1
|
Keller MP, Hudkins KL, Shalev A, Bhatnagar S, Kebede MA, Merrins MJ, Davis DB, Alpers CE, Kimple ME, Attie AD. What the BTBR/J mouse has taught us about diabetes and diabetic complications. iScience 2023; 26:107036. [PMID: 37360692 PMCID: PMC10285641 DOI: 10.1016/j.isci.2023.107036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Human and mouse genetics have delivered numerous diabetogenic loci, but it is mainly through the use of animal models that the pathophysiological basis for their contribution to diabetes has been investigated. More than 20 years ago, we serendipidously identified a mouse strain that could serve as a model of obesity-prone type 2 diabetes, the BTBR (Black and Tan Brachyury) mouse (BTBR T+ Itpr3tf/J, 2018) carrying the Lepob mutation. We went on to discover that the BTBR-Lepob mouse is an excellent model of diabetic nephropathy and is now widely used by nephrologists in academia and the pharmaceutical industry. In this review, we describe the motivation for developing this animal model, the many genes identified and the insights about diabetes and diabetes complications derived from >100 studies conducted in this remarkable animal model.
Collapse
Affiliation(s)
- Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelly L. Hudkins
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Anath Shalev
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Melkam A. Kebede
- School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Charles E. Alpers
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Michelle E. Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Anderson JM, Boardman AA, Bates R, Zou X, Huang W, Cao L. Hypothalamic TrkB.FL overexpression improves metabolic outcomes in the BTBR mouse model of autism. PLoS One 2023; 18:e0282566. [PMID: 36893171 PMCID: PMC9997972 DOI: 10.1371/journal.pone.0282566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
BTBR T+ Itpr3tf/J (BTBR) mice are used as a model of autism spectrum disorder (ASD), displaying similar behavioral and physiological deficits observed in patients with ASD. Our recent study found that implementation of an enriched environment (EE) in BTBR mice improved metabolic and behavioral outcomes. Brain-derived neurotrophic factor (Bdnf) and its receptor tropomyosin kinase receptor B (Ntrk2) were upregulated in the hypothalamus, hippocampus, and amygdala by implementing EE in BTBR mice, suggesting that BDNF-TrkB signaling plays a role in the EE-BTBR phenotype. Here, we used an adeno-associated virus (AAV) vector to overexpress the TrkB full-length (TrkB.FL) BDNF receptor in the BTBR mouse hypothalamus in order to assess whether hypothalamic BDNF-TrkB signaling is responsible for the improved metabolic and behavioral phenotypes associated with EE. Normal chow diet (NCD)-fed and high fat diet (HFD)-fed BTBR mice were randomized to receive either bilateral injections of AAV-TrkB.FL or AAV-YFP as control, and were subjected to metabolic and behavioral assessments up to 24 weeks post-injection. Both NCD and HFD TrkB.FL overexpressing mice displayed improved metabolic outcomes, characterized as reduced percent weight gain and increased energy expenditure. NCD TrkB.FL mice showed improved glycemic control, reduced adiposity, and increased lean mass. In NCD mice, TrkB.FL overexpression altered the ratio of TrkB.FL/TrkB.T1 protein expression and increased phosphorylation of PLCγ in the hypothalamus. TrkB.FL overexpression also upregulated expression of hypothalamic genes involved in energy regulation and altered expression of genes involved in thermogenesis, lipolysis, and energy expenditure in white adipose tissue and brown adipose tissue. In HFD mice, TrkB.FL overexpression increased phosphorylation of PLCγ. TrkB.FL overexpression in the hypothalamus did not improve behavioral deficits in either NCD or HFD mice. Together, these results suggest that enhancing hypothalamic TrkB.FL signaling improves metabolic health in BTBR mice.
Collapse
Affiliation(s)
- Jacqueline M. Anderson
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Amber A. Boardman
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Rhiannon Bates
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Xunchang Zou
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Wei Huang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Lei Cao
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
3
|
Leung CLK, Karunakaran S, Atser MG, Innala L, Hu X, Viau V, Johnson JD, Clee SM. Analysis of a genetic region affecting mouse body weight. Physiol Genomics 2023; 55:132-146. [PMID: 36717164 PMCID: PMC10042608 DOI: 10.1152/physiolgenomics.00137.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Genetic factors affect an individual's risk of developing obesity, but in most cases each genetic variant has a small effect. Discovery of genes that regulate obesity may provide clues about its underlying biological processes and point to new ways the disease can be treated. Preclinical animal models facilitate genetic discovery in obesity because environmental factors can be better controlled compared with the human population. We studied inbred mouse strains to identify novel genes affecting obesity and glucose metabolism. BTBR T+ Itpr3tf/J (BTBR) mice are fatter and more glucose intolerant than C57BL/6J (B6) mice. Prior genetic studies of these strains identified an obesity locus on chromosome 2. Using congenic mice, we found that obesity was affected by a ∼316 kb region, with only two known genes, pyruvate dehydrogenase kinase 1 (Pdk1) and integrin α 6 (Itga6). Both genes had mutations affecting their amino acid sequence and reducing mRNA levels. Both genes have known functions that could modulate obesity, lipid metabolism, insulin secretion, and/or glucose homeostasis. We hypothesized that genetic variation in or near Pdk1 or Itga6 causing reduced Pdk1 and Itga6 expression would promote obesity and impaired glucose tolerance. We used knockout mice lacking Pdk1 or Itga6 fed an obesigenic diet to test this hypothesis. Under the conditions we studied, we were unable to detect an individual contribution of either Pdk1 or Itga6 to body weight. During our studies, with conditions outside our control, we were unable to reproduce some of our previous body weight data. However, we identified a previously unknown role for Pdk1 in cardiac cholesterol metabolism providing the basis for future investigations. The studies described in this paper highlight the importance and the challenge using physiological outcomes to study obesity genes in mice.
Collapse
Affiliation(s)
- Connie L K Leung
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Subashini Karunakaran
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael G Atser
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leyla Innala
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victor Viau
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susanne M Clee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Klein MS, Newell C, Bomhof MR, Reimer RA, Hittel DS, Rho JM, Vogel HJ, Shearer J. Metabolomic Modeling To Monitor Host Responsiveness to Gut Microbiota Manipulation in the BTBRT+tf/j Mouse. J Proteome Res 2016; 15:1143-50. [DOI: 10.1021/acs.jproteome.5b01025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | | | - Jong M. Rho
- Departments of Paediatrics & Clinical Neurosciences, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 2T9, Canada
| | | | | |
Collapse
|
5
|
Kobayashi M, Ohno T, Ihara K, Murai A, Kumazawa M, Hoshino H, Iwanaga K, Iwai H, Hamana Y, Ito M, Ohno K, Horio F. Searching for genomic region of high-fat diet-induced type 2 diabetes in mouse chromosome 2 by analysis of congenic strains. PLoS One 2014; 9:e96271. [PMID: 24789282 PMCID: PMC4006839 DOI: 10.1371/journal.pone.0096271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/05/2014] [Indexed: 11/19/2022] Open
Abstract
SMXA-5 mice are a high-fat diet-induced type 2 diabetes animal model established from non-diabetic SM/J and A/J mice. By using F2 intercross mice between SMXA-5 and SM/J mice under feeding with a high-fat diet, we previously mapped a major diabetogenic QTL (T2dm2sa) on chromosome 2. We then produced the congenic strain (SM.A-T2dm2sa (R0), 20.8–163.0 Mb) and demonstrated that the A/J allele of T2dm2sa impaired glucose tolerance and increased body weight and body mass index in the congenic strain compared to SM/J mice. We also showed that the combination of T2dm2sa and other diabetogenic loci was needed to develop the high-fat diet-induced type 2 diabetes. In this study, to narrow the potential genomic region containing the gene(s) responsible for T2dm2sa, we constructed R1 and R2 congenic strains. Both R1 (69.6–163.0 Mb) and R2 (20.8–128.2 Mb) congenic mice exhibited increases in body weight and abdominal fat weight and impaired glucose tolerance compared to SM/J mice. The R1 and R2 congenic analyses strongly suggested that the responsible genes existed in the overlapping genomic interval (69.6–128.2 Mb) between R1 and R2. In addition, studies using the newly established R1A congenic strain showed that the narrowed genomic region (69.6–75.4 Mb) affected not only obesity but also glucose tolerance. To search for candidate genes within the R1A genomic region, we performed exome sequencing analysis between SM/J and A/J mice and extracted 4 genes (Itga6, Zak, Gpr155, and Mtx2) with non-synonymous coding SNPs. These four genes might be candidate genes for type 2 diabetes caused by gene-gene interactions. This study indicated that one of the genes responsible for high-fat diet-induced diabetes exists in the 5.8 Mb genomic interval on mouse chromosome 2.
Collapse
MESH Headings
- Abdominal Fat/metabolism
- Animals
- Blood Glucose/metabolism
- Chromosomes, Mammalian/genetics
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat
- Epistasis, Genetic
- Genetic Association Studies
- Genetic Predisposition to Disease
- Integrin alpha6/genetics
- MAP Kinase Kinase Kinases/genetics
- Membrane Proteins/genetics
- Mice
- Mice, Congenic
- Mitochondrial Proteins/genetics
- Molecular Sequence Data
- Polymorphism, Single Nucleotide
- Receptors, G-Protein-Coupled/genetics
- Sequence Analysis, DNA
- Weight Gain
Collapse
Affiliation(s)
- Misato Kobayashi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Center for Promotion of Medical Research and Education, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Aichi, Japan
| | - Atsushi Murai
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Mayumi Kumazawa
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiromi Hoshino
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Koichiro Iwanaga
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroshi Iwai
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Yoshiki Hamana
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Fumihiko Horio
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|