1
|
Valashedi MR, Roushandeh AM, Tomita K, Kuwahara Y, Pourmohammadi-Bejarpasi Z, Kozani PS, Sato T, Roudkenar MH. CRISPR/Cas9-mediated knockout of Lcn2 in human breast cancer cell line MDA-MB-231 ameliorates erastin-mediated ferroptosis and increases cisplatin vulnerability. Life Sci 2022; 304:120704. [PMID: 35714703 DOI: 10.1016/j.lfs.2022.120704] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 01/16/2023]
Abstract
AIMS Lipocalin 2 (Lcn2) is an antioxidant-related protein upregulated in various cellular stress conditions, especially cancer. In this study, we abrogated Lcn2 expression in MDA-MB-231 breast cancer cells using the CRISPR/Cas9 technology and evaluated its effect on cellular proliferation, migration, and ferroptotic cell death. MAIN METHODS Validated human Lcn2 CRISPR/Cas9 knockout (KO) and homology-directed repair (HDR) plasmids were co-transfected into MDA-MB-231 breast cancer cells. Lcn2 gene knockout was confirmed at the transcriptional and protein levels using reverse transcription (RT)-PCR and enzyme-linked immunosorbent assay (ELISA). Cell proliferation was measured using Cell Counting Kit-8 (CCK-8) and colony formation assays. Cytotoxicity assay was performed in the presence or absence of erastin, cisplatin (CDDP), and ferrostatin-1 using the CCK-8 method. Ferroptosis level was measured using the malondialdehyde assay lipid peroxidation kit. The migration capacity of the cells was also evaluated using the scratch assay. KEY FINDINGS Targeting Lcn2 using CRISPR/Cas9 reduced cellular proliferation and migration capability, and elevated the vulnerability of MDA-MB-231 cells to cisplatin. Furthermore, Lcn2 expression loss effectively promoted erastin-mediated ferroptosis in MDA-MB-231 cells. SIGNIFICANCE Inhibition of Lcn2 is a potentially useful strategy for sensitizing MDA-MB-231 tumor cells to ferroptotic cell death.
Collapse
Affiliation(s)
- Mehdi Rabiee Valashedi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Kuriyama N, Nakamura T, Nakazawa H, Wen T, Berra L, Bittner EA, Goverman J, Kaneki M. Bioavailability of Reduced Coenzyme Q10 (Ubiquinol-10) in Burn Patients. Metabolites 2022; 12:metabo12070613. [PMID: 35888737 PMCID: PMC9321044 DOI: 10.3390/metabo12070613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of inflammation and multi-organ dysfunction in major trauma, including burn injury. Coenzyme Q10 (CoQ10) is a metabolite of the mevalonate pathway and an essential cofactor for the electron transport in the mitochondria. In addition, its reduced form (ubiquinol) functions as an antioxidant. Little is known as to whether oral CoQ10 supplementation effectively increases intracellular CoQ10 levels in humans. To study the bioavailability of CoQ10 supplementation, we conducted a randomized, double-blind, placebo-controlled study of reduced CoQ10 (ubiquinol-10) (1800 mg/day, t.i.d.) in burn patients at a single, tertiary-care hospital. Baseline plasma CoQ10 levels were significantly lower in burn patients than in healthy volunteers, although plasma CoQ10/cholesterol ratio did not differ between the groups. CoQ10 supplementation increased plasma concentrations of total and reduced CoQ10 and total CoQ10 content in peripheral blood mononuclear cells (PBMCs) in burn patients compared with the placebo group. CoQ10 supplementation did not significantly change circulating levels of mitochondrial DNA, inflammatory markers (e.g., interleukins, TNF-α, IFN-γ), or Sequential Organ Failure Assessment (SOFA) scores compared with the placebo group. This study showed that a relatively high dose of reduced CoQ10 supplementation increased the intracellular CoQ10 content in PBMCs as well as plasma concentrations in burn patients.
Collapse
Affiliation(s)
- Naohide Kuriyama
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA; (N.K.); (T.N.); (H.N.); (T.W.); (L.B.); (E.A.B.)
- Shriners Hospitals for Children, 51 Blossom Steet, Boston, MA 02114, USA
| | - Tomoyuki Nakamura
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA; (N.K.); (T.N.); (H.N.); (T.W.); (L.B.); (E.A.B.)
- Shriners Hospitals for Children, 51 Blossom Steet, Boston, MA 02114, USA
| | - Harumasa Nakazawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA; (N.K.); (T.N.); (H.N.); (T.W.); (L.B.); (E.A.B.)
- Shriners Hospitals for Children, 51 Blossom Steet, Boston, MA 02114, USA
| | - Tyler Wen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA; (N.K.); (T.N.); (H.N.); (T.W.); (L.B.); (E.A.B.)
- Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA; (N.K.); (T.N.); (H.N.); (T.W.); (L.B.); (E.A.B.)
| | - Edward A. Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA; (N.K.); (T.N.); (H.N.); (T.W.); (L.B.); (E.A.B.)
| | - Jeremy Goverman
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA;
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA; (N.K.); (T.N.); (H.N.); (T.W.); (L.B.); (E.A.B.)
- Shriners Hospitals for Children, 51 Blossom Steet, Boston, MA 02114, USA
- Correspondence: ; Tel.: +617-726-8122; Fax: 617-726-8134
| |
Collapse
|
3
|
Mert S, Bulutoglu B, Chu C, Dylewski M, Lin FM, Yu YM, Yarmush ML, Sheridan RL, Uygun K. Multiorgan Metabolomics and Lipidomics Provide New Insights Into Fat Infiltration in the Liver, Muscle Wasting, and Liver-Muscle Crosstalk Following Burn Injury. J Burn Care Res 2020; 42:269-287. [PMID: 32877506 DOI: 10.1093/jbcr/iraa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Burn injury mediated hypermetabolic syndrome leads to increased mortality among severe burn victims, due to liver failure and muscle wasting. Metabolic changes may persist up to 2 years following the injury. Thus, understanding the underlying mechanisms of the pathology is crucially important to develop appropriate therapeutic approaches. We present detailed metabolomic and lipidomic analyses of the liver and muscle tissues in a rat model with a 30% body surface area burn injury located at the dorsal skin. Three hundred and thirty-eight of 1587 detected metabolites and lipids in the liver and 119 of 1504 in the muscle tissue exhibited statistically significant alterations. We observed excessive accumulation of triacylglycerols, decreased levels of S-adenosylmethionine, increased levels of glutamine and xenobiotics in the liver tissue. Additionally, the levels of gluconeogenesis, glycolysis, and tricarboxylic acid cycle metabolites are generally decreased in the liver. On the other hand, burn injury muscle tissue exhibits increased levels of acyl-carnitines, alpha-hydroxyisovalerate, ophthalmate, alpha-hydroxybutyrate, and decreased levels of reduced glutathione. The results of this preliminary study provide compelling observations that liver and muscle tissues undergo distinctly different changes during hypermetabolism, possibly reflecting liver-muscle crosstalk. The liver and muscle tissues might be exacerbating each other's metabolic pathologies, via excessive utilization of certain metabolites produced by each other.
Collapse
Affiliation(s)
- Safak Mert
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Beyza Bulutoglu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Christopher Chu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maggie Dylewski
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Florence M Lin
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Yong-Ming Yu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Martin L Yarmush
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Robert L Sheridan
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Korkut Uygun
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
4
|
Exercise Altered the Skeletal Muscle MicroRNAs and Gene Expression Profiles in Burn Rats With Hindlimb Unloading. J Burn Care Res 2018; 38:11-19. [PMID: 27753701 DOI: 10.1097/bcr.0000000000000444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study investigated microRNA and target gene profiles under different conditions of burn, bed rest, and exercise training. Male Sprague-Dawley rats (n = 48) were assigned to sham ambulatory, sham hindlimb unloading, burn ambulatory, or burn plus hindlimb unloading groups. Rats received a 40% TBSA scald burn or sham treatments and were ambulatory or hindlimb unloaded. Rats were further assigned to exercise or no exercise. Plantaris tissues were harvested on day 14 and pooled to analyze for microRNA and gene expression profiles. Compared with the sham ambulatory-no exercise group, 73, 79, and 80 microRNAs were altered 2-fold in the burn ambulatory, sham hindlimb unloading, and burn hindlimb unloading groups, all with no exercise, respectively. More than 70% of microRNAs were upregulated in response to burn and hindlimb unloading, whereas 60% microRNA of the profile decreased in hindlimb unloaded burn rats with exercise training. MiR-182 was the most affected in rat muscle. Gene ontology biological process and pathway analysis showed that the oxidative stress pathway was most stimulated in the hindlimb unloaded burn rats; while in response to exercise training, all genes in related pathways such as hypermetabolic, inflammation, and blood coagulation were alleviated. MicroRNAs and transcript gene profiles were altered in burn and hindlimb unloading groups, with additive effects on hindlimb unloaded burn rats. The altered genes' signal pathways were associated with muscle mass loss and function impairment. Muscle improvement with exercise training was observed in gene levels with microRNA alterations as well.
Collapse
|
5
|
Abstract
The widespread and rapidly increasing trend of binge drinking is accompanied by a concomitant rise in the prevalence of trauma patients under the influence of alcohol at the time of their injury. Epidemiological evidence suggests up to half of all adult burn patients are intoxicated at the time of admission, and the presence of alcohol is an independent risk factor for death in the early stages post burn. As the major site of alcohol metabolism and toxicity, the liver is a critical determinant of postburn outcome, and experimental evidence implies an injury threshold exists beyond which burn-induced hepatic derangement is observed. Alcohol may lower this threshold for postburn hepatic damage through a variety of mechanisms including modulation of extrahepatic events, alteration of the gut-liver axis, and changes in signaling pathways. The direct and indirect effects of alcohol may prime the liver for the second-hit of many overlapping physiologic responses to burn injury. In an effort to gain a deeper understanding of how alcohol potentiates postburn hepatic damage, the authors summarize possible mechanisms by which alcohol modulates the postburn hepatic response.
Collapse
|
6
|
Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 2015; 49:135-56. [DOI: 10.1016/j.neubiorev.2014.12.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022]
|
7
|
Bahmani B, Roudkenar MH, Halabian R, Jahanian-Najafabadi A, Amiri F, Jalili MA. Lipocalin 2 decreases senescence of bone marrow-derived mesenchymal stem cells under sub-lethal doses of oxidative stress. Cell Stress Chaperones 2014; 19:685-93. [PMID: 24452457 PMCID: PMC4147076 DOI: 10.1007/s12192-014-0496-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 01/02/2023] Open
Abstract
The regenerative potential of mesenchymal stem cells (MSCs) is impaired by cellular senescence, a multi factorial process that has various functions. However, pathways and molecules involved in senescence have not been fully identified. Lipocalin 2 (Lcn2) has been the subject of intensive research, due to its contribution to many physiological and pathophysiological conditions. The implication of Lcn2 has been reported in many conditions where senescence also occurs. In the present study, we evaluated the role of Lcn2 in the occurrence of senescence in human bone marrow-derived mesenchymal stem cells (hB-MSCs) under oxidative conditions. When hB-MSCs were genetically engineered to over-express Lcn2 (MSC-Lcn2) and exposed to H2O2, the proliferation rate of the cells increased. However, the number of colonies and the number of cells that made up each colony in both MSC-V and MSC-Lcn2 cells decreased compared to those cultivated under normal conditions. Our results revealed that over-expression of recombinant Lcn2 in hB-MSCs decreases senescence induced by H2O2 treatment. Senescent cells were observed in aged hB-MSCs; however, no alteration in the expression level of Lcn2 was detected compared to earlier passages. Finally, a higher amount of Lcn2 protein was detected in the plasma of the elderly than in young people. Our findings suggest that Lcn2 might restore the health and regeneration potential of MSCs by decreasing senescence.
Collapse
Affiliation(s)
- Bahareh Bahmani
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, P.O. Box 14665–1157, Tehran, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, P.O. Box 14665–1157, Tehran, Iran
| | - Raheleh Halabian
- />Applied Microbiology Research Center, Medical Science of Baqiyatallah University, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology, and Bioinformatics Research Center, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Fatemeh Amiri
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, P.O. Box 14665–1157, Tehran, Iran
| | - Mohammad Ali Jalili
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, P.O. Box 14665–1157, Tehran, Iran
| |
Collapse
|
8
|
da Silva Melo M, Procópio Alves L, Navarro RS, de Lima CJ, Munin E, das Graças Vilela-Goulart M, Fernandes Gomes M, Castillo Salgado MA, Zângaro RA. Experimental full-thickness burns induced by CO2 laser. Lasers Med Sci 2014; 29:1709-14. [DOI: 10.1007/s10103-014-1585-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
|
9
|
Bakhshandeh Z, Halabian R, Imani Fooladi AA, Jahanian-Najafabadi A, Jalili MA, Roudkenar MH. Recombinant human lipocalin 2 acts as an antibacterial agent to prevent platelet contamination. ACTA ACUST UNITED AC 2014; 19:487-92. [PMID: 24580532 DOI: 10.1179/1607845414y.0000000155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Bacterial contamination of platelet products is the major infectious risk in blood transfusion medicine, which can result in life-threatening sepsis in recipient. Lipocalin 2 (Lcn2) is an iron-sequestering protein in the antibacterial innate immune response, which inhibit bacterial growth. This study was aimed to evaluate the antibacterial property of Lcn2 in preventing bacterial contamination of platelets. METHODS Recombinant Lcn2 was expressed in a eukaryotic expression system and following purification and characterization of the recombinant Lcn2, its minimum inhibitory concentration was determined. Then, platelet concentrates were inoculated with various concentrations of Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Enterococcus faecalis, and the antibacterial effects of Lcn2 was evaluated at 20-24 °C. RESULTS Results revealed that Lcn2 effectively inhibited the growth of 1.5 × 10(4) CFU/ml S. epidermidis, P. aeruginosa, K. pneumoniae, E. coli, and E. faecalis at 40 ng/ml. At this concentration, Lcn2 also inhibited the growth of 1.5 × 10(3) CFU/ml Staphylococcus aureus and Proteus mirabilis. CONCLUSION Recombinant Lcn2 inhibited growth of a variety of platelet-contaminating bacteria. Therefore, supplementation of platelet concentrates with Lcn2 may reduce bacterial contamination.
Collapse
|
10
|
Gene expression profile of cytokines and receptors of inflammation from cultured keratinocytes of burned patients. Burns 2013; 40:947-56. [PMID: 24331407 DOI: 10.1016/j.burns.2013.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/05/2013] [Accepted: 11/24/2013] [Indexed: 11/21/2022]
Abstract
INTRODUCTION At all stages of wound healing, growth factors and cytokines play a particularly important role in the interaction with keratinocytes cellular receptors. Keratinocytes have received little attention about their potential to act as a source and target of cytokines. Changes in the cytokine levels after the burning occur prior to the metabolic abnormalities. Thus, it may be possible to develop therapeutic interventions that can mitigate the acute inflammatory response and modulating expression of these cytokines. The objective was to evaluate the expression of 84 genes mediators of the inflammatory response by using PCR array in a primary human epidermal cultured keratinocytes from patients with burns. METHODS Keratinocytes cultured from normal skin around injury from small and large burn patient were treated for DNA synthesis. The samples were analyzed by the PCR Superarray(®) assay and curve analyses were performed for 84 relevant human genes and their involvement in the inflammatory cytokines pathway and receptors. These genes were checked for the up or down regulation. And it was used MetaCore™ for the analysis of networks and Gene Ontology (GO) processes. RESULTS Chemokines of the CXC family were more expressed in the large burn group, except CXCL12. The C, CC and CX3C chemokine family were downregulated, especially in the small burn group. The interleukins IL8 and IL1B were more expressed in large burn than in small burn; except IL13RA1, IL13 and IL5RA that were downregulated, mainly in the small burn group. CONCLUSIONS The cytokine profile showed some important differences between the large and small burn patients, and from this original database, we can create new interventional trials in acute inflammation in burns.
Collapse
|
11
|
Halabian R, Tehrani HA, Jahanian-Najafabadi A, Habibi Roudkenar M. Lipocalin-2-mediated upregulation of various antioxidants and growth factors protects bone marrow-derived mesenchymal stem cells against unfavorable microenvironments. Cell Stress Chaperones 2013; 18:785-800. [PMID: 23620204 PMCID: PMC3789877 DOI: 10.1007/s12192-013-0430-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 12/11/2022] Open
Abstract
Despite many advantages of mesenchymal stem cells (MSCs) that make them suitable for cell therapy purposes, their therapeutic application has been limited due to their susceptibility to several stresses (e.g., nutrient-poor environment, oxidative stress, and hypoxic and masses of cytotoxic factors) to which they are exposed during their preparation and following transplantation. Hence, reinforcing MSCs against these stresses is a challenge for both basic and clinician scientists. Recently, much attention has been directed toward equipping MSCs with cytoprotective factors to strengthen them against unfavorable microenvironments. Here, we engineered MSCs with lipocalin 2 (Lcn2), a cytoprotective factor that is naturally induced following exposure of cells to stresses imposed by the microenvironment. Lcn2 overexpression not only did not interfere with the multidifferentiation capacity of the MSCs but also granted many protective properties to them. Lcn2 potentiated MSCs to withstand oxidative, hypoxia, and serum deprivation (SD) conditions via antagonizing their induced cytotoxicity and apoptosis. Adhesion rate of MSCs to coated culture plates was also enhanced by Lcn2 overexpression. In addition, Lcn2 induced antioxidants and upregulated some growth factors in MSCs. Our findings suggested a new strategy for prevention of graft cell death in MSC-based cell therapy.
Collapse
Affiliation(s)
- Raheleh Halabian
- />Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- />Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, P.O. Box 14665-1157, Tehran, Iran
| |
Collapse
|
12
|
Brooks NC, Marshall AH, Qa'aty N, Hiyama Y, Boehning D, Jeschke MG. XBP-1s is linked to suppressed gluconeogenesis in the Ebb phase of burn injury. Mol Med 2013; 19:72-8. [PMID: 23508570 DOI: 10.2119/molmed.2012.00348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/14/2013] [Indexed: 02/03/2023] Open
Abstract
The first 24 h following burn injury is known as the ebb phase and is characterized by a depressed metabolic rate. While the postburn ebb phase has been well described, the molecular mechanisms underlying this response are poorly understood. The endoplasmic reticulum (ER) regulates metabolic rate by maintaining glucose homeostasis through the hepatic ER stress response. We have shown that burn injury leads to ER stress in the liver during the first 24 h following thermal injury. However, whether ER stress is linked to the metabolic responses during the ebb phase of burn injury is poorly understood. Here, we show in an animal model that burn induces activation of activating transcription factor 6 (ATF6) and inositol requiring enzyme-1 (IRE-1) and this leads to increased expression of spliced X-box binding protein-1 (XBP-1s) messenger ribonucleic acid (mRNA) during the ebb phase. This is associated with increased expression of XBP-1 target genes and downregulation of the key gluconeogenic enzyme glucose-6-phosphatase (G6Pase). We conclude that upregulation of the ER stress response after burn injury is linked to attenuated gluconeogenesis and sustained glucose tolerance in the postburn ebb phase.
Collapse
Affiliation(s)
- Natasha C Brooks
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | |
Collapse
|
13
|
Sultan S, Cameron S, Ahmad S, Malik IA, Schultze FC, Hielscher R, Rave-Fränk M, Hess CF, Ramadori G, Christiansen H. Serum Lipocalin2 is a potential biomarker of liver irradiation damage. Liver Int 2013; 33:459-68. [PMID: 23331620 DOI: 10.1111/liv.12073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/03/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIM IL-6 - IL-1- lipocalin2 (LCN2) - liver irradiation - oxidative stress - TNF-a Lipocalin2 (LCN2) is an acute phase protein. The source of its increased serum level in oxidative stress conditions (ROS) remains still unknown. We prospectively evaluate the serum LCN2 increase after single dose liver irradiation along with hepatic LCN2 gene and protein expression. METHODS A single dose of 25 Gray was administered percutaneously to the liver of randomly paired rats after a planning CT scan. Male Wistar rats were sacrificed 1, 3, 6, 12, 24 and 48 h after irradiation along with sham-irradiated controls. ELISA, RT-PCR, Western blot and immunofluorescence staining was performed. Furthermore, hepatocytes, myofibroblasts and Kupffer cells were isolated from the liver of healthy rats and irradiated ex-vivo. RESULTS After liver irradiation, LCN2 serum levels increased significantly up to 2.7 μg/ml within 6 h and stayed elevated over 24 h. LCN2 specific transcripts increased significantly up to 552 ± 109-fold at 24 h after liver irradiation, which was further confirmed at protein level. α2-macroglobulin and hemoxygenase-1 also showed an increase, but the magnitude was less as compared to LCN2. LCN2+ granulocytes were detected within 1 h after irradiation around central and portal fields and remained high during the course of study. Ex-vivo irradiated hepatocytes (2.4 ± 0.6-fold) showed a higher LCN2 gene expression as compared to myofibroblasts and Kupffer cells. IL-1β treatment further increased LCN2 gene expression in cultured hepatocytes. CONCLUSIONS Single dose liver irradiation induces a significant increase in LCN2 serum levels, comparable to the induction of acute phase proteins. We suggest LCN2 as marker for the early phase of radiation-induced tissue damage.
Collapse
Affiliation(s)
- Sadaf Sultan
- Department of Gastroenterology and Endocrinology, All University Medical Center, Goettingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Effect of fasting on the metabolic response of liver to experimental burn injury. PLoS One 2013; 8:e54825. [PMID: 23393558 PMCID: PMC3564862 DOI: 10.1371/journal.pone.0054825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/17/2012] [Indexed: 12/31/2022] Open
Abstract
Liver metabolism is altered after systemic injuries such as burns and trauma. These changes have been elucidated in rat models of experimental burn injury where the liver was isolated and perfused ex vivo. Because these studies were performed in fasted animals to deplete glycogen stores, thus simplifying quantification of gluconeogenesis, these observations reflect the combined impact of fasting and injury on liver metabolism. Herein we asked whether the metabolic response to experimental burn injury is different in fed vs. fasted animals. Rats were subjected to a cutaneous burn covering 20% of the total body surface area, or to similar procedures without administering the burn, hence a sham-burn. Half of the animals in the burn and sham-burn groups were fasted starting on postburn day 3, and the others allowed to continue ad libitum. On postburn day 4, livers were isolated and perfused for 1 hour in physiological medium supplemented with 10% hematocrit red blood cells. The uptake/release rates of major carbon and nitrogen sources, oxygen, and carbon dioxide were measured during the perfusion and the data fed into a mass balance model to estimate intracellular fluxes. The data show that in fed animals, injury increased glucose output mainly from glycogen breakdown and minimally impacted amino acid metabolism. In fasted animals, injury did not increase glucose output but increased urea production and the uptake of several amino acids, namely glutamine, arginine, glycine, and methionine. Furthermore, sham-burn animals responded to fasting by triggering gluconeogenesis from lactate; however, in burned animals the preferred gluconeogenic substrate was amino acids. Taken together, these results suggest that the fed state prevents the burn-induced increase in hepatic amino acid utilization for gluconeogenesis. The role of glycogen stores and means to increase and/or maintain internal sources of glucose to prevent increased hepatic amino acid utilization warrant further studies.
Collapse
|
15
|
Yang Q, Orman MA, Berthiaume F, Ierapetritou MG, Androulakis IP. Dynamics of short-term gene expression profiling in liver following thermal injury. J Surg Res 2011; 176:549-58. [PMID: 22099593 DOI: 10.1016/j.jss.2011.09.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/23/2011] [Accepted: 09/27/2011] [Indexed: 02/01/2023]
Abstract
BACKGROUND Severe trauma, including burns, triggers a systemic response that significantly impacts on the liver, which plays a key role in the metabolic and immune responses aimed at restoring homeostasis. While many of these changes are likely regulated at the gene expression level, there is a need to better understand the dynamics and expression patterns of burn injury-induced genes in order to identify potential regulatory targets in the liver. Herein we characterized the response within the first 24 h in a standard animal model of burn injury using a time series of microarray gene expression data. METHODS Rats were subjected to a full thickness dorsal scald burn injury covering 20% of their total body surface area while under general anesthesia. Animals were saline resuscitated and sacrificed at defined time points (0, 2, 4, 8, 16, and 24 h). Liver tissues were explanted and analyzed for their gene expression profiles using microarray technology. Sham controls consisted of animals handled similarly but not burned. After identifying differentially expressed probe sets between sham and burn conditions over time, the concatenated data sets corresponding to these differentially expressed probe sets in burn and sham groups were combined and analyzed using a "consensus clustering" approach. RESULTS The clustering method of expression data identified 621 burn-responsive probe sets in four different co-expressed clusters. Functional characterization revealed that these four clusters are mainly associated with pro-inflammatory response, anti-inflammatory response, lipid biosynthesis, and insulin-regulated metabolism. Cluster 1 pro-inflammatory response is rapidly up-regulated (within the first 2 h) following burn injury, while Cluster 2 anti-inflammatory response is activated later on (around 8 h post-burn). Cluster 3 lipid biosynthesis is down-regulated rapidly following burn, possibly indicating a shift in the utilization of energy sources to produce acute phase proteins, which serve the anti-inflammatory response. Cluster 4 insulin-regulated metabolism was down-regulated late in the observation window (around 16 h post-burn), which suggests a potential mechanism to explain the onset of hypermetabolism, a delayed but well-known response that is characteristic of severe burns and trauma with potential adverse outcome. CONCLUSIONS Simultaneous analysis and comparison of gene expression profiles for both burn and sham control groups provided a more accurate estimation of the activation time, expression patterns, and characteristics of a certain burn-induced response based on which the cause-effect relationships among responses were revealed.
Collapse
Affiliation(s)
- Qian Yang
- Chemical and Biochemical Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
16
|
Orman MA, Ierapetritou MG, Berthiaume F, Androulakis IP. The dynamics of the early inflammatory response in double-hit burn and sepsis animal models. Cytokine 2011; 56:494-502. [PMID: 21824784 DOI: 10.1016/j.cyto.2011.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/22/2011] [Accepted: 07/01/2011] [Indexed: 12/22/2022]
Abstract
Severe burn trauma is generally associated with bacterial infections, which causes a more persistent inflammatory response with an ongoing hypermetabolic and catabolic state. This complex biological response, mediated by chemokines and cytokines, can be more severe when excessive interactions between the mediators take place. In this study, the early inflammatory response following the cecum ligation and puncture (CLP) or its corresponding control treatment (sham-CLP or SCLP) in burn (B) male rats was analyzed by measuring 23 different cytokines and chemokines. Cytokines and chemokines, including MCP-1, IP-10, leptin, TNF-α, MIP-1α, IL-18, GMCSF, RANTES and GCSF were significantly altered in both B+CLP and B+SCLP groups. IL-10 and IL-6 were significantly up-regulated in the B+CLP group when compared to the B+SCLP group. Down regulation of leptin and IP-10 concentrations were found to be related to surgery and/or infection. IL-18 and MCP-1 were elevated in all groups including previously published single injury models receiving similar treatments. In this study, insult-specific mediators with their characteristic temporal patterns were elucidated in double hit models.
Collapse
Affiliation(s)
- Mehmet A Orman
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
17
|
Orman MA, Berthiaume F, Androulakis IP, Ierapetritou MG. Pathway analysis of liver metabolism under stressed condition. J Theor Biol 2010; 272:131-40. [PMID: 21163266 DOI: 10.1016/j.jtbi.2010.11.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/17/2010] [Accepted: 11/24/2010] [Indexed: 11/28/2022]
Abstract
Pathway analysis is a useful tool which reveals important metabolic network properties. However, the big challenge is to propose an objective function for estimating active pathways, which represent the actual state of network. In order to provide weight values for all possible pathways within the metabolic network, this study presents different approaches, considering the structural and physiological properties of the metabolic network, aiming at a unique decomposition of the flux vector into pathways. These methods were used to analyze the hepatic metabolism considering available data sets obtained from the perfused livers of fasted rats receiving burn injury. Utilizing unique decomposition techniques and different fluxes revealed that higher weights were always attributed to short pathways. Specific pathways, including pyruvate, glutamate and oxaloacetate pools, and urea production from arginine, were found to be important or essential in all methods and experimental conditions. Moreover the pathways, including serine production from glycine and conversion between acetoacetate and B-OH-butyrate, were assigned higher weights. Pathway analysis was also used to identify the main sources for the production of certain products in the hepatic metabolic network to gain a better understanding of the effects of burn injury on liver metabolism.
Collapse
Affiliation(s)
- Mehmet A Orman
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
18
|
Yang Q, Berthiaume F, Androulakis IP. A quantitative model of thermal injury-induced acute inflammation. Math Biosci 2010; 229:135-48. [PMID: 20708022 DOI: 10.1016/j.mbs.2010.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 06/02/2010] [Accepted: 08/04/2010] [Indexed: 01/01/2023]
Abstract
Severe burns are among the most common causes of death from unintentional injury. The induction and resolution of the burn-induced systemic inflammatory response are mediated by a network of factors and regulatory proteins. Numerous mechanisms operate simultaneously, thus requiring a systems level approach to characterize their overall impact. Towards this goal, we propose an in silico semi-mechanistic model of burn-induced systemic inflammation using liver-specific gene expression from a rat burn model. Transcriptional responses are coupled with extracellular signals through a receptor mediated indirect response (IDR) and transit compartment model. The activation of the innate immune system in response to the burn stimulus involves the interaction between extracellular signals and critical receptors which triggers downstream signal transduction cascades leading to transcriptional changes. The resulting model consists of fifteen (15) coupled ordinary differential equations capturing key aspects of inflammation such as pro-inflammation, anti-inflammation and hypermetabolism. The model was then evaluated through a series of biologically relevant scenarios aiming at revealing the non-linear behavior of acute inflammation including: investigating the implication of effect of different severity of thermal injury; examining possible mechanistic dysregulation of IKK-NF-κB system which may reflect secondary effects that lead to potential malfunction of the response; and exploring the outcome of administration of receptor antagonist or anti-body to significant cytokines.
Collapse
Affiliation(s)
- Qian Yang
- Chemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
19
|
Abstract
Burn injury is a complex traumatic event with various local and systemic effects, affecting several organ systems beyond the skin. The pathophysiology of the burn patient shows the full spectrum of the complexity of inflammatory response reactions. In the acute phase, inflammation mechanism may have negative effects because of capillary leak, the propagation of inhalation injury and the development of multiple organ failure. Attempts to mediate these processes remain a central subject of burn care research. Conversely, inflammation is a necessary prologue and component in the later-stage processes of wound healing. In this review, we are attempting to present the current science of burn wound pathophysiology and wound healing. We also describe the evolution of innovative strategies for burn management.
Collapse
Affiliation(s)
- Lars H Evers
- Department of Plastic, Hand, Reconstructive Surgery, Burn Center, University of Lübeck, Lübeck, Germany.
| | | | | |
Collapse
|
20
|
Bahmani P, Halabian R, Rouhbakhsh M, Roushandeh AM, Masroori N, Ebrahimi M, Samadikuchaksaraei A, Shokrgozar MA, Roudkenar MH. Neutrophil gelatinase-associated lipocalin induces the expression of heme oxygenase-1 and superoxide dismutase 1, 2. Cell Stress Chaperones 2010; 15:395-403. [PMID: 19904630 PMCID: PMC3082646 DOI: 10.1007/s12192-009-0154-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/29/2022] Open
Abstract
Lipocalin-2 (Lcn2, NGAL) is a member of the lipocalin super family with diverse function such as the induction of apoptosis, the suppression of bacterial growth, and modulation of inflammatory response. Much interest has recently been focused on the physiological/pathological role of the lipocalin-2 that is considered to be a novel protective factor against oxidative stress. However, its precise biological roles in this protection are not fully understood. In this report we intended to test the effect of lipocalin-2 on the expression of heme oxygenase ((1, 2)) and superoxide dismutase ((1, 2)) which are two strong antioxidants. NGAL was cloned to pcDNA3.1 plasmid by using genetic engineering method. The recombinant vector was transfected to CHO and HEK293T to establish stable cell expressing NGAL and the expression of HO-1, 2 and SOD(1, 2) were compared with appropriate controls by RT-PCR and western blot. On the other hand, expression of NGAL was suppressed by siRNA transfection in order to study the effect of lipocalin-2 on mentioned genes/proteins. The results showed that the expression of HO-1 and SOD(1, 2) enzymes were higher in cells expressing recombinant lipocalin-2 compared with the control cells. Although the expression of HO-1 was lower in NGAL silencing cells, the expression of SOD(1) and SOD(2) were higher. Our data suggest that NGAL is a potent inducer of HO-1 and somewhat SOD(1) and SOD(2) and it appears that part of antioxidant property of NGAL could be attributed to the induction of HO-1 and SOD(1, 2).
Collapse
Affiliation(s)
- Parisa Bahmani
- Science and Research branch, Department of Biology, Azad University, Tehran, Iran
- Research Center, Iranian Blood Transfusion Organization, P.O. Box: 14665-1157, Tehran, Iran
| | - Raheleh Halabian
- Research Center, Iranian Blood Transfusion Organization, P.O. Box: 14665-1157, Tehran, Iran
| | - Mehdi Rouhbakhsh
- Research Center, Iranian Blood Transfusion Organization, P.O. Box: 14665-1157, Tehran, Iran
| | | | - Nasser Masroori
- Research Center, Iranian Blood Transfusion Organization, P.O. Box: 14665-1157, Tehran, Iran
| | - Majid Ebrahimi
- Research Center, Iranian Blood Transfusion Organization, P.O. Box: 14665-1157, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Biotechnology, Cellular & Molecular and Burn Research Centers, Iran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
21
|
Foteinou P, Yang E, Androulakis IP. NETWORKS, BIOLOGY AND SYSTEMS ENGINEERING: A CASE STUDY IN INFLAMMATION. Comput Chem Eng 2009; 33:2028-2041. [PMID: 20161495 PMCID: PMC2796781 DOI: 10.1016/j.compchemeng.2009.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biological systems can be modeled as networks of interacting components across multiple scales. A central problem in computational systems biology is to identify those critical components and the rules that define their interactions and give rise to the emergent behavior of a host response. In this paper we will discuss two fundamental problems related to the construction of transcription factor networks and the identification of networks of functional modules describing disease progression. We focus on inflammation as a key physiological response of clinical and translational importance.
Collapse
Affiliation(s)
- P.T. Foteinou
- Biomedical Engineering Department, Rutgers University, 599 Taylor Road Piscataway, NJ 08854
| | - E. Yang
- Biomedical Engineering Department, Rutgers University, 599 Taylor Road Piscataway, NJ 08854
| | - I. P. Androulakis
- Biomedical Engineering Department, Rutgers University, 599 Taylor Road Piscataway, NJ 08854
- Chemical & Biochemical Engineering Department, Rutgers University, 98 Brett Road, Piscataway, NJ 08854
| |
Collapse
|
22
|
Lipocalin 2 regulation by thermal stresses: Protective role of Lcn2/NGAL against cold and heat stresses. Exp Cell Res 2009; 315:3140-51. [DOI: 10.1016/j.yexcr.2009.08.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 08/22/2009] [Accepted: 08/25/2009] [Indexed: 11/20/2022]
|
23
|
Yang EH, Almon RR, DuBois DC, Jusko WJ, Androulakis IP. Identification of global transcriptional dynamics. PLoS One 2009; 4:e5992. [PMID: 19593450 PMCID: PMC2705787 DOI: 10.1371/journal.pone.0005992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/06/2009] [Indexed: 12/02/2022] Open
Abstract
Background One of the challenges in exploiting high throughput measurement techniques such as microarrays is the conversion of the vast amounts of data obtained into relevant knowledge. Of particular importance is the identification of the intrinsic response of a transcriptional experiment and the characterization of the underlying dynamics. Methodology and Findings The proposed algorithm seeks to provide the researcher a summary as to various aspects relating to the dynamic progression of a biological system, rather than that of individual genes. The approach is based on the identification of smaller number of expression motifs that define the transcriptional state of the system which quantifies the deviation of the cellular response from a control state in the presence of an external perturbation. The approach is demonstrated with a number of data sets including a synthetic base case and four animal studies. The synthetic dataset will be used to establish the response of the algorithm on a “null” dataset, whereas the four different experimental datasets represent a spectrum of possible time course experiments in terms of the degree of perturbation associated with the experiment as well as representing a wide range of temporal sampling strategies. This wide range of experimental datasets will thus allow us to explore the performance of the proposed algorithm and determine its ability identify relevant information. Conclusions and Significance In this work, we present a computational approach which operates on high throughput temporal gene expression data to assess the information content of the experiment, identify dynamic markers of important processes associated with the experimental perturbation, and summarize in a concise manner the evolution of the system over time with respect to the experimental perturbation.
Collapse
Affiliation(s)
- Eric H. Yang
- Biomedical Engineering Department, Rutgers University, New Jersey, United States of America
| | - Richard R. Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
| | - Debra C. DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Willian J. Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
| | - Ioannis P. Androulakis
- Biomedical Engineering Department, Rutgers University, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
24
|
Yang E, Androulakis IP. Assessing and selecting gene expression signals based upon the quality of the measured dynamics. BMC Bioinformatics 2009; 10:55. [PMID: 19208252 PMCID: PMC2653486 DOI: 10.1186/1471-2105-10-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 02/10/2009] [Indexed: 11/22/2022] Open
Abstract
Background One of the challenges with modeling the temporal progression of biological signals is dealing with the effect of noise and the limited number of replicates at each time point. Given the rising interest in utilizing predictive mathematical models to describe the biological response of an organism or analysis such as clustering and gene ontology enrichment, it is important to determine whether the dynamic progression of the data has been accurately captured despite the limited number of replicates, such that one can have confidence that the results of the analysis are capturing important salient dynamic features. Results By pre-selecting genes based upon quality before the identification of differential expression via algorithm such as EDGE, it was found that the percentage of statistically enriched ontologies (p < .05) was improved. Furthermore, it was found that a majority of the genes found via the proposed technique were also selected via an EDGE selection though the reverse was not necessarily true. It was also found that improvements offered by the proposed algorithm are anti-correlated with improvements in the various microarray platforms and the number of replicates. This is illustrated by the fact that newer arrays and experiments with more replicates show less improvement when the filtering for quality is first run before the selection of differentially expressed genes. This suggests that the increase in the number of replicates as well as improvements in array technologies are increase the confidence one has in the dynamics obtained from the experiment. Conclusion We have developed an algorithm that quantifies the quality of temporal biological signal rather than whether the signal illustrates a significant change over the experimental time course. Because the use of these temporal signals, whether it is in mathematical modeling or clustering, focuses upon the entire time series, it is necessary to develop a method to quantify and select for signals which conform to this ideal. By doing this, we have demonstrated a marked and consistent improvement in the results of a clustering exercise over multiple experiments, microarray platforms, and experimental designs.
Collapse
Affiliation(s)
- Eric Yang
- Biomedical Engineering Department, Rutgers University, Piscataway, NJ, USA.
| | | |
Collapse
|
25
|
Roudkenar MH, Halabian R, Ghasemipour Z, Roushandeh AM, Rouhbakhsh M, Nekogoftar M, Kuwahara Y, Fukumoto M, Shokrgozar MA. Neutrophil gelatinase-associated lipocalin acts as a protective factor against H(2)O(2) toxicity. Arch Med Res 2008; 39:560-6. [PMID: 18662586 DOI: 10.1016/j.arcmed.2008.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Accepted: 05/16/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Lipocalin 2 (Lcn2, NGAL) is a member of the lipocalin superfamily for which a variety of functions have been reported. However, the precise biological roles of NGAL are not fully known. We have investigated the ability of NGAL to prevent H(2)O(2) toxicity, which is considered to be the classical inducer of oxidative stress caused by ROS generation in an in vitro model. METHODS NGAL cDNA was isolated from HepG2 cell line and cloned to pcDNA3.1(+) vector. The construct was transfected to CHO cell line. Stable clones were generated, and the expression of NGAL was determined by RT-PCR, Western blot analysis and ELISA. NGAL gene in A549 cell line was downregulated with the siRNA. CHO and A549 cells were intoxicated with H(2)O(2) and cell proliferation was performed by MTT assay. Apoptotic cells were detected by flow cytometry. RESULTS Cell proliferation was higher in CHO expressing NGAL in doses of 5 and 10 mM H(2)O(2) after 2h compared with the control. H(2)O(2) was also more toxic in the presence of NGAL siRNA compared with the control in A549 cell. Our results also revealed that NGAL protect cells from apoptosis. CONCLUSIONS Overall, our results revealed for the first time a new function for NGAL/Lcn2: acting as a protective factor against H(2)O(2) toxicity. In the future, NGAL may have the potential application to ameliorate the toxicity induced by oxidative stress conditions.
Collapse
|
26
|
Foteinou PT, Calvano SE, Lowry SF, Androulakis IP. Modeling endotoxin-induced systemic inflammation using an indirect response approach. Math Biosci 2008; 217:27-42. [PMID: 18840451 DOI: 10.1016/j.mbs.2008.09.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/02/2008] [Accepted: 09/04/2008] [Indexed: 12/23/2022]
Abstract
A receptor mediated model of endotoxin-induced human inflammation is proposed. The activation of the innate immune system in response to the endotoxin stimulus involves the interaction between the extracellular signal and critical receptors driving downstream signal transduction cascades leading to transcriptional changes. We explore the development of an in silico model that aims at coupling extracellular signals with essential transcriptional responses through a receptor mediated indirect response model. The model consists of eight (8) variables and is evaluated in a series of biologically relevant scenarios indicative of the non-linear behavior of inflammation. Such scenarios involve a self-limited response where the inflammatory stimulus is cleared successfully; a persistent infectious response where the inflammatory instigator is not eliminated, leading to an aberrant inflammatory response, and finally, a persistent non-infectious inflammatory response that can be elicited under an overload of the pathogen-derived product; as such high dose of the inflammatory insult can disturb the dynamics of the host response leading to an unconstrained inflammatory response. Finally, the potential of the model is demonstrated by analyzing scenarios associated with endotoxin tolerance and potentiation effects.
Collapse
Affiliation(s)
- P T Foteinou
- Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
27
|
Yang E, Maguire T, Yarmush M, Androulakis I. Informative gene selection and design of regulatory networks using integer optimization. Comput Chem Eng 2008. [DOI: 10.1016/j.compchemeng.2007.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Roudkenar MH, Halabian R, Oodi A, Roushandeh AM, Yaghmai P, Najar MR, Amirizadeh N, Shokrgozar MA. Upregulation of neutrophil gelatinase-associated lipocalin, NGAL/Lcn2, in beta-thalassemia patients. Arch Med Res 2008; 39:402-7. [PMID: 18375251 DOI: 10.1016/j.arcmed.2007.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 12/10/2007] [Indexed: 12/28/2022]
Abstract
BACKGROUND One of the major consequences in beta- thalassemia is iron overload. Oxidative statuses have been reported in beta-thalassemia patients by several studies. It has been proven that iron plays a critical role in the formation of reactive oxygen species (ROS). More recently, we have found the induction of Lcn2/NGAL expression under oxidative stress condition. In this study, it was assumed that NGAL should be upregulated in beta-thalassemia patients because of oxidative stress condition. METHODS Assessment of NGAL expressions in 25 adult beta-thalassemia and 9 pediatric patients was performed by semiquantitative RT-PCR, real-time RT-PCR and ELISA. RESULTS Adult beta-thalassemia patients upregulated NGAL expression compared with the normal samples but no upregulation was observed in pediatric patients. CONCLUSIONS Upregulation may play an important role in decreasing ROS or iron in beta-thalassemia patients.
Collapse
|
29
|
Yang E, Maguire T, Yarmush M, Berthiaume F, Androulakis I. Identification of regulatory mechanisms of the hepatic response to thermal injury. Comput Chem Eng 2008. [DOI: 10.1016/j.compchemeng.2007.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Gene expression profiling of long-term changes in rat liver following burn injury. J Surg Res 2007; 152:3-17,17.e1-2. [PMID: 18755477 DOI: 10.1016/j.jss.2007.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 05/16/2007] [Accepted: 05/29/2007] [Indexed: 12/16/2022]
Abstract
The inflammatory response initiated upon burn injury is also associated with extensive metabolic adjustments. While there is a significant body of literature on the characterization of these changes at the metabolite level, little is known on the mechanisms of induction, especially with respect to the role of gene expression. We have comprehensively analyzed changes in gene expression in rat livers during the first 7 d after 20% total body surface area burn injury using Affymetrix microarrays. A total of 740 genes were significantly altered in expression at 1, 2, 4, and 7 d after burn injury compared to sham-burn controls. Functional classification based on gene ontology terms indicated that metabolism, transport, signaling, and defense/inflammation response accounted for more than 70% of the significantly altered genes. Fisher least-significant difference post-hoc testing of the 740 differentially expressed genes indicated that over 60% of the genes demonstrated significant changes in expression either on d 1 or on d 7 postburn. The gene expression trends were corroborated by biochemical measurements of triglycerides and fatty acids 24 h postburn but not at later time points. This suggests that fatty acids are used, at least in part, in the liver as energy substrates for the first 4 d after injury. Our data also suggest that long-term regulation of energy substrate utilization in the liver following burn injury is primarily at the posttranscriptional level. Last, relevance networks of significantly expressed genes indicate the involvement of key small molecules in the hepatic response to 20% total body surface area burn injury.
Collapse
|
31
|
Feezor RJ, Cheng A, Paddock HN, Baker HV, Moldawer LL. Functional genomics and gene expression profiling in sepsis: beyond class prediction. Clin Infect Dis 2007; 41 Suppl 7:S427-35. [PMID: 16237642 DOI: 10.1086/431993] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Functional genomics involving genome-wide expression analyses is rapidly finding applications in clinical medicine. New technologies now permit the simultaneous analysis of mRNA levels for the entire human transcriptome from as few as 1000 cells. This approach is dramatically changing the way we define health and disease, allowing, for the first time, an unbiased view of the global changes in gene expression that are occurring. For the study of trauma biology and sepsis, this technology offers a powerful tool to develop molecular signatures for inflamed tissues and specific cell populations. At present, functional genomics is being used to classify the progress of disease and survival in response to traumatic and burn injury, sepsis and visceral ischemia, and reperfusion injury, as well as to describe patterns of gene expression in response to varying microbial pathogens. As the number of bioinformatics tools increases, functional genomics is beginning to reveal the underlying complexity of the biological response to a variety of inflammatory diseases and is providing new approaches for their exploration. Functional genomics is becoming a standard tool in inflammation research as a means to unravel the basic biological processes.
Collapse
Affiliation(s)
- Robert J Feezor
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
32
|
Banta S, Vemula M, Yokoyama T, Jayaraman A, Berthiaume F, Yarmush ML. Contribution of gene expression to metabolic fluxes in hypermetabolic livers induced through burn injury and cecal ligation and puncture in rats. Biotechnol Bioeng 2007; 97:118-37. [PMID: 17009336 PMCID: PMC3199956 DOI: 10.1002/bit.21200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Severe injury activates many stress-related and inflammatory pathways that can lead to a systemic hypermetabolic state. Prior studies using perfused hypermetabolic rat livers have identified intrinsic metabolic flux changes that were not dependent upon the continual presence of elevated stress hormones and substrate loads. We investigated the hypothesis that such changes may be due to persistent alterations in gene expression. A systemic hypermetabolic response was induced in rats by applying a moderate burn injury followed 2 days later by cecum ligation and puncture (CLP) to produce sepsis. Control animals received a sham-burn followed by CLP, or a sham-burn followed by sham-CLP. Two days after CLP, livers were analyzed for gene expression changes using DNA microarrays and for metabolism alterations by ex vivo perfusion coupled with Metabolic Flux Analysis. Burn injury prior to CLP increased fluxes while decreases in gene expression levels were observed. Conversely, CLP alone significantly increased metabolic gene expression, but decreased many of the corresponding metabolic fluxes. Burn injury combined with CLP led to the most dramatic changes, where concurrent changes in fluxes and gene expression levels occurred in about 1/3 of the reactions. The data are consistent with the notion that in this model, burn injury prior to CLP increased fluxes through post-translational mechanisms with little contribution of gene expression, while CLP treatment up-regulated the metabolic machinery by transcriptional mechanisms. Overall, these data show that mRNA changes measured at a single time point by DNA microarray analysis do not reliably predict metabolic flux changes in perfused livers.
Collapse
Affiliation(s)
- Scott Banta
- Center for Engineering in Medicine, Shriners Hospital for Children, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
33
|
Bioinformatics analysis of the early inflammatory response in a rat thermal injury model. BMC Bioinformatics 2007; 8:10. [PMID: 17214898 PMCID: PMC1797813 DOI: 10.1186/1471-2105-8-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 01/10/2007] [Indexed: 12/25/2022] Open
Abstract
Background Thermal injury is among the most severe forms of trauma and its effects are both local and systemic. Response to thermal injury includes cellular protection mechanisms, inflammation, hypermetabolism, prolonged catabolism, organ dysfunction and immuno-suppression. It has been hypothesized that gene expression patterns in the liver will change with severe burns, thus reflecting the role the liver plays in the response to burn injury. Characterizing the molecular fingerprint (i.e., expression profile) of the inflammatory response resulting from burns may help elucidate the activated mechanisms and suggest new therapeutic intervention. In this paper we propose a novel integrated framework for analyzing time-series transcriptional data, with emphasis on the burn-induced response within the context of the rat animal model. Our analysis robustly identifies critical expression motifs, indicative of the dynamic evolution of the inflammatory response and we further propose a putative reconstruction of the associated transcription factor activities. Results Implementation of our algorithm on data obtained from an animal (rat) burn injury study identified 281 genes corresponding to 4 unique profiles. Enrichment evaluation upon both gene ontologies and transcription factors, verifies the inflammation-specific character of the selections and the rationalization of the burn-induced inflammatory response. Conducting the transcription network reconstruction and analysis, we have identified transcription factors, including AHR, Octamer Binding Proteins, Kruppel-like Factors, and cell cycle regulators as being highly important to an organism's response to burn response. These transcription factors are notable due to their roles in pathways that play a part in the gross physiological response to burn such as changes in the immune response and inflammation. Conclusion Our results indicate that our novel selection/classification algorithm has been successful in selecting out genes with play an important role in thermal injury. Additionally, we have demonstrated the value of an integrative approach in identifying possible points of intervention, namely the activation of certain transcription factors that govern the organism's response.
Collapse
|
34
|
Roudkenar MH, Kuwahara Y, Baba T, Roushandeh AM, Ebishima S, Abe S, Ohkubo Y, Fukumoto M. Oxidative stress induced lipocalin 2 gene expression: addressing its expression under the harmful conditions. JOURNAL OF RADIATION RESEARCH 2007; 48:39-44. [PMID: 17229997 DOI: 10.1269/jrr.06057] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Lipocalin 2 (Lcn2, NGAL) is a member of the lipocalin superfamily with diverse functions such as the transport of fatty acids and the induction of apoptosis. Previous reports indicated that expression of Lcn2 is induced under harmful conditions. However, the mechanisms of the induction of Lcn2 expression remain to be elucidated. In this report, we intended to identify the factor or factors that induce Lcn2 expression. Up-regulation of Lcn2 expression after X-ray exposure was detected in the heart, the kidney and especially in the liver. Primary culture of liver component cells revealed that this up-regulation in the liver was induced in hepatocytes. Up-regulation of Lcn2 expression was also detected in HepG2 cells after the administration of X-rays or H(2)O(2). Interestingly, up-regulation of Lcn2 expression after H(2)O(2) treatment was canceled by the addition of the anti-oxidants, dimethylsulfoxide or cysteamine. These results strongly suggest that Lcn2 expression is induced by reactive oxygen species. Therefore, Lcn2 could be a useful biomarker to identify oxidative stress both in vitro and in vivo.
Collapse
Affiliation(s)
- Mehryar Habibi Roudkenar
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The systemic pathophysiologic changes following thermal injuries affect multiple organs and body systems leading to clinical manifestations including shock, intestinal alterations, respiratory and renal failure, immunosuppression and others. Recent advances in the comprehension of mechanisms underlying systemic complications of thermal injuries have contributed to uncover part of the cellular and molecular basis that underlie such changes. Recently, programmed cell death (apoptosis) has been considered playing an important role in the development of such pathological events. Therefore, investigators utilizing animal models and clinical studies involving human primates have produced a large body of information suggesting that apoptosis is associated with most of the tissue damages triggered by severe thermal injuries. In order to draw the attention on the important role of apoptosis on systemic complications of thermal injuries, in this review we describe most of these studies, discuss possible cellular and molecular mechanisms and indicate ways to utilize them for the development of therapeutic strategies by which apoptosis may be prevented or counteracted.
Collapse
Affiliation(s)
- G Gravante
- Department of Surgery, University of Rome Tor Vergata, Via U Maddalena 40/a 00043, Ciampino, Rome, Italy.
| | | | | |
Collapse
|
36
|
Jayaraman A, Roberts KA, Yoon J, Yarmush DM, Duan X, Lee K, Yarmush ML. Identification of neutrophil gelatinase-associated lipocalin (NGAL) as a discriminatory marker of the hepatocyte-secreted protein response to IL-1beta: a proteomic analysis. Biotechnol Bioeng 2005; 91:502-15. [PMID: 15918168 DOI: 10.1002/bit.20535] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The liver is the major source of proteins used throughout the body for various functions. Upon injury or infection, an acute phase response (APR) is initiated in the liver that is primarily mediated by inflammatory cytokines such as interleukin-1beta (IL-1beta) and interleukin-6. Among others, the APR is characterized by an altered protein synthetic profile. We used two-dimensional gel electrophoresis to study the dynamics of changes in protein synthesis in hepatocytes exposed to these inflammatory cytokines. Protein profiles were quantified using image analysis and further analyzed using multivariate statistical methods. Our results indicate that IL-1beta and IL-6 each induces secreted protein responses with distinct dynamics and dose-dependence. Parallel stimulation by IL-1beta and IL-6 results in a protein pattern indistinguishable from the IL-1beta pattern, indicating a dominant effect of IL-1beta over IL-6 at the doses tested. Multidimensional scaling (MDS) of correlation distances between protein secretion levels revealed two protein pairs that are robustly co-secreted across the various cytokine stimulation conditions, suggesting shared regulatory pathways. Finally, we also used multivariate alternating conditional expectation (MACE) to identify transformation functions that discriminated the cytokine-stimulated and untreated hepatocyte-secreted protein profiles. Our analysis indicates that the expression of neutrophil gelatinase-associated lipocalin (NGAL) was sufficient to discriminate between IL-1beta and IL-6 stimulation. The combination of proteomics and multivariate analysis is expected to provide new information on the cellular regulatory networks involved in generating specific cellular responses.
Collapse
Affiliation(s)
- Arul Jayaraman
- Center for Engineering in Medicine/Department of Surgery Massachusetts General Hospital, Shriners Burns Hospital, Boston; and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Jayaraman A, Yarmush ML, Roth CM. Evaluation of an in vitro model of hepatic inflammatory response by gene expression profiling. ACTA ACUST UNITED AC 2005; 11:50-63. [PMID: 15738661 DOI: 10.1089/ten.2005.11.50] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The body's response to biochemical stress involves coordinated changes in the expression of several sets of genes that regulate its return to homeostasis. Although several cell culture systems have been utilized for studying such complex physiological events in vitro, their assessment has been limited to biochemical assays on individual genes and proteins, limiting interpretation of the results in a systems context. Advances in genomics provide an opportunity to provide a more comprehensive assessment. In this study, we have used DNA microarrays to profile gene expression dynamics during interleukin 6-stimulated inflammation in hepatocytes maintained in a stable, collagen double-gel in vitro model system. The observed expression profile was also compared with that obtained from rat liver tissue after burn injury to determine the extent and nature of responses captured by the in vitro system. Our results indicate that several aspects of the in vivo hepatic inflammatory response can be captured by the in vitro system at the molecular systems level. Statistical analysis of the mRNA profiles was also used to characterize the temporal response in each model system and demonstrate similar behavior. A small panel of molecules involved in the hepatic acute-phase response was also profiled, using quantitative kinetic polymerase chain reaction, to confirm these observations. These results indicate the utility of the stable hepatocyte culture system for expression profiling of inflammatory states and for providing insights into the interplay of changes in gene expression during complex physiological states.
Collapse
Affiliation(s)
- Arul Jayaraman
- Shriners Burns Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
38
|
Padfield KE, Astrakas LG, Zhang Q, Gopalan S, Dai G, Mindrinos MN, Tompkins RG, Rahme LG, Tzika AA. Burn injury causes mitochondrial dysfunction in skeletal muscle. Proc Natl Acad Sci U S A 2005; 102:5368-73. [PMID: 15809440 PMCID: PMC556259 DOI: 10.1073/pnas.0501211102] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Severe burn trauma is generally followed by a catabolic response that leads to muscle wasting and weakness affecting skeletal musculature. Here, we perform whole-genome expression and in vivo NMR spectroscopy studies to define respectively the full set of burn-induced changes in skeletal muscle gene expression and the role of mitochondria in the altered energy expenditure exhibited by burn patients. Our results show 1,136 genes differentially expressed in a mouse hind limb burn model and identify expression pattern changes of genes involved in muscle development, protein degradation and biosynthesis, inflammation, and mitochondrial energy and metabolism. To assess further the role of mitochondria in burn injury, we performed in vivo (31)P NMR spectroscopy on hind limb skeletal muscle, to noninvasively measure high-energy phosphates and the effect of magnetization transfer on inorganic phosphate (P(i)) and phosphocreatine (PCr) resonances during saturation of gammaATP resonance, mediated by the ATP synthesis reactions. Although local burn injury does not alter high-energy phosphates or pH, apart from PCr reduction, it does significantly reduce the rate of ATP synthesis, to further implicate a role for mitochondria in burn trauma. These results, in conjunction with our genomic results showing down-regulation of mitochondrial oxidative phosphorylation and related functions, strongly suggest alterations in mitochondrial-directed energy expenditure reactions, advancing our understanding of skeletal muscle dysfunction suffered by burn injury patients.
Collapse
Affiliation(s)
- Katie E Padfield
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2448604 DOI: 10.1002/cfg.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|