1
|
Lu C, Donners MMPC, de Baaij JBJ, Jin H, Otten JJT, Manca M, van Zonneveld AJ, Jukema JW, Kraaijeveld A, Kuiper J, Pasterkamp G, Mees B, Sluimer JC, Cavill R, Karel JMH, Goossens P, Biessen EAL. Identification of a gene network driving the attenuated response to lipopolysaccharide of monocytes from hypertensive coronary artery disease patients. Front Immunol 2024; 15:1286382. [PMID: 38410507 PMCID: PMC10894924 DOI: 10.3389/fimmu.2024.1286382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction The impact of cardiovascular disease (CVD) risk factors, encompassing various biological determinants and unhealthy lifestyles, on the functional dynamics of circulating monocytes-a pivotal cell type in CVD pathophysiology remains elusive. In this study, we aimed to elucidate the influence of CVD risk factors on monocyte transcriptional responses to an infectious stimulus. Methods We conducted a comparative analysis of monocyte gene expression profiles from the CTMM - CIRCULATING CELLS Cohort of coronary artery disease (CAD) patients, at baseline and after lipopolysaccharide (LPS) stimulation. Gene co-expression analysis was used to identify gene modules and their correlations with CVD risk factors, while pivotal transcription factors controlling the hub genes in these modules were identified by regulatory network analyses. The identified gene module was subjected to a drug repurposing screen, utilizing the LINCS L1000 database. Results Monocyte responsiveness to LPS showed a highly significant, negative correlation with blood pressure levels (ρ< -0.4; P<10-80). We identified a ZNF12/ZBTB43-driven gene module closely linked to diastolic blood pressure, suggesting that monocyte responses to infectious stimuli, such as LPS, are attenuated in CAD patients with elevated diastolic blood pressure. This attenuation appears associated with a dampening of the LPS-induced suppression of oxidative phosphorylation. Finally, we identified the serine-threonine inhibitor MW-STK33-97 as a drug candidate capable of reversing this aberrant LPS response. Conclusions Monocyte responses to infectious stimuli may be hampered in CAD patients with high diastolic blood pressure and this attenuated inflammatory response may be reversed by the serine-threonine inhibitor MW-STK33-97. Whether the identified gene module is a mere indicator of, or causal factor in diastolic blood pressure and the associated dampened LPS responses remains to be determined.
Collapse
Affiliation(s)
- Chang Lu
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Marjo M P C Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - Julius B J de Baaij
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - Han Jin
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jeroen J T Otten
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| | - Adriaan Kraaijeveld
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Gerard Pasterkamp
- Circulatory Health Research Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Barend Mees
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- Centre for Cardiovascular Science (CVS), University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel Cavill
- Department of Advanced Computing Sciences, Maastricht University, Maastricht, Netherlands
| | - Joël M H Karel
- Department of Advanced Computing Sciences, Maastricht University, Maastricht, Netherlands
| | - Pieter Goossens
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research, Klinikum RWTH Aachen, Aachen, Germany
| |
Collapse
|
2
|
Piťha J, Vaněčková I, Zicha J. Hypertension after the Menopause: What Can We Learn from Experimental Studies? Physiol Res 2023; 72:S91-S112. [PMID: 37565415 PMCID: PMC10660576 DOI: 10.33549/physiolres.935151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 12/01/2023] Open
Abstract
Hypertension is the most prevalent cardiovascular disease of the adult population and is closely associated with serious cardiovascular events. The burden of hypertension with respect to vascular and other organ damage is greater in women. These sex differences are not fully understood. The unique feature in women is their transition to menopause accompanied by profound hormonal changes that affect the vasculature that are also associated with changes of blood pressure. Results from studies of hormone replacement therapy and its effects on the cardiovascular system are controversial, and the timing of treatment after menopause seems to be important. Therefore, revealing potential sex- and sex hormone-dependent pathophysiological mechanisms of hypertension in experimental studies could provide valuable information for better treatment of hypertension and vascular impairment, especially in postmenopausal women. The experimental rat models subjected to ovariectomy mimicking menopause could be useful tools for studying the mechanisms of blood pressure regulation after menopause and during subsequent therapy.
Collapse
Affiliation(s)
- J Piťha
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
3
|
Chen X, Wu H, Huang S. Excessive Sodium Intake Leads to Cardiovascular Disease by Promoting Sex-Specific Dysfunction of Murine Heart. Front Nutr 2022; 9:830738. [PMID: 35845798 PMCID: PMC9285006 DOI: 10.3389/fnut.2022.830738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background Globally, a high-salt diet (HSD) has become a threat to human health as it can lead to a high risk of cardiac damage. Although some studies investigating HSD have been carried out, the majority has been conducted in males, and there are few female-specific studies, thereby ignoring any effects of sex-specific damage on the heart. In this study, we determined how HSD induces different pathways of cardiovascular diseases through sex-specific effects on cardiac damage in mice. Methods An HSD murine model of male and female C57BL/6J mice was fed with sodium-rich chow (4% NaCl). After 8 weeks, cardiac tissues were collected, and the whole gene transcriptome of the hearts of male and female mice was characterized and analyzed using high-throughput RNA sequencing. Immunohistochemistry staining was used to further assess the harmful effects of HSD on protein expression of genes associated with immunity, fibrosis, and apoptosis in male and female mice. Results HSD drastically altered the cardiac transcriptome compared to that of the normal heart in both male and female mice and had a sex-specific effect on the cardiac composition in the transcriptome. HSD produced various differentially expressed genes and affected different KEGG pathways of the transcriptome in male and female mice. Furthermore, we found that HSD induced different pathways of cardiovascular disease in the male mice and female mice. The pathway of hypertrophic cardiomyopathy is significantly enriched in HSD-treated male mice, while the pathway of dilated cardiomyopathy is significantly enriched in HSD-treated female mice. Finally, metabolism, immunity, fibrosis, and apoptosis in the mouse heart showed sex-specific changes predicting cardiac damage. Conclusion Our results demonstrate that HSD adversely impacts cardiac structure and function by affecting the metabolism, immunity, fibrosis, and apoptosis in the murine heart and induces the mouse to suffer from sex-specific cardiovascular disease. This study provides a new perspective and basis for the differences in the pharmacology and interventional treatment of sex-specific cardiovascular diseases induced by HSD in men and women.
Collapse
Affiliation(s)
- Xiuli Chen
- Obstetrical Department, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiying Wu
- Obstetrical Department, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Shenzhen Huang
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
- Haiying Wu
| |
Collapse
|
4
|
Padmanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev 2017; 97:1469-1528. [PMID: 28931564 PMCID: PMC6347103 DOI: 10.1152/physrev.00035.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
5
|
Cheng X, Waghulde H, Mell B, Morgan EE, Pruett-Miller SM, Joe B. Positional cloning of quantitative trait nucleotides for blood pressure and cardiac QT-interval by targeted CRISPR/Cas9 editing of a novel long non-coding RNA. PLoS Genet 2017; 13:e1006961. [PMID: 28827789 PMCID: PMC5578691 DOI: 10.1371/journal.pgen.1006961] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/31/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023] Open
Abstract
Multiple GWAS studies have reported strong association of cardiac QT-interval to a region on HSA17. Interestingly, a rat locus homologous to this region is also linked to QT-intervals. The high resolution positional mapping study located the rat QT-interval locus to a <42.5kb region on RNO10. This region contained no variants in protein-coding sequences, but a prominent contiguous 19bp indel polymorphism was noted within a novel predicted long non-coding RNA (lncRNA), which we named as Rffl-lnc1. To assess the candidacy of this novel lncRNA on QT-interval, targeted CRISPR/Cas9 based genome-engineering approaches were applied on the rat strains used to map this locus. Targeted disruption of the rat Rffl-lnc1 locus caused aberrant, short QT-intervals and elevated blood pressure. Further, to specifically examine the significance of the 19bp polymorphism within the Rffl-lnc1 locus, a CRISPR/Cas9 based targeted knock-in rescue model was constructed by inserting the 19bp into the strain which contained the deletion polymorphism. The knock-in alleles successfully rescued the aberrant QT-interval and blood pressure phenotypes. Further studies revealed that the 19bp polymorphism was necessary and sufficient to recapitulate the phenotypic effect of the previously mapped <42.5kb rat locus. To our knowledge, this study is the first demonstration of a combination of both CRISPR/Cas9 based targeted disruption as well as CRISPR/Cas9 based targeted knock-in rescue approaches applied for a mammalian positional cloning study, which defines the quantitative trait nucleotides (QTNs) within a rat long non-coding RNA as being important for the pleiotropic regulation of both cardiac QT-intervals and blood pressure. Diseases of the cardiovascular system such as essential hypertension do not have a clear cause, but are known to run in families. The inheritance patterns of essential hypertension and other cardiac diseases suggest that they are not due to a single defective gene but instead are caused by multiple genetic defects that are inherited together in a patient. This complex inheritance makes it difficult to pinpoint the underlying defects. Here, we describe a panel of genetically-engineered rats, using which we have discovered a novel gene, which does not code for any protein, as a gene required for maintenance of normal blood pressure. Structural defects within this non-coding RNA cause hypertension and cardiac short-QT interval. Further, by performing genome surgery to correct the gene defect, we demonstrate the precise error in nucleotides that was inherited and caused hypertension and cardiac short-QT interval syndrome.
Collapse
Affiliation(s)
- Xi Cheng
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Harshal Waghulde
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Blair Mell
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Eric E. Morgan
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- Department of Radiology, University of Toledo Medical Center, Toledo, OH, United States of America
| | - Shondra M. Pruett-Miller
- Department of Cell & Molecular Biology, Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Bina Joe
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
6
|
Redina OE, Smolenskaya SE, Fedoseeva LA, Markel AL. Differentially expressed genes in the locus associated with relative kidney weight and resting blood pressure in hypertensive rats of the ISIAH strain. Mol Biol 2016. [DOI: 10.1134/s0026893316050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Decano JL, Pasion KA, Black N, Giordano NJ, Herrera VL, Ruiz-Opazo N. Sex-specific genetic determinants for arterial stiffness in Dahl salt-sensitive hypertensive rats. BMC Genet 2016; 17:19. [PMID: 26754450 PMCID: PMC4709875 DOI: 10.1186/s12863-015-0324-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/22/2015] [Indexed: 02/08/2023] Open
Abstract
Background Arterial stiffness is an independent predictor of cardiovascular outcomes in hypertensive patients including myocardial infarction, fatal stroke, cerebral micro-bleeds which predicts cerebral hemorrhage in hypertensive patients, as well as progression to hypertension in non-hypertensive subjects. The association between arterial stiffness and various cardiovascular outcomes (coronary heart disease, stroke) remains after adjusting for age, sex, blood pressure, body mass index and other known predictors of cardiovascular disease, suggesting that arterial stiffness, measured via carotid-femoral pulse wave velocity, has a better predictive value than each of these factors. Recent evidence shows that arterial stiffening precedes the onset of high blood pressure; however their molecular genetic relationship (s) and sex-specific determinants remain uncertain. We investigated whether distinct or shared genetic determinants might underlie susceptibility to arterial stiffening in male and female Dahl salt-sensitive rats. Thus, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting arterial stiffness in six-week old F2 (Dahl S x R)-intercross male and female rats characterized for abdominal aortic pulse wave velocity and aortic strain by high-resolution ultrasonography. Results We detected five highly significant QTLs affecting aortic stiffness: two interacting QTLs (AS-m1 on chromosome 4 and AS-m2 on chromosome16, LOD 8.8) in males and two distinct interacting QTLs (AS-f1 on chromosome 9 and AS-f2 on chromosome11, LOD 8.9) in females affecting pulse wave velocity. One QTL (AS-1 on chromosome 3, LOD 4.3) was found to influence aortic strain in a sex-independent manner. None of these arterial stiffness QTLs co-localized with previously reported blood pressure QTLs detected in equivalent genetic intercrosses. Conclusions These data reveal sex-specific genetic determinants for aortic pulse wave velocity and suggest distinct polygenic susceptibility for arterial stiffness and salt-sensitive hypertension in Dahl rats based upon reported blood pressure QTLs in equivalent (Dahl S x R)-intercrosses.
Collapse
Affiliation(s)
- Julius L Decano
- Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, 700 Albany Street, W-609, Boston, MA, 02118, USA.
| | - Khristine A Pasion
- Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, 700 Albany Street, W-609, Boston, MA, 02118, USA.
| | - Nicole Black
- Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, 700 Albany Street, W-609, Boston, MA, 02118, USA.
| | - Nicholas J Giordano
- Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, 700 Albany Street, W-609, Boston, MA, 02118, USA.
| | - Victoria L Herrera
- Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, 700 Albany Street, W-609, Boston, MA, 02118, USA.
| | - Nelson Ruiz-Opazo
- Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, 700 Albany Street, W-609, Boston, MA, 02118, USA.
| |
Collapse
|
8
|
Jang M, Oh S, Noh HM, Chun S, Oh HY, Park KH, Paek YJ, Song HJ. Differences in Factors Associated with Albuminuria according to Gender and Comorbidities of Hypertension and Diabetes. Korean J Fam Med 2015; 36:316-22. [PMID: 26634099 PMCID: PMC4666868 DOI: 10.4082/kjfm.2015.36.6.316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 11/23/2022] Open
Abstract
Background This study examined the differences in factors associated with albuminuria according to gender and comorbidities of hypertension (HTN) and diabetes mellitus (DM). Methods We included 3,859 participants aged 20 to 79 years (55% female) from the 5th Korea National Health and Nutrition Examination Survey. Participants were excluded if they took antihypertensive or anti-diabetic medication, had chronic renal failure, had malignant tumor, were pregnant or menstruating during the health examination, or had missing urine albumin data. Albuminuria was defined by the participant's urine albumin-creatinine ratio (uACR). Relationships between dependent and independent variables were analyzed using the Pearson's correlation test and simple linear regression. Due to possible muticollinearity, multiple linear regression analysis was used to determine whether the association between the dependent and independent variables of interest remained significant after adjustment for other potentially confounding independent variables. Results The variables significantly correlated with uACR were different between the genders and between subjects with HTN or DM as a comorbidity. In the multiple linear regression models, hemoglobin A1c (P=0.01) was positively associated with uACR in men without HTN and DM. In men with HTN or DM, systolic blood pressure and fasting glucose (P<0.01) were positively associated with uACR. In women with HTN or DM, waist circumference (P=0.011) and gamma-glutamyl transpeptidase (P<0.001) were positively correlated with uACR (P<0.05) and glucose level (P=0.019) was negatively correlated with uACR. Conclusion The study suggested factors correlated with albuminuria were different for men and women according to comorbidities such as HTN and DM.
Collapse
Affiliation(s)
- Miae Jang
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Sohee Oh
- Department of Biostatistics, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Hye-Mi Noh
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Sunyoung Chun
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hye Young Oh
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Kyung Hee Park
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Yu Jin Paek
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hong Ji Song
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
9
|
Herrera VL, Pasion KA, Moran AM, Zaninello R, Ortu MF, Fresu G, Piras DA, Argiolas G, Troffa C, Glorioso V, Masala W, Glorioso N, Ruiz-Opazo N. A functional 12T-insertion polymorphism in the ATP1A1 promoter confers decreased susceptibility to hypertension in a male Sardinian population. PLoS One 2015; 10:e0116724. [PMID: 25615575 PMCID: PMC4304799 DOI: 10.1371/journal.pone.0116724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Identification of susceptibility genes for essential hypertension in humans has been a challenge due to its multifactorial pathogenesis complicated by gene-gene and gene-environment interactions, developmental programing and sex specific differences. These concurrent features make identification of causal hypertension susceptibility genes with a single approach difficult, thus requiring multiple lines of evidence involving genetic, biochemical and biological experimentation to establish causal functional mutations. Here we report experimental evidence encompassing genetic, biochemical and in vivo modeling that altogether support ATP1A1 as a hypertension susceptibility gene in males in Sardinia, Italy. ATP1A1 encodes the α1Na,K-ATPase isoform, the sole sodium pump in vascular endothelial and renal tubular epithelial cells. DNA-sequencing detected a 12-nucleotide long thymidine (12T) insertion(ins)/deletion(del) polymorphism within a poly-T sequence (38T vs 26T) in the ATP1A1 5’-regulatory region associated with hypertension in a male Sardinian population. The 12T-insertion allele confers decreased susceptibility to hypertension (P = 0.035; OR = 0.50 [0.28–0.93]) accounting for 12.1 mmHg decrease in systolic BP (P = 0.02) and 6.6 mmHg in diastolic BP (P = 0.046). The ATP1A1 promoter containing the 12T-insertion exhibited decreased transcriptional activity in in vitro reporter-assay systems, indicating decreased α1Na,K-ATPase expression with the 12T-insertion, compared with the 12T-deletion ATP1A1 promoter. To test the effects of decreased α1Na,K-ATPase expression on blood pressure, we measured blood pressure by radiotelemetry in three month-old, highly inbred heterozygous knockout ATP1A1+/− male mice with resultant 58% reduction in ATP1A1 protein levels. Male ATP1A1+/− mice showed significantly lower blood pressure (P < 0.03) than age-matched male wild-type littermate controls. Concordantly, lower ATP1A1 expression is expected to lower Na-reabsorption in the kidney thereby decreasing sodium-associated risk for hypertension and sodium-induced endothelial stiffness and dysfunction. Altogether, data support ATP1A1 as a hypertension susceptibility gene in a male Sardinian population, and mandate further investigation of its involvement in hypertension in the general population.
Collapse
Affiliation(s)
- Victoria L. Herrera
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Khristine A. Pasion
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ann Marie Moran
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Roberta Zaninello
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Maria Francesca Ortu
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Giovanni Fresu
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Daniela Antonella Piras
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Giuseppe Argiolas
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Chiara Troffa
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Valeria Glorioso
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Wanda Masala
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Nicola Glorioso
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Nelson Ruiz-Opazo
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Song HJ, Paek YJ, Choi MK, Lee HJ. Gender differences in the relationship between risk of hypertension and fruit intake. Prev Med 2014; 67:154-9. [PMID: 25045835 DOI: 10.1016/j.ypmed.2014.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/27/2014] [Accepted: 07/11/2014] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To investigate the relationship between hypertension and fruit intake in an Asian population. METHOD This study was based on the data from 2007, 2008 and 2009 Korea National Health and Nutrition Examination Survey. In the final analysis, a total of 9791 subjects (men=3819, women=5972) were included. Daily energy and nutrient intakes were assessed using 24-h recall. The odds ratios (ORs) for hypertension were assessed by using logistic regression and multivariable models. RESULTS A total of 10.6% of individuals were classified as having hypertension. Compared with the lowest quintile of fruit intake, the fifth quintile showed the lowest likelihood of hypertension (OR 0.73; 95% confidence interval [CI], 0.61-0.88) after adjusting for age and gender. For women, the likelihood of hypertension in the 2nd, 3rd, 4th and 5th quintiles of fruit intake decreased to 0.67 (95% CI, 0.34-1.30), 0.76 (0.56-1.05), 0.90 (0.67-1.22) and 0.54 (0.38-0.77), respectively, after adjusting for confounding factors (P value for trend=0.0011). An inverse association of fruit intake and hypertension was shown only in non-obese women. For men and obese women, there was no relationship between fruit intake and hypertension. CONCLUSION Dietary fruit recommendation for hypertension should be taken into account together with ethnic background, gender as well as the presence of obesity in individuals.
Collapse
Affiliation(s)
- Hong Ji Song
- Department of Family Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang-si, South Korea
| | - Yu Jin Paek
- Department of Family Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang-si, South Korea
| | - Min Kyu Choi
- Department of Family Medicine, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, South Korea
| | - Hae-Jeung Lee
- Department of Food & Nutrition, Eulji University, Seongnam-si, South Korea.
| |
Collapse
|
11
|
Herrera VL, Decano JL, Giordano N, Moran AM, Ruiz-Opazo N. Aortic and carotid arterial stiffness and epigenetic regulator gene expression changes precede blood pressure rise in stroke-prone Dahl salt-sensitive hypertensive rats. PLoS One 2014; 9:e107888. [PMID: 25229245 PMCID: PMC4168262 DOI: 10.1371/journal.pone.0107888] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/18/2014] [Indexed: 01/26/2023] Open
Abstract
Multiple clinical studies show that arterial stiffness, measured as pulse wave velocity (PWV), precedes hypertension and is an independent predictor of hypertension end organ diseases including stroke, cardiovascular disease and chronic kidney disease. Risk factor studies for arterial stiffness implicate age, hypertension and sodium. However, causal mechanisms linking risk factor to arterial stiffness remain to be elucidated. Here, we studied the causal relationship of arterial stiffness and hypertension in the Na-induced, stroke-prone Dahl salt-sensitive (S) hypertensive rat model, and analyzed putative molecular mechanisms. Stroke-prone and non-stroke-prone male and female rats were studied at 3- and 6-weeks of age for arterial stiffness (PWV, strain), blood pressure, vessel wall histology, and gene expression changes. Studies showed that increased left carotid and aortic arterial stiffness preceded hypertension, pulse pressure widening, and structural wall changes at the 6-week time-point. Instead, differential gene induction was detected implicating molecular-functional changes in extracellular matrix (ECM) structural constituents, modifiers, cell adhesion, and matricellular proteins, as well as in endothelial function, apoptosis balance, and epigenetic regulators. Immunostaining testing histone modifiers Ep300, HDAC3, and PRMT5 levels confirmed carotid artery-upregulation in all three layers: endothelial, smooth muscle and adventitial cells. Our study recapitulates observations in humans that given salt-sensitivity, increased Na-intake induced arterial stiffness before hypertension, increased pulse pressure, and structural vessel wall changes. Differential gene expression changes associated with arterial stiffness suggest a molecular mechanism linking sodium to full-vessel wall response affecting gene-networks involved in vascular ECM structure-function, apoptosis balance, and epigenetic regulation.
Collapse
Affiliation(s)
- Victoria L. Herrera
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Julius L. Decano
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nicholas Giordano
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ann Marie Moran
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nelson Ruiz-Opazo
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Prisco SZ, Prokop JW, Sarkis AB, Yeo NC, Hoffman MJ, Hansen CC, Jacob HJ, Flister MJ, Lazar J. Refined mapping of a hypertension susceptibility locus on rat chromosome 12. Hypertension 2014; 64:883-90. [PMID: 25001272 DOI: 10.1161/hypertensionaha.114.03550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previously, we found that transferring 6.1 Mb of salt-sensitive (SS) chromosome 12 (13.4-19.5 Mb) onto the consomic SS-12(BN) background significantly elevated mean arterial pressure in response to an 8% NaCl diet (178±7 versus 144±2 mm Hg; P<0.001). Using congenic mapping, we have now narrowed the blood pressure locus by 86% from a 6.1-Mb region containing 133 genes to an 830-kb region (chr12:14.36-15.19 Mb) with 14 genes. Compared with the SS-12(BN) consomic, the 830-kb blood pressure locus was associated with a ∆+15 mm Hg (P<0.01) increase in blood pressure, which coincided with elevated albuminuria (∆+32 mg/d; P<0.001), proteinuria (∆+48 mg/d; P<0.01), protein casting (∆+154%; P<0.05), and renal fibrosis (∆+79%; P<0.05). Of the 14 genes residing in the 830-kb locus, 8 were differentially expressed, and among these, Chst12 (carbohydrate chondroitin 4 sulfotransferase 12) was most consistently downregulated by 2.6- to 4.5-fold (P<0.05) in both the renal medulla and cortex under normotensive and hypertensive conditions. Moreover, whole genome sequence analysis of overlapping blood pressure loci revealed an ≈86-kb region (chr12:14 541 567-14 627 442 bp) containing single-nucleotide variants near Chst12 that are unique to the hypertensive SS strain when compared with the normotensive Brown Norway, Dahl salt-resistant, and Wistar-Kyoto strains. Finally, the 830-kb interval is syntenic to a region on human chromosome 7 that has been genetically linked to blood pressure, suggesting that insight gained from our SS-12(BN) congenic strain may be translated to a better understanding of human hypertension.
Collapse
Affiliation(s)
- Sasha Z Prisco
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Jeremy W Prokop
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Allison B Sarkis
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Nan Cher Yeo
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Matthew J Hoffman
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Colin C Hansen
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Howard J Jacob
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Michael J Flister
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee
| | - Jozef Lazar
- From the Human and Molecular Genetics Center (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., C.C.H., H.J.J., M.J.F., J.L.) and Departments of Physiology (S.Z.P., J.W.P., A.B.S., N.C.Y., M.J.H., H.J.J., M.J.F., J.L.), Pediatrics (H.J.J.), and Dermatology (J.L.), Medical College of Wisconsin, Milwaukee.
| |
Collapse
|
13
|
Glorioso N, Herrera VL, Didishvili T, Ortu MF, Zaninello R, Fresu G, Argiolas G, Troffa C, Ruiz-Opazo N. Sex-specific effects of NLRP6/AVR and ADM loci on susceptibility to essential hypertension in a Sardinian population. PLoS One 2013; 8:e77562. [PMID: 24147025 PMCID: PMC3795764 DOI: 10.1371/journal.pone.0077562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/03/2013] [Indexed: 01/11/2023] Open
Abstract
Coronary artery disease, heart failure, fatal arrhythmias, stroke, and renal disease are the most common causes of mortality for humans, and essential hypertension remains a major risk factor. Elucidation of susceptibility loci for essential hypertension has been difficult because of its complex, multifactorial nature involving genetic, environmental, and sex- and age-dependent nature. We investigated whether the 11p15.5 region syntenic to rat chromosome 1 region containing multiple blood pressure quantitative trait loci (QTL) detected in Dahl rat intercrosses harbors polymorphisms that contribute to susceptibility/resistance to essential hypertension in a Sardinian population. Initial testing performed using microsatellite markers spanning 18 Mb of 11p15.5 detected a strong association between D11S1318 (at 2.1 Mb, P = 0.004) and D11S1346 (at 10.6 Mb, P = 0.00000004), suggesting that loci in close proximity to these markers may contribute to susceptibility in our Sardinian cohort. NLR family, pyrin domain containing 6/angiotensin-vasopressin receptor (NLRP6/AVR), and adrenomedullin (ADM) are in close proximity to D11S1318 and D11S1346, respectively; thus we tested single nucleotide polymorphisms (SNPs) within NLRP6/AVR and ADM for their association with hypertension in our Sardinian cohort. Upon sex stratification, we detected one NLRP6/AVR SNP associated with decreased susceptibility to hypertension in males (rs7948797G, P = 0.029; OR = 0.73 [0.57–0.94]). For ADM, sex-specific analysis showed a significant association between rs4444073C, with increased susceptibility to essential hypertension only in the male population (P = 0.006; OR = 1.44 [1.13–1.84]). Our results revealed an association between NLRP6/AVR and ADM loci with male essential hypertension, suggesting the existence of sex-specific NLRP6/AVR and ADM variants affecting male susceptibility to essential hypertension.
Collapse
Affiliation(s)
- Nicola Glorioso
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Victoria L. Herrera
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Tamara Didishvili
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Maria F. Ortu
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Roberta Zaninello
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Giovanni Fresu
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Guiseppe Argiolas
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Chiara Troffa
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Nelson Ruiz-Opazo
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Herrera VL, Pasion KA, Tan GA, Moran AM, Ruiz-Opazo N. Sex-specific effects on spatial learning and memory, and sex-independent effects on blood pressure of a <3.3 Mbp rat chromosome 2 QTL region in Dahl salt-sensitive rats. PLoS One 2013; 8:e67673. [PMID: 23861781 PMCID: PMC3701625 DOI: 10.1371/journal.pone.0067673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/21/2013] [Indexed: 11/18/2022] Open
Abstract
Epidemiological studies have consistently found that hypertension is associated with poor cognitive performance. We hypothesize that a putative causal mechanism underlying this association is due to genetic loci affecting both blood pressure and cognition. Consistent with this notion, we reported several blood pressure (BP) quantitative trait loci (QTLs) that co-localized with navigational performance (Nav)-QTLs influencing spatial learning and memory in Dahl rats. The present study investigates a chromosome 2 region harboring BP-f4 and Nav-8 QTLs. We developed two congenic strains, S.R2A and S.R2B introgressing Dahl R-chromosome 2 segments into Dahl S chromosome 2 region spanning BP-f4 and Nav-8 QTLs. Radiotelemetric blood pressure analysis identified only S.R2A congenic rats with lower systolic blood pressure (females: -26.0 mmHg, P = 0.003; males: -30.9 mmHg, P<1×10(-5)), diastolic blood pressure (females: -21.2 mmHg, P = 0.01; males: -25.7 mmHg, P<1×10(-5)), and mean arterial pressure (females: -23.9 mmHg, P = 0.004; males: -28.0 mmHg, P<1×10(-5)) compared with corresponding Dahl S controls, confirming the presence of BP-f4 QTL on rat chromosome 2. The S.R2B congenic segment did not affect blood pressure. Testing of S.R2A, S.R2B, and Dahl S male rats in the Morris water maze (MWM) task revealed significantly decreased spatial navigation performance in S.R2A male congenic rats when compared with Dahl S male controls (P<0.05). The S.R2B congenic segment did not affect performance of the MWM task in males. The S.R2A female rats did not differ in spatial navigation when compared with Dahl S female controls, indicating that the Nav-8 effect on spatial navigation is male-specific. Our results suggest the existence of a single QTL on chromosome 2 176.6-179.9 Mbp region which affects blood pressure in both males and females and cognition solely in males.
Collapse
Affiliation(s)
- Victoria L. Herrera
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Khristine A. Pasion
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Glaiza A. Tan
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ann Marie Moran
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nelson Ruiz-Opazo
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Hoffman MJ, Flister MJ, Nunez L, Xiao B, Greene AS, Jacob HJ, Moreno C. Female-specific hypertension loci on rat chromosome 13. Hypertension 2013; 62:557-63. [PMID: 23817491 DOI: 10.1161/hypertensionaha.113.01708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A 3.7-Mb region of rat chromosome 13 (45.2-49.0 Mb) affects blood pressure (BP) in females only, indicating the presence of sex-specific BP loci in close proximity to the Renin locus. In the present study, we used a series of Dahl salt-sensitive/Mcwi-13 Brown Norway congenic rat strains to further resolve BP loci within this region. We identified 3 BP loci affecting female rats only, of which the 2 smaller loci (line9BP3 and line9BP4) were functionally characterized by sequence and expression analysis. Compared with SS (SS/HsdMcwiCrl), the presence of a 591-kb region of BN (BN/NHsdMcwi) chromosome 13 (line9BP3) significantly lowered BP by 21 mm Hg on an 8% NaCl diet (153 ± 7 versus 174 ± 5 mm Hg; P<0.001). Unexpectedly, the addition of 23 kb of Brown Norway chromosome 13 (line9BP4) completely erased the female-specific BP protection on 8% NaCl diet, suggesting that BN hypertensive allele(s) reside in this region. The congenic interval of the protective line 9F strain contains 3 genes (Optc, Prelp, and Fmod), and the hypertensive line 9E contains 1 additional gene (Btg2). Sequence analysis of the 2 BP loci revealed a total of 282 intergenic variants, with no coding variants. Analysis of gene expression by quantitative real-time polymerase chain reaction revealed strain- and sex-specific differences in Prelp, Fmod, and Btg2 expression, implicating these as novel candidate genes for female-specific hypertension.
Collapse
Affiliation(s)
- Matthew J Hoffman
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Rapp JP. Theoretical model for gene-gene, gene-environment, and gene-sex interactions based on congenic-strain analysis of blood pressure in Dahl salt-sensitive rats. Physiol Genomics 2013; 45:737-50. [PMID: 23757391 DOI: 10.1152/physiolgenomics.00046.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There is a significant literature describing quantitative trait loci (QTL) controlling blood pressure (BP) in the Dahl salt-sensitive (S) rat. In studies to identify the genes underlying BP QTL it has been common practice to place chromosomal segments from low BP strains on the genetic background of the S rat and then reduce the congenic segments by substitution mapping. The present work suggests a model to simulate genetic interactions found using such congenic strains. The QTL are considered to be switches that can be either in series or in parallel represented by the logic operators AND or OR, respectively. The QTL switches can be on/off switches but are also allowed specific leak properties. The QTL switches are represented by a "universal" switch consisting of two molecules binding to form a complex. Genetic inputs enter the model as allelic products of one of the binding molecules and environmental variation (including dietary salt- and sex-related differences) enters as an influence on the concentration of the other binding molecule. The pairwise interactions of QTL are very well simulated and fall into recognizable patterns. There is, however, often more than one assumed model to predict a given pattern so that all patterns do not necessarily have a unique solution. Nevertheless, the models obtained provide a framework for placing the QTL in pathways relative to one another. Moreover, based on their leak properties pairs of QTL could be identified in which one QTL may alter the properties of the other QTL.
Collapse
Affiliation(s)
- John P Rapp
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA. )
| |
Collapse
|
17
|
Herrera VLM, Pasion KA, Moran AM, Ruiz-Opazo N. Worse renal disease in postmenopausal F2[Dahl S x R]-intercross rats: detection of novel QTLs affecting hypertensive kidney disease. PLoS One 2013; 8:e56096. [PMID: 23393608 PMCID: PMC3564915 DOI: 10.1371/journal.pone.0056096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/09/2013] [Indexed: 11/29/2022] Open
Abstract
The prevalence of hypertension increases after menopause with 75% of postmenopausal women developing hypertension in the United States, along with hypertensive end organ diseases. While human and animal model studies have indicated a protective role for estrogen against cardiovascular disease and glomerulosclerosis, clinical studies of hormone replacement therapy in postmenopausal women have shown polar results with some improvement in hypertension but worsening of hypertensive kidney disease, or no effect at all. These observations suggest that the pathogenesis of postmenopausal hypertension and its target organ complications is more complex than projected, and that loss of endogenous estrogens induces epigenetic changes that alter genetic susceptibility to end-organ complications per se resulting in pathogenetic mechanisms beyond correction by hormone replacement. We studied postmenopausal-induced changes in renal disease and performed a total genome scan for quantitative trait loci (QTLs) affecting kidney disease in postmenopausal 16m-old F2[Dahl S x R]-intercross female rats. We used glomerular injury score (GIS) as quantitative trait. We compared QTLs amongst premenopausal, ovariectomized and postmenopausal F2[Dahl S x R]-intercross rats using identical phenotype characterization. Postmenopausal F2[Dahl S x R]-intercross rats exhibited increased hypertensive glomerulosclerosis (P<0.01) and equivalent levels of kidney disease when compared to premenopausal and ovariectomized F2[Dahl S x R]-intercross rats respectively. We detected three significant to highly significant GIS-QTLs (GIS-pm1 on chromosome 4, LOD 3.54; GIS-pm2 on chromosome 3, LOD 2.72; GIS-pm3 on chromosome 5, LOD 2.37) and two suggestive GIS-QTLs (GIS-pm4 on chromosome 2, LOD 1.70; GIS-pm5 on chromosome 7, LOD 1.28), all of which were unique to this postmenopausal population. Detection of increased renal disease phenotype in postmenopausal and ovariectomized subjects suggests a protective role of ovarian hormones. Furthermore, the detection of distinct GIS-QTLs in postmenopausal intercross female rats suggests that distinct genetic mechanisms underlie hypertensive glomerulosclerosis in premenopausal and postmenopausal states.
Collapse
Affiliation(s)
- Victoria L. M. Herrera
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Khristine A. Pasion
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ann Marie Moran
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nelson Ruiz-Opazo
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Redina OE, Smolenskaya SE, Maslova LN, Markel AL. The Genetic Control of Blood Pressure and Body Composition in Rats with Stress-Sensitive Hypertension. Clin Exp Hypertens 2013; 35:484-95. [DOI: 10.3109/10641963.2012.758274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Differential genetic basis for pre-menopausal and post-menopausal salt-sensitive hypertension. PLoS One 2012; 7:e43160. [PMID: 22912817 PMCID: PMC3422252 DOI: 10.1371/journal.pone.0043160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/17/2012] [Indexed: 11/18/2022] Open
Abstract
Essential hypertension affects 75% of post-menopausal women in the United States causing greater cardiovascular complications compared with age-matched men and pre-menopausal women. Hormone replacement and current anti-hypertensive therapies do not correct this post-menopausal increased risk suggesting a distinct pathogenic framework. We investigated the hypothesis that distinct genetic determinants might underlie susceptibility to salt sensitive hypertension in pre-menopausal and post-menopausal states. To determine whether distinct genetic loci contribute to post-menopausal salt-sensitive hypertension, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting blood pressure (BP) in 16-month old post-menopausal F2 (Dahl S×R)-intercross female rats characterized for blood pressure by radiotelemetry. Given identical environments and high salt challenge, post-menopausal BP levels were significantly higher than observed in pre-menopausal (post-menopausal versus pre-menopausal SBP, P<0.0001) and ovariectomized (post-menopausal versus ovariectomized SBP, P<0.001) F2-intercross female rats. We detected four significant to highly significant BP-QTLs (BP-pm1 on chromosome 13, LOD 3.78; BP-pm2 on chromosome 11, LOD 2.76; BP-pm3 on chromosome 2, LOD 2.61; BP-pm4 on chromosome 4, LOD 2.50) and two suggestive BP-QTLs (BP-pm5 on chromosome 15, LOD 2.37; BP-f1 on chromosome 5, LOD 1.65), four of which (BP-pm2, BP-pm3, BP-pm4, BP-pm5) were unique to this post-menopausal cohort. These data demonstrate distinct polygenic susceptibility underlying post-menopausal salt-sensitive hypertension providing a pathway towards the identification of mechanism-based therapy for post-menopausal hypertension and ensuing target-organ complications.
Collapse
|
20
|
Distinct QTLs cosegregate with worse hypertension and renal disease in ovariectomized F2[Dahl S × R]-intercross rats. J Hypertens 2012; 30:1572-80. [PMID: 22688265 DOI: 10.1097/hjh.0b013e3283550eb8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Dahl (S x R) congenic strain analysis confirms and defines a chromosome 5 female-specific blood pressure quantitative trait locus to <7 Mbp. PLoS One 2012; 7:e42214. [PMID: 22860086 PMCID: PMC3408448 DOI: 10.1371/journal.pone.0042214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/02/2012] [Indexed: 12/25/2022] Open
Abstract
The detection of multiple sex-specific blood pressure (BP) quantitative trait loci (QTLs) in independent total genome analyses of F2 (Dahl S x R)-intercross male and female rat cohorts confirms clinical observations of sex-specific disease cause and response to treatment among hypertensive patients, and mandate the identification of sex-specific hypertension genes/mechanisms. We developed and studied two congenic strains, S.R5A and S.R5B introgressing Dahl R-chromosome 5 segments into Dahl S chromosome 5 region spanning putative BP-f1 and BP-f2 QTLs. Radiotelemetric non-stressed 24-hour BP analysis at four weeks post-high salt diet (8% NaCl) challenge, identified only S.R5B congenic rats with lower SBP (−26.5 mmHg, P = 0.002), DBP (−23.7 mmHg, P = 0.004) and MAP (−25.1 mmHg, P = 0.002) compared with Dahl S female controls at four months of age confirming BP-f1 but not BP-f2 QTL on rat chromosome 5. The S.R5B congenic segment did not affect pulse pressure and relative heart weight indicating that the gene underlying BP-f1 does not influence arterial stiffness and cardiac hypertrophy. The results of our congenic analysis narrowed BP-f1 to chromosome 5 coordinates 134.9–141.5 Mbp setting up the basis for further fine mapping of BP-f1 and eventual identification of the specific gene variant accounting for BP-f1 effect on blood pressure.
Collapse
|
22
|
Glorioso N, Herrera VLM, Didishvili T, Argiolas G, Troffa C, Bulla P, Bulla E, Ruiz-Opazo N. DEspR T/CATAAAA-box promoter variant decreases DEspR transcription and is associated with increased BP in Sardinian males. Physiol Genomics 2011; 43:1219-25. [PMID: 21862670 PMCID: PMC3217322 DOI: 10.1152/physiolgenomics.00012.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 08/17/2011] [Indexed: 01/11/2023] Open
Abstract
Essential hypertension is highly prevalent in the elderly population, exceeding 70% in people older than 60 yr of age, and remains a leading risk factor for heart disease, stroke, and chronic renal disease. Elucidation of genetic determinants is critical but remains a challenge due to its complex, multifactorial pathogenesis. We investigated the role DEspR promoter variants, previously associated with male essential hypertension susceptibility, in blood pressure (BP) regulation. We detected a single nucleotide polymorphism within the DEspR 5'-regulatory region associated with increased BP in a male Sardinian cohort accounting for 11.0 mmHg of systolic BP (P<10(-15)) and 9.3 mmHg of diastolic BP (P<10(-15)). Sequence analysis of three normotensive subjects homozygous for the rs6535847 "normotension-associated T-allele" identified a canonical TATAAAA-box in contrast to a CATAAAA-motif in three hypertensive subjects homozygous for the rs6535847 "hypertension-associated C-allele." In vitro analysis detected decreased transcription activity with the CATAAAA-motif promoter-construct compared with the canonical TATAAAA-box promoter-construct. Although BP did not differ between DEspR+/- knockout male mice and wild-type littermates at 6 mo of age, radiotelemetric BP measurements in 18 mo old inbred DEspR+/- knockout male mice known to have decreased DEspR RNA and protein detected higher systolic, mean, and diastolic BPs in DEspR+/- mice compared with littermate wild-type controls (P<0.05). Our results demonstrate that promoter variants in DEspR associated with hypertension susceptibility and increased BP in Sardinian males affect transcription levels, which then affect BP in an age-dependent and male-specific manner. This finding is concordant with the late-onset and sex-specific characteristics of essential hypertension, thus reiterating the mandate for sex-specific analyses and treatment approaches for essential hypertension.
Collapse
Affiliation(s)
- Nicola Glorioso
- Hypertension and Related Diseases Center, Azienda Ospedaliero Universitaria-Università di Sassari, Sassari, Sardinia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Herrera VLM, Bagamasbad P, Decano JL, Ruiz-Opazo N. AVR/NAVR deficiency lowers blood pressure and differentially affects urinary concentrating ability, cognition, and anxiety-like behavior in male and female mice. Physiol Genomics 2010; 43:32-42. [PMID: 20923861 DOI: 10.1152/physiolgenomics.00154.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arginine vasopressin (AVP) and angiotensin II (ANG II) are distinct peptide hormones involved in multiple organs modulating renal, cardiovascular, and brain functions. They achieve these functions via specific G protein-coupled receptors, respectively. The AVR/NAVR locus encodes two overlapping V2-type vasopressin isoreceptors: angiotensin-vasopressin receptor (AVR) responding to ANG II and AVP equivalently, and nonangiotensin vasopressin receptor (NAVR), which binds vasopressin exclusively. AVR and NAVR are expressed from a single gene by alternative promoter usage that is synergistically upregulated by testosterone and estrogen. This study tested the hypothesis that AVR/NAVR modulates urinary concentrating ability, blood pressure, and cognitive performance in vivo in a sex-specific manner. We developed a C57BL/6 inbred AVR/NAVR(-/-) knockout mouse that showed lower blood pressure in both male and female subjects and a urinary-concentrating defect restricted to male mice. We also detected sex-specific effects on cognitive and anxiety-like behaviors. AVR/NAVR(-/-) male mice exhibited impaired visuospatial and associative learning, while female mice showed improved performance in both type of cognition. AVR/NAVR deficiency produced an anxiolytic-like effect in female mice, while males were unaffected. Analysis of AVR- and NAVR-mediated phosphorylation/dephosphorylation of signaling proteins revealed activation/deactivation of known modulators of cognitive function. Our studies identify AVR/NAVR as key receptors involved in blood pressure regulation and sex-specific modulation of renal water homeostasis, cognitive function, and anxiety-like behavior. As such, the AVR/NAVR receptor system provides a molecular mechanism for sexually diergic traits and a putative common pathway for the emerging association of hypertension and cognitive decline and dementia.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Section of Molecular Medicine, Department of Medicine, and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
24
|
Combining QTL data for HDL cholesterol levels from two different species leads to smaller confidence intervals. Heredity (Edinb) 2010; 105:426-32. [PMID: 20551980 PMCID: PMC2958246 DOI: 10.1038/hdy.2010.75] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Quantitative trait locus (QTL) analysis detects regions of a genome that are linked to a complex trait. Once a QTL is detected, the region is narrowed by positional cloning in the hope of determining the underlying candidate gene-methods used include creating congenic strains, comparative genomics and gene expression analysis. Combined cross analysis may also be used for species such as the mouse, if the QTL is detected in multiple crosses. This process involves the recoding of QTL data on a per-chromosome basis, with the genotype recoded on the basis of high- and low-allele status. The data are then combined and analyzed; a successful analysis results in a narrowed and more significant QTL. Using parallel methods, we show that it is possible to narrow a QTL by combining data from two different species, the rat and the mouse. We combined standardized high-density lipoprotein phenotype values and genotype data for the rat and mouse using information from one rat cross and two mouse crosses. We successfully combined data within homologous regions from rat Chr 6 onto mouse Chr 12, and from rat Chr 10 onto mouse Chr 11. The combinations and analyses resulted in QTL with smaller confidence intervals and increased logarithm of the odds ratio scores. The numbers of candidate genes encompassed by the QTL on mouse Chr 11 and 12 were reduced from 1343 to 761 genes and from 613 to 304 genes, respectively. This is the first time that QTL data from different species were successfully combined; this method promises to be a useful tool for narrowing QTL intervals.
Collapse
|
25
|
Deng AY, Ménard A, Xiao C, Roy J. Sexual Dimorphism on Hypertension of Quantitative Trait Loci Entrapped in Dahl Congenic Rats. Clin Exp Hypertens 2009; 30:511-9. [DOI: 10.1080/10641960802251933] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alan Y. Deng
- Research Centre, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Annie Ménard
- Research Centre, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Chunjie Xiao
- Biology Department, Yunnan University, Kunming, Yunnan, China
| | - Julie Roy
- Research Centre, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
26
|
Herrera VLM, Decano JL, Bagamasbad P, Kufahl T, Steffen M, Ruiz-Opazo N. Sex-specific hippocampus-dependent cognitive deficits and increased neuronal autophagy in DEspR haploinsufficiency in mice. Physiol Genomics 2008; 35:316-29. [PMID: 18780760 DOI: 10.1152/physiolgenomics.00044.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aside from abnormal angiogenesis, dual endothelin-1/VEGF signal peptide-activated receptor deficiency (DEspR(-/-)) results in aberrant neuroepithelium and neural tube differentiation, thus elucidating DEspR's role in neurogenesis. With the emerging importance of neurogenesis in adulthood, we tested the hypothesis that nonembryonic-lethal DEspR haploinsufficiency (DEspR(+/-)) perturbs neuronal homeostasis, thereby facilitating aging-associated neurodegeneration. Here we show that, in male mice only, DEspR-haploinsufficiency impaired hippocampus-dependent visuospatial and associative learning and induced noninflammatory spongiform changes, neuronal vacuolation, and loss in the hippocampus, cerebral cortex, and subcortical regions, consistent with autophagic cell death. In contrast, DEspR(+/-) females exhibited better cognitive performance than wild-type females and showed absence of neuropathological changes. Signaling pathway analysis revealed DEspR-mediated phosphorylation of activators of autophagy inhibitor mammalian target of rapamycin (mTOR) and dephosphorylation of known autophagy inducers. Altogether, the data demonstrate DEspR-mediated diametrical, sex-specific modulation of cognitive performance and autophagy, highlight cerebral neuronal vulnerability to autophagic dysregulation, and causally link DEspR haploinsufficiency with increased neuronal autophagy, spongiosis, and cognitive decline in mice.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Department of Medicine, Section of Molecular Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
27
|
Herrera VLM, Bagamasbad P, Didishvili T, Decano JL, Ruiz-Opazo N. Overlapping genes in Nalp6/PYPAF5 locus encode two V2-type vasopressin isoreceptors: angiotensin-vasopressin receptor (AVR) and non-AVR. Physiol Genomics 2008; 34:65-77. [PMID: 18413781 DOI: 10.1152/physiolgenomics.00199.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The angiotensin-vasopressin receptor (AVR) responds with equivalent affinities to angiotensin II (ANG II) and vasopressin and is coupled to adenylate cyclase and hence a V2-type vasopressin receptor. AVR maps to the Nalp6 locus and overlaps with the larger Nalp6/PYPAF5 reported to be a T cell/granulocyte-specific, cytoplasmic-specific proapoptotic protein, thus questioning the existence of AVR. Here we confirm, through different experimental modalities, that AVR is distinct from Nalp6/PYPAF5 based on different mRNA and protein sizes, subcellular localization, and tissue-specific expression patterns. Binding studies of PYPAF5-specific Cos1 transfectants detect high-affinity binding to vasopressin but not ANG II, thus assigning PYPAF5 as a non-AVR (NAVR). Signaling array analysis reveals that AVP stimulation of AVR- and NAVR-specific Cos1 transfectants results in diametrical activation as well as coactivation of signaling pathways known to mediate renal sodium and water balance. Likewise, ANG II stimulation of Cos1-AVR transfectants reveals a signaling profile distinct from that of AVP-stimulated Cos1-AVR transfectants. Analysis of genomic organization of the AVR/NAVR locus shows an overlapping gene arrangement with alternative promoter usage resulting in different NH(2) termini for NAVR and AVR. In addition to core promoter elements, androgen and estrogen response elements are detected. Promoter analysis of NAVR/AVR 5'-regulatory region detects transcriptional upregulation by testosterone and synergistic upregulation by testosterone and estrogen, thus suggesting that AVR and/or NAVR contribute to sex-specific V2-type vasopressin-mediated effects. Altogether, confirmation of AVR and identification of NAVR as vasopressin receptors are concordant with emerging vasopressin functions not attributable to V1a, V1b, or V2 receptors and add molecular bases for the multifunctional complexity of vasopressin-mediated functions and regulation.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Section of Molecular Medicine, Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
28
|
Seda O, Tremblay J, Gaudet D, Brunelle PL, Gurau A, Merlo E, Pilote L, Orlov SN, Boulva F, Petrovich M, Kotchen TA, Cowley AW, Hamet P. Systematic, genome-wide, sex-specific linkage of cardiovascular traits in French Canadians. Hypertension 2008; 51:1156-62. [PMID: 18259002 DOI: 10.1161/hypertensionaha.107.105247] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sexual dimorphism of cardiovascular traits, as well as susceptibility to a variety of related diseases, has long been recognized, yet their sex-specific genomic determinants are largely unknown. We systematically assessed the sex-specific heritability and linkage of 539 hemodynamic, metabolic, anthropometric, and humoral traits in 120 French-Canadian families from the Saguenay-Lac-St-Jean region of Quebec, Canada. We performed multipoint linkage analysis using microsatellite markers followed by peak-wide linkage scan based on Affymetrix Human Mapping 50K Array Xba240 single nucleotide polymorphism genotypes in 3 settings, including the entire sample and then separately in men and women. Nearly one half of the traits were age and sex independent, one quarter were both age and sex dependent, and one eighth were exclusively age or sex dependent. Sex-specific phenotypes are most frequent in heart rate and blood pressure categories, whereas sex- and age-independent determinants are predominant among humoral and biochemical parameters. Twenty sex-specific loci passing multiple testing criteria were corroborated by 2-point single nucleotide polymorphism linkage. Several resting systolic blood pressure measurements showed significant genotype-by-sex interaction, eg, male-specific locus at chromosome 12 (male-female logarithm of odds difference: 4.16; interaction P=0.0002), which was undetectable in the entire population, even after adjustment for sex. Detailed interrogation of this locus revealed a 220-kb block overlapping parts of TAO-kinase 3 and SUDS3 genes. In summary, a large number of complex cardiovascular traits display significant sexual dimorphism, for which we have demonstrated genomic determinants at the haplotype level. Many of these would have been missed in a traditional, sex-adjusted setting.
Collapse
Affiliation(s)
- Ondrej Seda
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal-Technôpole Angus, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Essential hypertension affects more than 20% of the adult population, and has a multifactorial origin arising from an interaction between susceptibility genes and environmental factors. Several strategies have been used to identify hypertension susceptibility genes. This review highlights recent efforts in genetic dissection of essential hypertension. RECENT FINDINGS Recently, further chromosomal regions harboring blood pressure loci have emerged in genome-wide linkage studies. Findings from a new systematic two-dimensional genome scan are presented, as well as sex-specific loci linked to hypertension in inbred rodent models. Many case-control association studies have been carried out, but results so far have been equivocal. This review discusses some interesting studies combining linkage and association strategies using gene-gene interactions, and studies the use of haplotypes instead of SNPs. Two novel hypertension susceptibility genes are presented, and a short summary on new insights into genes of the renin-angiotensin and adrenergic systems is given. SUMMARY To date, linkage and association studies have not been convincing. Genome-wide association studies may prove to be an effective approach to the problems posed by complex traits. Combined with candidate gene approaches, it is hoped this strategy will yield convincing evidence for genes associated with essential hypertension.
Collapse
Affiliation(s)
- Alexander Binder
- Department of General Pediatrics, Medical University of Graz, Graz, Austria.
| |
Collapse
|
30
|
Herrera VLM, Ponce LRB, Ruiz-Opazo N. Genome-wide scan for interacting loci affecting human cholesteryl ester transfer protein-induced hypercholesterolemia in transgenic human cholesteryl ester transfer protein F2-intercross rats. J Hypertens 2007; 25:1608-12. [PMID: 17620956 DOI: 10.1097/hjh.0b013e328182df1a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We documented susceptibility in Dahl S rats to coronary atherosclerosis upon the transgenic expression of human cholesteryl ester transfer protein (hCETP) producing severe combined hyperlipidemia, as detected in Tg[hCETP]53 (Tg53) Dahl S rats. In other genetic backgrounds (i.e. Dahl R, spontaneously hypertensive rat strains) transgene expression does not lead to severe combined hyperlipidemia. This study aimed to identify genetic loci that modify the effect of hCETP on hypercholesterolemia observed in different genetic contexts. METHODS To identify quantitative trait loci (QTL) that affect hCETP-mediated hyperlipidemia in Tg53 Dahl S rats in contrast to Tg53 Dahl R rats we performed a genome-wide scan for QTL affecting plasma total cholesterol in an F2[Tg (R x S)]-intercross male population (n = 159) that are transgenic for the Tg[hCETP]53 transgene. Hybrids were genotyped with 121 informative polymorphic markers. RESULTS We detected three novel hCETP-dependent QTL for hypercholesterolemia: one on chromosome 3 with suggestive linkage [logarithm of odds score derived from likelihood ratio statistic using a factor of 4.6 (LOD) 2.26]; one on chromosome 9 with significant linkage (LOD 4.15), and one on chromosome 11 with significant linkage (LOD 3.48) that have not been detected in other rat intercrosses. CONCLUSION Three cholesteryl ester transfer protein (CETP)-interacting loci were identified in a Tg53 Dahl S rat intercross study affecting cholesterol metabolism. These results could partly explain the controversy regarding the atherogenic role of CETP in humans, suggesting the hypothesis that putative CETP interacting genes confound or play an important role in CETP-mediated pro-atherogenic susceptibility in humans. Overall, these observations reiterate the key role of epistasis in complex, multifactorial traits.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Section of Molecular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
31
|
Glorioso N, Herrera VLM, Bagamasbad P, Filigheddu F, Troffa C, Argiolas G, Bulla E, Decano JL, Ruiz-Opazo N. Association of ATP1A1 and dear single-nucleotide polymorphism haplotypes with essential hypertension: sex-specific and haplotype-specific effects. Circ Res 2007; 100:1522-9. [PMID: 17446437 DOI: 10.1161/01.res.0000267716.96196.60] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Essential hypertension remains a major risk factor for cardiovascular and cerebrovascular diseases. As a complex multifactorial disease, elucidation of susceptibility loci remains elusive. ATP1A1 and Dear are candidate genes for 2 closely linked rat chromosome-2 blood pressure quantitative trait loci. Because corresponding human syntenic regions are on different chromosomes, investigation of ATP1A1 (chromosome [chr]-1p21) and Dear (chr-4q31.3) facilitates genetic analyses of each blood pressure quantitative trait locus in human hypertension. Here we report the association of human ATP1A1 (P<0.000005) and Dear (P<0.03) with hypertension in a relatively isolated, case/control hypertension cohort from northern Sardinia by single-nucleotide polymorphism haplotype analysis. Sex-specific haplotype analyses detected stronger association of both loci with hypertension in males than in females. Haplotype trend-regression analyses support ATP1A1 and Dear as independent susceptibility loci and reveal haplotype-specific association with hypertension and normotension, thus delineating haplotype-specific subsets of hypertension. Although investigation in other cohorts needs to be performed to determine genetic effects in other populations, haplotype subtyping already allows systematic stratification of susceptibility and, hence, clinical heterogeneity, a prerequisite for unraveling the polygenic etiology and polygene-environment interactions in essential hypertension. As hypertension susceptibility genes, coexpression of ATP1A1 and Dear in both renal tubular cells and vascular endothelium suggest a cellular pathogenic scaffold for polygenic mechanisms of hypertension, as well as the hypothesis that ATP1A1 and/or Dear could contribute to the known renal and vascular endothelial dysfunction associated with essential (polygenic) hypertension.
Collapse
Affiliation(s)
- Nicola Glorioso
- Hypertension and Cardiovascular Prevention Center, ASL n. 1-Universita di Sassari, Sassari, Sardinia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kotlo K, Hughes DE, Herrera VLM, Ruiz-Opazo N, Costa RH, Robey RB, Danziger RS. Functional polymorphism of the Anpep gene increases promoter activity in the Dahl salt-resistant rat. Hypertension 2007; 49:467-72. [PMID: 17242304 DOI: 10.1161/01.hyp.0000256303.40359.38] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have reported that aminopeptidase N/CD13, which metabolizes angiotensin III to angiotensin IV, exhibits greater renal tubular expression in the Dahl salt-resistant (SR/Jr) rat than its salt-sensitive (SS/Jr) counterpart. In this work, aminopeptidase N (Anpep) genes from SS/Jr and SR/Jr strains were compared. The coding regions contained only silent single nucleotide polymorphisms between strains. The 5' flanking regions also contained multiple single nucleotide polymorphisms, which were analyzed by electrophoretic mobility-shift assay using renal epithelial cell (HK-2) nuclear extracts and oligonucleotides corresponding with single nucleotide polymorphism-containing regions. A unique single nucleotide polymorphism 4 nucleotides upstream of a putative CCAAT/enhancer binding protein motif (nucleotides -2256 to -2267) in the 5' flanking region of the SR/Jr Anpep gene was associated with DNA-protein complex formation, whereas the corresponding sequences in SS rats were not. A chimeric reporter gene containing approximately 4.4 Kb of Anpep 5' flank from the Dahl SR/Jr rat exhibited 2.5- to 3-fold greater expression in HK-2 cells than the corresponding construct derived from the SS strain (P<0.05). Replacing the CCAAT/enhancer binding protein cis-acting element from the SS rat with that from the SR strain increased reporter gene expression by 2.5-fold (P<0.05) and abolished this difference. CCAAT/enhancer binding protein association was confirmed by chromatin immunoprecipitation and correlated with expression, suggesting selection for a functional CCAAT/enhancer binding protein polymorphism in the 5' flank of Anpep in the Dahl SR/Jr rat. These results highlight a possible association of the Anpep gene with hypertension in Dahl rat and raise the prospect that increased Anpep may play a mechanistic role in adaptation to high salt.
Collapse
Affiliation(s)
- Kumar Kotlo
- Department of Medicine, University of Illinois at Chicago, 840 S Wood St, Chicago, IL 60612.
| | | | | | | | | | | | | |
Collapse
|
33
|
Llamas B, Lau C, Cupples WA, Rainville ML, Souzeau E, Deschepper CF. Genetic Determinants of Systolic and Pulse Pressure in an Intercross Between Normotensive Inbred Rats. Hypertension 2006; 48:921-6. [PMID: 17015778 DOI: 10.1161/01.hyp.0000244758.50351.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
By continuous monitoring of abdominal aortic blood pressure via telemetry in conscious rats, we have observed that systolic, diastolic, and pulse pressures of male Brown-Norway rats were all significantly lower than that of male Wistar-Kyoto rats, despite the fact that all of the values in both strains were within normotensive ranges. Further analyses performed in 166 animals from the progeny of an F2 intercross between Brown-Norway and Wistar-Kyoto rats revealed that, despite a high correlation between systolic blood pressure and diastolic blood pressure, there was no correlation between pulse pressure and diastolic blood pressure, and the value of the correlation between systolic blood pressure and pulse pressure was lower than that of systolic blood pressure with diastolic blood pressure. Two major and highly significant (P<0.001) quantitative trait loci linked to pulse pressure were found on chromosome 4 (Pp1) and 16 (Pp2). Only suggestive quantitative trait loci were found for systolic blood pressure, but the strongest one (Sbp1) had the same peak and linkage probability profile as Pp1. Altogether, these data show that genetic determinants affecting pulse pressure in normotensive animals are either stronger or independent from the ones affecting systolic blood pressure and are of interest in light of evidence showing that pulse pressure is highly heritable in humans and that elevated pulse pressure is a predictor of cardiovascular risk.
Collapse
Affiliation(s)
- Bastien Llamas
- Experimental Cardiovascular Biology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada H2W 1R7
| | | | | | | | | | | |
Collapse
|