1
|
Perrotta S, Carnevale D. Brain-Splenic Immune System Interactions in Hypertension: Cellular and Molecular Mechanisms. Arterioscler Thromb Vasc Biol 2024; 44:65-75. [PMID: 37942610 DOI: 10.1161/atvbaha.123.318230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
Hypertension represents a major worldwide cause of death and disability, and it is becoming increasingly clear that available therapies are not sufficient to reduce the risk of major cardiovascular events. Various mechanisms contribute to blood pressure increase: neurohormonal activation, autonomic nervous system imbalance, and immune activation. Of note, the brain is an important regulator of blood pressure levels; it recognizes the peripheral perturbation and organizes a reflex response by modulating immune system and hormonal release to attempt at restoring the homeostasis. The connection between the brain and peripheral organs is mediated by the autonomic nervous system, which also modulates immune and inflammatory responses. Interestingly, an increased autonomic nervous system activity has been correlated with an altered immune response in cardiovascular diseases. The spleen is the largest immune organ exerting a potent influence on the cardiovascular system during disease and is characterized by a dense noradrenergic innervation. Taken together, these aspects led to hypothesize a key role of neuroimmune mechanisms in the onset and progression of hypertension. This review discusses how the nervous and splenic immune systems interact and how the mechanisms underlying the neuroimmune cross talk influence the disease progression.
Collapse
Affiliation(s)
- Sara Perrotta
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, Pozzilli, Italy (S.P., D.C.)
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, Unit of Neuro and Cardiovascular Pathophysiology, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, Pozzilli, Italy (S.P., D.C.)
- Department of Molecular Medicine, "Sapienza" University of Rome, Italy (D.C.)
| |
Collapse
|
2
|
Interaction between Butyrate and Tumor Necrosis Factor α in Primary Rat Colonocytes. Biomolecules 2023; 13:biom13020258. [PMID: 36830627 PMCID: PMC9953264 DOI: 10.3390/biom13020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Butyrate, a short-chain fatty acid, is utilized by the gut epithelium as energy and it improves the gut epithelial barrier. More recently, it has been associated with beneficial effects on immune and cardiovascular homeostasis. Conversely, tumor necrosis factor alpha (TNFα) is a pro-inflammatory and pro-hypertensive cytokine. While butyrate and TNFα are both linked with hypertension, studies have not yet addressed their interaction in the colon. Here, we investigated the capacity of butyrate to modulate a host of effects of TNFα in primary rodent colonic cells in vitro. We measured ATP levels, cell viability, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial oxidative phosphorylation, and glycolytic activity in colonocytes following exposure to either butyrate or TNFα, or both. To address the potential mechanisms, transcripts related to oxidative stress, cell fate, and cell metabolism (Pdk1, Pdk2, Pdk4, Spr, Slc16a1, Slc16a3, Ppargc1a, Cs, Lgr5, Casp3, Tnfr2, Bax, Bcl2, Sod1, Sod2, and Cat) were measured, and untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the metabolic responses of colonocytes following exposure to butyrate and TNFα. We found that both butyrate and TNFα lowered cellular ATP levels towards a quiescent cell energy phenotype, characterized by decreased oxygen consumption and extracellular acidification. Co-treatment with butyrate ameliorated TNFα-induced cytotoxicity and the reduction in cell viability. Butyrate also opposed the TNFα-mediated decrease in MMP and mitochondrial-to-intracellular calcium ratios, suggesting that butyrate may protect colonocytes against TNFα-induced cytotoxicity by decreasing mitochondrial calcium flux. The relative expression levels of pyruvate dehydrogenase kinase 4 (Pdk4) were increased via co-treatment of butyrate and TNFα, suggesting the synergistic inhibition of glycolysis. TNFα alone reduced the expression of monocarboxylate transporters slc16a1 and slc16a3, suggesting effects of TNFα on butyrate uptake into colonocytes. Of the 185 metabolites that were detected with LC-MS, the TNFα-induced increase in biopterin produced the only significant change, suggesting an alteration in mitochondrial biogenesis in colonocytes. Considering the reports of elevated colonic TNFα and reduced butyrate metabolism in many conditions, including in hypertension, the present work sheds light on cellular interactions between TNFα and butyrate in colonocytes that may be important in understanding conditions of the colon.
Collapse
|
3
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
4
|
Zheng X, Xu S, Wu J. Cervical Cancer Imaging Features Associated With ADRB1 as a Risk Factor for Cerebral Neurovascular Metastases. Front Neurol 2022; 13:905761. [PMID: 35903112 PMCID: PMC9315067 DOI: 10.3389/fneur.2022.905761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Bioinformatics tools are used to create a clinical prediction model for cervical cancer metastasis and to investigate the neurovascular-related genes that are involved in brain metastasis of cervical cancer. One hundred eighteen patients with cervical cancer were divided into two groups based on the presence or absence of metastases, and the clinical data and imaging findings of the two groups were compared retrospectively. The nomogram-based model was successfully constructed by taking into account four clinical characteristics (age, stage, N, and T) as well as one imaging characteristic (original_glszm_GrayLevelVariance Rad-score). In patients with cervical cancer, headaches and vomiting were more often reported in the brain metastasis group than in the other metastasis groups. According to the TCGA data, mRNA differential gene expression analysis of patients with cervical cancer revealed an increase in the expression of neurovascular-related gene Adrenoceptor Beta 1 (ADRB1) in the brain metastasis group. An analysis of the correlation between imaging features and ADRB1 expression revealed that ADRB1 expression was significantly higher in the low Rad-score group compared with the high Rad-score group (P = 0.025). Therefore, ADRB1 expression in cervical cancer was correlated with imaging features and was associated as a risk factor for cerebral neurovascular metastases. This study developed a nomogram prediction model for cervical cancer metastasis using age, stage, N, T and original_glszm_GrayLevelVariance. As a risk factor associated with the development of cerebral neurovascular metastases of cervical cancer, ADRB1 expression was significantly higher in brain metastases from cervical cancer.
Collapse
Affiliation(s)
- Xingju Zheng
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shilin Xu
- Department of Oncology, Xichang People's Hospital, Liangshan High-Tech Tumor Hospital, Xichang, China
| | - JiaYing Wu
- Department of Gynaecology and Obstetrics, Zhejiang Xinda Hospital, Huzhou, China
- *Correspondence: JiaYing Wu
| |
Collapse
|
5
|
Souders CL, Zubcevic J, Martyniuk CJ. Tumor Necrosis Factor Alpha and the Gastrointestinal Epithelium: Implications for the Gut-Brain Axis and Hypertension. Cell Mol Neurobiol 2022; 42:419-437. [PMID: 33594519 PMCID: PMC8364923 DOI: 10.1007/s10571-021-01044-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
The colonic epithelium is the site of production and transport of many vasoactive metabolites and neurotransmitters that can modulate the immune system, affect cellular metabolism, and subsequently regulate blood pressure. As an important interface between the microbiome and its host, the colon can contribute to the development of hypertension. In this critical review, we highlight the role of colonic inflammation and microbial metabolites on the gut brain axis in the pathology of hypertension, with special emphasis on the interaction between tumor necrosis factor α (TNFα) and short chain fatty acid (SCFA) metabolites. Here, we review the current literature and identify novel pathways in the colonic epithelium related to hypertension. A network analysis on transcriptome data previously generated in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats reveals differences in several pathways associated with inflammation involving TNFα (NF-κB and STAT Expression Targets) as well as oxidative stress. We also identify down-regulation of networks associated with gastrointestinal function, cardiovascular function, enteric nervous system function, and cholinergic and adrenergic transmission. The analysis also uncovered transcriptome responses related to glycolysis, butyrate oxidation, and mitochondrial function, in addition to gut neuropeptides that serve as modulators of blood pressure and metabolic function. We present a model for the role of TNFα in regulating bacterial metabolite transport and neuropeptide signaling in the gastrointestinal system, highlighting the complexity of host-microbiota interactions in hypertension.
Collapse
Affiliation(s)
- Christopher L. Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
| | - Jasenka Zubcevic
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA. .,Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, PO BOX 100274, Gainesville, FL, 32611, USA.
| | - Christopher J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA,Corresponding authors contact information: Department of Physiological Sciences, College of Veterinary Medicine, University of Florida PO BOX 100274 GAINESVILLE FL 326100274 United States; and
| |
Collapse
|
6
|
Investigating changes in β-adrenergic gene expression (ADRB1 and ADRB2) in Takotsubo (stress) cardiomyopathy syndrome; a pilot study. Mol Biol Rep 2021; 48:7893-7900. [PMID: 34716504 PMCID: PMC8555722 DOI: 10.1007/s11033-021-06816-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/07/2021] [Indexed: 11/04/2022]
Abstract
Background Takotsubo Cardiomyopathy (TC) is a rare disorder that is mostly caused by stress and is often misdiagnosed. We aimed to analyze Takotsubo Syndrome at the molecular level by using the Oxford Nanopore Minion Device and its protocol. Methods and results Ten patients who were previously diagnosed with Takotsubo Syndrome (increased after decrease in ejection fraction and without critical stenosis in coronary arteries) and 10 healthy individuals in the control group were included in our project. The mean age was 53 ± 12.2 for the patient group and 52.4 ± 9.9 for the control group, and the left ventricular ejection fraction was 50.3 ± 11.5 for the patient group and 64.2 ± 2.8 for the control group (p < 0.05). Peripheral blood of patients and healthy individuals was taken and their DNA was obtained. By making long reads throughout the genome, the most studied regions responsible for β-adrenergic signaling pathways; The gene expression level of cardiac β-1 ADRB1 (rs1801253-ENST00000369295.4), G > C, (Gly389Arg) and cardiac β-2 ADRB2 (rs1800888-ENSG00000169252), C > T, (Thr165Ile) adrenoceptors was investigated. As a result; no structural variation was detected leading to Takotsubo Cardiomyopathy. The results obtained from the bioinformatics analysis were also checked from the VarSome Tools and similar results were found. Conclusions Many publications in TC susceptibility have that may lead to adrenergic pathway dysregulation, most studied adrenergic receptor genes in the similar literatures too. We searched for genetic variants in b1AR and b2AR genes in our study and however we could not find any variants in this study, we think larger numbers of cohort studies are needed. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-021-06816-w.
Collapse
|
7
|
Tanner MA, Maitz CA, Grisanti LA. Immune cell β 2-adrenergic receptors contribute to the development of heart failure. Am J Physiol Heart Circ Physiol 2021; 321:H633-H649. [PMID: 34415184 PMCID: PMC8816326 DOI: 10.1152/ajpheart.00243.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
β-Adrenergic receptors (βARs) regulate normal and pathophysiological heart function through their impact on contractility. βARs are also regulators of immune function where they play a unique role depending on the disease condition and immune cell type. Emerging evidence suggests an important role for the β2AR subtype in regulating remodeling in the pathological heart; however, the importance of these responses has never been examined. In heart failure, catecholamines are elevated, leading to chronic βAR activation and contributing to the detrimental effects in the heart. We hypothesized that immune cell β2AR plays a critical role in the development of heart failure in response to chronic catecholamine elevations through their regulation of immune cell infiltration. To test this, chimeric mice were generated by performing bone marrow transplant (BMT) experiments using wild-type (WT) or β2AR knockout (KO) donors. WT and β2ARKO BMT mice were chronically administered the βAR agonist isoproterenol. Immune cell recruitment to the heart was examined by histology and flow cytometry. Numerous changes in immune cell recruitment were observed with isoproterenol administration in WT BMT mice including proinflammatory myeloid populations and lymphocytes with macrophages made up the majority of immune cells in the heart and which were absent in β2ARKO BMT animal. β2ARKO BMT mice had decreased cardiomyocyte death, hypertrophy, and interstitial fibrosis following isoproterenol treatment, culminating in improved function. These findings demonstrate an important role for immune cell β2AR expression in the heart's response to chronically elevated catecholamines.NEW & NOTEWORTHY Immune cell β2-adrenergic receptors (β2ARs) are important for proinflammatory macrophage infiltration to the heart in a chronic isoproterenol administration model of heart failure. Mice lacking immune cell β2AR have decreased immune cell infiltration to their heart, primarily proinflammatory macrophage populations. This decrease culminated to decreased cardiac injury with lessened cardiomyocyte death, decreased interstitial fibrosis and hypertrophy, and improved function demonstrating that β2AR regulation of immune responses plays an important role in the heart's response to persistent βAR stimulation.
Collapse
Affiliation(s)
- Miles A Tanner
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Charles A Maitz
- Department of Veterinary Medicine and Surgery, University of Missouri, College of Veterinary Medicine, Columbia, Missouri
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Ahmari N, Hayward LF, Zubcevic J. The importance of bone marrow and the immune system in driving increases in blood pressure and sympathetic nerve activity in hypertension. Exp Physiol 2020; 105:1815-1826. [PMID: 32964557 DOI: 10.1113/ep088247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022]
Abstract
NEW FINDINGS What is the topic of this review? This manuscript provides a review of the current understanding of the role of the sympathetic nervous system in regulation of bone marrow-derived immune cells and the effect that the infiltrating bone marrow cells may have on perpetuation of the sympathetic over-activation in hypertension. What advances does it highlight? We highlight the recent advances in understanding of the neuroimmune interactions both peripherally and centrally as they relate to blood pressure control. ABSTRACT The sympathetic nervous system (SNS) plays a crucial role in maintaining physiological homeostasis, in part by regulating, integrating and orchestrating processes between many physiological systems, including the immune system. Sympathetic nerves innervate all primary and secondary immune organs, and all cells of the immune system express β-adrenoreceptors. In turn, immune cells can produce cytokines, chemokines and neurotransmitters capable of modulating neuronal activity and, ultimately, SNS activity. Thus, the essential role of the SNS in the regulation of innate and adaptive immune functions is mediated, in part, via β-adrenoreceptor-induced activation of bone marrow cells by noradrenaline. Interestingly, both central and systemic inflammation are well-established hallmarks of hypertension and its co-morbidities, including an inflammatory process involving the transmigration and infiltration of immune cells into tissues. We propose that physiological states that prolong β-adrenoreceptor activation in bone marrow can disrupt neuroimmune homeostasis and impair communication between the immune system and SNS, leading to immune dysregulation, which, in turn, is sustained via a central mechanism involving neuroinflammation.
Collapse
Affiliation(s)
- Niousha Ahmari
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Linda F Hayward
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Jasenka Zubcevic
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Yang F, Chen H, Gao Y, An N, Li X, Pan X, Yang X, Tian L, Sun J, Xiong X, Xing Y. Gut microbiota-derived short-chain fatty acids and hypertension: Mechanism and treatment. Biomed Pharmacother 2020; 130:110503. [PMID: 34321175 DOI: 10.1016/j.biopha.2020.110503] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Hypertension (HTN) is an growing emerging health issue around across the world. In recent years, increasing attention has been paid to the role of dysbacteriosis in HTN and its underlying mechanism. Short-chain fatty acids (SCFAs), which are novel metabolites of intestinal flora, exert substantial regulatory effects on HTN, providing an exciting avenue for novel therapies for this disease. They function primarily by activating transmembrane G protein-coupled receptors and inhibiting histone acetylation. In this review, we discuss the mechanisms underlying the complex interaction between SCFAs and gut microbiota composition to lower blood pressure by regulating the brain-gut and kidney-gut axes, and the role of high-salt diet, immune system, oxidative stress, and inflammatory mechanism in the development of HTN. Furthermore, we also discuss the various treatment strategies for HTN, including diet, antibiotics, probiotics, fecal microflora transplantation, and traditional Chinese medicine. In conclusion, manipulation of SCFAs opens new avenues to improve treatment of HTN.
Collapse
Affiliation(s)
- Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hengwen Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing, China
| | - Xinye Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing, China
| | - Xiandu Pan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Yang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Li Tian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing, China
| | - Jiahao Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing, China
| | - Xingjiang Xiong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
10
|
Martyniuk CJ, Martínez R, Kostyniuk DJ, Mennigen JA, Zubcevic J. Genetic ablation of bone marrow beta-adrenergic receptors in mice modulates miRNA-transcriptome networks of neuroinflammation in the paraventricular nucleus. Physiol Genomics 2020; 52:169-177. [PMID: 32089076 PMCID: PMC7191424 DOI: 10.1152/physiolgenomics.00001.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/07/2020] [Accepted: 02/16/2020] [Indexed: 12/21/2022] Open
Abstract
Elucidating molecular pathways regulating neuroimmune communication is critical for therapeutic interventions in conditions characterized by overactive immune responses and dysfunctional autonomic nervous system. We generated a bone marrow-specific adrenergic beta 1 and beta 2 knockout mouse chimera (AdrB1.B2 KO) to determine how sympathetic drive to the bone affects transcripts and miRNAs in the hypothalamic paraventricular nucleus (PVN). This model has previously exhibited a dampened systemic immune response and decreased blood pressure compared with control animals. Reduced sympathetic responsiveness of the bone marrow hematopoietic cells of AdrB1.B2 KO chimera led to suppression of transcriptional networks that included leukocyte cell adhesion and migration and T cell-activation and recruitment. Transcriptome responses related to IL-17a signaling and the renin-angiotensin system were also suppressed in the PVN. Based on the transcriptome response, we next computationally predicted miRNAs in the PVN that may underscore the reduced sympathetic responsiveness of the bone marrow cells. These included miR-27b-3p, miR-150, miR-223-3p, and miR-326. Using real-time PCR, we measured a downregulation in the expression of miR-150-5p, miR-205-5p, miR-223-3p, miR-375-5p, miR-499a-5p, miR-27b-3p, let-7a-5p, and miR-21a-5p in the PVN of AdrB1.B2 KO chimera, confirming computational predictions that these miRNAs are associated with reduced neuro-immune responses and the loss of sympathetic responsiveness in the bone marrow. Intriguingly, directional responses of the miRNA corresponded to mRNAs, suggesting complex temporal or circuit-dependent posttranscriptional control of gene expression in the PVN. This study identifies molecular pathways involved in neural-immune interactions that may act as targets of therapeutic intervention for a dysfunctional autonomic nervous system.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Ruben Martínez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universidad de Barcelona (UB), Barcelona, Spain
| | | | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
11
|
Sun JL, Yan JF, Li J, Wang WR, Yu SB, Zhang HY, Huang F, Niu LN, Jiao K. Conditional deletion of Adrb2 in mesenchymal stem cells attenuates osteoarthritis-like defects in temporomandibular joint. Bone 2020; 133:115229. [PMID: 31926929 DOI: 10.1016/j.bone.2020.115229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 01/07/2023]
Abstract
β2-adrenergic signal transduction in mesenchymal stem cells (MSCs) induces subchondral bone loss in osteoarthritis (OA) of temporomandibular joints (TMJs). However, whether conditional deletion of β2-adrenergic receptor (Adrb2) in nestin+ MSCs can alleviate TMJ-OA development remains unknown. In this study, nestin-Cre mice were crossed with Adrb2 flox mice to generate mice lacking Adrb2 expression specifically in the nestin+ MSCs (Adrb2-/-), and TMJ-OA development in such mice was investigated. Adrb2 flox mice (Adrb2+/+) and Adrb2-/- mice were subjected to unilateral anterior crossbite (UAC), while mice in the control group were subjected to sham operation. Adrb2+/+ and Adrb2-/- mice in the control group showed no distinguishable phenotypic changes in body weight and length, mandibular condylar size, and other histomorphological parameters of the condylar subchondral bone. A significant increase in subchondral bone loss and cartilage degradation was observed in Adrb2+/+ UAC mice; the former was characterized by decreased bone mineral density, bone volume fraction, and trabecular plate thickness, and increased trabecular separation, osteoclast number and osteoclast surface, and pro-osteoclastic factor expression; the latter was characterized by decreased cartilage thickness, chondrocyte density, proteoglycan area, and collagen II and aggrecan expression, but increased matrix metalloproteinase and alkaline phosphatase expression and percentage area of calcified cartilage. Adrb2 deletion in nestin+ MSCs largely attenuated UAC-induced increase in condylar subchondral bone loss, cartilage degradation, and aberrant calcification at the osteochondral interface. Thus, Adrb2-expressing MSCs in the condylar subchondral bone play an important role in TMJ-OA progression and may serve as novel therapeutic targets for TMJ-OA.
Collapse
Affiliation(s)
- Jin-Long Sun
- State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.; Department of Stomatology, Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Jian-Fei Yan
- State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Jing Li
- State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Wan-Rong Wang
- State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Shi-Bin Yu
- State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Hong-Yun Zhang
- State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Fei Huang
- Department of Stomatology, Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China..
| | - Kai Jiao
- State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China..
| |
Collapse
|
12
|
Ciftciler R, Haznedaroglu IC. Pathobiological Interactions of Local Bone Marrow Renin-Angiotensin System and Central Nervous System in Systemic Arterial Hypertension. Front Endocrinol (Lausanne) 2020; 11:425. [PMID: 32903745 PMCID: PMC7438890 DOI: 10.3389/fendo.2020.00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/28/2020] [Indexed: 01/16/2023] Open
Abstract
Circulating renin-angiotensin system (RAS) and local paracrin-autocrin-intracrin tissue-based RAS participate in numerous pathobiological events. Pro-inflammatory, pro-fibrotic, and pro-thrombotic consequences associated with local RAS activation have been detected at cellular and molecular level. Regenerative progenitor cell therapy in response to RAS modulating pharmacotherapy has emerged as an adjunct in the context of endothelial cell injury and regeneration to improve regeneration of the vascular endothelium. Local hematopoietic bone marrow (BM) RAS symbolizes the place of cross-interaction between vascular biology and cellular events from embryogenesis to definitive hematopoiesis underlying vascular atherosclerosis. The BM microenvironment also contains Mas receptors, which control the proliferative role of Ang 1-7 on hematopoietic stem cells. Ang 1-7 is produced from Ang-II or Ang-I with the help of ACE2. Various tissues and organs also have an effect on the RAS system. The leukocytes contain and synthesize immunoreactive angiotensinogen species capable of producing angiotensin in the basal state or after incubation with renin. The significance of RAS employment in atherosclerosis and hypertension was indicated by novel bidirectional Central Nervous System (CNS) RAS-BM RAS communications. Myeloid cells generated within the context of hematopoietic BM RAS are considered as the initiators and decision shapers in atherosclerosis. Macrophages in the atherosclerotic lesions contain angiotensin peptides by which RAS blockers inhibit monocyte activation and adherence. Furthermore, vascular biology in relation to inflammation and neoplasia is also affected by local tissue RAS. The purpose of this article is to outline interactions of circulating and local angiotensin systems, especially local bone marrow RAS, in the vascular pathobiological microenvironment of CNS.
Collapse
|
13
|
Li Y, Wei B, Liu X, Shen XZ, Shi P. Microglia, autonomic nervous system, immunity and hypertension: Is there a link? Pharmacol Res 2019; 155:104451. [PMID: 31557524 DOI: 10.1016/j.phrs.2019.104451] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/17/2019] [Accepted: 09/06/2019] [Indexed: 01/19/2023]
Abstract
Hypertension ranks the most common risk factor for cardiovascular diseases, and it affects almost one third of adult population globally. Emerging evidence indicates that immune activation is highly involved in the entire progress of hypertension and end organ damage. In addition to immunity, autonomic nervous system, particularly sympathetic nervous system, is one of the most conserved systems to maintain body homeostasis. Immune and sympathetic activities are found simultaneously increased in hypertension, suggesting a synergistic action of these two systems in the progression of this disease. Microglia, the primary immune cells in the central nervous system, have been suggested in the regulation of sympathetic outflow; depletion of microglia alters neuroinflammation and pressor responses in hypertensive models. In this review, we firstly updated the current understanding on microglial ontogeny and functions in both steady state and diseases. Then we reviewed on the interaction between autonomic nervous system and peripheral immunity in hypertension. Microglia bridge the central and peripheral inflammation via regulating the sympathetic nerve activity in hypertension. Future exploration of the molecular linkage of this pathway may provide novel therapeutic angel for hypertension and related cardiovascular diseases.
Collapse
Affiliation(s)
- You Li
- Department of Cardiology of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, China
| | - Bo Wei
- Department of Cardiology of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoli Liu
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Xiao Z Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Shi
- Department of Cardiology of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Elkhatib SK, Case AJ. Autonomic regulation of T-lymphocytes: Implications in cardiovascular disease. Pharmacol Res 2019; 146:104293. [PMID: 31176794 DOI: 10.1016/j.phrs.2019.104293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/22/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
Abstract
The nervous and immune systems both serve as essential assessors and regulators of physiological function. Recently, there has been a great interest in how the nervous and immune systems interact to modulate both physiological and pathological states. In particular, the autonomic nervous system has a direct line of communication with immune cells anatomically, and moreover, immune cells possess receptors for autonomic neurotransmitters. This circumstantial evidence is suggestive of a functional interplay between the two systems, and extensive research over the past few decades has demonstrated neurotransmitters such as the catecholamines (i.e. dopamine, norepinephrine, and epinephrine) and acetylcholine have potent immunomodulating properties. Furthermore, immune cells, particularly T-lymphocytes, have now been found to express the cellular machinery for both the synthesis and degradation of neurotransmitters, which suggests the ability for both autocrine and paracrine signaling from these cells independent of the nervous system. The details underlying the functional interplay of this complex network of neuroimmune communication are still unclear, but this crosstalk is suggestive of significant implications on the pathogenesis of a number of autonomic-dysregulated and inflammation-mediated diseases. In particular, it is widely accepted that numerous forms of cardiovascular diseases possess imbalanced autonomic tone as well as altered T-lymphocyte function, but a paucity of literature exists discussing the direct role of neurotransmitters in shaping the inflammatory microenvironment during the progression or therapeutic management of these diseases. This review seeks to provide a fundamental framework for this autonomic neuroimmune interaction within T-lymphocytes, as well as the implications this may have in cardiovascular diseases.
Collapse
Affiliation(s)
- Safwan K Elkhatib
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
15
|
Ahmari N, Santisteban MM, Miller DR, Geis NM, Larkin R, Redler T, Denson H, Khoshbouei H, Baekey DM, Raizada MK, Zubcevic J. Elevated bone marrow sympathetic drive precedes systemic inflammation in angiotensin II hypertension. Am J Physiol Heart Circ Physiol 2019; 317:H279-H289. [PMID: 31150271 DOI: 10.1152/ajpheart.00510.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased sympathetic nervous system activity is a hallmark of hypertension (HTN), and it is implicated in altered immune system responses in its pathophysiology. However, the precise mechanisms of neural-immune interaction in HTN remain elusive. We have previously shown an association between elevated sympathetic drive to the bone marrow (BM) and activated BM immune cells in rodent models of HTN. Moreover, microglial-dependent neuroinflammation is also seen in rodent models of HTN. However, the cause-effect relationship between central and systemic inflammatory responses and the sympathetic drive remains unknown. These observations led us to hypothesize that increase in the femoral BM sympathetic nerve activity (fSNA) initiates a cascade of events leading to increase in blood pressure (BP). Here, we investigated the temporal relationship between the BM sympathetic drive, activation of the central and peripheral immune system, and increase in BP in the events leading to established HTN. The present study demonstrates that central infusion of angiotensin II (ANG II) induces early microglial activation in the paraventricular nucleus of hypothalamus, which preceded increase in the fSNA. In turn, activation of fSNA correlated with the timing of increased production and release of CD4+.IL17+ T cells and other proinflammatory cells into circulation and elevation in BP, whereas infiltration of CD4+ cells to the paraventricular nucleus marked establishment of ANG II HTN. This study identifies cellular and molecular mechanisms involved in neural-immune interactions in early and established stages of rodent ANG II HTN. NEW & NOTEWORTHY Early microglia activation in paraventricular nucleus precedes sympathetic activation of the bone marrow. This leads to increased bone marrow immune cells and their release into circulation and an increase in blood pressure. Infiltration of CD4+ T cells into paraventricular nucleus paraventricular nucleus marks late hypertension.
Collapse
Affiliation(s)
- Niousha Ahmari
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida , Gainesville, Florida.,Department of Physiology and Functional Genomics, College of Medicine, University of Florida , Gainesville, Florida
| | - Monica M Santisteban
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida , Gainesville, Florida
| | - Douglas R Miller
- Department of Neuroscience, College of Medicine, University of Florida , Gainesville, Florida
| | - Natalie M Geis
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida , Gainesville, Florida
| | - Riley Larkin
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida , Gainesville, Florida
| | - Ty Redler
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida , Gainesville, Florida
| | - Heather Denson
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida , Gainesville, Florida
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine, University of Florida , Gainesville, Florida
| | - David M Baekey
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida , Gainesville, Florida
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida , Gainesville, Florida
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|
16
|
Bartley A, Yang T, Arocha R, Malphurs WL, Larkin R, Magee KL, Vickroy TW, Zubcevic J. Increased Abundance of Lactobacillales in the Colon of Beta-Adrenergic Receptor Knock Out Mouse Is Associated With Increased Gut Bacterial Production of Short Chain Fatty Acids and Reduced IL17 Expression in Circulating CD4 + Immune Cells. Front Physiol 2018; 9:1593. [PMID: 30483153 PMCID: PMC6242911 DOI: 10.3389/fphys.2018.01593] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/24/2018] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence suggests an associative link between gut dysbiosis, the autonomic nervous system (ANS) and the immune system in pathophysiology of neurogenic hypertension (HTN). However, the close interplay between these three systems presents us with difficulties in deciphering the cause-effect relationship in disease. The present study utilized beta 1 and 2 adrenergic receptor knock out (AdrB1tm1BkkAdrB2tm1Bkk/J KO) mice to isolate the effects of reduced overall sympathetic drive on gut microbiota and systemic immune system. We observed the following: (i) Diminished beta adrenergic signaling mainly reflects in shifts in the Firmicutes phyla, with a significant increase in abundance of largely beneficial Bacilli Lactobacillales in the KO mice; (ii) This was associated with increased colonic production of beneficial short chain fatty acids (SCFAs) butyrate, acetate and propionate, confirming functional microbiota shifts in the KO mice; (iii) Dampened systemic immune responses in the KO mice reflected in reduction on circulating CD4+.IL17+ T cells and increase in young neutrophils, both previously associated with shifts in the gut microbiota. Taken together, these observations demonstrate that reduced expression of beta adrenergic receptors may lead to beneficial shifts in the gut microbiota and dampened systemic immune responses. Considering the role of both in hypertension, this suggests that dietary intervention may be a viable option for manipulation of blood pressure via correcting gut dysbiosis.
Collapse
Affiliation(s)
- Akeem Bartley
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Tao Yang
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Rebeca Arocha
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Wendi L Malphurs
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Riley Larkin
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Kacy L Magee
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Thomas W Vickroy
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Yang T, Zubcevic J. Gut-Brain Axis in Regulation of Blood Pressure. Front Physiol 2017; 8:845. [PMID: 29118721 PMCID: PMC5661004 DOI: 10.3389/fphys.2017.00845] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/10/2017] [Indexed: 01/04/2023] Open
Abstract
Hypertension (HTN) is an escalating health issue worldwide. It is estimated that 1.56 billion people will suffer from high blood pressure (BP) by 2025. Recent studies reported an association between gut dysbiosis and HTN, thus proposing interesting avenues for novel treatments of this condition. The sympathetic nervous system (SNS) and the immune system (IS) play a recognized role in the onset and progression of HTN, while reciprocal communication between gut microbiota and the brain can regulate BP by modulating the interplay between the IS and SNS. This review presents the current state of the science implicating brain-gut connection in HTN, highlighting potential pathways of their interaction in control of BP.
Collapse
Affiliation(s)
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
18
|
Bone Marrow-Derived Tenascin-C Attenuates Cardiac Hypertrophy by Controlling Inflammation. J Am Coll Cardiol 2017; 70:1601-1615. [PMID: 28935038 DOI: 10.1016/j.jacc.2017.07.789] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Tenascin-C (TNC) is a highly conserved matricellular protein with a distinct expression pattern during development and disease. Remodeling of the left ventricle (LV) in response to pressure overload leads to the re-expression of the fetal gene program. OBJECTIVES The aim of this study was to investigate the function of TNC in cardiac hypertrophy in response to pressure overload. METHODS Pressure overload was induced in TNC knockout and wild-type mice by constricting their abdominal aorta or by infusion of angiotensin II. Echocardiography, immunostaining, flow cytometry, quantitative real-time polymerase chain reaction, and reciprocal bone marrow transplantation were used to evaluate the effect of TNC deficiency. RESULTS Echocardiographic analysis of pressure overloaded hearts revealed that all LV parameters (LV end-diastolic and -systolic dimensions, ejection fraction, and fractional shortening) deteriorated in TNC-deficient mice compared with their wild-type counterparts. Cardiomyocyte size and collagen accumulation were significantly greater in the absence of TNC. Mechanistically, TNC deficiency promoted rapid accumulation of the CCR2+/Ly6Chi monocyte/macrophage subset into the myocardium in response to pressure overload. Further, echocardiographic and immunohistochemical analyses of recipient hearts showed that expression of TNC in the bone marrow, but not the myocardium, protected the myocardium against excessive remodeling of the pressure-overloaded heart. CONCLUSIONS TNC deficiency further impaired cardiac function in response to pressure overload and exacerbated fibrosis by enhancing inflammation. In addition, expression of TNC in the bone marrow, but not the myocardium, protected the myocardium against excessive remodeling in response to mild pressure overload.
Collapse
|
19
|
Zubcevic J, Santisteban MM, Perez PD, Arocha R, Hiller H, Malphurs WL, Colon-Perez LM, Sharma RK, de Kloet A, Krause EG, Febo M, Raizada MK. A Single Angiotensin II Hypertensive Stimulus Is Associated with Prolonged Neuronal and Immune System Activation in Wistar-Kyoto Rats. Front Physiol 2017; 8:592. [PMID: 28912720 PMCID: PMC5583219 DOI: 10.3389/fphys.2017.00592] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/31/2017] [Indexed: 11/29/2022] Open
Abstract
Activation of autonomic neural pathways by chronic hypertensive stimuli plays a significant role in pathogenesis of hypertension. Here, we proposed that even a single acute hypertensive stimulus will activate neural and immune pathways that may be important in initiation of memory imprinting seen in chronic hypertension. We investigated the effects of acute angiotensin II (Ang II) administration on blood pressure, neural activation in cardioregulatory brain regions, and central and systemic immune responses, at 1 and 24 h post-injection. Administration of a single bolus intra-peritoneal (I.P.) injection of Ang II (36 μg/kg) resulted in a transient increase in the mean arterial pressure (MAP) (by 22 ± 4 mmHg vs saline), which returned to baseline within 1 h. However, in contrast to MAP, neuronal activity, as measured by manganese-enhanced magnetic resonance (MEMRI), remained elevated in several cardioregulatory brain regions over 24 h. The increase was predominant in autonomic regions, such as the subfornical organ (SFO; ~20%), paraventricular nucleus of the hypothalamus (PVN; ~20%) and rostral ventrolateral medulla (RVLM; ~900%), among others. Similarly, systemic and central immune responses, as evidenced by circulating levels of CD4+/IL17+ T cells, and increased IL17 levels and activation of microglia in the PVN, respectively, remained elevated at 24 h following Ang II challenge. Elevated Fos expression in the PVN was also present at 24 h (by 73 ± 11%) following Ang II compared to control saline injections, confirming persistent activation of PVN. Thus, even a single Ang II hypertensive stimulus will initiate changes in neuronal and immune cells that play a role in the developing hypertensive phenotype.
Collapse
Affiliation(s)
- Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesville, FL, United States
| | - Monica M Santisteban
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Pablo D Perez
- Department of Psychiatry, College of Medicine, University of FloridaGainesville, FL, United States
| | - Rebeca Arocha
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesville, FL, United States
| | - Helmut Hiller
- Department of Pharmacodynamics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Wendi L Malphurs
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesville, FL, United States
| | - Luis M Colon-Perez
- Department of Psychiatry, College of Medicine, University of FloridaGainesville, FL, United States
| | - Ravindra K Sharma
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Annette de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Eric G Krause
- Department of Pharmacodynamics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine, University of FloridaGainesville, FL, United States
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| |
Collapse
|
20
|
Yang T, Ahmari N, Schmidt JT, Redler T, Arocha R, Pacholec K, Magee KL, Malphurs W, Owen JL, Krane GA, Li E, Wang GP, Vickroy TW, Raizada MK, Martyniuk CJ, Zubcevic J. Shifts in the Gut Microbiota Composition Due to Depleted Bone Marrow Beta Adrenergic Signaling Are Associated with Suppressed Inflammatory Transcriptional Networks in the Mouse Colon. Front Physiol 2017; 8:220. [PMID: 28446880 PMCID: PMC5388758 DOI: 10.3389/fphys.2017.00220] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
The brain-gut axis plays a critical role in the regulation of different diseases, many of which are characterized by sympathetic dysregulation. However, a direct link between sympathetic dysregulation and gut dysbiosis remains to be illustrated. Bone marrow (BM)-derived immune cells continuously interact with the gut microbiota to maintain homeostasis in the host. Their function is largely dependent upon the sympathetic nervous system acting via adrenergic receptors present on the BM immune cells. In this study, we utilized a novel chimera mouse that lacks the expression of BM beta1/2 adrenergic receptors (b1/2-ARs) to investigate the role of the sympathetic drive to the BM in gut and microbiota homeostasis. Fecal analyses demonstrated a shift from a dominance of Firmicutes to Bacteroidetes phylum in the b1/2-ARs KO chimera, resulting in a reduction in Firmicutes/Bacteroidetes ratio. Meanwhile, a significant reduction in Proteobacteria phylum was determined. No changes in the abundance of acetate-, butyrate-, and lactate-producing bacteria, and colon pathology were observed in the b1/2-ARs KO chimera. Transcriptomic profiling in colon identified Killer Cell Lectin-Like Receptor Subfamily D, Member 1 (Klrd1), Membrane-Spanning 4-Domains Subfamily A Member 4A (Ms4a4b), and Casein Kinase 2 Alpha Prime Polypeptide (Csnk2a2) as main transcripts associated with the microbiota shifts in the b1/2-ARs KO chimera. Suppression of leukocyte-related transcriptome networks (i.e., function, differentiation, migration), classical compliment pathway, and networks associated with intestinal function, barrier integrity, and excretion was also observed in the colon of the KO chimera. Moreover, reduced expression of transcriptional networks related to intestinal diseases (i.e., ileitis, enteritis, inflammatory lesions, and stress) was noted. The observed suppressed transcriptome networks were associated with a reduction in NK cells, macrophages, and CD4+ T cells in the b1/2-ARs KO chimera colon. Thus, sympathetic regulation of BM-derived immune cells plays a significant role in modifying inflammatory networks in the colon and the gut microbiota composition. To our knowledge, this study is the first to suggest a key role of BM b1/2-ARs signaling in host-microbiota interactions, and reveals specific molecular mechanisms that may lead to generation of novel anti-inflammatory treatments for many immune and autonomic diseases as well as gut dysbiosis across the board.
Collapse
Affiliation(s)
- Tao Yang
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida (UF)Gainesville, FL, USA
| | - Niousha Ahmari
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida (UF)Gainesville, FL, USA
| | - Jordan T Schmidt
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida (UF)Gainesville, FL, USA
| | - Ty Redler
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida (UF)Gainesville, FL, USA
| | - Rebeca Arocha
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida (UF)Gainesville, FL, USA
| | - Kevin Pacholec
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida (UF)Gainesville, FL, USA
| | - Kacy L Magee
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida (UF)Gainesville, FL, USA
| | - Wendi Malphurs
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida (UF)Gainesville, FL, USA
| | - Jennifer L Owen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida (UF)Gainesville, FL, USA
| | - Gregory A Krane
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle ParkDurham, NC, USA
| | - Eric Li
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of FloridaGainesville, FL, USA
| | - Gary P Wang
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of FloridaGainesville, FL, USA
| | - Thomas W Vickroy
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida (UF)Gainesville, FL, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida (UF)Gainesville, FL, USA
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida (UF)Gainesville, FL, USA
| |
Collapse
|
21
|
Affiliation(s)
- Kim Ramil C Montaniel
- From Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (K.R.C.M.); and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (D.G.H.)
| | - David G Harrison
- From Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (K.R.C.M.); and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (D.G.H.).
| |
Collapse
|