1
|
Desai D, Majrashi M, Pathak S, Almaghrabi M, Liu K, Pondugula SR, Tiwari AK, Babu RJ, Deruiter J, Dhanasekaran M. Evaluate the in vitro effect of anthracycline and alkylating cytophosphane chemotherapeutics on dopaminergic neurons. Cancer Rep (Hoboken) 2024; 7:e2074. [PMID: 38627904 PMCID: PMC11021631 DOI: 10.1002/cnr2.2074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Iatrogenesis is an inevitable global threat to healthcare that drastically increases morbidity and mortality. Cancer is a fatal pathological condition that affects people of different ages, sexes, and races around the world. In addition to the detrimental cancer pathology, one of the most common contraindications and challenges observed in cancer patients is severe adverse drug effects and hypersensitivity reactions induced by chemotherapy. Chemotherapy-induced cognitive neurotoxicity is clinically referred to as Chemotherapy-induced cognitive impairment (CICI), chemobrain, or chemofog. In addition to CICI, chemotherapy also causes neuropsychiatric issues, mental disorders, hyperarousal states, and movement disorders. A synergistic chemotherapy regimen of Doxorubicin (Anthracycline-DOX) and Cyclophosphamide (Alkylating Cytophosphane-CPS) is indicated for the management of various cancers (breast cancer, lymphoma, and leukemia). Nevertheless, there are limited research studies on Doxorubicin and Cyclophosphamide's pharmacodynamic and toxicological effects on dopaminergic neuronal function. AIM This study evaluated the dopaminergic neurotoxic effects of Doxorubicin and Cyclophosphamide. METHODS AND RESULTS Doxorubicin and Cyclophosphamide were incubated with dopaminergic (N27) neurons. Neuronal viability was assessed using an MTT assay. The effect of Doxorubicin and Cyclophosphamide on various prooxidants, antioxidants, mitochondrial Complex-I & IV activities, and BAX expression were evaluated by Spectroscopic, Fluorometric, and RT-PCR methods, respectively. Prism-V software (La Jolla, CA, USA) was used for statistical analysis. Chemotherapeutics dose-dependently inhibited the proliferation of the dopaminergic neurons. The dopaminergic neurotoxic mechanism of Doxorubicin and Cyclophosphamide was attributed to a significant increase in prooxidants, a decrease in antioxidants, and augmented apoptosis without affecting mitochondrial function. CONCLUSION This is one of the first reports that reveal Doxorubicin and Cyclophosphamide induce significant dopaminergic neurotoxicity. Thus, Chemotherapy-induced adverse drug reaction issues substantially persist during and after treatment and sometimes never be completely resolved clinically. Consequently, failure to adopt adequate patient care measures for cancer patients treated with certain chemotherapeutics might substantially raise the incidence of numerous movement disorders.
Collapse
Affiliation(s)
- Darshini Desai
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | - Mohammed Majrashi
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
- Department of PharmacologyFaculty of Medicine, University of JeddahJeddahSaudi Arabia
| | - Suhrud Pathak
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | - Mohammed Almaghrabi
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
- Department of Medicinal ChemistryFaculty of Pharmacy, Taibah UniversityAl‐MedinaSaudi Arabia
| | - Keyi Liu
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | - Satyanarayana R. Pondugula
- Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn UniversityAuburnAlabamaUSA
| | - Amit K. Tiwari
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - R. Jayachandra Babu
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | - Jack Deruiter
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | | |
Collapse
|
2
|
Serum/glucocorticoid-inducible kinase 1 deficiency induces NLRP3 inflammasome activation and autoinflammation of macrophages in a murine endolymphatic hydrops model. Nat Commun 2023; 14:1249. [PMID: 36872329 PMCID: PMC9986248 DOI: 10.1038/s41467-023-36949-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/24/2023] [Indexed: 03/07/2023] Open
Abstract
Ménière's disease, a multifactorial disorder of the inner ear, is characterized by severe vertigo episodes and hearing loss. Although the role of immune responses in Ménière's disease has been proposed, the precise mechanisms remain undefined. Here, we show that downregulation of serum/glucocorticoid-inducible kinase 1 is associated with activation of NLRP3 inflammasome in vestibular-resident macrophage-like cells from Ménière's disease patients. Serum/glucocorticoid-inducible kinase 1 depletion markedly enhances IL-1β production which leads to the damage of inner ear hair cells and vestibular nerve. Mechanistically, serum/glucocorticoid-inducible kinase 1 binds to the PYD domain of NLRP3 and phosphorylates it at Serine 5, thereby interfering inflammasome assembly. Sgk-/- mice show aggravated audiovestibular symptoms and enhanced inflammasome activation in lipopolysaccharide-induced endolymphatic hydrops model, which is ameliorated by blocking NLRP3. Pharmacological inhibition of serum/glucocorticoid-inducible kinase 1 increases the disease severity in vivo. Our studies demonstrate that serum/glucocorticoid-inducible kinase 1 functions as a physiologic inhibitor of NLRP3 inflammasome activation and maintains inner ear immune homeostasis, reciprocally participating in models of Ménière's disease pathogenesis.
Collapse
|
3
|
NaCl exposure results in increased expression and processing of IL-1β in Meniere's disease patients. Sci Rep 2022; 12:4957. [PMID: 35322136 PMCID: PMC8943007 DOI: 10.1038/s41598-022-08967-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/03/2022] [Indexed: 11/08/2022] Open
Abstract
Meniere's disease (MD) is a chronic disease that causes episodic vertigo, fluctuating hearing loss, and aural fullness, initially managed by dietary salt reduction, and use of diuretics. Our prior research in autoimmune inner ear disease (AIED) demonstrated that in peripheral blood mononuclear cell (PBMC) from corticosteroid-resistant AIED patients, increased production, processing and release of interleukin-1β (IL-1β) is observed and hearing could be improved with use of anakinra, an interleukin-1 receptor antagonist. We have further identified that in these AIED patients, IL-1β is uniquely processed to a 28 kDa pro-inflammatory product by caspase-7. In the present study, we characterize the production, processing and release of the pro-inflammatory cytokines IL-1β and IL-6 from PBMC of MD (n = 14) patients in response to sodium chloride (NaCl), and determined the effect of the diuretic triamterene-hydrocholothiazide (T-HCTZ), or anakinra in these patients. We observed that PBMC cultured with NaCl from MD patients show processing of IL-1β to the 28 kDa product, and that this product is abrogated with T-HCTZ. Our observations are consistent with other autoimmune diseases where high concentrations of NaCl caused release of pro-inflammatory cytokines and may provide further insight as to the mechanism of disease progression in MD patients.
Collapse
|
4
|
Abstract
The number of older people has been increasing over recent decades in Western populations. Dizziness, imbalance, and vertigo constitute some of the most common complaints in older patients, and risk of falling is the most frequent and worrying consequence. It has been reported that 15–20% of the adult population experiences these debilitating symptoms. Among the diseases that may be associated with vertigo, the three classes of otological, central, and functional (psychological) dizziness may be distinguished. Overall, vestibular disorders account for 48% of vertiginous complaints in the older population. The main focus of this article is to review the forms of pharmacotherapy for vertigo, especially with regard to older patients, who may be treated simultaneously with other drugs for different comorbidities. Interactions with other drugs should be considered in the choice of a particular course of treatment. Moreover, overuse of pharmacotherapy for the management of vertigo in the elderly may prevent the development of the central compensatory mechanism that sustains both static and dynamic imbalance after a vertiginous crisis. In the majority of patients, vestibular and physical rehabilitation are strongly advised and rarely contraindicated.
Collapse
|
5
|
Comparison of Hearing Preservation Outcomes Using Extended Versus Single-Dose Steroid Therapy in Cochlear Implantation. Otol Neurotol 2021; 41:e449-e457. [PMID: 32176129 DOI: 10.1097/mao.0000000000002570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The purpose of this study was to compare the hearing preservation outcomes of patients who received extended versus single-dose steroid therapy in cochlear implant surgery. DESIGN Case-control. SETTING Tertiary referral centers in Taiwan from April 2017 to 2019. PARTICIPANTS A total of 70 patients aged 1 to 78 years old (mean = 18.04, standard deviation [SD] = 21.51) who received cochlear implantation via the round window approach were included in the study. Prospectively, 35 cases were enrolled for cochlear implantation with single-dose therapy. Thirty-five controls who underwent cochlear implantation with extended therapy were retrospectively enrolled after frequency matching. OUTCOME MEASURES The main outcome measure was the rate of hearing preservation. This was calculated based on the HEARRING Network formula and results were categorized as complete, partial, and minimal. Impedances served as secondary outcomes. RESULTS There was no significant difference in the complete hearing preservation rates between the extended and single-dose groups at 6 months postoperatively. Impedances were significantly lower in the extended group after 1 month and 6 months of follow up. When the complete and partial hearing preservation groups were compared, the size of round window opening and speed of insertion were found to be statistically significant. CONCLUSIONS Both extended and single-dose therapies result in good hearing preservation in patients who undergo cochlear implantation. However, better impedances can be expected from patients who received extended therapy. A slower speed of insertion and a widely opened round window play a role in hearing preservation.
Collapse
|
6
|
Comparison of electrode impedance measures between a dexamethasone-eluting and standard Cochlear™ Contour Advance® electrode in adult cochlear implant recipients. Hear Res 2020; 390:107924. [DOI: 10.1016/j.heares.2020.107924] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 11/22/2022]
|
7
|
Papanikolaou M, Lewis A, Butt AM. Glial and neuronal expression of the Inward Rectifying Potassium Channel Kir7.1 in the adult mouse brain. J Anat 2019; 235:984-996. [PMID: 31309576 PMCID: PMC6794205 DOI: 10.1111/joa.13048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
Inward Rectifying Potassium channels (Kir) are a large family of ion channels that play key roles in ion homeostasis and neuronal excitability. The most recently described Kir subtype is Kir7.1, which is known as a K+ transporting subtype. Earlier studies localised Kir7.1 to subpopulations of neurones in the brain. However, the pattern of Kir7.1 expression across the brain has not previously been examined. Here, we have determined neuronal and glial expression of Kir7.1 in the adult mouse brain, using immunohistochemistry and transgenic mouse lines expressing reporters specific for astrocytes [glial fibrillary acidic protein‐enhanced green fluorescent protein (GFAP‐EGFP], myelinating oligodendrocytes (PLP‐DsRed), oligodendrocyte progenitor cells (OPC, Pdgfra‐creERT2/Rosa26‐YFP double‐transgenic mice) and all oligodendrocyte lineage cells (SOX10‐EGFP). The results demonstrate significant neuronal Kir7.1 immunostaining in the cortex, hippocampus, cerebellum and pons, as well as the striatum and hypothalamus. In addition, astrocytes are shown to be immunopositive for Kir7.1 throughout grey and white matter, with dense immunostaining on cell somata, primary processes and perivascular end‐feet. Immunostaining for Kir7.1 was observed in oligodendrocytes, myelin and OPCs throughout the brain, although immunostaining was heterogeneous. Neuronal and glial expression of Kir7.1 is confirmed using neurone‐glial cortical cultures and optic nerve glial cultures. Notably, Kir7.1 have been shown to regulate the excitability of thalamic neurones and our results indicate this may be a widespread function of Kir7.1 in neurones throughout the brain. Moreover, based on the function of Kir7.1 in multiple transporting epithelia, Kir7.1 are likely to play an equivalent role in the primary glial function of K+ homeostasis. Our results indicate Kir7.1 are far more pervasive in the brain than previously recognised and have potential importance in regulating neuronal and glial function.
Collapse
Affiliation(s)
- Maria Papanikolaou
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Anthony Lewis
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Arthur M Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
8
|
Fischer RA, Roux AL, Wareham LK, Sappington RM. Pressure-dependent modulation of inward-rectifying K + channels: implications for cation homeostasis and K + dynamics in glaucoma. Am J Physiol Cell Physiol 2019; 317:C375-C389. [PMID: 31166711 DOI: 10.1152/ajpcell.00444.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glaucoma is the leading cause of blindness worldwide, resulting from degeneration of retinal ganglion cells (RGCs), which form the optic nerve. Prior to structural degeneration, RGCs exhibit physiological deficits. Müller glia provide homeostatic regulation of ions that supports RGC physiology through a process called K+ siphoning. Recent studies suggest that several retinal conditions, including glaucoma, involve changes in the expression of K+ channels in Müller glia. To clarify whether glaucoma-related stressors directly alter expression and function of K+ channels in Müller glia, we examined changes in the expression of inwardly rectifying K+ (Kir) channels and two-pore domain (K2P) channels in response to elevated intraocular pressure (IOP) in vivo and in vitro in primary cultures of Müller glia exposed to elevated hydrostatic pressure. We then measured outcomes of cell health, cation homeostasis, and cation flux in Müller glia cultures. Transcriptome analysis in a murine model of microbead-induced glaucoma revealed pressure-dependent downregulation of Kir and K2P channels in vivo. Changes in the expression and localization of Kir and K2P channels in response to elevated pressure were also found in Müller glia in vitro. Finally, we found that elevated pressure compromises the plasma membrane of Müller glia and induces cation dyshomeostasis that involves changes in ion flux through cation channels. Pressure-induced changes in cation flux precede both cation dyshomeostasis and membrane compromise. Our findings have implications for Müller glia responses to pressure-related conditions, i.e., glaucoma, and identify cation dyshomeostasis as a potential contributor to electrophysiological impairment observed in RGCs of glaucomatous retina.
Collapse
Affiliation(s)
- Rachel A Fischer
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Abigail L Roux
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rebecca M Sappington
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
9
|
Hearing Changes After Intratympanically Applied Steroids for Primary Therapy of Sudden Hearing Loss: A Meta-analysis Using Mathematical Simulations of Drug Delivery Protocols. Otol Neurotol 2017; 38:19-30. [PMID: 27779563 DOI: 10.1097/mao.0000000000001254] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Controlled and uncontrolled studies with primary intratympanic or combined intratympanic and systemic application of glucocorticosteroids for idiopathic sudden hearing loss were analyzed by means of a meta-analysis in an attempt to establish optimal local drug delivery protocols. STUDY DESIGN A total of 25 studies with 28 treatment groups between January 2000 and June 2014 were selected that adequately described drug delivery protocols. Cochlear drug levels were calculated by a validated computer model of drug dispersion in the inner ear fluids based on the concentration and volume of glucocorticoids applied, the time the drug remained in the middle ear, and the specific timing of injections. Various factors were compared with hearing outcome, including baseline data, individual parameters of the application protocols, calculated peak concentration (Cmax), and total dose (area under the curve). RESULTS There was no dependence of hearing outcome on individual parameters of the application protocol, Cmax, or area under the curve. Final hearing threshold was notably independent of delay of treatment. CONCLUSION During primary intratympanic or combined steroid therapy of idiopathic sudden hearing loss, the tendency toward early treatment having a positive effect on hearing improvement is thought to be a "sham effect," likely related to spontaneous recovery. Change in pure-tone average may not be an adequate outcome parameter to assess effectiveness of the intervention, as it depends on the degree of initial hearing loss. Final pure-tone average provides a better alternative.
Collapse
|
10
|
Farhood Z, Lambert PR. The physiologic role of corticosteroids in Ménière's disease. Am J Otolaryngol 2016; 37:455-8. [PMID: 27221028 DOI: 10.1016/j.amjoto.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 02/05/2023]
Abstract
Multiple options exist to manage Ménière's disease (MD), ranging from dietary modifications to ablative surgery. Corticosteroids (CS) have long been used to manage MD, but their exact mechanism for disease alleviation is relatively uncertain. Glucocorticoid receptors have been shown to exist in the human inner ear and several studies propose they influence mechanisms of blood flow, fluid regulation, and ion regulation, with recent evidence describing the latter two. Corticosteroids have been shown to upregulate aquaporins and ion channels in the inner ear, and may have a positive effect on labyrinthine blood flow. Additionally, processes have been described in genomic and non-genomic manners. This text will review the literature on the actions of CS on the inner ear relevant to MD.
Collapse
|
11
|
Lou Y, Zhang F, Luo Y, Wang L, Huang S, Jin F. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis. Int J Mol Sci 2016; 17:ijms17081307. [PMID: 27517916 PMCID: PMC5000704 DOI: 10.3390/ijms17081307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China.
| | - Fan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Shisi Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Healthy Laboratory of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
12
|
Morita S, Nakamaru Y, Fujiwara K, Iizuka K, Masuya M, Homma A, Fukuda A, Fukuda S. The Short- and Long-Term Outcome of Intratympanic Steroid Therapy as a Salvage Treatment for Acute Low-Tone Sensorineural Hearing Loss without Episodes of Vertigo. Audiol Neurootol 2016; 21:132-40. [PMID: 27077389 DOI: 10.1159/000444577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 02/08/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To evaluate the hearing outcomes of intratympanic steroid (ITS) treatment for patients with acute low-tone sensorineural hearing loss (ALHL) after failure of initial therapy and to investigate the recurrence and progression to definite Ménière's disease (MD) during a long-term follow-up. METHODS We retrospectively reviewed the medical records of 90 patients with refractory ALHL who were followed up for at least 1 year between January 2000 and April 2014. Patients who responded poorly to initial medical treatment received intratympanic dexamethasone injections (ITS group) or isosorbide administration for 4 weeks (diuretic group) as salvage treatment options according to their choice of management. The control group did not receive ITS or the diuretic, due to their refusal of both medical treatments. The hearing outcomes were evaluated 1 month, 1 year and 5 years after the completion of the second-line therapy, and the rates of recurrence and progression to MD were measured during a follow-up period of at least 1 year. RESULTS Twenty-seven patients in the ITS group, 39 patients in the diuretic group and 24 patients in the control group were enrolled. Of these, 12 patients in the ITS group, 15 patients in the diuretic group and 12 patients in the control group were followed up for over 5 years. We found that the recovery rates and the audiometric functional values after 1 month and 1 year in the ITS group were significantly higher than those in the diuretic and control groups. However, there were no significant differences in the recovery rates or the audiometric functional values after 5 years, or in the rates of recurrence and progression to MD between the groups. CONCLUSIONS Salvage ITS therapy can provide a relatively good short-term hearing outcome for ALHL patients who have persistent hearing loss despite conventional treatment. However, both recurrence and progression to MD after treatment were observed in some patients during the long-term follow-up.
Collapse
Affiliation(s)
- Shinya Morita
- Department of Otolaryngology, Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kuthubutheen J, Smith L, Hwang E, Lin V. Preoperative steroids for hearing preservation cochlear implantation: A review. Cochlear Implants Int 2016; 17:63-74. [PMID: 26913646 DOI: 10.1080/14670100.2016.1148319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Preoperative steroids have been shown to be beneficial in reducing the hearing loss associated with cochlear implantation. This review article discusses the mechanism of action, effects of differing routes of administration, and side effects of steroids administered to the inner ear. Studies on the role of preoperative steroids in animal and human studies are also examined and future directions for research in this area are discussed.
Collapse
Affiliation(s)
- Jafri Kuthubutheen
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada.,b Department of Otolaryngology - Head and Neck Surgery , School of Surgery, University of Western Australia , Perth , Australia
| | - Leah Smith
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada
| | - Euna Hwang
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada
| | - Vincent Lin
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada
| |
Collapse
|
14
|
Electrogenic transport and K(+) ion channel expression by the human endolymphatic sac epithelium. Sci Rep 2015; 5:18110. [PMID: 26655723 PMCID: PMC4677336 DOI: 10.1038/srep18110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/11/2015] [Indexed: 11/09/2022] Open
Abstract
The endolymphatic sac (ES) is a cystic organ that is a part of the inner ear and is connected to the cochlea and vestibule. The ES is thought to be involved in inner ear ion homeostasis and fluid volume regulation for the maintenance of hearing and balance function. Many ion channels, transporters, and exchangers have been identified in the ES luminal epithelium, mainly in animal studies, but there has been no functional study investigating ion transport using human ES tissue. We designed the first functional experiments on electrogenic transport in human ES and investigated the contribution of K(+) channels in the electrogenic transport, which has been rarely identified, even in animal studies, using electrophysiological/pharmacological and molecular biological methods. As a result, we identified functional and molecular evidence for the essential participation of K(+) channels in the electrogenic transport of human ES epithelium. The identified K(+) channels involved in the electrogenic transport were KCNN2, KCNJ14, KCNK2, and KCNK6, and the K(+) transports via those channels are thought to play an important role in the maintenance of the unique ionic milieu of the inner ear fluid.
Collapse
|
15
|
Kuthubutheen J, Coates H, Rowsell C, Nedzelski J, Chen JM, Lin V. The role of extended preoperative steroids in hearing preservation cochlear implantation. Hear Res 2015; 327:257-64. [PMID: 26117408 DOI: 10.1016/j.heares.2015.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/03/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Steroids have been shown to reduce the hearing threshold shifts associated with cochlear implantation. Previous studies have examined only the administration of steroids just prior to surgery. The aim of this study is to examine the role of extended preoperative systemic steroids in hearing preservation cochlear implantation. METHODS An animal model of cochlear implantation was used. 24 Hartley strain guinea pigs with a mean weight of 768 g and normal hearing were randomised into a control group, a second group receiving a single dose of systemic dexamethasone one day prior to surgery, and a third group receiving a daily dose of systemic dexamethasone for 5 days prior to surgery. A specially designed cochlear implant electrode by Med-EL (Innsbruck) was inserted through a dorsolateral approach to an insertion depth of 5 mm and left in-situ. Auditory brain stem responses at 8 kHz, 16 kHz and 32 kHz were measured preoperatively, and 1 week, 1 month and 2 months postoperatively. Cochlear histopathology was examined at the conclusion of the study. RESULTS At 1-week post operative, both groups receiving dexamethasone prior to implantation had smaller threshold shifts across all frequencies and which was significant at 32 kHz (p < 0.05). There were no differences among the three groups in the area of electrode related fibrosis. Spiral ganglion neuron (SGN) density was significantly higher in the group receiving steroids for 5 days, but only in the basal cochlear turn. DISCUSSION This is study demonstrates the benefits of extended preoperative systemic steroids on hearing outcomes and SGN density in an animal model of cochlear implantation surgery.
Collapse
Affiliation(s)
- Jafri Kuthubutheen
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada; School of Surgery, University of Western Australia, Perth, Western Australia, Australia.
| | - Harvey Coates
- School of Surgery, University of Western Australia, Perth, Western Australia, Australia
| | - Corwyn Rowsell
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Julian Nedzelski
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Joseph M Chen
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Vincent Lin
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
16
|
Kim BG, Kim JY, Kim HN, Bok J, Namkung W, Choi JY, Kim SH. Developmental changes of ENaC expression and function in the inner ear of pendrin knock-out mice as a perspective on the development of endolymphatic hydrops. PLoS One 2014; 9:e95730. [PMID: 24752462 PMCID: PMC3994121 DOI: 10.1371/journal.pone.0095730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/28/2014] [Indexed: 11/19/2022] Open
Abstract
Pendrin mutations cause enlarged vestibular aqueducts and various degrees of sensorineural hearing loss. The selective abolition of pendrin causes dilation of the membranous labyrinth known as endolymphatic hydrops, loss of the endocochlear potential, and consequently loss of hearing function. Because Na+ transport is one of the most important driving forces for fluid transport, the epithelial Na+ channel (ENaC) is believed to play an important role in fluid volume regulation in the inner ear. Therefore, the dysfunction of Na+ transport through ENaC by the acidification of endolymph in Pendred syndrome is one of the potential causes of endolymphatic hydrops. We investigated the changes of ENaC expression and function during the development of the pendrin knock-out mouse. In the cochlea, the expression of β and γENaC was significantly increased at P56 in Pds-/- mice compared with Pds+/+ mice. In the vestibule, the expression of βENaC was significantly increased at P56, and γENaC expression significantly increased from P6 to P56 in Pds-/- mice. The ENaC-dependent trans-epithelial current was not significantly different between Pds+/+ and Pds-/- mice in Reissner's membrane or the saccular extramacular roof epithelium at P0, but the current was significantly increased in Pds-/- mice at P56 compared with Pds+/+ mice. These findings indicate that the expression and function of ENaC were enhanced in Pds-/- mice after the development of endolymphatic hydrops as a compensatory mechanism. This result provides insight into the role of Na+ transport in the development and regulation of endolymphatic hydrops due to pendrin mutations.
Collapse
Affiliation(s)
- Bo Gyung Kim
- Department of Otorhinolaryngology, Yonsei University, College of Medicine, Seoul, Korea
| | - Jin Young Kim
- Research Center for Natural Human Defense System, Yonsei University, College of Medicine, Seoul, Korea
| | - Hee Nam Kim
- Division of Otology, Hana ENT Hospital, Seoul, Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University, College of Medicine, Seoul, Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University, College of Medicine, Seoul, Korea
- Research Center for Natural Human Defense System, Yonsei University, College of Medicine, Seoul, Korea
- * E-mail: (JYC); (SHK)
| | - Sung Huhn Kim
- Department of Otorhinolaryngology, Yonsei University, College of Medicine, Seoul, Korea
- * E-mail: (JYC); (SHK)
| |
Collapse
|
17
|
Kim BG, Kim JY, Kim M, Kim CH, Choi JY, Kim SH. Gene regulation by glucocorticoid in ENaC-mediated Na⁺ transport by middle ear epithelial cells. Laryngoscope 2013; 124:E27-33. [PMID: 24114932 DOI: 10.1002/lary.24397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/02/2013] [Accepted: 08/19/2013] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS The epithelial sodium channel (ENaC) is a Na(+) transport channel located in the apical membrane of the human middle ear epithelium. Although ENaC-mediated sodium transport has been reported to be upregulated by dexamethasone in human middle ear epithelium, there has been no study of the downstream pathways for increased ENaC expression mediated by glucocorticoids in this tissue. We investigated the effect of dexamethasone on the expression of ENaC and glucocorticoid regulatory genes for ENaC expression in human middle ear epithelial cells (HMEECs). STUDY DESIGN In vitro investigation. METHODS Real-time RT-PCR and Western blot analysis were used to determine the expression level of ENaC and its regulatory genes in HMEECs. RESULTS The transcript and protein expression of the α-, β-, and γ-ENaC subunits were all upregulated by dexamethasone (100 nM) in HMEECs. Dexamethasone treatment also increased the transcript expression of serum/glucocorticoid-regulated kinase1 (SGK1) and neural precursor cell-expressed developmentally downregulated (Nedd) 4-2, and decreased the transcript expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). ENaC transcript expression was not changed after mifepristone (a glucocorticoid antagonist, 100 nM) + dexamethasone treatment when compared to the control, but increased after spironolactone (a mineralocorticoid antagonist, 100 nM) + dexamethasone treatment. CONCLUSIONS These findings indicate that dexamethasone increases the transcript and protein expression of the α-, β-, and γ-ENaC subunits via the GR-SGK1-Nedd4-2 pathway and provides insight into the molecular mechanism of the increased sodium transport mediated by ENaC with steroid treatment in HMEECs. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Bo G Kim
- Department of Otorhinolaryngology, Yonsei University, College of Medicine, Seoul
| | | | | | | | | | | |
Collapse
|
18
|
Distribution of glucocorticoid receptors and 11β-hydroxysteroid dehydrogenase isoforms in the human inner ear. Otol Neurotol 2013; 34:151-7. [PMID: 22996157 DOI: 10.1097/mao.0b013e31826a55ad] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HYPOTHESIS Glucocorticoids (GCs) are widely used as a therapeutic modality for the inner ear disorders including Ménière's disease (MD). The concentration of GCs in the target cells is known to be regulated by 11β-hydroxysteroid dehydrogenase (11β-HSD), an enzyme complex responsible for the conversion of hormonally active cortisol into inactive cortisone. There is no morphologic indication of glucocorticoid receptors (GRs) and 11β-HSD isoforms (11β-HSD1 and 2) in human inner ear. OBJECTIVES The objectives of this study are to determine whether GRs and the isoforms of 11β-HSD are present in human inner ear tissues and to reveal their precise distribution. STUDY DESIGN This study investigated the expression of GRs and 11β-HSD isoforms (11β-HSD1 and 2) in the human inner ear. METHODS In humans, immunostaining of GRs, 11β-HSD1, and 11β-HSD2 was performed in the stria vascularis (SV) and the vestibular tissues, whereas in the cochlear tissues except for the SV, only GRs were investigated. RESULTS Immunoreactivity of GRs was detected in the SV, outer hair cells, inner hair cell, spiral ligament, Reissner's membrane, vestibular hair cells, vestibular nerve, transitional cells, and dark cells of the crista ampullaris. 11β-HSD1 was observed in the SV, the apical area of the vestibular hair cells, the transitional cells, and the dark cells. However, no immunoreactivity of 11β-HSD2 was observed. CONCLUSION Those data indicate that different local steroid regulation by GRs and the isoforms of 11β-HSD is present in various parts of the human inner ear tissues and that the tissues are a direct therapeutic target of glucocorticoids in the inner ear diseases.
Collapse
|
19
|
Pondugula SR, Kampalli SB, Wu T, De Lisle RC, Raveendran NN, Harbidge DG, Marcus DC. cAMP-stimulated Cl- secretion is increased by glucocorticoids and inhibited by bumetanide in semicircular canal duct epithelium. BMC PHYSIOLOGY 2013; 13:6. [PMID: 23537040 PMCID: PMC3622586 DOI: 10.1186/1472-6793-13-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/11/2013] [Indexed: 12/13/2022]
Abstract
Background The vestibular system controls the ion composition of its luminal fluid through several epithelial cell transport mechanisms under hormonal regulation. The semicircular canal duct (SCCD) epithelium has been shown to secrete Cl- under β2-adrenergic stimulation. In the current study, we sought to determine the ion transporters involved in Cl- secretion and whether secretion is regulated by PKA and glucocorticoids. Results Short circuit current (Isc) from rat SCCD epithelia demonstrated stimulation by forskolin (EC50: 0.8 μM), 8-Br-cAMP (EC50: 180 μM), 8-pCPT-cAMP (100 μM), IBMX (250 μM), and RO-20-1724 (100 μM). The PKA activator N6-BNZ-cAMP (0.1, 0.3 & 1 mM) also stimulated Isc. Partial inhibition of stimulated Isc individually by bumetanide (10 & 50 μM), and [(dihydroindenyl)oxy]alkanoic acid (DIOA, 100 μM) were additive and complete. Stimulated Isc was also partially inhibited by CFTRinh-172 (5 & 30 μM), flufenamic acid (5 μM) and diphenylamine-2,2′-dicarboxylic acid (DPC; 1 mM). Native canals of CFTR+/− mice showed a stimulation of Isc from isoproterenol and forskolin+IBMX but not in the presence of both bumetanide and DIOA, while canals from CFTR−/− mice had no responses. Nonetheless, CFTR−/− mice showed no difference from CFTR+/− mice in their ability to balance (rota-rod). Stimulated Isc was greater after chronic incubation (24 hr) with the glucocorticoids dexamethasone (0.1 & 0.3 μM), prednisolone (0.3, 1 & 3 μM), hydrocortisone (0.01, 0.1 & 1 μM), and corticosterone (0.1 & 1 μM) and mineralocorticoid aldosterone (1 μM). Steroid action was blocked by mifepristone but not by spironolactone, indicating all the steroids activated the glucocorticoid, but not mineralocorticoid, receptor. Expression of transcripts for CFTR; for KCC1, KCC3a, KCC3b and KCC4, but not KCC2; for NKCC1 but not NKCC2 and for WNK1 but only very low WNK4 was determined. Conclusions These results are consistent with a model of Cl- secretion whereby Cl- is taken up across the basolateral membrane by a Na+-K+-2Cl- cotransporter (NKCC) and potentially another transporter, is secreted across the apical membrane via a Cl- channel, likely CFTR, and demonstrate the regulation of Cl- secretion by protein kinase A and glucocorticoids.
Collapse
|
20
|
Shafik AG, Elkabarity RH, Thabet MT, Soliman NB, Kalleny NK. Effect of intratympanic dexamethasone administration on cisplatin-induced ototoxicity in adult guinea pigs. Auris Nasus Larynx 2013; 40:51-60. [DOI: 10.1016/j.anl.2012.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 05/15/2012] [Accepted: 05/23/2012] [Indexed: 12/13/2022]
|
21
|
Abstract
The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Physiology and Biophysics, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
22
|
Raphemot R, Lonergan DF, Nguyen TT, Utley T, Lewis LM, Kadakia R, Weaver CD, Gogliotti R, Hopkins C, Lindsley CW, Denton JS. Discovery, characterization, and structure-activity relationships of an inhibitor of inward rectifier potassium (Kir) channels with preference for Kir2.3, Kir3.x, and Kir7.1. Front Pharmacol 2011; 2:75. [PMID: 22275899 PMCID: PMC3254186 DOI: 10.3389/fphar.2011.00075] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/07/2011] [Indexed: 12/03/2022] Open
Abstract
The inward rectifier family of potassium (Kir) channels is comprised of at least 16 family members exhibiting broad and often overlapping cellular, tissue, or organ distributions. The discovery of disease-causing mutations in humans and experiments on knockout mice has underscored the importance of Kir channels in physiology and in some cases raised questions about their potential as drug targets. However, the paucity of potent and selective small-molecule modulators targeting specific family members has with few exceptions mired efforts to understand their physiology and assess their therapeutic potential. A growing body of evidence suggests that G protein-coupled inward rectifier K (GIRK) channels of the Kir3.X subfamily may represent novel targets for the treatment of atrial fibrillation. In an effort to expand the molecular pharmacology of GIRK, we performed a thallium (Tl(+)) flux-based high-throughput screen of a Kir1.1 inhibitor library for modulators of GIRK. One compound, termed VU573, exhibited 10-fold selectivity for GIRK over Kir1.1 (IC(50) = 1.9 and 19 μM, respectively) and was therefore selected for further study. In electrophysiological experiments performed on Xenopus laevis oocytes and mammalian cells, VU573 inhibited Kir3.1/3.2 (neuronal GIRK) and Kir3.1/3.4 (cardiac GIRK) channels with equal potency and preferentially inhibited GIRK, Kir2.3, and Kir7.1 over Kir1.1 and Kir2.1.Tl(+) flux assays were established for Kir2.3 and the M125R pore mutant of Kir7.1 to support medicinal chemistry efforts to develop more potent and selective analogs for these channels. The structure-activity relationships of VU573 revealed few analogs with improved potency, however two compounds retained most of their activity toward GIRK and Kir2.3 and lost activity toward Kir7.1. We anticipate that the VU573 series will be useful for exploring the physiology and structure-function relationships of these Kir channels.
Collapse
Affiliation(s)
- Rene Raphemot
- Department of Anesthesiology, Vanderbilt University School of MedicineNashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
| | - Daniel F. Lonergan
- Department of Anesthesiology, Vanderbilt University School of MedicineNashville, TN, USA
| | - Thuy T. Nguyen
- Department of Anesthesiology, Vanderbilt University School of MedicineNashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
| | - Thomas Utley
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
| | - L. Michelle Lewis
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashville, TN, USA
| | - Rishin Kadakia
- Department of Anesthesiology, Vanderbilt University School of MedicineNashville, TN, USA
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashville, TN, USA
| | - Rocco Gogliotti
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of MedicineNashville, TN, USA
| | - Corey Hopkins
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of MedicineNashville, TN, USA
- Department of Chemistry, Vanderbilt UniversityNashville, TN, USA
- Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Molecular Libraries Probe Production Centers NetworkNashville, TN, USA
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of MedicineNashville, TN, USA
- Department of Chemistry, Vanderbilt UniversityNashville, TN, USA
- Vanderbilt Specialized Chemistry Center for Accelerated Probe Development, Molecular Libraries Probe Production Centers NetworkNashville, TN, USA
| | - Jerod S. Denton
- Department of Anesthesiology, Vanderbilt University School of MedicineNashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashville, TN, USA
| |
Collapse
|
23
|
Casani AP, Piaggi P, Cerchiai N, Seccia V, Franceschini SS, Dallan I. Intratympanic treatment of intractable unilateral Meniere disease: gentamicin or dexamethasone? A randomized controlled trial. Otolaryngol Head Neck Surg 2011; 146:430-7. [PMID: 22101095 DOI: 10.1177/0194599811429432] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To determine the efficacy and safety of low-dose intratympanic gentamicin (ITG) compared with intratympanic dexamethasone (ITD) in patients with intractable unilateral Ménière disease (MD). STUDY DESIGN Open prospective randomized controlled study. SETTING Tertiary referral center. SUBJECTS AND METHODS Sixty patients affected by definite unilateral MD were enrolled between January 1, 2007, and June 30, 2008. Thirty-two patients were treated with a buffered gentamicin solution injected in the middle ear (maximum of 2 injections); 28 patients were treated with ITD (4 mg/mL, 3 injections at intervals of 1 every 3 days). Mean outcome measurements consisted of control of vertigo attacks, pure tone average (PTA), speech discrimination score, functional disability score, and statistical analysis using repeated measures analysis of variance. RESULTS In the ITG group at 2-year follow-up, complete control of vertigo (class A) was achieved in 26 patients (81%) and substantial control of vertigo (class B) in 4 patients (12.5%). In the ITD group, class A was achieved in 12 (43%), and class B in 5 (18%) patients. In the gentamicin group, 4 patients showed a reduction in PTA of ≥10 dB. In the ITD group, PTA was unchanged or slightly improved in 16 patients (belonging to class A-B) and worse in 12. CONCLUSIONS Low-dose ITG achieved better outcome than ITD in the control of vertigo attacks in patients suffering from unilateral MD, with a very low incidence of hearing deterioration. ITD offers poorer vertigo control rate, and hearing preservation is achieved only in cases with no vertigo recurrences.
Collapse
Affiliation(s)
- Augusto Pietro Casani
- Department of Neurosciences, Otorhinolaryngology Unit, Pisa University Hospital, Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Serum- and glucocorticoid-inducible kinase 1 in the regulation of renal and extrarenal potassium transport. Clin Exp Nephrol 2011; 16:73-80. [DOI: 10.1007/s10157-011-0488-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 04/08/2010] [Indexed: 01/24/2023]
|
25
|
Rutt AL, Hawkshaw MJ, Sataloff RT. Incidence of tympanic membrane perforation after intratympanic steroid treatment through myringotomy tubes. EAR, NOSE & THROAT JOURNAL 2011; 90:E21. [PMID: 21500156 DOI: 10.1177/014556131109000416] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intratympanic (IT) steroids are often used to treat inner ear disorders such as sudden idiopathic sensorineural hearing loss, autoimmune inner ear disease, and Ménière disease. Administration of corticosteroids via IT injection, via application with a pledget to the round window, or via catheter has been used for this purpose. The frequency of adverse events related to the IT injection of steroids is low, with pain, short-lasting vertigo, otitis media, and tympanic perforations being the most common complications. However, the safety of IT steroid therapy has not yet been established in a randomized clinical trial. In this article, we discuss a group of 11 patients with sensorineural hearing loss who underwent myringotomy and tube placement for home-based dexamethasone instillation and subsequently developed the complication of tympanic membrane perforation. It appears that there is a significantly increased incidence of tympanic membrane perforations in this population.
Collapse
Affiliation(s)
- Amy L Rutt
- Department of Otolaryngology-Head and Neck Surgery, Detroit Medical Center/Michigan State University, Detroit, MI, USA
| | | | | |
Collapse
|
26
|
Distribution of glucocorticoid receptors and 11 beta-hydroxysteroid dehydrogenase isoforms in the rat inner ear. Hear Res 2011; 280:148-56. [DOI: 10.1016/j.heares.2011.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/05/2011] [Accepted: 05/12/2011] [Indexed: 02/07/2023]
|
27
|
Yamazaki M, Wu T, Pondugula SR, Harbidge DG, Marcus DC. Sodium selectivity of semicircular canal duct epithelial cells. BMC Res Notes 2011; 4:355. [PMID: 21914199 PMCID: PMC3180474 DOI: 10.1186/1756-0500-4-355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/13/2011] [Indexed: 11/16/2022] Open
Abstract
Background Sodium absorption by semicircular canal duct (SCCD) epithelial cells is thought to contribute to the homeostasis of the volume of vestibular endolymph. It was previously shown that the epithelial cells could absorb Na+ under control of a glucocorticoid hormone (dexamethasone) and the absorptive transepithelial current was blocked by amiloride. The most commonly-observed target of amiloride is the epithelial sodium channel (ENaC), comprised of the three subunits α-, β- and γ-ENaC. However, other cation channels have also been observed to be sensitive in a similar concentration range. The aim of this study was to determine whether SCCD epithelial cells absorb only Na+ or also K+ through an amiloride-sensitive pathway. Parasensory K+ absorption could contribute to regulation of the transduction current through hair cells, as found to occur via vestibular transitional cells [S. H. Kim and D. C. Marcus. Regulation of sodium transport in the inner ear. Hear.Res. doi:10.1016/j.heares.2011.05.003, 2011]. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6197), whole-cell patch clamp and transepithelial recordings in primary cultures of rat SCCD. α-, β- and γ-ENaC were all previously reported as present. The selectivity of the amiloride-sensitive transepithelial and cell membrane currents was observed in Ussing chamber and whole-cell patch clamp recordings. The cell membrane currents were carried by Na+ but not K+, but the Na+ selectivity disappeared when the cells were cultured on impermeable supports. Transepithelial currents across SCCD were also carried exclusively by Na+. Conclusions These results are consistent with the amiloride-sensitive absorptive flux of SCCD mediated by a highly Na+-selective channel, likely αβγ-ENaC. These epithelial cells therefore absorb only Na+ via the amiloride-sensitive pathway and do not provide a parasensory K+ efflux from the canals via this pathway. The results further provide caution to the culture of epithelial cells on impermeable surfaces.
Collapse
Affiliation(s)
- Muneharu Yamazaki
- Cellular Biophysics Laboratory, Department of Anatomy & Physiology, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | | | |
Collapse
|
28
|
Monje FJ, Kim EJ, Cabatic M, Lubec G, Herkner KR, Pollak DD. A role for glucocorticoid-signaling in depression-like behavior of gastrin-releasing peptide receptor knock-out mice. Ann Med 2011; 43:389-402. [PMID: 21254899 DOI: 10.3109/07853890.2010.538716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Abstract Background. The gastrin-releasing peptide receptor (GRPR) is highly expressed in the limbic system, where it importantly regulates emotional functions and in the suprachiasmatic nucleus, where it is central for the photic resetting of the circadian clock. Mice lacking GRPR presented with deficient light-induced phase shift in activity as well altered emotional learning and amygdala function. The effect of GRPR deletion on depression-like behavior and its molecular signature in the amygdala, however, has not yet been evaluated. Methods. GRPR knock-out mice (GRPR-KO) were tested in the forced-swim test and the sucrose preference test for depression-like behavior. Gene expression in the basolateral nucleus of the amygdala was evaluated by micorarray analysis subsequent to laser-capture microdissection-assisted extraction of mRNA. The expression of selected genes was confirmed by RT-PCR. Results. GRPR-KO mice were found to present with increased depression-like behavior. Microarray analysis revealed down-regulation of several glucocorticoid-responsive genes in the basolateral amygdala. Acute administration of dexamethasone reversed the behavioral phenotype and alterations in gene expression. Discussion. We propose that deletion of GRPR leads to the induction of depression-like behavior which is paralleled by dysregulation of amygdala gene expression, potentially resulting from deficient light-induced corticosterone release in GRPR-KO.
Collapse
Affiliation(s)
- Francisco J Monje
- Department of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna , Austria
| | | | | | | | | | | |
Collapse
|
29
|
Fu Y, Zhao H, Zhang T, Chi F. Intratympanic dexamethasone as initial therapy for idiopathic sudden sensorineural hearing loss: Clinical evaluation and laboratory investigation. Auris Nasus Larynx 2011; 38:165-71. [PMID: 20817429 DOI: 10.1016/j.anl.2010.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/25/2010] [Accepted: 07/30/2010] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the effect of intratympanic dexamethasone (ITD) as initial therapy for idiopathic sudden sensorineural hearing loss (ISSHL) as well as to determine the concentration-dependent time course distribution of dexamethasone in the inner ear. METHODS Sixty-six patients with profound ISSHL were included. Twenty-two were treated with ITD and the rest as control. Audiograms were performed before the treatment and one month afterwards. In the animal study, dexamethasone of different concentrations (5, 10 and 20mg/ml) was injected into the tympanums of three groups of SD rats (Groups A, B and C), their inner ears dissected free at various postinjection survival intervals. Immunofluorescence was applied to detect the locations of dexamethasone. RESULTS The overall rate of good prognosis was 77.27% in ITD group, which was not significantly different from 81.82% in the control group. In the animal study, the higher local concentration and longer lasting period was found in Groups B and C. CONCLUSIONS ITD at 5mg/ml did not add effect to systemic steroids in improving hearing outcomes in patients with ISSHL. An increase in dexamethasone concentration led to large variations in pharmacokinetics in animal study, showing potential value in optimizing the drug delivery protocols and improving the therapeutic results.
Collapse
Affiliation(s)
- Yaoyao Fu
- Department of Otorhinolaryngology Head and Neck Surgery, EYE & ENT Hospital of Fudan University, Shanghai Medical School, Fudan University, Shanghai 200031, China
| | | | | | | |
Collapse
|
30
|
Kim SH, Marcus DC. Regulation of sodium transport in the inner ear. Hear Res 2011; 280:21-9. [PMID: 21620939 DOI: 10.1016/j.heares.2011.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 12/31/2022]
Abstract
Na(+) concentrations in endolymph must be controlled to maintain hair cell function since the transduction channels of hair cells are cation-permeable, but not K(+)-selective. Flooding or fluctuations of the hair cell cytosol with Na(+) would be expected to lead to cellular dysfunction, hearing loss and vertigo. This review briefly describes cellular mechanisms known to be responsible for Na(+) homeostasis in each compartment of the inner ear, including the cochlea, saccule, semicircular canals and endolymphatic sac. The influx of Na(+) into endolymph of each of the organs is likely via passive diffusion, but these pathways have not yet been identified or characterized. Na(+) absorption is controlled by gate-keeper channels in the apical (endolymphatic) membrane of the transporting cells. Highly Na(+)-selective epithelial sodium channels (ENaCs) control absorption by Reissner's membrane, saccular extramacular epithelium, semicircular canal duct epithelium and endolymphatic sac. ENaC activity is controlled by a number of signal pathways, but most notably by genomic regulation of channel numbers in the membrane via glucocorticoid signaling. Non-selective cation channels in the apical membrane of outer sulcus epithelial cells and vestibular transitional cells mediate Na(+) and parasensory K(+) absorption. The K(+)-mediated transduction current in hair cells is also accompanied by a Na(+) flux since the transduction channels are non-selective cation channels. Cation absorption by all of these cells is regulated by extracellular ATP via apical non-selective cation channels (P2X receptors). The heterogeneous population of epithelial cells in the endolymphatic sac is thought to have multiple absorptive pathways for Na(+) with regulatory pathways that include glucocorticoids and purinergic agonists.
Collapse
Affiliation(s)
- Sung Huhn Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Republic of Korea
| | | |
Collapse
|
31
|
Abstract
HYPOTHESIS To investigate whether OTO-104, a poloxamer-based hydrogel containing micronized dexamethasone for intratympanic delivery, can provide long-lasting inner ear exposure and be well tolerated. METHODS OTO-104 was administered intratympanically to guinea pigs and sheep, and its pharmacokinetic and toxicity profiles were examined. RESULTS After a single intratympanic injection of OTO-104 (from 0.6% to 20%, w/w), significant and prolonged exposure to dexamethasone in the inner ear was observed. Increasing the concentration of OTO-104 resulted in higher perilymph drug levels as well as a more prolonged duration of exposure. At the highest dose, therapeutic perilymph levels of dexamethasone could be sustained over 3 months in guinea pigs and more than 1 month in sheep. A toxicologic evaluation was conducted, including assessments of middle and inner ear function and physiology, as well as appraisal of local and systemic toxicity. A small and transient shift in hearing threshold was observed, most probably conductive in nature. No significant histologic changes in middle or inner ear tissues were noted. Although macroscopically mild erythema/inflammation was documented in a subset of guinea pigs treated with 20% OTO-104, the nature and the severity of these changes were not different between the poloxamer vehicle, saline, and 20% OTO-104 groups. No evidence of acute dermal toxicity, delayed hypersensitivity, or systemic adverse effects was found. CONCLUSION OTO-104 is a novel proprietary therapeutic delivery system that can achieve prolonged, sustained release of dexamethasone within the inner ear fluids. The administration of this clinical candidate formulation via intratympanic injection is expected to be well tolerated both locally and systemically.
Collapse
|
32
|
Wang X, Dellamary L, Fernandez R, Ye Q, LeBel C, Piu F. Principles of inner ear sustained release following intratympanic administration. Laryngoscope 2011; 121:385-91. [PMID: 21271594 DOI: 10.1002/lary.21370] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE/HYPOTHESIS Previous studies revealed that intratympanic administration of the steroid dexamethasone in poloxamer 407 hydrogel, a class of thermoreversible polymers, resulted in significant and durable exposure in the inner ear. Interestingly, varying the concentrations of the poloxamer vehicle and of the steroid impacted the pharmacokinetic profile of dexamethasone in the perilymphatic compartment. Here, the respective contributions of different vehicles (aqueous solution, poloxamer hydrogel) and steroid drugs (dexamethasone, methylprednisolone) were investigated. In particular, various forms of the steroids, discriminated by their aqueous solubility, were compared. STUDY DESIGN In vitro studies characterized the gelation profile and drug release kinetics of the various formulations. The inner ear pharmacokinetic profile of the different formulations was investigated in guinea pigs. RESULTS Drugs formulated in poloxamer 407 shared significantly more prolonged exposure than those formulated in aqueous solutions both in vitro and in vivo in the inner ear. Furthermore, drugs with low aqueous solubility yielded increased degree and duration of exposure in the inner ear relative to water-soluble drugs. CONCLUSIONS The inner ear pharmacokinetic profile of drugs administered intratympanically is not only highly dependent upon the nature of the vehicle but also upon the physicochemical properties of the drug delivered.
Collapse
Affiliation(s)
- Xiaobo Wang
- Otonomy Inc., San Diego, California 92121, USA
| | | | | | | | | | | |
Collapse
|
33
|
Salt AN, Hartsock J, Plontke S, LeBel C, Piu F. Distribution of dexamethasone and preservation of inner ear function following intratympanic delivery of a gel-based formulation. Audiol Neurootol 2010; 16:323-35. [PMID: 21178339 DOI: 10.1159/000322504] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/29/2010] [Indexed: 01/11/2023] Open
Abstract
Intratympanic (IT) delivery of drugs to the ear is increasingly used for both clinical and research purposes. One limitation of IT delivery is that drugs are rapidly lost from the middle ear by a number of processes, so that prolonged delivery of drug is technically difficult. In the present study, the delivery characteristics of a poloxamer hydrogel formulation containing dexamethasone (dex) were evaluated. The gel is liquid at room temperature, allowing IT injection, but transitions to a gel at body temperature, providing a prolonged residence time in the middle ear. A 50-μl volume of control or dex-containing gel (dex-gel) was injected through the tympanic membrane of guinea pigs. Cochlear function was assessed with cochlear action potential and acoustic emission thresholds measured immediately, 6 or 24 h after IT gel injection. After 6- or 24-hour treatment with dex-gel, perilymph drug gradients along the cochlea were assessed by taking samples sequentially from the apex, and endolymph was sampled from the basal turn. Control gel injections caused small changes in sound field calibrations and functional measures for low-frequency stimuli, consistent with an induced conductive loss. Within 24 h, responses returned to normal. Twenty-four hours after dex-gel injection, low-frequency changes remained as the dex-gel was retained better in the middle ear, but there was no indication of high-frequency loss. While perilymph sample data showed that dex gradients were substantially lower than after single injections of dex solution, quantitative analysis of this result suggests that some dex may have entered the perilymph through the thin bone in the apical region of the cochlea. Endolymph levels of dex remained lower than those in the perilymph. This study confirms that a poloxamer hydrogel-based dex formulation provides an effective method for a prolonged delivery, providing a more uniform distribution of drug in the inner ear.
Collapse
Affiliation(s)
- Alec N Salt
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Mo., USA. salta @ ent.wustl.edu
| | | | | | | | | |
Collapse
|
34
|
Medical management of common peripheral vestibular diseases. Curr Opin Otolaryngol Head Neck Surg 2010; 18:407-12. [DOI: 10.1097/moo.0b013e32833e587a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Pondugula SR, Raveendran NN, Marcus DC. Ion transport regulation by P2Y receptors, protein kinase C and phosphatidylinositol 3-kinase within the semicircular canal duct epithelium. BMC Res Notes 2010; 3:100. [PMID: 20398257 PMCID: PMC2862037 DOI: 10.1186/1756-0500-3-100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 04/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ionic composition of the luminal fluid in the vestibular labyrinth is maintained within tight limits by the many types of epithelial cells bounding the lumen. Regulatory mechanisms include systemic, paracrine and autocrine hormones along with their associated intracellular signal pathways. The epithelium lining the semicircular canal duct (SCCD) is a tissue that is known to absorb sodium and calcium and to secrete chloride. FINDINGS Transport function was assessed by measurements of short circuit current (Isc) and gene transcript expression was evaluated by microarray. Neither ATP nor UTP (100 microM) on the apical side of the epithelium had any effect on Isc. By contrast, basolateral ATP transiently increased Isc and transepithelial resistance dropped significantly after basolateral ATP and UTP. P2Y2 was the sole UTP-sensitive purinergic receptor expressed. Isc was reduced by 42%, 50% and 63% after knockdown of alpha-ENaC, stimulation of PKC and inhibition of PI3-K, while the latter two increased the transepithelial resistance. PKCdelta, PKCgamma and PI3-K were found to be expressed. CONCLUSIONS These observations demonstrate that ion transport by the SCCD is regulated by P2Y2 purinergic receptors on the basolateral membrane that may respond to systemic or local agonists, such as ATP and/or UTP. The sodium absorption from endolymph mediated by ENaC in SCCD is regulated by signal pathways that include the kinases PKC and PI3-K. These three newly-identified regulatory components may prove to be valuable drug targets in the control of pathologic vestibular conditions involving dysfunction of transport homeostasis in the ear, such as Meniere's disease.
Collapse
|
36
|
Yamauchi D, Nakaya K, Raveendran NN, Harbidge DG, Singh R, Wangemann P, Marcus DC. Expression of epithelial calcium transport system in rat cochlea and vestibular labyrinth. BMC PHYSIOLOGY 2010; 10:1. [PMID: 20113508 PMCID: PMC2825184 DOI: 10.1186/1472-6793-10-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 01/29/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND The low luminal Ca2+ concentration of mammalian endolymph in the inner ear is required for normal hearing and balance. We recently reported the expression of mRNA for a Ca2+-absorptive transport system in primary cultures of semicircular canal duct (SCCD) epithelium. RESULTS We now identify this system in native vestibular and cochlear tissues by qRT-PCR, immunoblots and confocal immunolocalization. Transcripts were found and quantified for several isoforms of epithelial calcium channels (TRPV5, TRPV6), calcium buffer proteins (calbindin-D9K, calbindin-D28K), sodium-calcium exchangers (NCX1, NCX2, NCX3) and plasma membrane Ca2+-ATPase (PMCA1, PMCA2, PMCA3, and PMCA4) in native SCCD, cochlear lateral wall (LW) and stria vascularis (SV) of adult rat as well as Ca2+ channels in neonatal SCCD. All components were expressed except TRPV6 in SV and PMCA2 in SCCD. 1,25-(OH)2vitamin D3 (VitD) significantly up-regulated transcripts of TRPV5 in SCCD, calbindin-D9K in SCCD and LW, NCX2 in LW, while PMCA4 in SCCD and PMCA3 in LW were down-regulated. The expression of TRPV5 relative to TRPV6 was in the sequence SV > Neonatal SCCD > Adult SCCD > LW > primary culture SCCD. Expression of TRPV5 protein from primary culture of SCCD did not increase significantly when cells were incubated with VitD (1.2 times control; P > 0.05). Immunolocalization showed the distribution of TRPV5 and TRPV6. TRPV5 was found near the apical membrane of strial marginal cells and both TRPV5 and TRPV6 in outer and inner sulcus cells of the cochlea and in the SCCD of the vestibular system. CONCLUSIONS These findings demonstrate for the first time the expression of a complete Ca2+ absorptive system in native cochlear and vestibular tissues. Regulation by vitamin D remains equivocal since the results support the regulation of this system at the transcript level but evidence for control of the TRPV5 channel protein was lacking.
Collapse
Affiliation(s)
- Daisuke Yamauchi
- Cellular Biophysics Laboratory, Dept, Anatomy & Physiology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The saccule is a vestibular sensory organ that depends upon regulation of its luminal fluid, endolymph, for normal transduction of linear acceleration into afferent neural transmission. Previous studies suggested that endolymph in the saccule was merely derived from cochlear endolymph. We developed and used a preparation of isolated mouse saccule to measure transepithelial currents from the extramacular epithelium with a current density probe. The direction and pharmacology of transepithelial current was consistent with Na(+) absorption by the epithelial Na(+) channel (ENaC) and was blocked by the ENaC-specific inhibitors benzamil and amiloride. Involvement of Na(+),K(+)-ATPase and K(+) channels was demonstrated by reduction of the current by ouabain and the K(+) channel blockers Ba(2+), XE991, and 4-AP. Glucocorticoids upregulated the current via glucocorticoid receptors. Dexamethasone stimulated the current after 24 h and the stimulation was blocked by mifepristone but not spironolactone. No acute response was observed to elevated cAMP in the presence of amiloride nor to bumetanide, a blocker of Na(+),K(+),2Cl(-) cotransporter. The results are consistent with a canonical model of corticosteroid-regulated Na(+) absorption that includes entry of luminal Na(+) through apical membrane Na(+) channels and active basolateral exit of Na(+) via a Na(+) pump, with recycling of K(+) at the basolateral membrane via K(+)-permeable channels. These observations provide our first understanding of the active role played by saccular epithelium in the local regulation of the [Na(+)] of endolymph for maintenance of our sense of balance.
Collapse
|
38
|
Abstract
Compelling evidence is accumulating indicating a pathophysiological role of the serum-and-glucocorticoid-inducible-kinase-1 (SGK1) in the development and complications of diabetes. SGK1 is ubiquitously expressed with exquisitely high transcriptional volatility. Stimulators of SGK1 expression include hyperglycemia, cell shrinkage, ischemia, glucocorticoids and mineralocorticoids. SGK1 is activated by insulin and growth factors via PI3K, 3-phosphoinositide dependent kinase PDK1 and mTOR. SGK1 activates ion channels (including ENaC, TRPV5, ROMK, KCNE1/KCNQ1 and CLCKa/Barttin), carriers (including NCC, NKCC, NHE3, SGLT1 and EAAT3), and the Na(+)/K(+)-ATPase. It regulates the activity of several enzymes (e.g., glycogen-synthase-kinase-3, ubiquitin-ligase Nedd4-2, phosphomannose-mutase-2), and transcription factors (e.g., forkhead-transcription-factor FOXO3a, beta-catenin and NF-kappaB). A common SGK1 gene variant ( approximately 3 - 5% prevalence in Caucasians, approximately 10% in Africans) is associated with increased blood pressure, obesity and type 2 diabetes. In patients suffering from type 2 diabetes, SGK1 presumably contributes to fluid retention and hypertension, enhanced coagulation and increased deposition of matrix proteins leading to tissue fibrosis such as diabetic nephropathy. Accordingly, targeting SGK1 may favourably influence occurrence and course of type 2 diabetes.
Collapse
Affiliation(s)
- Florian Lang
- Eberhard-Karls-University of Tuebingen, Department of Physiology, Gmelinstrasse 5, Tuebingen 72076, Germany.
| | | | | |
Collapse
|
39
|
The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Curr Opin Nephrol Hypertens 2009; 18:439-48. [PMID: 19584721 DOI: 10.1097/mnh.0b013e32832f125e] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The role of serum and glucocorticoid-inducible kinase 1 (SGK1) in renal physiology and pathophysiology is reviewed with particular emphasis on recent advances. RECENT FINDINGS The mammalian target of rapamycin complex 2 has been shown to phosphorylate SGK1 at Ser422 (the so-called hydrophobic motif). Ser397 and Ser401 are two additional SGK1-phosphorylation sites required for maximal SGK1 activity. A 5' variant alternate transcript of human Sgk1 has been identified that is widely expressed and shows improved stability, enhanced membrane association, and greater stimulation of epithelial Na+ transport. SGK1 is essential for optimal processing of the epithelial sodium channel and also regulates the expression of the Na+-Cl- cotransporter. With regard to pathophysiology, SGK1 participates in the stimulation of renal tubular glucose transport in diabetes, the renal profibrotic effect of both angiotensin II and aldosterone, and in fetal programing of arterial hypertension. SUMMARY The outlined recent findings advanced our understanding of the molecular regulation of SGK1 as well as the role of the kinase in renal physiology and the pathophysiology of renal disease and hypertension. Future studies using pharmacological inhibitors of SGK1 will reveal the utility of the kinase as a new therapeutic target.
Collapse
|
40
|
Kim SH, Kim KX, Raveendran NN, Wu T, Pondugula SR, Marcus DC. Regulation of ENaC-mediated sodium transport by glucocorticoids in Reissner's membrane epithelium. Am J Physiol Cell Physiol 2009; 296:C544-57. [PMID: 19144862 DOI: 10.1152/ajpcell.00338.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reissner's membrane epithelium forms much of the barrier that produces and sustains the large ionic differences between cochlear endolymph and perilymph. We have reported that Reissner's membrane contributes to normal cochlear function by absorbing Na(+) from endolymph via amiloride-sensitive channels in gerbil inner ear. We used mouse Reissner's membrane to 1) identify candidate genes involved in the Na(+) transport pathway, 2) determine whether their level of expression was regulated by the synthetic glucocorticoid dexamethasone, and 3) obtain functional evidence for the physiological importance of these genes. Transcripts were present for alpha-, beta-, and gamma-subunits of epithelial Na(+) channel (ENaC); corticosteroid receptors GR (glucocorticoid receptor) and MR (mineralocorticoid receptor); GR agonist regulator 11beta-hydroxysteroid dehydrogenase (HSD) type 1 (11beta-HSD1); Na(+) transport control components SGK1, Nedd4-2, and WNKs; and K(+) channels and Na(+)-K(+)-ATPase. Expression of the MR agonist regulator 11beta-HSD2 was not detected. Dexamethasone upregulated transcripts for alpha- and beta-subunits of ENaC ( approximately 6- and approximately 3-fold), KCNK1 ( approximately 3-fold), 11beta-HSD1 ( approximately 2-fold), SGK1 ( approximately 2-fold), and WNK4 ( approximately 3-fold). Transepithelial currents from the apical to the basolateral side of Reissner's membrane were sensitive to amiloride (IC(50) approximately 0.7 muM) and benzamil (IC(50) approximately 0.1 muM), but not EIPA (IC(50) approximately 34 muM); amiloride-blocked transepithelial current was not immediately changed by forskolin/IBMX. Currents were reduced by ouabain, lowered bath Na(+) concentration (from 150 to 120 mM), and K(+) channel blockers (XE-991, Ba(2+), and acidification from pH 7.4 to 6.5). Dexamethasone-stimulated current and gene expression were reduced by mifepristone, but not spironolactone. These molecular, pharmacological, and functional observations are consistent with Na(+) absorption by mouse Reissner's membrane, which is mediated by apical ENaC and/or other amiloride-sensitive channels, basolateral Na(+)-K(+)-ATPase, and K(+)-permeable channels and is under the control of glucocorticoids. These results provide an understanding and a molecular definition of an important transport function of Reissner's membrane epithelium in the homeostasis of cochlear endolymph.
Collapse
Affiliation(s)
- Sung Huhn Kim
- Kansas State Univ., Anatomy & Physiology, 228 Coles Hall, Manhattan, KS 66506-5802, USA
| | | | | | | | | | | |
Collapse
|
41
|
Issues, indications, and controversies regarding intratympanic steroid perfusion. Curr Opin Otolaryngol Head Neck Surg 2009; 16:434-40. [PMID: 18797285 DOI: 10.1097/moo.0b013e32830ce796] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Office-based intratympanic inner ear steroid perfusion (ITPs) treatment for Ménière's disease, autoimmune inner ear disease, and sudden sensorineural hearing loss has been expanding over the past 10-15 years, yet remains controversial. The purpose of this review is to examine the current literature of basic science and human studies of ITPs treatment. RECENT FINDINGS Animal studies exist regarding the delivery, distribution, biochemical, and microbiological changes in the inner ear post ITPs. However, few clinical studies exist on ITPs treatment in sudden sensorineural hearing loss and even less in treating Ménière's disease. There are no consistent studies regarding drug delivery methods, type, and concentration of steroids. Moreover, there are no studies comparing ITPs results to the natural history of Ménière's disease. SUMMARY ITPs has impacted otology and neurotology practice due to increased utilization. A sound understanding of the basic science and clinical studies is needed to establish long-term efficacy of ITPs in controlling hearing loss in Ménière's disease by comparison to its natural history, as well as, potential application to other disorders.
Collapse
|
42
|
Advances in Molecular and Cellular Therapies for Hearing Loss. Mol Ther 2008; 16:224-236. [DOI: 10.1038/sj.mt.6300351] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 10/10/2007] [Indexed: 02/07/2023] Open
|
43
|
Lang F, Vallon V, Knipper M, Wangemann P. Functional significance of channels and transporters expressed in the inner ear and kidney. Am J Physiol Cell Physiol 2007; 293:C1187-208. [PMID: 17670895 DOI: 10.1152/ajpcell.00024.2007] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of ion channels and transporters are expressed in both the inner ear and kidney. In the inner ear, K+cycling and endolymphatic K+, Na+, Ca2+, and pH homeostasis are critical for normal organ function. Ion channels and transporters involved in K+cycling include K+channels, Na+-2Cl−-K+cotransporter, Na+/K+-ATPase, Cl−channels, connexins, and K+/Cl−cotransporters. Furthermore, endolymphatic Na+and Ca2+homeostasis depends on Ca2+-ATPase, Ca2+channels, Na+channels, and a purinergic receptor channel. Endolymphatic pH homeostasis involves H+-ATPase and Cl−/HCO3−exchangers including pendrin. Defective connexins (GJB2 and GJB6), pendrin (SLC26A4), K+channels (KCNJ10, KCNQ1, KCNE1, and KCNMA1), Na+-2Cl−-K+cotransporter (SLC12A2), K+/Cl−cotransporters (KCC3 and KCC4), Cl−channels (BSND and CLCNKA + CLCNKB), and H+-ATPase (ATP6V1B1 and ATPV0A4) cause hearing loss. All these channels and transporters are also expressed in the kidney and support renal tubular transport or signaling. The hearing loss may thus be paralleled by various renal phenotypes including a subtle decrease of proximal Na+-coupled transport (KCNE1/KCNQ1), impaired K+secretion (KCNMA1), limited HCO3−elimination (SLC26A4), NaCl wasting (BSND and CLCNKB), renal tubular acidosis (ATP6V1B1, ATPV0A4, and KCC4), or impaired urinary concentration (CLCNKA). Thus, defects of channels and transporters expressed in the kidney and inner ear result in simultaneous dysfunctions of these seemingly unrelated organs.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard-Karls-University of Tübingen, Gmelinstrasse 5, Tübingen, Germany.
| | | | | | | |
Collapse
|
44
|
Clancy SM, Boyer SB, Slesinger PA. Coregulation of natively expressed pertussis toxin-sensitive muscarinic receptors with G-protein-activated potassium channels. J Neurosci 2007; 27:6388-99. [PMID: 17567799 PMCID: PMC6672446 DOI: 10.1523/jneurosci.1190-07.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many inhibitory neurotransmitters in the brain activate Kir3 channels by stimulating pertussis toxin (PTX)-sensitive G-protein-coupled receptors. Here, we investigated the regulation of native muscarinic receptors and Kir3 channels expressed in NGF-differentiated PC12 cells, which are similar to sympathetic neurons. Quantitative reverse transcription-PCR and immunocytochemistry revealed that NGF treatment significantly upregulated mRNA and protein for m2 muscarinic receptors, PTX-sensitive G alpha(o) G-proteins, and Kir3.2c channels. Surprisingly, these upregulated muscarinic receptor/Kir3 signaling complexes were functionally silent. Ectopic expression of m2 muscarinic receptors or Kir3.2c channels was unable to produce muscarinic receptor-activated Kir3 currents with oxotremorine. Remarkably, pretreatment with muscarinic (m2/m4) receptor antagonists resulted in robust oxotremorine-activated Kir3 currents. Thus, sustained cholinergic stimulation of natively expressed m2/m4 muscarinic receptors controlled cell surface expression and functional coupling of both receptors and Kir3 channels. This new pathway for controlling Kir3 signaling could help limit the potential harmful effects of excessive Kir3 activity in the brain.
Collapse
Affiliation(s)
- Sinead M. Clancy
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, and
| | - Stephanie B. Boyer
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, and
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Paul A. Slesinger
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, and
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
45
|
Muller O, Pradervand S, Berger S, Centeno G, Milet A, Nicod P, Pedrazzini T, Tronche F, Schütz G, Chien K, Rossier BC, Firsov D. Identification of corticosteroid-regulated genes in cardiomyocytes by serial analysis of gene expression. Genomics 2007; 89:370-7. [PMID: 17174066 DOI: 10.1016/j.ygeno.2006.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 10/10/2006] [Accepted: 11/01/2006] [Indexed: 11/29/2022]
Abstract
Corticosteroids (aldosterone, cortisol/corticosterone) exert direct functional effects on cardiomyocytes. However, gene networks activated by corticosteroids in cardiomyocytes, as well as the involvement of the mineralocorticoid receptor (MR) vs the glucocorticoid receptor (GR) in these effects, remain largely unknown. Here we characterized the corticosteroid-dependent transcriptome in primary culture of neonatal mouse cardiomyocytes treated with 10(-6) M aldosterone, a concentration predicted to occupy both MR and GR. Serial analysis of gene expression revealed 101 aldosterone-regulated genes. The MR/GR specificity was characterized for one regulated transcript, namely ecto-ADP-ribosyltransferase-3 (Art3). Using cardiomyocytes from GR(null/null) or MR(null/null) mice we demonstrate that in GR(null/null) cardiomyocytes the response is abrogated, but it is fully maintained in MR(null/null) cardiomyocytes. We conclude that Art3 expression is regulated exclusively via the GR. Our study identifies a new set of corticosteroid-regulated genes in cardiomyocytes and demonstrates a new approach to studying the selectivity of MR- vs GR-dependent effects.
Collapse
Affiliation(s)
- Olivier Muller
- Cardiology Service, University Hospital, CHUV, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|