper describes a preliminary pilot focusing on the design of visual, auditory, and haptic cues, and testing the design methodologies to be used in further developments of the project. Considered research questions were: Which kinds of images, sounds, and vibrations mostly influence gait speed, stride length, and cadence? Which are the ones stressing the user the least? Which ones induce the most immediate reaction? Thus, in this starting part of the research project, different typologies of sensory cues were designed, tested, and evaluated considering quantitative and qualitative parameters to properly answer the research questions.
Collapse
Affiliation(s)
- Silvia Imbesi
- Department of Architecture, University of Ferrara, 44121 Ferrara, Italy
| | - Mattia Corzani
- Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
20
|
Milane T, Hansen C, Chardon M, Bianchini E, Vuillerme N. Comparing Backward Walking Performance in Parkinson's Disease with and without Freezing of Gait-A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:953. [PMID: 36673709 PMCID: PMC9859157 DOI: 10.3390/ijerph20020953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is a neurodegenerative disease characterized by motor symptoms and gait impairments. Among them, freezing of gait (FOG) is one of the most disabling manifestations. Backward walking (BW) is an activity of daily life that individuals with PD might find difficult and could cause falls. Recent studies have reported that gait impairments in PD were more pronounced in BW, particularly in people presenting FOG. However, to the best of our knowledge, no systematic review has synthetized the literature which compared BW performance in PD patients with and without FOG. OBJECTIVE The aim of this study was to evaluate the differences in BW performance between PD patients with FOG and PD patients without FOG. METHODS Two databases, PubMed and Web of Science, were systematically searched to identify studies comparing BW performance in PD patients with and without FOG. The National Institutes of Health (NIH) tool was used to assess the quality of the studies included. RESULTS Seven studies with 431 PD patients (179 PD with FOG and 252 PD without FOG) met the inclusion criteria and were included in this review. Among them, 5 studies reported walking speed, 3 studies step length, stride length and lower limb range of motion, 2 studies functional ambulation profile, toe clearance height, swing, and stance percent and 1 study reported the decomposition index and stepping coordination. Compared to PD patients without FOG, PD patients with FOG showed slower walking speed and reduced step length in 3 studies, shorter stride length, lower functional ambulation profile and decreased ankle range of motion in 2 studies, and smaller swing percent, higher stance percent, worse stepping coordination, greater decomposition between movements, and lower toe clearance height in one study. CONCLUSION Despite the small number of included studies, the findings of this review suggested that PD patients with FOG have worse gait performance during the BW task than PD without FOG.
Collapse
Affiliation(s)
- Tracy Milane
- AGEIS, Université Grenoble Alpes, 38000 Grenoble, France
- Department of Neurology, UKSH Campus Kiel, Kiel University, Arnold-Heller-Str. 3, Haus D, 24105 Kiel, Germany
| | - Clint Hansen
- Department of Neurology, UKSH Campus Kiel, Kiel University, Arnold-Heller-Str. 3, Haus D, 24105 Kiel, Germany
| | | | - Edoardo Bianchini
- AGEIS, Université Grenoble Alpes, 38000 Grenoble, France
- Department of Neurology, UKSH Campus Kiel, Kiel University, Arnold-Heller-Str. 3, Haus D, 24105 Kiel, Germany
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy
| | - Nicolas Vuillerme
- AGEIS, Université Grenoble Alpes, 38000 Grenoble, France
- LabCom Telecom4Health, Orange Labs & Université Grenoble Alpes, CNRS, Inria, Grenoble INP-UGA, 38000 Grenoble, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
21
|
Wang Y, Yu N, Lu J, Zhang X, Wang J, Shu Z, Cheng Y, Zhu Z, Yu Y, Liu P, Han J, Wu J. Increased Effective Connectivity of the Left Parietal Lobe During Walking Tasks in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:165-178. [PMID: 36872789 PMCID: PMC10041419 DOI: 10.3233/jpd-223564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND In Parkinson's disease (PD), walking may depend on the activation of the cerebral cortex. Understanding the patterns of interaction between cortical regions during walking tasks is of great importance. OBJECTIVE This study investigated differences in the effective connectivity (EC) of the cerebral cortex during walking tasks in individuals with PD and healthy controls. METHODS We evaluated 30 individuals with PD (62.4±7.2 years) and 22 age-matched healthy controls (61.0±6.4 years). A mobile functional near-infrared spectroscopy (fNIRS) was used to record cerebral oxygenation signals in the left prefrontal cortex (LPFC), right prefrontal cortex (RPFC), left parietal lobe (LPL), and right parietal lobe (RPL) and analyze the EC of the cerebral cortex. A wireless movement monitor was used to measure the gait parameters. RESULTS Individuals with PD demonstrated a primary coupling direction from LPL to LPFC during walking tasks, whereas healthy controls did not demonstrate any main coupling direction. Compared with healthy controls, individuals with PD showed statistically significantly increased EC coupling strength from LPL to LPFC, from LPL to RPFC, and from LPL to RPL. Individuals with PD showed decreased gait speed and stride length and increased variability in speed and stride length. The EC coupling strength from LPL to RPFC negatively correlated with speed and positively correlated with speed variability in individuals with PD. CONCLUSION In individuals with PD, the left prefrontal cortex may be regulated by the left parietal lobe during walking. This may be the result of functional compensation in the left parietal lobe.
Collapse
Affiliation(s)
- Yue Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Jiewei Lu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Xinyuan Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhilin Shu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Yuanyuan Cheng
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhizhong Zhu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Yang Yu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Peipei Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Jialing Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, China
| |
Collapse
|
22
|
Guseva OV, Zhukova NG. [Rehabilitation's possibility of the patients with severe Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:56-60. [PMID: 36946398 DOI: 10.17116/jnevro202312303156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVE The application of the individual rehabilitating approach by hypokinesia and lack of physical activity in severe Parkinson's disease patient. MATERIAL AND METHODS In the study were 43 patients with Parkinson's disease (17 men and 26 women; at the age 68.39±7.18 years) with 3-4 stage Hoehn and Yahr included. The physical state was previously defined. 10 individual complex lessons with the power exercises, the transfer training with external cueing, flexibility, balance-therapy, preparation of somatoreception to walking and the walking were in patient's stage with walking speed evaluation after the therapy conducted. RESULTS Before the treatment 25 (58%) persons could not the test «6 minutes walking» perform, the time of the test «Up and Go» was lengthened and the grip strength was decreased, moreover in women the grip strength was less critical level. After the treatment the all patients participated in the test «6 minutes walking». Walking distance increased by 32.17 meter; p<0.01. THE CONCLUSION The individual complex rehabilitation in patient stage's approach in severe Parkinson's disease patient let improve the walking.
Collapse
Affiliation(s)
- O V Guseva
- Siberian State Medical University, Tomsk, Russia
| | - N G Zhukova
- Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
23
|
Doyle AM, Bauer D, Hendrix C, Yu Y, Nebeck SD, Fergus S, Krieg J, Wilmerding LK, Blumenfeld M, Lecy E, Spencer C, Luo Z, Sullivan D, Brackman K, Ross D, Best S, Verma A, Havel T, Wang J, Johnson L, Vitek JL, Johnson MD. Spatiotemporal scaling changes in gait in a progressive model of Parkinson's disease. Front Neurol 2022; 13:1041934. [PMID: 36582611 PMCID: PMC9792983 DOI: 10.3389/fneur.2022.1041934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Objective Gait dysfunction is one of the most difficult motor signs to treat in patients with Parkinson's disease (PD). Understanding its pathophysiology and developing more effective therapies for parkinsonian gait dysfunction will require preclinical studies that can quantitatively and objectively assess the spatial and temporal features of gait. Design We developed a novel system for measuring volitional, naturalistic gait patterns in non-human primates, and then applied the approach to characterize the progression of parkinsonian gait dysfunction across a sequence of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatments that allowed for intrasubject comparisons across mild, moderate, and severe stages. Results Parkinsonian gait dysfunction was characterized across treatment levels by a slower stride speed, increased time in both the stance and swing phase of the stride cycle, and decreased cadence that progressively worsened with overall parkinsonian severity. In contrast, decreased stride length occurred most notably in the moderate to severe parkinsonian state. Conclusion The results suggest that mild parkinsonism in the primate model of PD starts with temporal gait deficits, whereas spatial gait deficits manifest after reaching a more severe parkinsonian state overall. This study provides important context for preclinical studies in non-human primates studying the neurophysiology of and treatments for parkinsonian gait.
Collapse
Affiliation(s)
- Alex M. Doyle
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Devyn Bauer
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Claudia Hendrix
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Shane D. Nebeck
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Sinta Fergus
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jordan Krieg
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Lucius K. Wilmerding
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Madeline Blumenfeld
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Emily Lecy
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Chelsea Spencer
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Ziling Luo
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Disa Sullivan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Krista Brackman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Dylan Ross
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Sendréa Best
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Ajay Verma
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Tyler Havel
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Luke Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Matthew D. Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
24
|
Beretta VS, Santos PCR, Orcioli-Silva D, Zampier VC, Vitório R, Gobbi LTB. Transcranial direct current stimulation for balance rehabilitation in neurological disorders: A systematic review and meta-analysis. Ageing Res Rev 2022; 81:101736. [PMID: 36116750 DOI: 10.1016/j.arr.2022.101736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 01/31/2023]
Abstract
Postural instability is common in neurological diseases. Although transcranial direct current stimulation (tDCS) seems to be a promising complementary therapy, emerging evidence indicates mixed results and protocols' characteristics. We conducted a systematic review and meta-analysis on PubMed, EMBASE, Scopus, and Web of Science to synthesize key findings of the effectiveness of single and multiple sessions of tDCS alone and combined with other interventions on balance in adults with neurological disorders. Thirty-seven studies were included in the systematic review and 33 in the meta-analysis. The reviewed studies did not personalize the stimulation protocol to individual needs/characteristics. A random-effects meta-analysis indicated that tDCS alone (SMD = -0.44; 95%CI = -0.69/-0.19; p < 0.001) and combined with another intervention (SMD = -0.31; 95%CI = -0.51/-0.11; p = 0.002) improved balance in adults with neurological disorders (small to moderate effect sizes). Balance improvements were evidenced regardless of the number of sessions and targeted area. In summary, tDCS is a promising therapy for balance rehabilitation in adults with neurological disorders. However, further clinical trials should identify factors that influence responsiveness to tDCS for a more tailored approach, which may optimize the clinical use of tDCS.
Collapse
Affiliation(s)
- Victor Spiandor Beretta
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | | | - Diego Orcioli-Silva
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; University of Campinas (UNICAMP), School of Applied Sciences (FCA), Laboratory of Applied Sport Physiology (LAFAE), Limeira, Brazil
| | - Vinicius Cavassano Zampier
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | - Rodrigo Vitório
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil.
| |
Collapse
|
25
|
Imbesi S, Corzani M, Lopane G, Mincolelli G, Chiari L. User-Centered Design Methodologies for the Prototype Development of a Smart Harness and Related System to Provide Haptic Cues to Persons with Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2022; 22:8095. [PMID: 36365792 PMCID: PMC9654762 DOI: 10.3390/s22218095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
This paper describes the second part of the PASSO (Parkinson smart sensory cues for older users) project, which designs and tests an innovative haptic biofeedback system based on a wireless body sensor network using a smartphone and different smartwatches specifically designed to rehabilitate postural disturbances in persons with Parkinson's disease. According to the scientific literature on the use of smart devices to transmit sensory cues, vibrotactile feedback (particularly on the trunk) seems promising for improving people's gait and posture performance; they have been used in different environments and are well accepted by users. In the PASSO project, we designed and developed a wearable device and a related system to transmit vibrations to a person's body to improve posture and combat impairments like Pisa syndrome and camptocormia. Specifically, this paper describes the methodologies and strategies used to design, develop, and test wearable prototypes and the mHealth system. The results allowed a multidisciplinary comparison among the solutions, which led to prototypes with a high degree of usability, wearability, accessibility, and effectiveness. This mHealth system is now being used in pilot trials with subjects with Parkinson's disease to verify its feasibility among patients.
Collapse
Affiliation(s)
- Silvia Imbesi
- Department of Architecture, University of Ferrara, 44121 Ferrara, Italy
| | - Mattia Corzani
- Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40126 Bologna, Italy
| | - Giovanna Lopane
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UO Medicina Riabilitativa e Neuroriabilitazione, 40139 Bologna, Italy
| | | | - Lorenzo Chiari
- Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
26
|
Ferreira MIASN, Barbieri FA, Moreno VC, Penedo T, Tavares JMRS. Machine learning models for Parkinson's disease detection and stage classification based on spatial-temporal gait parameters. Gait Posture 2022; 98:49-55. [PMID: 36049418 DOI: 10.1016/j.gaitpost.2022.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease with no cure, presenting a challenging diagnosis and management. However, despite a significant number of criteria and guidelines have been proposed to improve the diagnosis of PD and to determine the PD stage, the gold standard for diagnosis and symptoms monitoring of PD is still mainly based on clinical evaluation, which includes several subjective factors. The use of machine learning (ML) algorithms in spatial-temporal gait parameters is an interesting advance with easy interpretation and objective factors that may assist in PD diagnostic and follow up. RESEARCH QUESTION This article studies ML algorithms for: i) distinguish people with PD vs. matched-healthy individuals; and ii) to discriminate PD stages, based on selected spatial-temporal parameters, including variability and asymmetry. METHODS Gait data acquired from 63 people with PD with different levels of PD motor symptoms severity, and 63 matched-control group individuals, during self-selected walking speed, was study in the experiments. RESULTS In the PD diagnosis, a classification accuracy of 84.6 %, with a precision of 0.923 and a recall of 0.800, was achieved by the Naïve Bayes algorithm. We found four significant gait features in PD diagnosis: step length, velocity and width, and step width variability. As to the PD stage identification, the Random Forest outperformed the other studied ML algorithms, by reaching an Area Under the ROC curve of 0.786. We found two relevant gait features in identifying the PD stage: stride width variability and step double support time variability. SIGNIFICANCE The results showed that the studied ML algorithms have potential both to PD diagnosis and stage identification by analysing gait parameters.
Collapse
Affiliation(s)
| | | | - Vinícius Christianini Moreno
- São Paulo State University (Unesp), Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Tiago Penedo
- São Paulo State University (Unesp), Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - João Manuel R S Tavares
- Faculdade de Engenharia, Universidade do Porto, Portugal; Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Portugal
| |
Collapse
|
27
|
Nikaido Y, Urakami H, Okada Y, Kajimoto Y, Ishida N, Kawami Y, Akisue T, Saura R. Dynamic gait stability in patients with idiopathic normal pressure hydrocephalus with high and low fall-risk. Clin Biomech (Bristol, Avon) 2022; 99:105757. [PMID: 36113194 DOI: 10.1016/j.clinbiomech.2022.105757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study aimed to investigate whether dynamic gait stability differs between idiopathic normal-pressure hydrocephalus with high- and low-fall-risk. METHODS Participants comprised 40 idiopathic normal-pressure hydrocephalus patients and 23 healthy-controls. Idiopathic normal-pressure hydrocephalus patients were divided into those with high-fall-risk (n = 20) and low-fall-risk (n = 20) groups using the cut-off score of ≤14/30 for fall-risk on the Functional Gait Assessment. Dynamic stability during gait was assessed by three-dimensional motion analysis. Dynamic stability was defined as the ability to maintain an extrapolated center of mass within the base of support at heel contact, with the distance between the two defined as the margin of stability. Conscious motor control was assessed by the Movement-Specific Reinvestment Scale. FINDINGS Anteroposterior and mediolateral margin of stabilities were significantly larger in both idiopathic normal-pressure hydrocephalus groups than in healthy-controls. The mediolateral margin of stability was significantly higher in the high-fall-risk group than in the low-fall-risk group; whereas, the anteroposterior margin of stability did not differ between idiopathic normal-pressure hydrocephalus groups. The Movement-Specific Reinvestment Scale was significantly higher in the high-fall-risk group than in the low-fall-risk group. INTERPRETATION Idiopathic normal-pressure hydrocephalus patients with have high forward and lateral dynamic stability during gait regardless of their fall-risk. In particular, idiopathic normal-pressure hydrocephalus patients with high-fall-risk may consciously maintain lateral dynamic stability to a greater extent than those with low-fall-risk. These findings highlight a conscious motor control component in the pathological gait of idiopathic normal-pressure hydrocephalus, and provide clues for rehabilitation and fall prevention strategies in idiopathic normal-pressure hydrocephalus patients.
Collapse
Affiliation(s)
- Yasutaka Nikaido
- Clinical Department of Rehabilitation, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan.
| | - Hideyuki Urakami
- Clinical Department of Rehabilitation, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Yohei Okada
- Graduate School of Health Sciences, Kio University, Nara, Japan; Neurorehabilitation Research Center of Kio University, Nara, Japan
| | - Yoshinaga Kajimoto
- Department of Neurosurgery, Division of Surgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Naoya Ishida
- Clinical Department of Rehabilitation, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Yuki Kawami
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan; Department of Physical Therapy, Faculty of Rehabilitation, Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, Hyogo, Japan
| | - Toshihiro Akisue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Ryuichi Saura
- Department of Physical and Rehabilitation Medicine, Division of Comprehensive Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
28
|
Araújo HAGDO, Souza RJD, da Silva TCO, Nascimento TS, Terra MB, Smaili SM. Immediate Effect of Augmented Reality, Virtual Reality, and Neurofunctional Physiotherapy on Postural Control and Executive Function of Individuals with Parkinson's Disease. Games Health J 2022; 12:211-219. [PMID: 35972381 DOI: 10.1089/g4h.2021.0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: To assess the immediate effect of augmented reality (AR), virtual reality (VR), and neurofunctional physiotherapy (NPT) on postural control (PC) and executive function (EF) of individuals with Parkinson's disease (PD). Materials and Methods: Forty subjects from mild-to-moderate PD stages, with no cognitive impairment were submitted to one session of NPT, one session of AR, and one session of VR for 50 minutes each (7 days interval between them). PC was evaluated before and after each therapy, using force platform in bipedal positions: tandem with eyes opened (EO), eyes closed (EC), and with double-task and one-legged stance. We recorded the center of pressure area, and anteroposterior (AP) and mediolateral (ML) displacement amplitude and velocity. EF was assessed by Trail Making Test (TMT). Results: PC improved (pre- vs. postintervention) after the three modalities: AP velocity decreased after AR (tandem EC 2.3 [1.7 to 2.9] vs. 2.1 [1.5 to 2.9], one-legged 3.0 [1.9 to 4.0] vs. 2.9 [1.9 to 3.6]), NPT (tandem EC 2.2 [1.7 to 3.1] vs. 2.1 [1.6 to 3.0]), and VR (tandem EO 1.9 [1.4 to 2.6] vs. 1.8 [1.4 to 2.4], tandem EC 2.3 [1.6 to 3.0] vs. 2.0 [1.5 to 2.8]); ML velocity decreased after AR in one-legged (P = 0.04); and permanence time in one-legged position increased in AR (Δ: 2.5 [-0.2 to 6.9]). There was also improvement in EF: TMT part A (TMTA)'s time decreased after AR (-9.3 [-15.7 to 1.9]), and TMT part B (TMTB)'s time decreased after the three modalities (ΔNPT: -7.7 [-29.4 to 0.0] vs. ΔAR: -4.6 [-34.6 to 0.6] vs. ΔVR: -4.9 [-28.2 to 0.9]). There were no differences between the modalities. Conclusion: The three treatment modalities improved PC and EF of subjects with PD. Moreover, AR and VR generated similar immediate effects to NPT on both outcomes in these patients. Trial registration: Brazilian Clinical Trial Registration: RBR-5r5dhf.
Collapse
|
29
|
Guida P, Michiels M, Redgrave P, Luque D, Obeso I. An fMRI meta-analysis of the role of the striatum in everyday-life vs laboratory-developed habits. Neurosci Biobehav Rev 2022; 141:104826. [PMID: 35963543 DOI: 10.1016/j.neubiorev.2022.104826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
Abstract
The dorsolateral striatum plays a critical role in the acquisition and expression of stimulus-response habits that are learned in experimental laboratories. Here, we use meta-analytic procedures to contrast the neural circuits activated by laboratory-acquired habits with those activated by stimulus-response behaviours acquired in everyday-life. We confirmed that newly learned habits rely more on the anterior putamen with activation extending into caudate and nucleus accumbens. Motor and associative components of everyday-life habits were identified. We found that motor-dominant stimulus-response associations developed outside the laboratory primarily engaged posterior dorsal putamen, supplementary motor area (SMA) and cerebellum. Importantly, associative components were also represented in the posterior putamen. Thus, common neural representations for both naturalistic and laboratory-based habits were found in the left posterior and right anterior putamen. These findings suggest a partial common striatal substrate for habitual actions that are performed predominantly by stimulus-response associations represented in the posterior striatum. The overlapping neural substrates for laboratory and everyday-life habits supports the use of both methods for the analysis of habitual behaviour.
Collapse
Affiliation(s)
- Pasqualina Guida
- HM CINAC, Centro Integral de Neurociencias AC. Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain; Ph.D. Program in Neuroscience, Universidad Autónoma de Madrid Cajal Institute, Madrid 28029, Spain
| | - Mario Michiels
- HM CINAC, Centro Integral de Neurociencias AC. Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain; Ph.D. Program in Neuroscience, Universidad Autónoma de Madrid Cajal Institute, Madrid 28029, Spain
| | - Peter Redgrave
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, UK
| | - David Luque
- Departamento de Psicología Básica, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Psicología Básica, Universidad de Málaga, Madrid, Spain
| | - Ignacio Obeso
- HM CINAC, Centro Integral de Neurociencias AC. Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain; Psychobiology department, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
30
|
Ye X, Li L, He R, Jia Y, Poon W. Rhythmic auditory stimulation promotes gait recovery in Parkinson's patients: A systematic review and meta-analysis. Front Neurol 2022; 13:940419. [PMID: 35968291 PMCID: PMC9366143 DOI: 10.3389/fneur.2022.940419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveUsing rhythmic auditory stimulation (RAS) to improve gait disturbance in Parkinson's disease (PD) is an available treatment option, yet a consensus on its effectiveness remains controversial. We summarized the effects of RAS on gait, functional activity and quality of life in PD patients through a systematic review and meta-analysis.MethodsPubMed, Embase, Web of Science, Medline, and Cochrane Library databases were initially searched to identify relevant literature up to August 2021. Next, the methodological quality of eligible comparative studies was assessed by the Physiotherapy Evidence Database Scale. The treatment effects to clinical outcome in relation to gait, motor activities, and quality of life were analyzed.ResultsA total of 18 studies consisted of 774 subjects were included in this meta-analysis. Comparing with the control group, RAS had significantly increased stride length (p < 0.001), accelerated gait speed (p < 0.001), reduced the occurrence of freezing events during walking (P = 0.009), achieved an improvement in Unified Parkinson's Disease Rating Scale (UPDRS) II (P = 0.030), UPDRS-III (P < 0.001) and Parkinson's Disease Quality of Life Questionnaire (PDQL) (p = 0.009) scores over an interval of 1–26 months.ConclusionIn this meta-analysis of 18 randomized controlled trials, we have demonstrated that RAS improves the general motor functions (UPDRS-III), particularly in gait, mobility and quality of life, in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Xiaofan Ye
- Neuromedicine Center, University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Ling Li
- Neuromedicine Center, University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Rong He
- Physiotherapy Department, University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Yizhen Jia
- Core Laboratory, University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Waisang Poon
- Neuromedicine Center, University of Hong Kong Shenzhen Hospital, Shenzhen, China
- *Correspondence: Waisang Poon
| |
Collapse
|
31
|
Martins-Pinge MC, de Jager L, de Campos BH, Bezerra LO, Turini PG, Pinge-Filho P. Nitric Oxide Involvement in Cardiovascular Dysfunctions of Parkinson Disease. Front Pharmacol 2022; 13:898797. [PMID: 35899105 PMCID: PMC9309809 DOI: 10.3389/fphar.2022.898797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra, causing motor changes. In addition to motor symptoms, non-motor dysfunctions such as psychological, sensory and autonomic disorders are recorded. Manifestations related to the autonomic nervous system include the cardiovascular system, as postural hypotension, postprandial hypotension, and low blood pressure. One of the mediators involved is the nitric oxide (NO). In addition to the known roles such as vasodilator, neuromodulator, NO acts as an important mediator of the immune response, increasing the inflammatory response provoked by PD in central nervous system. The use of non-specific NOS inhibitors attenuated the neurodegenerative response in animal models of PD. However, the mechanisms by which NO contributes to neurodegeneration are still not well understood. The literature suggest that the contribution of NO occurs through its interaction with superoxides, products of oxidative stress, and blocking of the mitochondrial respiratory chain, resulting in neuronal death. Most studies involving Parkinsonism models have evaluated brain NO concentrations, with little data available on its peripheral action. Considering that studies that evaluated the involvement of NO in the neurodegeneration in PD, through NOS inhibitors administration, showed neuroprotection in rats, it has prompted new studies to assess the participation of NOS isoforms in cardiovascular changes induced by parkinsonism, and thus to envision new targets for the treatment of cardiovascular disorders in PD. The aim of this study was to conduct a literature review to assess available information on the involvement of nitric oxide (NO) in cardiovascular aspects of PD.
Collapse
Affiliation(s)
- Marli Cardoso Martins-Pinge
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina—UEL, Londrina, Brazil
- *Correspondence: Marli Cardoso Martins-Pinge,
| | - Lorena de Jager
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina—UEL, Londrina, Brazil
| | - Blenda Hyedra de Campos
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina—UEL, Londrina, Brazil
| | - Lorena Oliveira Bezerra
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina—UEL, Londrina, Brazil
| | - Pamela Giovana Turini
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina—UEL, Londrina, Brazil
| | - Phileno Pinge-Filho
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina- UEL, Londrina, Brazil
| |
Collapse
|
32
|
Beretta VS, Santos PCR, Orcioli-Silva D, Jaimes DAR, Pereira MP, Barbieri FA, Gobbi LTB. Cumulative additional information does not improve the neuromuscular control during postural responses to perturbations in postural instability/gait disorders subtype of Parkinson's disease. Exp Gerontol 2022; 166:111892. [PMID: 35811017 DOI: 10.1016/j.exger.2022.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Postural response impairments in postural instability and gait disorders (PIGD) subtype patients may be attributed to Parkinson's disease (PD)-deterioration in central-set (programing/modulating of central outputs during motor responses). Although additional information improves some PD motor impairments, an unanswered question is whether additional information can benefit postural response in PIGD subtype. OBJECTIVE To analyze the effect of cumulative additional information on postural responses after perturbation in PIGD and neurologically healthy older adults (CG). METHODS Perturbations were applied in 16 PIGD and 19 CG by the support-base translation. Participants performed 3 blocks of 5 trials without additional information (B1-B3, Day 1) and 5 trials of each cumulative additional information (C1-C4, Day 2): information about perturbation (C1), visual (C2), verbal (C3), and somatosensory information (C4). Electromyography and center of pressure (CoP) parameters were analyzed by ANOVAs with Group (PIGD × CG) and Block (B1 × B2 × B3) and with Group (PIGD × CG) and Condition (B3 × C1 × C2 × C3 × C4). RESULTS PIGD decreased the range of CoP in B3 while CG decreased both range of CoP and the integral of antagonist's muscle activity (iEMG) in B2. Also, PIGD decreased the recovery time in C4 while CG increased the iEMG of agonist's muscle in C2 and antagonist's muscle in all conditions except C2. CONCLUSION Additional information provided before postural control assessment influences the postural response in PIGD and CG differently. PIGD demonstrated inflexibility of central-set in modulating the neuromuscular control regardless of additional information. CG presents a flexible system evidenced by the increase of agonist muscle iEMG when provided visual information.
Collapse
Affiliation(s)
- Victor Spiandor Beretta
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | - Paulo Cezar Rocha Santos
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Israel
| | - Diego Orcioli-Silva
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; University of Campinas (UNICAMP), School of Applied Sciences (FCA), Laboratory of Applied Sport Physiology (LAFAE), Limeira, Brazil
| | - Diego Alejandro Rojas Jaimes
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; University of San Buenaventura Medellin, Graduate Program in Physical Education and Sports, Medellín, Colombia
| | - Marcelo Pinto Pereira
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | - Fabio Augusto Barbieri
- São Paulo State University (UNESP), School of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil.
| |
Collapse
|
33
|
Ramadan R, Geyer H, Jeka J, Schöner G, Reimann H. A neuromuscular model of human locomotion combines spinal reflex circuits with voluntary movements. Sci Rep 2022; 12:8189. [PMID: 35581211 PMCID: PMC9114145 DOI: 10.1038/s41598-022-11102-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles.
Collapse
Affiliation(s)
- Rachid Ramadan
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Hartmut Geyer
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - John Jeka
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, USA
| | - Gregor Schöner
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Hendrik Reimann
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, USA.
| |
Collapse
|
34
|
Pozzi NG, Palmisano C, Reich MM, Capetian P, Pacchetti C, Volkmann J, Isaias IU. Troubleshooting Gait Disturbances in Parkinson's Disease With Deep Brain Stimulation. Front Hum Neurosci 2022; 16:806513. [PMID: 35652005 PMCID: PMC9148971 DOI: 10.3389/fnhum.2022.806513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus or the globus pallidus is an established treatment for Parkinson's disease (PD) that yields a marked and lasting improvement of motor symptoms. Yet, DBS benefit on gait disturbances in PD is still debated and can be a source of dissatisfaction and poor quality of life. Gait disturbances in PD encompass a variety of clinical manifestations and rely on different pathophysiological bases. While gait disturbances arising years after DBS surgery can be related to disease progression, early impairment of gait may be secondary to treatable causes and benefits from DBS reprogramming. In this review, we tackle the issue of gait disturbances in PD patients with DBS by discussing their neurophysiological basis, providing a detailed clinical characterization, and proposing a pragmatic programming approach to support their management.
Collapse
Affiliation(s)
- Nicoló G. Pozzi
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Martin M. Reich
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Philip Capetian
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Claudio Pacchetti
- Parkinson’s Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ioannis U. Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- Parkinson Institute Milan, ASST Gaetano Pini-CTO, Milan, Italy
| |
Collapse
|
35
|
Events Detection of Anticipatory Postural Adjustments through a Wearable Accelerometer Sensor Is Comparable to That Measured by the Force Platform in Subjects with Parkinson's Disease. SENSORS 2022; 22:s22072668. [PMID: 35408282 PMCID: PMC9003325 DOI: 10.3390/s22072668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
Out-of-the-lab instrumented gait testing focuses on steady-state gait and usually does not include gait initiation (GI) measures. GI involves Anticipatory Postural Adjustments (APAs), which propel the center of mass (COM) forward and laterally before the first step. These movements are impaired in persons with Parkinson’s disease (PD), contributing to their pathological gait. The use of a simple GI testing system, outside the lab, would allow improving gait rehabilitation of PD patients. Here, we evaluated the metrological quality of using a single inertial measurement unit for APA detection as compared with the use of a gold-standard system, i.e., the force platforms. Twenty-five PD and eight elderly subjects (ELD) were asked to initiate gait in response to auditory stimuli while wearing an IMU on the trunk. Temporal parameters (APA-Onset, Time-to-Toe-Off, Time-to-Heel-Strike, APA-Duration, Swing-Duration) extracted from the accelerometric data and force platforms were significantly correlated (mean(SD), r: 0.99(0.01), slope: 0.97(0.02)) showing a good level of agreement (LOA [s]: 0.04(0.01), CV [%]: 2.9(1.7)). PD showed longer APA-Duration compared to ELD ([s] 0.81(0.17) vs. 0.59(0.09) p < 0.01). APA parameters showed moderate correlation with the MDS-UPDRS Rigidity, Characterizing-FOG questionnaire and FAB-2 planning. The single IMU-based reconstruction algorithm was effective in measuring APAs timings in PD. The current work sets the stage for future developments of tele-rehabilitation and home-based exercises.
Collapse
|
36
|
Pieperhoff P, Südmeyer M, Dinkelbach L, Hartmann CJ, Ferrea S, Moldovan AS, Minnerop M, Diaz-Pier S, Schnitzler A, Amunts K. Regional changes of brain structure during progression of idiopathic Parkinson’s disease – a longitudinal study using deformation based morphometry. Cortex 2022; 151:188-210. [DOI: 10.1016/j.cortex.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/04/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
37
|
Naro A, Pignolo L, Bruschetta D, Calabrò RS. What about the role of the cerebellum in music-associated functional recovery? A secondary EEG analysis of a randomized clinical trial in patients with Parkinson disease. Parkinsonism Relat Disord 2022; 96:57-64. [PMID: 35220062 DOI: 10.1016/j.parkreldis.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
Rhythmic Auditory Stimulation (RAS) has been shown to be of help in an effective gait training of people with idiopathic Parkinson's disease (PD). The cerebellum may play an important role in RAS aftereffects by compensating the detrimental internal clock for automatic and rhythmic motricity. However, the neurophysiological mechanisms underlying RAS aftereffects are still poorly understood. In the present study, we tested the contribution of the cerebellum to RAS-based gait training aftereffects in people with PD by examining cerebellum-cerebral connectivity indices using standard EEG recording. We enrolled 50 patients with PD who were randomly assigned to two different modalities of treadmill gait training using GaitTrainer3 with and without RAS (non_RAS) during an 8-week training program. We measured clinical and kinematic gait indices and electrophysiological data (standard EEG recording during walking on GaitTrainer3) of both the gait trainings. We found that the greater improvement in gait performance following RAS than non_RAS training, as per clinical and kinematic assessment, was paralleled by a more evident reshape of cerebellum-brain functional connectivity with regard to specific brain areas (pre-motor, sensorimotor and temporal cortices) and gait-cycle phases (mainly 25-75% of the gait cycle duration). These findings suggest that the cerebellum mediates the reshape of sensorimotor rhythms and fronto-centroparietal connectivity in relation to specific gait-cycle phases. This may be consistent with a recovery of the internal timing mechanisms generating and controlling motor rhythmicity, eventually improving gait performance. The precise definition of the cerebellar role to gait functional recovery in people with PD may be crucial to create patient-tailored rehabilitative approaches.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | |
Collapse
|
38
|
Nikaido Y, Okada Y, Urakami H, Ishida N, Akisue T, Kawami Y, Kuroda K, Kajimoto Y, Saura R. Dynamic stability during gait in idiopathic normal pressure hydrocephalus and Parkinson's disease. Acta Neurol Scand 2022; 145:215-222. [PMID: 34633069 DOI: 10.1111/ane.13537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To clarify a characteristic of dynamic stability during gait in idiopathic normal pressure hydrocephalus (iNPH) and Parkinson's disease (PD), and to explore the association between dynamic stability and disease severity in each disease. MATERIALS AND METHODS The 5-m gait of 36 iNPH (precerebrospinal fluid drainage), 20 PD (medicated state), and 25 healthy controls (HC) were evaluated using three-dimensional motion analysis. Ambulatory dynamic stability was defined as the ability to maintain the extrapolated center of mass within the base of support at heel contact, with the distance between the two referred to as the margin of stability (MOS). RESULTS Anteroposterior direction (AP) MOS was significantly larger in the iNPH and PD groups than in the HC group; no significant difference was found between the iNPH and PD groups. Mediolateral direction (ML) MOS was significantly larger in the iNPH and PD groups than in the HC group and significantly larger in the iNPH group than in the PD group. In the iNPH group, the disease severity was positively correlated with only ML MOS. In the PD group, the disease severity was positively correlated with the AP MOS and ML MOS. CONCLUSIONS Dynamic stability in iNPH increases in AP and ML, and it may be associated with not only iNPH-associated gait disturbance but also with a voluntarily cautious gait strategy. Dynamic stability in PD only increased in AP, and this may be associated with PD symptoms. These findings will help physicians understand the difference in pathological gait including dynamic stability between patients with iNPH and PD.
Collapse
Affiliation(s)
- Yasutaka Nikaido
- Clinical Department of Rehabilitation Osaka Medical and Pharmaceutical University Hospital Osaka Japan
| | - Yohei Okada
- Graduate School of Health Sciences Kio University Nara Japan
- Neurorehabilitation Research Center of Kio University Nara Japan
| | - Hideyuki Urakami
- Clinical Department of Rehabilitation Osaka Medical and Pharmaceutical University Hospital Osaka Japan
| | - Naoya Ishida
- Clinical Department of Rehabilitation Osaka Medical and Pharmaceutical University Hospital Osaka Japan
| | - Toshihiro Akisue
- Department of Rehabilitation Sciences, Graduate School of Health Sciences Kobe University Kobe Japan
| | - Yuki Kawami
- Department of Rehabilitation Sciences, Graduate School of Health Sciences Kobe University Kobe Japan
- Department of Physical Therapy, Faculty of Rehabilitation Hyogo Prefectural Rehabilitation Hospital at Nishi‐Harima Hyogo Japan
| | - Kenji Kuroda
- Clinical Department of Rehabilitation Osaka Medical and Pharmaceutical University Hospital Osaka Japan
| | - Yoshinaga Kajimoto
- Department of Neurosurgery, Division of Surgery Osaka Medical and Pharmaceutical University Osaka Japan
| | - Ryuichi Saura
- Department of Physical and Rehabilitation Medicine, Division of Comprehensive Medicine Osaka Medical and Pharmaceutical University Osaka Japan
| |
Collapse
|
39
|
Masini D, Kiehn O. Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nat Commun 2022; 13:504. [PMID: 35082287 PMCID: PMC8791953 DOI: 10.1038/s41467-022-28075-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/07/2022] [Indexed: 12/26/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD. Here, the authors use cell-type specific stimulation of brainstem neurons within the caudal pedunculopontine nucleus to show that activation of excitatory neurons can normalize severe locomotor deficit in mouse models of parkinsonism. The study defines a potential target for neuromodulatory restoration of locomotor function in Parkinson’s disease.
Collapse
Affiliation(s)
- Débora Masini
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark. .,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
40
|
Ujjan JA, Morani W, Memon N, Mohanasundaram S, Nuhmani S, Singh BK. Force Platform-Based Intervention Program for Individuals Suffering with Neurodegenerative Diseases like Parkinson. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1636263. [PMID: 35082910 PMCID: PMC8786539 DOI: 10.1155/2022/1636263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
The term "neurodegenerative disease" refers to a set of illnesses that primarily affect brain's neurons. Substantia nigra (a midbrain dopaminergic nucleus) with lack of hormone called dopamine causes Parkinson's disease (PD), a neurological disorder. PD leads to tremor, stiffness, impaired posture and balance, and loss of automatic movements. Patient with Parkinson's often develops a parkinsonian gait that includes a tendency to lean forward, small quick steps as if hurrying forward, and reduced swinging of the arms. They also may have trouble initiating or continuing movement. Gait analysis is often used to diagnose neurodegenerative illnesses and determine their stage. In this study, we attempt to investigate postural balance, and of gait signals for Parkinson's patients, also, we incorporate interim rehabilitation technique. We included 25 PD patients who had 2.5 to 3 IV score of Hoehn and Yahr scale. A ten-minute walk test has been performed to observe primary and secondary results of dual task interference on gait velocities, and gait time motion vector for right and left legs was observed. Two experimental ground conditions include three conditions of trunk alignment, that is, erect on a regular basis (RE), trunk dorsiflexion 30° (TF1), and trunk dorsiflexion 50° (TF2) were analysed. We identified the walking speed of PD patients was decreased, and trunk dorsiflexion variables influence the gait pattern of Parkinson's disease patients, where higher 95% CI for TF1 condition was reported. The regular erect trunk showed swing time reduction (0.7%) in PD, so the higher unified PD rating scale (UPDRS) values have significant difference in swing phase time in Parkinson's patients. The average Hoehn and Yahr scale (H&Y scale) was 4.3 ± 2.5 reported in the study participants. In a 10-week follow-up evaluation, the stance duration was shown to be substantial, as was the slower speed gait in the baseline condition. Excessive flexion was discovered in our investigation at the lower limb joints, particularly the knee and ankle. Patients with Parkinson's disease had similar maximum dorsiflexion and minimum plantarflexion values in stance. The trunk fraction conditions were found significant in patients after rehabilitation training. The best response to rehabilitation treatment was seen when the trunk was rotated. When steps and posture distribution analysis performed, we found that the trunk flexure 1 (p < 0.05), and trunk flexure 2 (p < 0.01) were shown significant values. When GRF threshold characteristics are employed, mean accuracy improves by 52%. Regardless of gait posture, the step regular trunk flexure had significantly higher posture than the corresponding level steps, with a considerable rise in the 50 in trunk dorsiflexion 2 gait relative to the step "L." This study shows that there was some significant improvement observed in the gait parameters among patients with PD's which shows positive impact of the intervention. Furthermore, rehabilitation programmes can aid and improve poor gait features in patients with Parkinson's disease, especially those who are in the early stages of the condition. This gait and balance research provides a rationale for intervention treatments, and their use in clinical practise enhances evidence of therapeutic efficacy. However, prolonged follow-up is needed to determine whether the advantages will remain all across disease's course, and future studies may recommend a specific rehabilitation technique based on gait analysis results.
Collapse
Affiliation(s)
- Javed Ahmed Ujjan
- College of Animal Sciences & Technology, Northwest A & F University, China
- Department of Zoology, Shah Abdul Latif University, Khairpur, Sindh, Pakistan
| | | | - Naz Memon
- Mehran University of Engineering and Technology, Jamshoro, Pakistan
| | - Sugumar Mohanasundaram
- Department of Biochemistry, Sri Sankara Arts and Science College, Enathur, Kanchipuram, Tamilnadu, India
| | - Shibili Nuhmani
- Department of Physical Therapy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | |
Collapse
|
41
|
Terra MB, Caramaschi IKF, Araújo HAGDO, Souza RJD, Silva TCOD, Nascimento TS, Probst VS, Smaili SM. Is fatigue associated with balance in Parkinson's disease? MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-657420220013921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Casal MZ, Peyré-Tartaruga LA, Zanardi APJ, Ivaniski-Mello A, Alves LDL, Haas AN, Martinez FG. Postural Adjustments and Biomechanics During Gait Initiation and Obstacle Negotiation: A Comparison Between Akinetic-Rigid and Hyperkinetic Parkinson's Disease. Front Physiol 2021; 12:723628. [PMID: 34803726 PMCID: PMC8600270 DOI: 10.3389/fphys.2021.723628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Individuals with Parkinson's disease (PD) exhibit different combinations of motor symptoms. The most frequent subtypes are akinetic-rigid (AK-R) and hyperkinetic (HYP). Motor symptoms, such as rigidity and bradykinesia, can directly affect postural adjustments and performance in daily tasks, like gait initiation and obstacles negotiation, increasing the risk of falls and functional dependence. Objective: To compare postural adjustments and biomechanical parameters during the gait initiation and obstacle negotiation of people with AK-R and HYP PD and correlate with functional mobility and risk of falls. Methods: Cross-sectional study. Thirty-three volunteers with PD were divided into two groups according to clinical motor manifestations: AK-R (n = 16) and HYP (n = 17). We assessed the anticipatory (APA), compensatory (CPA) postural adjustments analyzing kinematic, kinetic and, electromyographic parameters during the gait initiation and obstacle negotiation tests. We applied independent T-tests and Pearson correlation tests for comparisons and correlations, respectively (α = 0.05). Results: In the APA phase of the gait initiation test, compared to the functional HYP group, the AK-R group showed shorter time for single support (p = 0.01), longer time for double support (p = 0.01) accompanied by a smaller first step (size, p = 0.05; height, p = 0.04), and reduced muscle activation of obliquus internus (p = 0.02). Similarly, during the first step in the obstacle negotiation test, the AK-R group showed less step height (p = 0.01) and hip excursion (p = 0.02), accompanied by a reduced mediolateral displacement of the center of pressure (p = 0.02) during APA, and activation of the gluteus medius (p = 0.02) and the anterior tibialis (p = 0.04) during CPA in comparison with HYP group. Conclusion: The findings suggest that people with AK-R present impaired postural adjustments during gait initiation and obstacles negotiation compared to hyperkinetic PD. Based on defined motor symptoms, the proposition presented here revealed consistent postural adjustments during complex tasks and, therefore, may offer new insights onto PD motor evaluation and neurorehabilitation.
Collapse
Affiliation(s)
- Marcela Zimmermann Casal
- Exercise Research Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | | | - André Ivaniski-Mello
- Exercise Research Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lucas de Liz Alves
- Exercise Research Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Aline Nogueira Haas
- Exercise Research Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Flávia Gomes Martinez
- Exercise Research Laboratory, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
43
|
Maiti B, Rawson KS, Tanenbaum AB, Koller JM, Snyder AZ, Campbell MC, Earhart GM, Perlmutter JS. Functional Connectivity of Vermis Correlates with Future Gait Impairments in Parkinson's Disease. Mov Disord 2021; 36:2559-2568. [PMID: 34109682 PMCID: PMC8595492 DOI: 10.1002/mds.28684] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Dysfunction of cerebellar vermis contributes to gait abnormalities in multiple conditions and may play a key role in gait impairment in Parkinson's disease (PD). OBJECTIVE The purpose of this study was to investigate whether altered resting-state functional connectivity of the vermis relates to subsequent impairment of specific domains of gait in PD. METHODS We conducted morphometric and resting-state functional connectivity MRI analyses contrasting 45 PD and 32 age-matched healthy participants. Quantitative gait measures were acquired with a GAITRite walkway at varying intervals after functional connectivity data acquisition. RESULTS At baseline, PD participants had significantly altered functional connectivity between vermis and sensorimotor cortex compared with controls. Altered vermal functional connectivity with bilateral paracentral lobules correlated with subsequent measures of variability in stride length, step time, and single support time after controlling for confounding variables including the interval between imaging and gait measures. Similarly, altered functional connectivity between vermis and left sensorimotor cortex correlated with mean stride length and its variability. Vermis volume did not relate to any gait measure. PD participants did not differ from controls in vermis volume or cortical thickness at the site of significant regional clusters. Only altered lobule V:sensorimotor cortex functional connectivity correlated with subsequent gait measures in exploratory analyses involving all the other cerebellar lobules. CONCLUSIONS These results demonstrate that abnormal vermal functional connectivity with sensorimotor cortex, in the absence of relevant vermal or cortical atrophy, correlates with subsequent gait impairment in PD. Our data reflect the potential of vermal functional connectivity as a novel imaging biomarker of gait impairment in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Baijayanta Maiti
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Kerri S. Rawson
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Aaron B. Tanenbaum
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Jonathan M. Koller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Meghan C. Campbell
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Gammon M. Earhart
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO
| | - Joel S. Perlmutter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
44
|
Weersink JB, Maurits NM, van Laar T, de Jong BM. Enhanced arm swing improves Parkinsonian gait with EEG power modulations resembling healthy gait. Parkinsonism Relat Disord 2021; 91:96-101. [PMID: 34547655 DOI: 10.1016/j.parkreldis.2021.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The supplementary motor area (SMA) is implicated in stereotypic multi-limb movements such as walking with arm swing. Gait difficulties in Parkinson's Disease (PD) include reduced arm swing, which is associated with reduced SMA activity. OBJECTIVE To test whether enhanced arm swing improves Parkinsonian gait and explore the role of the SMA in such an improvement. METHODS Cortical activity and gait characteristics were assessed by ambulant EEG, accelerometers and video recordings in 27 PD patients with self-reported gait difficulties and 35 healthy participants when walking normally. Within these two groups, 19 PD patients additionally walked with enhanced arm swing and 30 healthy participants walked without arm swing. Power changes across the EEG frequency spectrum were assessed by Event Related Spectral Perturbation analysis of recordings from Fz over the putative SMA and gait analysis was performed. RESULTS Baseline PD gait, characterized by reduced arm swing among other features, exhibited reduced within-step Event Related Desynchronization (ERD)/Synchronization (ERS) alternation (Fz; 20-50Hz), accompanied by a reduced step length and walking speed. All became similar to normal gait when patients walked with enhanced arm swing. When healthy controls walked without arm swing, their alternating ERD-ERS pattern decreased, mimicking baseline PD gait. CONCLUSION Enhanced arm swing may serve as a driving force to overcome impaired gait control in PD patients by restoring reduced ERD-ERS alternation over the putative SMA. Accompanied by increased step length and walking speed, this provides a neural underpinning of arm swing as an effective rehabilitation concept for improving Parkinsonian gait.
Collapse
Affiliation(s)
- Joyce B Weersink
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, the Netherlands
| | - Natasha M Maurits
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, the Netherlands
| | - Teus van Laar
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, the Netherlands
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, the Netherlands.
| |
Collapse
|
45
|
Putortì A, Corrado M, Avenali M, Martinelli D, Allena M, Cristina S, Grillo V, Martinis L, Tamburin S, Serrao M, Pisani A, Tassorelli C, De Icco R. The Effects of Intensive Neurorehabilitation on Sequence Effect in Parkinson's Disease Patients With and Without Freezing of Gait. Front Neurol 2021; 12:723468. [PMID: 34557151 PMCID: PMC8453149 DOI: 10.3389/fneur.2021.723468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The sequence effect (SE), defined as a reduction in amplitude of repetitive movements, is a common clinical feature of Parkinson's disease (PD) and is supposed to be a major contributor to freezing of gait (FOG). During walking, SE manifests as a step-by-step reduction in step length when approaching a turning point or gait destination, resulting in the so-called destination sequence effect (dSE). Previous studies explored the therapeutic effects of several strategies on SE, but none of them evaluated the role of an intensive rehabilitative program. Objectives: Here we aim to study the effects of a 4-week rehabilitative program on dSE in patients with PD with and without FOG. Methods: Forty-three patients (30 males, 70.6 ± 7.5 years old) with idiopathic PD were enrolled. The subjects were divided into two groups: patients with (PD + FOG, n = 23) and without FOG (PD - FOG, n = 20). All patients underwent a standardized 4-week intensive rehabilitation in-hospital program. At hospital admission (T0) and discharge (T1), all subjects were evaluated with an inertial gait analysis for dSE recording. Results: At T0, the dSE was more negative in the PD + FOG group (-0.80 ± 0.6) when compared to the PD - FOG group (-0.39 ± 0.3) (p = 0.007), even when controlling for several clinical and demographic features. At T1, the dSE was reduced in the overall study population (p = 0.001), with a more pronounced improvement in the PD + FOG group (T0: -0.80 ± 0.6; T1: -0.23 ± 0.4) when compared to the PD - FOG group (T0: -0.39 ± 0.3; T1: -0.22 ± 0.5) (p = 0.012). At T1, we described in the overall study population an improvement in speed, cadence, stride duration, and stride length (p = 0.001 for all variables). Conclusions: dSE is a core feature of PD gait dysfunction, specifically in patients with FOG. A 4-week intensive rehabilitative program improved dSE in PD patients, exerting a more notable beneficial effect in the PD + FOG group.
Collapse
Affiliation(s)
- Alessia Putortì
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Michele Corrado
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Micol Avenali
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Daniele Martinelli
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Marta Allena
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvano Cristina
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina Grillo
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Luca Martinis
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, Pavia, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
- Movement Analysis Laboratory, Policlinico Italia, Rome, Italy
| | - Antonio Pisani
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Roberto De Icco
- Movement Analysis Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
46
|
León BM, Tobalske BW, Sassi NB, Garant R, Powers DR, Harlander-Matauschek A. Domestic egg-laying hens, Gallus gallus domesticus, do not modulate flapping flight performance in response to wing condition. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210196. [PMID: 34350016 PMCID: PMC8316787 DOI: 10.1098/rsos.210196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/18/2021] [Indexed: 05/14/2023]
Abstract
Wild birds modulate wing and whole-body kinematics to adjust their flight patterns and trajectories when wing loading increases flight power requirements. Domestic chickens (Gallus gallus domesticus) in backyards and farms exhibit feather loss, naturally high wing loading, and limited flight capabilities. Yet, housing chickens in aviaries requires birds to navigate three-dimensional spaces to access resources. To understand the impact of feather loss on laying hens' flight capabilities, we symmetrically clipped the primary and secondary feathers before measuring wing and whole-body kinematics during descent from a 1.5 m platform. We expected birds to compensate for increased wing loading by increasing wingbeat frequency, amplitude and angular velocity. Otherwise, we expected to observe an increase in descent velocity and angle and an increase in vertical acceleration. Feather clipping had a significant effect on descent velocity, descent angle and horizontal acceleration. Half-clipped hens had lower descent velocity and angle than full-clipped hens, and unclipped hens had the highest horizontal acceleration. All hens landed with a velocity two to three times greater than in bird species that are adept fliers. Our results suggest that intact laying hens operate at the maximal power output supported by their anatomy and are at the limit of their ability to control flight trajectory.
Collapse
Affiliation(s)
- Brianna M. León
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada N1G 2W1
| | - Bret W. Tobalske
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Neila Ben Sassi
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada N1G 2W1
| | - Renée Garant
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada N1G 2W1
| | - Donald R. Powers
- Department of Biology, George Fox University, 414 N Meridian Street, Newberg, OR 97132, USA
| | | |
Collapse
|
47
|
The Impact of Exercise Intervention with Rhythmic Auditory Stimulation to Improve Gait and Mobility in Parkinson Disease: An Umbrella Review. Brain Sci 2021; 11:brainsci11060685. [PMID: 34067458 PMCID: PMC8224645 DOI: 10.3390/brainsci11060685] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Difficulties in walking, controlling balance, and performing activities of daily living are common problems encountered by individuals affected by Parkinson disease. Scientific evidence suggests that exercise performed with music or auditory or rhythmical cues facilitates movement and improves balance, gait, mobility, and activities of daily living (ADL) performance in patients with PD. The aim of this umbrella review was to summarize available high-quality evidence from systematic reviews and meta-analyses on the effectiveness of rhythmically cued exercise to improve gait, mobility, and ADL performance in individuals with PD. PubMed, Cochrane, and Embase databases were searched from January 2010 to October 2020 for systematic reviews and meta-analyses which had to be (1) written in English, (2) include studies on populations of males and females with PD of any age, (3) analyze outcomes related to gait, mobility, and ADL, and (4) apply exercise interventions with music or auditory or rhythmical cues. Two independent authors screened potentially eligible studies and assessed the methodological quality of the studies using the AMSTAR 2 tool. Four studies, two systematic reviews and meta-analyses, one a systematic review, and one a meta-analysis, were selected. Overall results indicated positive effects for gait and mobility of the use of rhythmic auditory cueing with exercise and suggested that it should be incorporated into a regular rehabilitation program for patients affected by PD. Nonetheless, more primary level research is needed to address the identified gaps regarding the application of this method to physical exercise interventions.
Collapse
|
48
|
Liu A, Bi H, Li Y, Lee S, Cai J, Mi T, Garg S, Kim JL, Zhu M, Chen X, Wang ZJ, McKeown MJ. Galvanic Vestibular Stimulation Improves Subnetwork Interactions in Parkinson's Disease. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6632394. [PMID: 34094040 PMCID: PMC8137296 DOI: 10.1155/2021/6632394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
Background Activating vestibular afferents via galvanic vestibular stimulation (GVS) has been recently shown to have a number of complex motor effects in Parkinson's disease (PD), but the basis of these improvements is unclear. The evaluation of network-level connectivity changes may provide us with greater insights into the mechanisms of GVS efficacy. Objective To test the effects of different GVS stimuli on brain subnetwork interactions in both health control (HC) and PD groups using fMRI. Methods FMRI data were collected for all participants at baseline (resting state) and under noisy, 1 Hz sinusoidal, and 70-200 Hz multisine GVS. All stimuli were given below sensory threshold, blinding subjects to stimulation. The subnetworks of 15 healthy controls and 27 PD subjects (on medication) were identified in their native space, and their subnetwork interactions were estimated by nonnegative canonical correlation analysis. We then determined if the inferred subnetwork interaction changes were affected by disease and stimulus type and if the stimulus-dependent GVS effects were influenced by demographic features. Results At baseline, interactions with the visual-cerebellar network were significantly decreased in the PD group. Sinusoidal and multisine GVS improved (i.e., made values approaching those seen in HC) subnetwork interactions more effectively than noisy GVS stimuli overall. Worsening disease severity, apathy, depression, impaired cognitive function, and increasing age all limited the beneficial effects of GVS. Conclusions Vestibular stimulation has widespread system-level brain influences and can improve subnetwork interactions in PD in a stimulus-dependent manner, with the magnitude of such effects associating with demographics and disease status.
Collapse
Affiliation(s)
- Aiping Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Huiling Bi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yu Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Soojin Lee
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Pacific Parkinson's Research Centre, Vancouver, Canada
| | - Jiayue Cai
- Pacific Parkinson's Research Centre, Vancouver, Canada
| | - Taomian Mi
- Department of Neurology, Neurobiology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Brain Disorders, Beijing, China
| | - Saurabh Garg
- Pacific Parkinson's Research Centre, Vancouver, Canada
| | - Jowon L. Kim
- Pacific Parkinson's Research Centre, Vancouver, Canada
| | - Maria Zhu
- Pacific Parkinson's Research Centre, Vancouver, Canada
| | - Xun Chen
- Epilepsy Centre, Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Z. Jane Wang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
| | - Martin J. McKeown
- Pacific Parkinson's Research Centre, Vancouver, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
- Department of Medicine (Neurology), University of British Columbia, Vancouver, Canada
| |
Collapse
|
49
|
Beretta VS, Carpenter MG, Barbieri FA, Santos PCR, Orcioli-Silva D, Pereira MP, Gobbi LTB. Does the impaired postural control in Parkinson's disease affect the habituation to non-sequential external perturbation trials? Clin Biomech (Bristol, Avon) 2021; 85:105363. [PMID: 33932865 DOI: 10.1016/j.clinbiomech.2021.105363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND How people with Parkinson's disease habituate their postural response to unpredictable translation perturbation is not totally understood. We compared the capacity to change the postural responses after unexpected external perturbation and investigated the habituation plateaus of postural responses to non-sequential perturbation trials in people with Parkinson's disease and healthy older adults. METHODS In people with Parkinson's disease (n = 37) and older adults (n = 20), sudden posterior support-surface translational were applied in 7 out of 17 randomized trials to ensure perturbation unpredictability. Electromyography and center of pressure parameters of postural response were analyzed by ANOVAs (Group vs. Trials). Two simple planned contrasts were performed to determine at which trial the responses first significantly habituate, and by which trials the habituation plateaus. FINDINGS Older adults demonstrated a first response change in trial 5 and habituation plateaus after trial 4, while for people with Parkinson's disease, the first change occurred in trial 2 and habituation plateau after trial 5 observed by center of pressure range. People with Parkinson's disease demonstrated a greater center of pressure range in trial 1 compared to older adults. Independent of trial, people with Parkinson's disease vs. older adults demonstrated a greater ankle muscle co-activation and recovery time. INTERPRETATION Despite the greater center of pressure range in the first trial, people with Parkinson's disease can habituate to unpredictable perturbations. This is reflected by little, to no difference in the time-course of adaptation for all but 2 parameters that showed only marginal differences between people with Parkinson's disease and older adults.
Collapse
Affiliation(s)
- Victor Spiandor Beretta
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | - Mark Gregory Carpenter
- School of Kinesiology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabio Augusto Barbieri
- São Paulo State University (Unesp), School of Sciences, Graduate Program in Movement Sciences, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Paulo Cezar Rocha Santos
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Diego Orcioli-Silva
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | - Marcelo Pinto Pereira
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil.
| |
Collapse
|
50
|
Genoves GG, Cruz CF, Doná F, Andrade TAM, Ferraz HB, Barela JA. Detection of passive movement in lower limb joints is impaired in individuals with Parkinson's disease. Neurophysiol Clin 2021; 51:279-285. [PMID: 33934993 DOI: 10.1016/j.neucli.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Sensory information is crucial when performing daily activities, and Parkinson's disease may diminish sensitivity to sensory cues. This study aimed to examine the detection threshold of passive motion of knee and ankle joints in individuals with Parkinson's disease. METHODS Eighteen individuals in the early stages of idiopathic Parkinson's disease (age: 62.7 ± 7.3 years) and 18 healthy matched controls (age: 62.5 ± 7.1 years) first performed a simple reaction time test. Participants were asked to perform ten trials, during which they had to watch a square on a screen and press a button as quickly as possible when the square lit up. Thereafter, the participants were tested for their detection threshold of passive motion of their lower limb joints. Participants were seated in a specially designed chair and their knee or ankle joint was passively moved at a velocity of 0.5º/s. Participants kept their eyes closed and were instructed to press a button as quickly as possible when any joint motion was detected. RESULTS Individuals with Parkinson's disease needed more time to perform the reaction time test than did the control participants. Individuals with Parkinson's disease also needed larger angular displacement, even when reaction time was used as a covariate measure, to detect any passive motion, in both knee (0.70º ± 0.20º) and ankle (1.03º ± 0.23º) joints than did the control participants [(0.57º ± 0.20º) and (0.84º ± 0.27º), respectively]. CONCLUSION Impaired joint proprioception can be observed in the early stages of Parkinson's disease, which may compromise the use of proprioception cues from lower limbs.
Collapse
Affiliation(s)
- Giovanna Gracioli Genoves
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Caio Ferraz Cruz
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil; School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | - Flávia Doná
- Federal University of São Paulo, São Paulo, SP, Brazil
| | | | | | - José Angelo Barela
- Institute of Biosciences, São Paulo State University, Rio Claro, SP, Brazil.
| |
Collapse
|