1
|
Ma G, Chen Z, Li Z, Xiao X. Unveiling the neonatal gut microbiota: exploring the influence of delivery mode on early microbial colonization and intervention strategies. Arch Gynecol Obstet 2024; 310:2853-2861. [PMID: 39589476 DOI: 10.1007/s00404-024-07843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Recent research has emphasized the critical importance of establishing the neonatal gut microbiota for overall health and immune system development, prompting deeper studies about the early formation of neonatal gut microbiota and its influencing factors. Various factors, including maternal and environmental factors, affect the early formation of neonatal gut microbiota, in which delivery mode has been considered as one of the most crucial influencing factors. In recent years, the increasing trend of cesarean section during childbirth has become a serious challenge for global public health. This review thoroughly analyzes the effects of vaginal delivery and cesarean section on the establishment of neonatal gut microbiota and the potential long-term impacts. In addition, we analyze and discuss interventions such as probiotics, prebiotics, vaginal seeding, fecal microbiota transplantation, and breastfeeding to address the colonization defects of the neonatal gut microbiota caused by cesarean section, aiming to provide theoretical basis for the prevention and treatment of colonization defects and related diseases in infants caused by cesarean section in clinical practice and to provide a theoretical foundation for optimizing the development of neonatal gut microbiota.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhe Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Dai DLY, Petersen C, Turvey SE. Reduce, reinforce, and replenish: safeguarding the early-life microbiota to reduce intergenerational health disparities. Front Public Health 2024; 12:1455503. [PMID: 39507672 PMCID: PMC11537995 DOI: 10.3389/fpubh.2024.1455503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Socioeconomic (SE) disparity and health inequity are closely intertwined and associated with cross-generational increases in the rates of multiple chronic non-communicable diseases (NCDs) in North America and beyond. Coinciding with this social trend is an observed loss of biodiversity within the community of colonizing microbes that live in and on our bodies. Researchers have rightfully pointed to the microbiota as a key modifiable factor with the potential to ease existing health inequities. Although a number of studies have connected the adult microbiome to socioeconomic determinants and health outcomes, few studies have investigated the role of the infant microbiome in perpetuating these outcomes across generations. It is an essential and important question as the infant microbiota is highly sensitive to external forces, and observed shifts during this critical window often portend long-term outcomes of health and disease. While this is often studied in the context of direct modulators, such as delivery mode, family size, antibiotic exposure, and breastfeeding, many of these factors are tied to underlying socioeconomic and/or cross-generational factors. Exploring cross-generational socioeconomic and health inequities through the lens of the infant microbiome may provide valuable avenues to break these intergenerational cycles. In this review, we will focus on the impact of social inequality in infant microbiome development and discuss the benefits of prioritizing and restoring early-life microbiota maturation for reducing intergenerational health disparities.
Collapse
Affiliation(s)
| | | | - Stuart E. Turvey
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Donald K, Finlay BB. Mechanisms of microbe-mediated immune development in the context of antibiotics and asthma. FRONTIERS IN ALLERGY 2024; 5:1469426. [PMID: 39469482 PMCID: PMC11513386 DOI: 10.3389/falgy.2024.1469426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 10/30/2024] Open
Abstract
The gut houses 70%-80% of the body's immune cells and represents the main point of contact between the immune system and the outside world. Immune maturation occurs largely after birth and is guided by the gut microbiota. In addition to the many human clinical studies that have identified relationships between gut microbiota composition and disease outcomes, experimental research has demonstrated a plethora of mechanisms by which specific microbes and microbial metabolites train the developing immune system. The healthy maturation of the gut microbiota has been well-characterized and discreet stages marked by changes in abundance of specific microbes have been identified. Building on Chapter 8, which discusses experimental models used to study the relationship between the gut microbiota and asthma, the present review aims to dive deeper into the specific microbes and metabolites that drive key processes in immune development. The implications of microbiota maturation patterns in the context of asthma and allergies, as well as the effects of antibiotics on microbe-immune crosstalk, will also be discussed.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Departmentof Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Departmentof Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Wu X, Guo R, Fan Y, Chen S, Zheng W, Shu X, Chen B, Li X, Xu T, Shi L, Chen L, Shan L, Zhu Z, Tao E, Jiang M. Dynamic impact of delivery modes on gut microbiota in preterm infants hospitalized during the initial 4 weeks of life. Int J Med Microbiol 2024; 315:151621. [PMID: 38759506 DOI: 10.1016/j.ijmm.2024.151621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/05/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024] Open
Abstract
Preterm infants face a high risk of various complications, and their gut microbiota plays a pivotal role in health. Delivery modes have been reported to affect the development of gut microbiota in term infants, but its impact on preterm infants remains unclear. Here, we collected fecal samples from 30 preterm infants at five-time points within the first four weeks of life. Employing 16 S rRNA sequencing, principal coordinates analysis, the analysis of similarities, and the Wilcoxon rank-sum test, we examined the top dominant phyla and genera, the temporal changes in specific taxa abundance, and their relationship with delivery modes, such as Escherichia-Shigella and Enterococcus based on vaginal delivery and Pluralibacter related to cesarean section. Moreover, we identified particular bacteria, such as Taonella, Patulibacter, and others, whose proportions fluctuated among preterm infants born via different delivery modes at varying time points, as well as the microbiota types and functions. These results indicated the influence of delivery mode on the composition and function of the preterm infant gut microbiota. Importantly, these effects are time-dependent during the early stages of life. These insights shed light on the pivotal role of delivery mode in shaping the gut microbiota of preterm infants and have significant clinical implications for their care and management.
Collapse
Affiliation(s)
- Xin Wu
- Department of Pediatrics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Rui Guo
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Yijia Fan
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Shuang Chen
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Wei Zheng
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Xiaoli Shu
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Bo Chen
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Xing Li
- Department of Pediatrics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Tingting Xu
- Department of Pediatrics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Lingbing Shi
- Department of Pediatrics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Li Chen
- Department of Pediatrics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Lichun Shan
- Department of Pediatrics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Zhenya Zhu
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Enfu Tao
- Department of Neonatology and NICU, Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang Province, China
| | - Mizu Jiang
- Gastrointestinal Laboratory and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China; Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Yang R, Wang H, Chen D, Cai Q, Zhu J, Yuan S, Wang F, Xu X. The effect of in-hospital breast milk intake on the gut microbiota of preterm infants. Clin Nutr ESPEN 2024; 60:146-155. [PMID: 38479903 DOI: 10.1016/j.clnesp.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE The aim of this study was to explore the effect of in-hospital breast milk intake on the development of early gut microbiota in preterm infants in two dimensions: longitudinal over time and cross-sectional between groups. METHODS Researchers collected preterm infants' general data baseline characteristics, recorded their daily breast milk intake, probiotics, and antibiotics use, and collected their stool specimens at 1st week, 2 nd week, 3rd week and 4th week after birth. The researchers analyzed the effect of breast milk on gut microbiota of preterm infants by bioinformatics methods of intra-group longitudinal variation of gut microbiota structure and diversity in preterm infants and cross-sectional differences between >70 % in-hospital breast milk intake (BM) group and ≤70 % (PF) group. RESULTS A total of 60 preterm infants were included in this study, and a total of 213 stool specimens were retained. BM had statistically different Shannon and Simpson indices between the first and fourth week after admission (P < 0.05), both of them showed a lower diversity in the later week than in the previous week. The Shannon index and Simpson index of BM from week 3 onwards were statistically different from PF (P < 0.05), and the Shannon index and Simpson index of BM were lower than those of PF. Significantly statistical differences (P < 0.05) were found in the beta diversity of gut microbiota in preterm infants as time progressed, and both showed a lower beta diversity in the later week than in the preceding week. The dominant taxa of PF in the first postnatal week were Bifidobacterium animalis, etc., the dominant taxa of BM in the third postnatal week were Clostridium_sensu_stricto _1, etc. CONCLUSIONS: The development and evolution of gut microbiota in preterm infants' in-hospital period was a continuous, non-random process, and similar trends in species composition and changes in gut microbes emerged in preterm infants with different ratio of breast milk intake. In the NICU setting, alpha diversity was lower in preterm infants in the >70 % breast milk intake group than in the ≤70 % group when compared between groups at the same time, which may be related to delayed maturation of gut microbes and represents a more developmental gut time window.
Collapse
Affiliation(s)
- Rui Yang
- School of Nursing, Capital Medical University, Beijing, China
| | - Hua Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danqi Chen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qian Cai
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiajun Zhu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuiqin Yuan
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinfen Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Tarracchini C, Milani C, Lugli GA, Mancabelli L, Turroni F, van Sinderen D, Ventura M. The infant gut microbiota as the cornerstone for future gastrointestinal health. ADVANCES IN APPLIED MICROBIOLOGY 2024; 126:93-119. [PMID: 38637108 DOI: 10.1016/bs.aambs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The early postnatal period represents a critical window of time for the establishment and maturation of the human gut microbiota. The gut microbiota undergoes dramatic developmental changes during the first year of life, being influenced by a variety of external factors, with diet being a major player. Indeed, the introduction of complementary feeding provides novel nutritive substrates and triggers a shift from milk-adapted gut microbiota toward an adult-like bacterial composition, which is characterized by an enhancement in diversity and proportions of fiber-degrading bacterial genera like Ruminococcus, Prevotella, Eubacterium, and Bacteroides genera. Inadequate gut microbiota development in early life is frequently associated with concomitant and future adverse health conditions. Thus, understanding the processes that govern initial colonization and establishment of microbes in the gastrointestinal tract is of great importance. This review summarizes the actual understanding of the assembly and development of the microbial community associated with the infant gut, emphasizing the importance of mother-to-infant vertical transmission events as a fundamental arrival route for the first colonizers.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| |
Collapse
|
7
|
Donald K, Finlay BB. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol 2023; 23:735-748. [PMID: 37138015 DOI: 10.1038/s41577-023-00874-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Prenatal and early postnatal life represent key periods of immune system development. In addition to genetics and host biology, environment has a large and irreversible role in the immune maturation and health of an infant. One key player in this process is the gut microbiota, a diverse community of microorganisms that colonizes the human intestine. The diet, environment and medical interventions experienced by an infant determine the establishment and progression of the intestinal microbiota, which interacts with and trains the developing immune system. Several chronic immune-mediated diseases have been linked to an altered gut microbiota during early infancy. The recent rise in allergic disease incidence has been explained by the 'hygiene hypothesis', which states that societal changes in developed countries have led to reduced early-life microbial exposures, negatively impacting immunity. Although human cohort studies across the globe have established a correlation between early-life microbiota composition and atopy, mechanistic links and specific host-microorganism interactions are still being uncovered. Here, we detail the progression of immune system and microbiota maturation in early life, highlight the mechanistic links between microbes and the immune system, and summarize the role of early-life host-microorganism interactions in allergic disease development.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Cheung MK, Leung TF, Tam WH, Leung ASY, Chan OM, Ng RWY, Yau JWK, Yuen LY, Tong SLY, Ho WCS, Yeung ACM, Chen Z, Chan PKS. Development of the early-life gut microbiome and associations with eczema in a prospective Chinese cohort. mSystems 2023; 8:e0052123. [PMID: 37646516 PMCID: PMC10654104 DOI: 10.1128/msystems.00521-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Eczema is a major allergic disease in children, which is particularly prevalent in Chinese children during their first year of life. In this study, we showed that alterations in the infant gut microbiota precede the development of eczema in a prospective Chinese cohort. In particular, we discovered enrichments of the genera Clostridium sensu stricto 1 and Finegoldia in the cases at 3 and 1 month of age, respectively, which may represent potential targets for intervention to prevent eczema. Besides, we identified a depletion of Bacteroides from 1 to 6 months of age and an enrichment of Clostridium sensu stricto 1 at 3 months in the eczema cases, patterns also observed in C-section-born infants within the same time frames, providing first evidence to support a role of the gut microbiota in previously reported associations between C-section and increased risk of eczema in infancy.
Collapse
Affiliation(s)
- Man Kit Cheung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Ting Fan Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Wing Hung Tam
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Agnes S. Y. Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Oi Man Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Rita W. Y. Ng
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Jennifer W. K. Yau
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Lai-yuk Yuen
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Sylvia L. Y. Tong
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Wendy C. S. Ho
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Apple C. M. Yeung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| |
Collapse
|
9
|
Gong Y, Zhong H, Wang J, Wang X, Huang L, Zou Y, Qin H, Yang R. Effect of Probiotic Supplementation on the Gut Microbiota Composition of Infants Delivered by Cesarean Section: An Exploratory, Randomized, Open-label, Parallel-controlled Trial. Curr Microbiol 2023; 80:341. [PMID: 37712964 DOI: 10.1007/s00284-023-03444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Infants born via cesarean section (CS) are at an increased risk of immune-related diseases later in life, potentially due to altered gut microbiota. Recent research has focused on the administration of probiotics in the prevention of gut microbiota dysbiosis in neonates delivered by CS. This study was performed to investigate the effects of probiotic supplementation on the gut microbiota of CS-delivered infants. METHODS Thirty full-term neonates delivered by CS were randomized into the intervention (supplemented orally with a probiotic containing Bifidobacterium longum, Lactobacillus acidophilus, and Enterococcus faecalis for 2 weeks) and control groups. Stool samples were collected at birth and 2 weeks and 42 days after birth. The composition of the gut microbiota was analyzed using 16S rRNA sequencing technology. RESULTS The applied bacterial strains were abundant in the CS-delivered infants supplemented with probiotics. Probiotics increased the abundance of some beneficial bacteria, such as Bacteroides, Acinetobacter, Veillonella, and Faecalibacterium. Low colonization of Klebsiella, a potentially pathogenic bacterium, was observed in the intervention group. CONCLUSIONS Our results showed that probiotics supplemented immediately after CS enriched the gut microbiota composition and altered the pattern of early gut colonization. TRIAL REGISTRATION registration number NCT05086458.
Collapse
Affiliation(s)
- Yujiao Gong
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Hui Zhong
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Jing Wang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Xianggeng Wang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Linsheng Huang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Yutong Zou
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - HuanLong Qin
- Institute for Intestinal Diseases, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Rong Yang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China.
| |
Collapse
|
10
|
Odiase E, Frank DN, Young BE, Robertson CE, Kofonow JM, Davis KN, Berman LM, Krebs NF, Tang M. The Gut Microbiota Differ in Exclusively Breastfed and Formula-Fed United States Infants and are Associated with Growth Status. J Nutr 2023; 153:2612-2621. [PMID: 37506974 PMCID: PMC10517231 DOI: 10.1016/j.tjnut.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Evidence regarding the effects of infant feeding type (exclusive breastfeeding compared with exclusive formula feeding) on the gut microbiota and how it impacts infant growth status is limited. OBJECTIVES The primary objective was to compare gut microbiota by feeding type and characterize the associations between gut microbiota and infant growth status. METHODS Stool samples from healthy, full-term infants (4-5 mo-old) who were either exclusively breastfed (BF) or exclusively formula-fed (FF) in Denver, CO, United States were collected, and fecal 16S ribosomal ribonucleic acid gene-based profiling was conducted. Length and weight were measured at the time of stool collection. Length-for-age z-score, weight-for-age z-scores (WAZ), and weight-for-length z-scores were calculated based on the World Health Organization standards. Associations between gut microbial taxa and anthropometric z-scores were assessed by Spearman's rank correlation test. RESULTS A total of 115 infants (BF n = 54; FF n = 61) were included in this study. Feeding type (BF compared with FF) was the most significant tested variable on gut microbiota composition (P < 1 × 10-⁶), followed by mode of delivery and race. Significant differences were observed in α-diversity, β-diversity, and relative abundances of individual taxa between BF and FF. BF infants had lower α-diversity than FF infants. Abundances of Bifidobacterium and Lactobacillus were greater in the breastfeeding group. FF infants had a higher relative abundance of unclassified Ruminococcaceae (P < 0.001), which was associated with a higher WAZ (P < 0.001) and length-for-age z-score (P < 0.01). Lactobacillus was inversely associated with WAZ (P < 0.05). CONCLUSIONS Feeding type is the main driver of gut microbiota differences in young infants. The gut microbiota differences based on feeding type (exclusive breast- or formula feeding) were associated with observed differences in growth status. This trial was registered at clinicaltrials.gov as NCT02142647, NCT01693406, and NCT04137445.
Collapse
Affiliation(s)
- Eunice Odiase
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Virginia, Charlottesville, VA, 22904, USA
| | - Daniel N Frank
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bridget E Young
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Charles E Robertson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer M Kofonow
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kathryn N Davis
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lillian M Berman
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nancy F Krebs
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Minghua Tang
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Zhou L, Qiu W, Wang J, Zhao A, Zhou C, Sun T, Xiong Z, Cao P, Shen W, Chen J, Lai X, Zhao LH, Wu Y, Li M, Qiu F, Yu Y, Xu ZZ, Zhou H, Jia W, Liao Y, Retnakaran R, Krewski D, Wen SW, Clemente JC, Chen T, Xie RH, He Y. Effects of vaginal microbiota transfer on the neurodevelopment and microbiome of cesarean-born infants: A blinded randomized controlled trial. Cell Host Microbe 2023; 31:1232-1247.e5. [PMID: 37327780 DOI: 10.1016/j.chom.2023.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/18/2023]
Abstract
The microbiomes of cesarean-born infants differ from vaginally delivered infants and are associated with increased disease risks. Vaginal microbiota transfer (VMT) to newborns may reverse C-section-related microbiome disturbances. Here, we evaluated the effect of VMT by exposing newborns to maternal vaginal fluids and assessing neurodevelopment, as well as the fecal microbiota and metabolome. Sixty-eight cesarean-delivered infants were randomly assigned a VMT or saline gauze intervention immediately after delivery in a triple-blind manner (ChiCTR2000031326). Adverse events were not significantly different between the two groups. Infant neurodevelopment, as measured by the Ages and Stages Questionnaire (ASQ-3) score at 6 months, was significantly higher with VMT than saline. VMT significantly accelerated gut microbiota maturation and regulated levels of certain fecal metabolites and metabolic functions, including carbohydrate, energy, and amino acid metabolisms, within 42 days after birth. Overall, VMT is likely safe and may partially normalize neurodevelopment and the fecal microbiome in cesarean-delivered infants.
Collapse
Affiliation(s)
- Lepeng Zhou
- School of Nursing, Affiliated Foshan Maternity & Child Healthcare Hospital, Department of Laboratory Medicine in Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; School of Nursing; Department of Nursing, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528100, China; Department of Nursing, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Wen Qiu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jie Wang
- School of Nursing; Department of Nursing, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528100, China
| | - Aihua Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chuhui Zhou
- School of Nursing; Department of Nursing, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528100, China
| | - Tao Sun
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Ziyu Xiong
- Department of Nursing, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Peihua Cao
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei Shen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jingfen Chen
- School of Nursing; Department of Nursing, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528100, China
| | - Xiaolu Lai
- School of Nursing; Department of Nursing, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528100, China
| | - Liu-Hong Zhao
- School of Nursing; Department of Nursing, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528100, China
| | - Yue Wu
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Meng Li
- Department of Obstetrics, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Feng Qiu
- Department of Laboratory Medicine, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhenjiang Zech Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; State Key Laboratory of Food Science and Technology, Institute of Nutrition and College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yan Liao
- Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | - Ravi Retnakaran
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Division of Endocrinology, University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Risk Science International, Ottawa, ON K1P 5J6, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Shi Wu Wen
- Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jose C Clemente
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Ri-Hua Xie
- School of Nursing; Department of Nursing, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528100, China.
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Clinical Research Center for Laboratory Medicine, Guangzhou, Guangdong 510033, China.
| |
Collapse
|
12
|
Wang K, Xia X, Sun L, Wang H, Li Q, Yang Z, Ren J. Microbial Diversity and Correlation between Breast Milk and the Infant Gut. Foods 2023; 12:foods12091740. [PMID: 37174279 PMCID: PMC10178105 DOI: 10.3390/foods12091740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The gut microbiota is significant for infants to grow and develop in the early stages of life. The breast milk microbiota directly or indirectly influences colonizing and the development of early infant intestinal microbiota. Therefore, we wanted to study the microbial diversity and correlation between breast milk and the infant gut. By sequencing the 16S rRNA V3-V4 regions of microbiome in infant feces 1, 14, 20, 30, and 90 days after delivery as well as those in breast milk using Illumina NovaSeq, we studied the component of microbiome in both human milk and infant stools, analyzed the diversity of microbiota, and explored the relationship between them. We found that the richest bacteria in breast milk were Acinetobacter, Stenotrophomonas, Sphingopyxis, Pseudomonas, and Streptococcus, with a small amount of Lactobacillus, Bifidobacterium, and Klebsiella. The infant feces were abundant in Bifidobacterium, Escherichia-Shigella, Klebsiella, Streptococcus, Serratia, Bacteroides, and Lactobacillus, with a small number of Acinetobacter and Pseudomonas. Acinetobacter, Bifidobacterium, Klebsiella, and Lactobacillus appeared in the breast milk and infant feces, suggesting that they were transferred from the breast milk to the infant's gut.
Collapse
Affiliation(s)
- Kaili Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lina Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qiu Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhuo Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
13
|
Matharu D, Ponsero AJ, Dikareva E, Korpela K, Kolho KL, de Vos WM, Salonen A. Bacteroides abundance drives birth mode dependent infant gut microbiota developmental trajectories. Front Microbiol 2022; 13:953475. [PMID: 36274732 PMCID: PMC9583133 DOI: 10.3389/fmicb.2022.953475] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims Birth mode and other early life factors affect a newborn's microbial colonization with potential long-term health effects. Individual variations in early life gut microbiota development, especially their effects on the functional repertoire of microbiota, are still poorly characterized. This study aims to provide new insights into the gut microbiome developmental trajectories during the first year of life. Methods Our study comprised 78 term infants sampled at 3 weeks, 3 months, 6 months, and 12 months (n = 280 total samples), and their mothers were sampled in late pregnancy (n = 50). Fecal DNA was subjected to shotgun metagenomic sequencing. Infant samples were studied for taxonomic and functional maturation, and maternal microbiota was used as a reference. Hierarchical clustering on taxonomic profiles was used to identify the main microbiota developmental trajectories in the infants, and their associations with perinatal and postnatal factors were assessed. Results In line with previous studies, infant microbiota composition showed increased alpha diversity and decreased beta diversity by age, converging toward an adult-like profile. However, we did not observe an increase in functional alpha diversity, which was stable and comparable with the mother samples throughout all the sampling points. Using a de novo clustering approach, two main infant microbiota clusters driven by Bacteroidaceae and Clostridiaceae emerged at each time point. The clusters were associated with birth mode and their functions differed mainly in terms of biosynthetic and carbohydrate degradation pathways, some of which consistently differed between the clusters for all the time points. The longitudinal analysis indicated three main microbiota developmental trajectories, with the majority of the infants retaining their characteristic cluster until 1 year. As many as 40% of vaginally delivered infants were grouped with infants delivered by C-section due to their clear and persistent depletion in Bacteroides. Intrapartum antibiotics, any perinatal or postnatal factors, maternal microbiota composition, or other maternal factors did not explain the depletion in Bacteroides in the subset of vaginally born infants. Conclusion Our study provides an enhanced understanding of the compositional and functional early life gut microbiota trajectories, opening avenues for investigating elusive causes that influence non-typical microbiota development.
Collapse
Affiliation(s)
- Dollwin Matharu
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alise J. Ponsero
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biosystems Engineering and BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - Evgenia Dikareva
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kaija-Leena Kolho
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children's Hospital, Pediatric Research Center, University of Helsinki and HUS, Helsinki, Finland
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Willem M. de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Gruneck L, Gentekaki E, Kespechara K, Denny J, Sharpton TJ, Marriott LK, Shannon J, Popluechai S. The fecal microbiota of Thai school-aged children associated with demographic factors and diet. PeerJ 2022; 10:e13325. [PMID: 35469202 PMCID: PMC9034706 DOI: 10.7717/peerj.13325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/01/2022] [Indexed: 01/13/2023] Open
Abstract
Background Birth delivery method and breastfeeding practices contribute to microbiota colonization. Other factors including diet and demographic factors structure the gut microbiome assembly and diversity through childhood development. The exploration of these factors, especially in Southeast Asian children, remains limited. Methods We investigated the fecal microbiota of 127 school-aged children in Thailand using quantitative PCR (qPCR) to assess the influence of diet and demographic factors on the gut microbiota. Multivariate analysis (multiple factor analysis (MFA) and Partial Least Squares Discriminant Analysis (PLS-DA)) were used to link particular gut microbes to diet and demographic factors. Results Diet and demographic factors were associated with variation among gut microbiota. The abundance of Gammaproteobacteria increased in children with infrequent intake of high fat foods. Obese children possessed a lower level of Firmicutes and Ruminococcus. Bifidobacterium was enriched in pre-teen aged children and detected at lower levels among formula-fed children. Prevotella was more abundant in children who were delivered vaginally. While ethnicity explained a small amount of variation in the gut microbiota, it nonetheless was found to be significantly associated with microbiome composition. Conclusions Exogenous and demographic factors associate with, and possibly drive, the assembly of the gut microbiome of an understudied population of school-aged children in Thailand.
Collapse
Affiliation(s)
- Lucsame Gruneck
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Eleni Gentekaki
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | | | - Justin Denny
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, United States of America
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, United States of America
- Department of Statistics, Oregon State University, Corvallis, OR, United States of America
| | - Lisa K. Marriott
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, United States of America
| | - Jackilen Shannon
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, United States of America
| | - Siam Popluechai
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| |
Collapse
|
15
|
Padhi P, Worth C, Zenitsky G, Jin H, Sambamurti K, Anantharam V, Kanthasamy A, Kanthasamy AG. Mechanistic Insights Into Gut Microbiome Dysbiosis-Mediated Neuroimmune Dysregulation and Protein Misfolding and Clearance in the Pathogenesis of Chronic Neurodegenerative Disorders. Front Neurosci 2022; 16:836605. [PMID: 35281490 PMCID: PMC8914070 DOI: 10.3389/fnins.2022.836605] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
The human gut microbiota is a complex, dynamic, and highly diverse community of microorganisms. Beginning as early as in utero fetal development and continuing through birth to late-stage adulthood, the crosstalk between the gut microbiome and brain is essential for modulating various metabolic, neurodevelopmental, and immune-related pathways. Conversely, microbial dysbiosis - defined as alterations in richness and relative abundances - of the gut is implicated in the pathogenesis of several chronic neurological and neurodegenerative disorders. Evidence from large-population cohort studies suggests that individuals with neurodegenerative conditions have an altered gut microbial composition as well as microbial and serum metabolomic profiles distinct from those in the healthy population. Dysbiosis is also linked to psychiatric and gastrointestinal complications - comorbidities often associated with the prodromal phase of Parkinson's disease (PD) and Alzheimer's disease (AD). Studies have identified potential mediators that link gut dysbiosis and neurological disorders. Recent findings have also elucidated the potential mechanisms of disease pathology in the enteric nervous system prior to the onset of neurodegeneration. This review highlights the functional pathways and mechanisms, particularly gut microbe-induced chronic inflammation, protein misfolding, propagation of disease-specific pathology, defective protein clearance, and autoimmune dysregulation, linking gut microbial dysbiosis and neurodegeneration. In addition, we also discuss how pathogenic transformation of microbial composition leads to increased endotoxin production and fewer beneficial metabolites, both of which could trigger immune cell activation and enteric neuronal dysfunction. These can further disrupt intestinal barrier permeability, aggravate the systemic pro-inflammatory state, impair blood-brain barrier permeability and recruit immune mediators leading to neuroinflammation and neurodegeneration. Continued biomedical advances in understanding the microbiota-gut-brain axis will extend the frontier of neurodegenerative disorders and enable the utilization of novel diagnostic and therapeutic strategies to mitigate the pathological burden of these diseases.
Collapse
Affiliation(s)
- Piyush Padhi
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- Department of Physiology and Pharmacology, Center for Brain Sciences and Neurodegenerative Diseases, University of Georgia, Athens, GA, United States
| | - Carter Worth
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Gary Zenitsky
- Department of Physiology and Pharmacology, Center for Brain Sciences and Neurodegenerative Diseases, University of Georgia, Athens, GA, United States
| | - Huajun Jin
- Department of Physiology and Pharmacology, Center for Brain Sciences and Neurodegenerative Diseases, University of Georgia, Athens, GA, United States
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Vellareddy Anantharam
- Department of Physiology and Pharmacology, Center for Brain Sciences and Neurodegenerative Diseases, University of Georgia, Athens, GA, United States
| | - Arthi Kanthasamy
- Department of Physiology and Pharmacology, Center for Brain Sciences and Neurodegenerative Diseases, University of Georgia, Athens, GA, United States
| | - Anumantha G. Kanthasamy
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- Department of Physiology and Pharmacology, Center for Brain Sciences and Neurodegenerative Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
16
|
Yao Y, Cai X, Ye Y, Wang F, Chen F, Zheng C. The Role of Microbiota in Infant Health: From Early Life to Adulthood. Front Immunol 2021; 12:708472. [PMID: 34691021 PMCID: PMC8529064 DOI: 10.3389/fimmu.2021.708472] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
From early life to adulthood, the microbiota play a crucial role in the health of the infant. The microbiota in early life are not only a key regulator of infant health but also associated with long-term health. Pregnancy to early life is the golden time for the establishment of the infant microbiota, which is affected by both environmental and genetic factors. Recently, there is an explosion of the studies on the role of microbiota in human diseases, but the application to disease or health is relatively limited because many aspects of human microbiota remain controversial, especially about the infant microbiota. Therefore, a critical and conclusive review is necessary to understand fully the relationship between the microbiota and the health of infant. In this article, we introduce in detail the role of microbiota in the infant from pregnancy to early life to long-term health. The main contents of this article include the relationship between the maternal microbiota and adverse pregnancy outcomes, the establishment of the neonatal microbiota during perinatal period and early life, the composition of the infant gut microbiota, the prediction of the microbiota for long-term health, and the future study directions of microbiota.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Fengying Chen
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Long G, Hu Y, Tao E, Chen B, Shu X, Zheng W, Jiang M. The Influence of Cesarean Section on the Composition and Development of Gut Microbiota During the First 3 Months of Life. Front Microbiol 2021; 12:691312. [PMID: 34489887 PMCID: PMC8416498 DOI: 10.3389/fmicb.2021.691312] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The intestinal microbiota has emerged as a critical regulator of growth and development in the early postnatal period of life. Cesarean section (CS) delivery is one of the strongest disrupting factors of the normal colonization process and has been reported as a risk factor for disorders in later life. In this study, we dynamically and longitudinally evaluated the impact of CS on the initial colonization pattern and development of gut microbiota by 16 healthy Chinese infants with fecal samples collected at 9 time points (day 5, day 8, day 11, week 2, week 4, week 6, week 7, month 2, and month 3) during the first 3 months of life. The V3–V4 regions of 16S rRNA gene were analyzed by Illumina sequencing. In comparison with vaginally delivered (VD) infants, infants born by CS showed decreased relative abundance of Bacteroides and Parabacteroides and enrichment of Clostridium_sensu_stricto_1, Enterococcus, Klebsiella, Clostridioides, and Veillonella. Most interestingly, Firmicutes/Bacteroidetes ratio was found to be significantly higher in the CS group than in the VD group from day 5 until month 3. Besides, the results of microbial functions showed that the VD group harbored significantly higher levels of functional genes in vitamin B6 metabolism at day 5, day 8, week 2, week 4, week 6, week 7, month 2, and month 3 and taurine and hypotaurine metabolism at day 5, while the phosphotransferase system and starch and sucrose metabolism involved functional genes were plentiful in the CS group at day 11, week 2, week 4, week 6, week 7, and month 2 and at week 2, week 7, and month 2, respectively. Our results establish a new evidence that CS affected the composition and development of gut microbiota in the first 3 months and provide a novel insight into strategies for CS-related disorders in later life.
Collapse
Affiliation(s)
- Gao Long
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Zhejiang, China
| | - Yuting Hu
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Zhejiang, China
| | - Enfu Tao
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Zhejiang, China
| | - Bo Chen
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Zhejiang, China
| | - Xiaoli Shu
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Zhejiang, China
| | - Wei Zheng
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Zhejiang, China
| | - Mizu Jiang
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Zhejiang, China
| |
Collapse
|
18
|
Rodriguez N, Tun HM, Field CJ, Mandhane PJ, Scott JA, Kozyrskyj AL. Prenatal Depression, Breastfeeding, and Infant Gut Microbiota. Front Microbiol 2021; 12:664257. [PMID: 34394021 PMCID: PMC8363245 DOI: 10.3389/fmicb.2021.664257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/23/2021] [Indexed: 02/01/2023] Open
Abstract
Depressive symptoms are common during pregnancy and are estimated to affect 7-20% of pregnant women, with higher prevalence found in those with a prior history of depression, in ethnic minorities, and those with increased exposure to stressful life events. Maternal depression often remains undiagnosed, and its symptoms can increase adverse health risks to the infant, including impaired cognitive development, behavioral problems, and higher susceptibility to physical illnesses. Accumulating research evidence supports the association between maternal physical health elements to infant gut health, including factors such as mode of delivery, medication, feeding status, and antibiotic use. However, specific maternal prenatal psychosocial factors and their effect on infant gut microbiota and immunity remains an area that is not well understood. This article reviews the literature and supplements it with new findings to show that prenatal depression alters: (i) gut microbial composition in partially and fully formula-fed infants at 3-4 months of age, and (ii) gut immunity (i.e., secretory Immunoglobulin A) in all infants independent of breastfeeding status. Understanding the implications of maternal depression on the infant gut microbiome is important to enhance both maternal and child health and to better inform disease outcomes and management.
Collapse
Affiliation(s)
- Nicole Rodriguez
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Hein M Tun
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Kaczmarczyk M, Löber U, Adamek K, Węgrzyn D, Skonieczna-Żydecka K, Malinowski D, Łoniewski I, Markó L, Ulas T, Forslund SK, Łoniewska B. The gut microbiota is associated with the small intestinal paracellular permeability and the development of the immune system in healthy children during the first two years of life. J Transl Med 2021; 19:177. [PMID: 33910577 PMCID: PMC8082808 DOI: 10.1186/s12967-021-02839-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The intestinal barrier plays an important role in the defense against infections, and nutritional, endocrine, and immune functions. The gut microbiota playing an important role in development of the gastrointestinal tract can impact intestinal permeability and immunity during early life, but data concerning this problem are scarce. METHODS We analyzed the microbiota in fecal samples (101 samples in total) collected longitudinally over 24 months from 21 newborns to investigate whether the markers of small intestinal paracellular permeability (zonulin) and immune system development (calprotectin) are linked to the gut microbiota. The results were validated using data from an independent cohort that included the calprotectin and gut microbiota in children during the first year of life. RESULTS Zonulin levels tended to increase for up to 6 months after childbirth and stabilize thereafter remaining at a high level while calprotectin concentration was high after childbirth and began to decline from 6 months of life. The gut microbiota composition and the related metabolic potentials changed during the first 2 years of life and were correlated with zonulin and calprotectin levels. Faecal calprotectin correlated inversely with alpha diversity (Shannon index, r = - 0.30, FDR P (Q) = 0.039). It also correlated with seven taxa; i.a. negatively with Ruminococcaceae (r = - 0.34, Q = 0.046), and Clostridiales (r = - 0.34, Q = 0.048) and positively with Staphylococcus (r = 0.38, Q = 0.023) and Staphylococcaceae (r = 0.35, Q = 0.04), whereas zonulin correlated with 19 taxa; i.a. with Bacillales (r = - 0.52, Q = 0.0004), Clostridiales (r = 0.48, Q = 0.001) and the Ruminococcus (torques group) (r = 0.40, Q = 0.026). When time intervals were considered only changes in abundance of the Ruminococcus (torques group) were associated with changes in calprotectin (β = 2.94, SE = 0.8, Q = 0.015). The dynamics of stool calprotectin was negatively associated with changes in two MetaCyc pathways: pyruvate fermentation to butanoate (β = - 4.54, SE = 1.08, Q = 0.028) and Clostridium acetobutylicum fermentation (β = - 4.48, SE = 1.16, Q = 0.026). CONCLUSIONS The small intestinal paracellular permeability, immune system-related markers and gut microbiota change dynamically during the first 2 years of life. The Ruminococcus (torques group) seems to be especially involved in controlling paracellular permeability. Staphylococcus, Staphylococcaceae, Ruminococcaceae, and Clostridiales, may be potential biomarkers of the immune system. Despite observed correlations their clear causation and health consequences were not proven. Mechanistic studies are required.
Collapse
Affiliation(s)
- Mariusz Kaczmarczyk
- Department of Clinical Biochemistry, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - Ulrike Löber
- Experimental and Clinical Research Center, A Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 14195, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Karolina Adamek
- Department of Neonatal Diseases, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - Dagmara Węgrzyn
- Department of Neonatal Diseases, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | | | - Damian Malinowski
- Department of Pharmacology, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460, Szczecin, Poland.
- Department of Human Nutrition and Metabolomics, Broniewskiego 24, 71-460, Szczecin, Poland.
| | - Lajos Markó
- Experimental and Clinical Research Center, A Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 14195, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, 53127, Bonn, Germany
| | - Sofia K Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 14195, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany
| | - Beata Łoniewska
- Department of Neonatal Diseases, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| |
Collapse
|
20
|
Princisval L, Rebelo F, Williams BL, Coimbra AC, Crovesy L, Ferreira AL, Kac G. Association Between the Mode of Delivery and Infant Gut Microbiota Composition Up to 6 Months of Age: A Systematic Literature Review Considering the Role of Breastfeeding. Nutr Rev 2021; 80:113-127. [PMID: 33837424 DOI: 10.1093/nutrit/nuab008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CONTEXT Cesarean section (CS), breastfeeding, and geographic location can influence the infant microbiota. OBJECTIVE In this systematic review, evidence of the association between mode of delivery and infant gut microbiota up to 6 months of age was evaluated, as was the role of breastfeeding in this association, according to PRISMA guidelines. DATA SOURCE The Pubmed, Web of Science, Scopus, Embase, Medical Database, and Open Grey databases were searched. DATA EXTRACTION A total of 31 observational studies with ≥2 infant stool collections up to the sixth month of age and a comparison of gut microbiota between CS and vaginal delivery (VD) were included. DATA ANALYSIS Infants born by CS had a lower abundance of Bifidobacterium and Bacteroides spp. at almost all points up to age 6 months. Populations of Lactobacillus, Bifidobacterium longum, Bifidobacterium catenulatum, and Escherichia coli were reduced in infants delivered by CS. Infants born by CS and exclusively breastfed had greater similarity with the microbiota of infants born by VD. CONCLUSIONS Species of Bifidobacterium and Bacteroides are potentially reduced in infants born by CS. Geographic location influenced bacterial colonization. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. 42017071285.
Collapse
Affiliation(s)
- Luciana Princisval
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Fernanda Rebelo
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Brent L Williams
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Anna Carolina Coimbra
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Louise Crovesy
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Ana Lorena Ferreira
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Gilberto Kac
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
Coker MO, Laue HE, Hoen AG, Hilliard M, Dade E, Li Z, Palys T, Morrison HG, Baker E, Karagas MR, Madan JC. Infant Feeding Alters the Longitudinal Impact of Birth Mode on the Development of the Gut Microbiota in the First Year of Life. Front Microbiol 2021; 12:642197. [PMID: 33897650 PMCID: PMC8059768 DOI: 10.3389/fmicb.2021.642197] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Cesarean-delivered (CD) infants harbor a distinct gut microbiome from vaginally delivered (VD) infants, however, during infancy, the most important driver of infant gut microbial colonization is infant feeding. Earlier studies have shown that breastfeeding is associated with higher levels of health-promoting bacteria such and Bifidobacterium and Bacteroides via modulation of the immune system, and production of metabolites. As the infant gut matures and solid foods are introduced, it is unclear whether longer duration of breast feeding restore loss of beneficial taxa within the intestinal microbiota of operatively delivered infants. Within the New Hampshire Birth Cohort Study, we evaluated the longitudinal effect of delivery mode and infant feeding on the taxonomic composition and functional capacity of developing gut microbiota in the First year of life. Microbiota of 500 stool samples collected between 6 weeks and 12 months of age (from 229 infants) were characterized by 16S ribosomal RNA sequencing. Shotgun metagenomic sequencing was also performed on 350 samples collected at either 6 weeks or 12 months of age. Among infant participants, 28% were cesarean-delivered (CD) infants and most (95%) initiated breastfeeding within the first six months of life, with 26% exclusively breastfed and 69% mixed-fed (breast milk and formula), in addition to complementary foods by age 1. Alpha (within-sample) diversity was significantly lower in CD infants compared to vaginally delivered (VD) infants (P < 0.05) throughout the study period. Bacterial community composition clustering by both delivery mode and feeding duration at 1 year of age revealed that CD infants who were breast fed for < 6 months were more dissimilar to VD infants than CD infants who breast fed for ≥ 6 months. We observed that breastfeeding modified the longitudinal impact of delivery mode on the taxonomic composition of the microbiota by 1 year of age, with an observed increase in abundance of Bacteroides fragilis and Lactobacillus with longer duration of breastfeeding among CD infants while there was an increase in Faecalibacterium for VD infants. Our findings confirm that duration of breastfeeding plays a critical role in restoring a health-promoting microbiome, call for further investigations regarding the association between breast milk exposure and health outcomes in early life.
Collapse
Affiliation(s)
- Modupe O. Coker
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- School of Dental Medicine, School of Public Health at Rutgers, Newark, NJ, United States
| | - Hannah E. Laue
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Anne G. Hoen
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Center for Molecular Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, United States
| | - Margaret Hilliard
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Erika Dade
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Zhigang Li
- Department of Biostatistics, University of Florida, Gainsville, FL, United States
| | - Thomas Palys
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, United States
| | - Hilary G. Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, United States
| | - Emily Baker
- Department of Pediatrics, Children’s Hospital at Dartmouth, Lebanon, NH, United States
| | - Margaret R. Karagas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Center for Molecular Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, United States
| | - Juliette C. Madan
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, United States
- Department of Pediatrics, Children’s Hospital at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
22
|
Guo C, Zhou Q, Li M, Zhou L, Xu L, Zhang Y, Li D, Wang Y, Dai W, Li S, Zhang L. Breastfeeding restored the gut microbiota in caesarean section infants and lowered the infection risk in early life. BMC Pediatr 2020; 20:532. [PMID: 33238955 PMCID: PMC7690020 DOI: 10.1186/s12887-020-02433-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/17/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The initialization of the neonatal gut microbiota (GM) is affected by diverse factors and is associated with infant development and health outcomes. METHODS In this study, we collected 207 faecal samples from 41 infants at 6 time points (1, 3, and 7 days and 1, 3, and 6 months after birth). The infants were assigned to four groups according to delivery mode (caesarean section (CS) or vaginal delivery (VD)) and feeding pattern (breastfeeding or formula milk). RESULTS The meconium bacterial diversity was slightly higher in CS than in VD. Three GM patterns were identified, including Escherichia/Shigella-Streptococcus-dominated, Bifidobacterium-Escherichia/Shigella-dominated and Bifidobacterium-dominated patterns, and they gradually changed over time. In CS infants, Bifidobacterium was less abundant, and the delay in GM establishment could be partially restored by breastfeeding. The frequency of respiratory tract infection and diarrhoea consequently decreased. CONCLUSION This study fills some gaps in the understanding of the restoration of the GM in CS towards that in VD.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Pediatrics, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Qian Zhou
- Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China
| | - Muxia Li
- School of Public Health, Peking University, No.38 Xueyuan Road, Beijing, 100191, China
| | - Letian Zhou
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, 518000, China
| | - Lei Xu
- Department of Information, The 960 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Jinan, 250031, China
| | - Ying Zhang
- Department of Pediatrics, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Dongfang Li
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, 518000, China
| | - Ye Wang
- Department of Pediatrics, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Wenkui Dai
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, 518000, China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China
| | - Lin Zhang
- Department of Pediatrics, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, China.
| |
Collapse
|
23
|
Senn V, Bassler D, Choudhury R, Scholkmann F, Righini-Grunder F, Vuille-Dit-Bile RN, Restin T. Microbial Colonization From the Fetus to Early Childhood-A Comprehensive Review. Front Cell Infect Microbiol 2020; 10:573735. [PMID: 33194813 PMCID: PMC7661755 DOI: 10.3389/fcimb.2020.573735] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
The development of the neonatal gastrointestinal tract microbiota remains a poorly understood process. The interplay between neonatal (gestational age, genetic background), maternal (mode of delivery, nutritional status) and environmental factors (antibiotic exposure, available nutrition) are thought to influence microbial colonization, however, the exact mechanisms are unclear. Derangements in this process likely contribute to various gastrointestinal diseases including necrotizing enterocolitis and inflammatory bowel disease. As such, enhanced understanding of microbiota development may hold the key to significantly reduce the burden of gastrointestinal disease in the pediatric population. The most debatable topics during microbial seeding and possible future treatment approaches will be highlighted in this review.
Collapse
Affiliation(s)
- Viola Senn
- Newborn Research Zurich, Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Dirk Bassler
- Newborn Research Zurich, Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Rashikh Choudhury
- Division of Transplantation Surgery, Department of Surgery, University of Colorado Hospital, Aurora, CO, United States
| | - Felix Scholkmann
- Newborn Research Zurich, Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Franziska Righini-Grunder
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Lucerne, Lucerne, Switzerland
| | - Raphael N Vuille-Dit-Bile
- Department of Pediatric Surgery, University Children's Hospital of Basel, Basel, Switzerland.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Tanja Restin
- Newborn Research Zurich, Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Sosa-Moreno A, Comstock SS, Sugino KY, Ma TF, Paneth N, Davis Y, Olivero R, Schein R, Maurer J, Zhang L. Perinatal risk factors for fecal antibiotic resistance gene patterns in pregnant women and their infants. PLoS One 2020; 15:e0234751. [PMID: 32555719 PMCID: PMC7302573 DOI: 10.1371/journal.pone.0234751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Perinatal factors can shape fecal microbiome patterns among pregnant women and their infants. However, there is scarce information about the effect of maternal demographics and perinatal exposures on antibiotic resistance genes (ARG) and mobile genetic element (MGE) patterns in pregnant women and infants. We examined fecal samples from pregnant women during their third trimester of pregnancy (n = 51) and 6-month-old infants (n = 40). Of the 91 participants, 72 represented 36 maternal-infant dyads, 15 were additional pregnant women, and 4 were additional infants. We assessed the effects of demographics, pre-pregnancy BMI, smoking and parity in the pregnancy resistome and the effects of demographics, delivery mode, feeding habits and prenatal antibiotic treatment on the infancy resistome. ARG and MGE richness and abundance were assessed using a SmartChip qPCR-array. Alpha diversity (Shannon and Inverse Simpson index) and beta diversity (Sorensen and Bray-Curtis index) were calculated. The Wilcoxon and the Kruskal non-parametric test were used for comparisons. There is a high variability in shared resistome patterns between pregnant women and their infants. An average of 29% of ARG and 24% of MGE were shared within dyads. Infants had significantly greater abundance and higher diversity of ARG and MGE compared to pregnant women. Pregnancy and infancy samples differed in ARG and MGE gene composition and structure. Composition of the fecal resistome was significantly associated with race in pregnant women, with non-white women having different patterns than white women, and, in infants, with extent of solid food consumption. Our data showed that the pregnancy and infancy resistome had different structure and composition patterns, with maternal race and infant solid food consumption as possible contributors to ARG. By characterizing resistome patterns, our results can inform the mechanism of antibiotic resistome development in pregnant women and their infants.
Collapse
Affiliation(s)
- Andrea Sosa-Moreno
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States of America
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States of America
| | - Kameron Y. Sugino
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States of America
| | - Teng F. Ma
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States of America
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States of America
| | - Yelena Davis
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, East Lansing, MI, United States of America
- Helen DeVos Children’s Hospital of Spectrum Health, Grand Rapids, MI, United States of America
| | - Rosemary Olivero
- Helen DeVos Children’s Hospital of Spectrum Health, Grand Rapids, MI, United States of America
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, United States of America
| | - Rebecca Schein
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, United States of America
| | - Joel Maurer
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, East Lansing, MI, United States of America
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
25
|
Microbiome Composition in Pediatric Populations from Birth to Adolescence: Impact of Diet and Prebiotic and Probiotic Interventions. Dig Dis Sci 2020; 65:706-722. [PMID: 32002758 PMCID: PMC7046124 DOI: 10.1007/s10620-020-06092-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diet is a key regulator of microbiome structure and function across the lifespan. Microbial colonization in the first year of life has been actively researched; however, studies during childhood are sparse. Herein, the impact of dietary intake and pre- and probiotic interventions on microbiome composition of healthy infants and children from birth to adolescence is discussed. The microbiome of breastfed infants has lower microbial diversity and richness, higher Proteobacteria, and lower Bacteroidetes and Firmicutes than those formula-fed. As children consume more complex diets, associations between dietary patterns and the microbiota emerge. Like adults, the microbiota of children consuming a Western-style diet is associated with greater Bacteroidaceae and Ruminococcaceae and lower Prevotellaceae. Dietary fibers and pre- or/and probiotics have been tested to modulate the gut microbiota in early life. Human milk oligosaccharides and prebiotics added to infant formula are bifidogenic and decrease pathogens. In children, prebiotics, such as inulin, increase Bifidobacterium abundance and dietary fibers reduce fecal pH and increase alpha diversity and calcium absorption. Probiotics have been administered to the mother during pregnancy and breastfeeding or directly to the infant/child. Findings on maternal probiotic administration on bacterial taxa are inconsistent. When given directly to the infant/child, some changes in individual taxa are observed, but rarely is overall alpha or beta diversity affected. Cesarean-delivered infants appear to benefit to a greater degree than those born vaginally. Infancy and childhood represent an opportunity to beneficially manipulate the microbiome through dietary or prebiotic interventions, which has the potential to affect both short- and long-term health outcomes.
Collapse
|