1
|
Stuart SH, Ahmed ACC, Kilikevicius L, Robinson GE. Effects of microRNA-305 knockdown on brain gene expression associated with division of labor in honey bee colonies (Apis mellifera). J Exp Biol 2024; 227:jeb246785. [PMID: 38517067 PMCID: PMC11112348 DOI: 10.1242/jeb.246785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Division of labor in honey bee colonies is based on the behavioral maturation of adult workers that involves a transition from working in the hive to foraging. This behavioral maturation is associated with distinct task-related transcriptomic profiles in the brain and abdominal fat body that are related to multiple regulatory factors including juvenile hormone (JH) and queen mandibular pheromone (QMP). A prominent physiological feature associated with behavioral maturation is a loss of abdominal lipid mass as bees transition to foraging. We used transcriptomic and physiological analyses to study whether microRNAs (miRNAs) are involved in the regulation of division of labor. We first identified two miRNAs that showed patterns of expression associated with behavioral maturation, ame-miR-305-5p and ame-miR-375-3p. We then downregulated the expression of these two miRNAs with sequence-specific antagomirs. Neither ame-miR-305-5p nor ame-miR-375-3p knockdown in the abdomen affected abdominal lipid mass on their own. Similarly, knockdown of ame-miR-305-5p in combination with JH or QMP also did not affect lipid mass. By contrast, ame-miR-305-5p knockdown in the abdomen caused substantial changes in gene expression in the brain. Brain gene expression changes included genes encoding transcription factors previously implicated in behavioral maturation. The results of these functional genomic experiments extend previous correlative associations of microRNAs with honey bee division of labor and point to specific roles for ame-miR-305-5p.
Collapse
Affiliation(s)
- Sarai H. Stuart
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Amy C. Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura Kilikevicius
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Gene E. Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Fritzsch B. Evolution and development of extraocular motor neurons, nerves and muscles in vertebrates. Ann Anat 2024; 253:152225. [PMID: 38346566 DOI: 10.1016/j.aanat.2024.152225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The purpose of this review is to analyze the origin of ocular motor neurons, define the pattern of innervation of nerve fibers that project to the extraocular eye muscles (EOMs), describe congenital disorders that alter the development of ocular motor neurons, and provide an overview of vestibular pathway inputs to ocular motor nuclei. Six eye muscles are innervated by axons of three ocular motor neurons, the oculomotor (CNIII), trochlear (CNIV), and abducens (CNVI) neurons. Ocular motor neurons (CNIII) originate in the midbrain and innervate the ipsilateral orbit, except for the superior rectus and the levator palpebrae, which are contralaterally innervated. Trochlear motor neurons (CNIV) originate at the midbrain-hindbrain junction and innervate the contralateral superior oblique muscle. Abducens motor neurons (CNVI) originate variously in the hindbrain of rhombomeres r4-6 that innervate the posterior (or lateral) rectus muscle and innervate the retractor bulbi. Genes allow a distinction between special somatic (CNIII, IV) and somatic (CNVI) ocular motor neurons. Development of ocular motor neurons and their axonal projections to the EOMs may be derailed by various genetic causes, resulting in the congenital cranial dysinnervation disorders. The ocular motor neurons innervate EOMs while the vestibular nuclei connect with the midbrain-brainstem motor neurons.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
3
|
Kim JW. Transcription factors crossing the cell membrane. Nat Rev Mol Cell Biol 2024; 25:86. [PMID: 37697009 DOI: 10.1038/s41580-023-00667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Affiliation(s)
- Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
| |
Collapse
|
4
|
Ma X, Zhao LL, Yu YC, Cheng Y. Engrailed: Pathological and physiological effects of a multifunctional developmental gene. Genesis 2024; 62:e23557. [PMID: 37830136 DOI: 10.1002/dvg.23557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Engrailed-1 (EN1) is a developmental gene that encodes En1, a highly conserved transcription factor involved in regionalization during early embryogenesis and in the later maintenance of normal neurons. After birth, EN1 still plays a role in the development and physiology of the body; for example, it exerts a protective effect on midbrain dopaminergic (mDA) neurons, and loss of EN1 causes mDA neurons in the ventral midbrain to gradually die approximately 6 weeks after birth, resulting in motor and nonmotor symptoms similar to those observed in Parkinson's disease. Notably, EN1 has been identified as a possible susceptibility gene for idiopathic Parkinson's disease in humans. EN1 is involved in the processes of wound-healing scar production and tissue and organ fibrosis. Additionally, EN1 can lead to tumorigenesis and thus provides a target for the treatment of some tumors. In this review, we summarize the effects of EN1 on embryonic organ development, describe the consequences of the deletion or overexpression of the EN1 gene, and discuss the pathways in which EN1 is involved. We hope to clarify the role of EN1 as a developmental gene and present potential therapeutic targets for diseases involving the EN1 gene.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Liang-Liang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yi-Chun Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
5
|
Singh S, Borkar MR, Bhatt LK. Transposable Elements: Emerging Therapeutic Targets in Neurodegenerative Diseases. Neurotox Res 2024; 42:9. [PMID: 38270797 DOI: 10.1007/s12640-024-00688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by the progressive loss of neuronal function and structure. While several genetic and environmental factors have been implicated in the pathogenesis of these disorders, emerging evidence suggests that transposable elements (TEs), once considered "junk DNA," play a significant role in their development and progression. TEs are mobile genetic elements capable of moving within the genome, and their dysregulation has been associated with genomic instability, altered gene expression, and neuroinflammation. This review provides an overview of TEs, including long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs), and endogenous retroviruses (ERVs), mechanisms of repression and derepression, and their potential impact on neurodegeneration. The evidence linking TEs to AD, PD, and ALS by shedding light on the complex interactions between TEs and neurodegeneration has been discussed. Furthermore, the therapeutic potential of targeting TEs in neurodegenerative diseases has been explored. Understanding the role of TEs in neurodegeneration holds promise for developing novel therapeutic strategies aimed at mitigating disease progression and preserving neuronal health.
Collapse
Affiliation(s)
- Shrishti Singh
- Department of Pharmacology, Bhanuben Nanavati College of Pharmacy, SVKM's DrVile Parle (W), Mumbai, India
| | - Maheshkumar R Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr, Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, Bhanuben Nanavati College of Pharmacy, SVKM's DrVile Parle (W), Mumbai, India.
| |
Collapse
|
6
|
Lebœuf M, Vargas-Abonce SE, Pezé-Hedsieck E, Dupont E, Jimenez-Alonso L, Moya KL, Prochiantz A. ENGRAILED-1 transcription factor has a paracrine neurotrophic activity on adult spinal α-motoneurons. EMBO Rep 2023; 24:e56525. [PMID: 37534581 PMCID: PMC10398658 DOI: 10.15252/embr.202256525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
Several homeoprotein transcription factors transfer between cells and regulate gene expression, protein translation, and chromatin organization in recipient cells. ENGRAILED-1 is one such homeoprotein expressed in spinal V1 interneurons that synapse on α-motoneurons. Neutralizing extracellular ENGRAILED-1 by expressing a secreted single-chain antibody blocks its capture by spinal motoneurons resulting in α-motoneuron loss and limb weakness. A similar but stronger phenotype is observed in the Engrailed-1 heterozygote mouse, confirming that ENGRAILED-1 exerts a paracrine neurotrophic activity on spinal cord α-motoneurons. Intrathecal injection of ENGRAILED-1 leads to its specific internalization by spinal motoneurons and has long-lasting protective effects against neurodegeneration and weakness. Midbrain dopaminergic neurons express Engrailed-1 and, similarly to spinal cord α-motoneurons, degenerate in the heterozygote. We identify genes expressed in spinal cord motoneurons whose expression changes in mouse Engrailed-1 heterozygote midbrain neurons. Among these, p62/SQSTM1 shows increased expression during aging in spinal cord motoneurons in the Engrailed-1 heterozygote and upon extracellular ENGRAILED-1 neutralization. We conclude that ENGRAILED-1 might regulate motoneuron aging and has non-cell-autonomous neurotrophic activity.
Collapse
Affiliation(s)
- Mélanie Lebœuf
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- BrainEver SAS, Paris, France
| | - Stephanie E Vargas-Abonce
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- BrainEver SAS, Paris, France
| | - Eugénie Pezé-Hedsieck
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Edmond Dupont
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | | | - Kenneth L Moya
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Alain Prochiantz
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- BrainEver SAS, Paris, France
| |
Collapse
|
7
|
Serulla M, Anees P, Hallaj A, Trofimenko E, Kalia T, Krishnan Y, Widmann C. Plasma membrane depolarization reveals endosomal escape incapacity of cell-penetrating peptides. Eur J Pharm Biopharm 2023; 184:116-124. [PMID: 36709921 DOI: 10.1016/j.ejpb.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Cell-penetrating peptides (CPPs) are short (<30 amino acids), generally cationic, peptides that deliver diverse cargos into cells. CPPs access the cytosol either by direct translocation through the plasma membrane or via endocytosis followed by endosomal escape. Both direct translocation and endosomal escape can occur simultaneously, making it non-trivial to specifically study endosomal escape alone. Here we depolarize the plasma membrane and showed that it inhibits the direct translocation of several CPPs but does not affect their uptake into endosomes. Despite good endocytic uptake many CPPs previously considered to access the cytosol via endosomal escape, failed to access the cytosol once direct translocation was abrogated. Even CPPs designed for enhanced endosomal escape actually showed negligible endosomal escape into the cytosol. Our data reveal that cytosolic localization of CPPs occurs mainly by direct translocation across the plasma membrane. Cell depolarization represents a simple manipulation to stringently test the endosomal escape capacity of CPPs.
Collapse
Affiliation(s)
- Marc Serulla
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Ali Hallaj
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Tara Kalia
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
8
|
Sun C, Chen S. Disease-causing mutations in genes encoding transcription factors critical for photoreceptor development. Front Mol Neurosci 2023; 16:1134839. [PMID: 37181651 PMCID: PMC10172487 DOI: 10.3389/fnmol.2023.1134839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Photoreceptor development of the vertebrate visual system is controlled by a complex transcription regulatory network. OTX2 is expressed in the mitotic retinal progenitor cells (RPCs) and controls photoreceptor genesis. CRX that is activated by OTX2 is expressed in photoreceptor precursors after cell cycle exit. NEUROD1 is also present in photoreceptor precursors that are ready to specify into rod and cone photoreceptor subtypes. NRL is required for the rod fate and regulates downstream rod-specific genes including the orphan nuclear receptor NR2E3 which further activates rod-specific genes and simultaneously represses cone-specific genes. Cone subtype specification is also regulated by the interplay of several transcription factors such as THRB and RXRG. Mutations in these key transcription factors are responsible for ocular defects at birth such as microphthalmia and inherited photoreceptor diseases such as Leber congenital amaurosis (LCA), retinitis pigmentosa (RP) and allied dystrophies. In particular, many mutations are inherited in an autosomal dominant fashion, including the majority of missense mutations in CRX and NRL. In this review, we describe the spectrum of photoreceptor defects that are associated with mutations in the above-mentioned transcription factors, and summarize the current knowledge of molecular mechanisms underlying the pathogenic mutations. At last, we deliberate the outstanding gaps in our understanding of the genotype-phenotype correlations and outline avenues for future research of the treatment strategies.
Collapse
Affiliation(s)
- Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Chi Sun,
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
9
|
Joliot A. Role of PI(4,5)P2 and Cholesterol in Unconventional Protein Secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:381-392. [PMID: 36988889 DOI: 10.1007/978-3-031-21547-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Besides its protective role in the maintenance of cell homeostasis, the plasma membrane is the site of exchanges between the cell interior and the extracellular medium. To circumvent the hydrophobic barrier formed by the acyl chains of the lipid bilayer, protein channels and transporters are key players in the exchange of small hydrophilic compounds such as ions or nutrients, but they hardly account for the transport of larger biological molecules. Exchange of proteins usually relies on membrane-fusion events between vesicles and the plasma membrane. In recent years, several alternative unconventional protein secretion (UPS) pathways across the plasma membrane have been characterised for a specific set of secreted substrates, some of them excluding any membrane-fusion events (Dimou and Nickel, Curr Biol 28:R406-R410, 2018). One of thesbe pathways, referred as type I UPS, relies on the direct translocation of the protein across the plasma membrane and not surprisingly, lipids are essential players in this process. In this chapter, we discuss the roles of phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) and cholesterol in unconventional pathways involving Engrailed-2 homeoprotein and fibroblast growth factor 2.
Collapse
Affiliation(s)
- Alain Joliot
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France.
| |
Collapse
|
10
|
Tran The J, Magistretti PJ, Ansermet F. The critical periods of cerebral plasticity: A key aspect in a dialog between psychoanalysis and neuroscience centered on the psychopathology of schizophrenia. Front Mol Neurosci 2022; 15:1057539. [PMID: 36590919 PMCID: PMC9795046 DOI: 10.3389/fnmol.2022.1057539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Through research into the molecular and cellular mechanisms that occur during critical periods, recent experimental neurobiological data have brought to light the importance of early childhood. These have demonstrated that childhood and early environmental stimuli play a part not only in our subjective construction, but also in brain development; thus, confirming Freud's intuition regarding the central role of childhood and early experiences of the environment in our psychological development and our subjective outcomes. "Critical periods" of cerebral development represent temporal windows that mark favorable, but also circumscribed, moments in developmental cerebral plasticity. They also vary between different cortical areas. There are, therefore, strictly defined temporal periods for learning language, music, etc., after which this learning becomes more difficult, or even impossible, to acquire. Now, research into these critical periods can be seen as having a significant part to play in the interdisciplinary dialog between psychoanalysis and neurosciences with regard to the role of early experiences in the etiology of some psychopathological conditions. Research into the cellular and molecular mechanisms controlling the onset and end of these critical periods, notably controlled by the maturation of parvalbumin-expressing basket cells, have brought to light the presence of anomalies in the maturation of these neurons in patients with schizophrenia. Starting from these findings we propose revisiting the psychoanalytic theories on the etiology of psychosis from an interdisciplinary perspective. Our study works from the observation, common to both psychoanalysis and neurosciences, that experience leaves a trace; be it a "psychic" or a "synaptic" trace. Thus, we develop a hypothesis for an "absence of trace" in psychosis; reexamining psychosis through the prism of the biological theory of critical periods in plasticity.
Collapse
Affiliation(s)
- Jessica Tran The
- INSERM U1077 Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France,Ecole Pratique des Hautes Etudes, Université Paris Sciences et Lettres, Paris, France,UFR de Psychologie, Université de Caen Normandie, Caen, France,Centre Hospitalier Universitaire de Caen, Caen, France,Cyceron, Caen, France,Agalma Foundation Geneva, Chemin des Mines, Switzerland,*Correspondence: Jessica Tran The,
| | - Pierre J. Magistretti
- Agalma Foundation Geneva, Chemin des Mines, Switzerland,Brain Mind Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland,Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Francois Ansermet
- Agalma Foundation Geneva, Chemin des Mines, Switzerland,Département de Psychiatrie, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| |
Collapse
|
11
|
Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides. Q Rev Biophys 2022; 55:e10. [PMID: 35979810 DOI: 10.1017/s0033583522000105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trp is unique among the amino acids since it is involved in many different types of noncovalent interactions such as electrostatic and hydrophobic ones, but also in π-π, π-cation, π-anion and π-ion pair interactions. In membranotropic peptides and proteins, Trp locates preferentially at the water-membrane interface. In antimicrobial or cell-penetrating peptides (AMPs and CPPs respectively), Trp is well-known for its strong role in the capacity of these peptides to interact and affect the membrane organisation of both bacteria and animal cells at the level of the lipid bilayer. This essential amino acid can however be involved in other types of interactions, not only with lipids, but also with other membrane partners, that are crucial to understand the functional roles of membranotropic peptides. This review is focused on this latter less known role of Trp and describes in details, both in qualitative and quantitative ways: (i) the physico-chemical properties of Trp; (ii) its effect in CPP internalisation; (iii) its importance in AMP activity; (iv) its role in the interaction of AMPs with glycoconjugates or lipids in bacteria membranes and the consequences on the activity of the peptides; (v) its role in the interaction of CPPs with negatively charged polysaccharides or lipids of animal membranes and the consequences on the activity of the peptides. We intend to bring highlights of the physico-chemical properties of Trp and describe its extensive possibilities of interactions, not only at the well-known level of the lipid bilayer, but with other less considered cell membrane components, such as carbohydrates and the extracellular matrix. The focus on these interactions will allow the reader to reevaluate reported studies. Altogether, our review gathers dedicated studies to show how unique are Trp properties, which should be taken into account to design future membranotropic peptides with expected antimicrobial or cell-penetrating activity.
Collapse
|
12
|
Peze-Heidsieck E, Bonnifet T, Znaidi R, Ravel-Godreuil C, Massiani-Beaudoin O, Joshi RL, Fuchs J. Retrotransposons as a Source of DNA Damage in Neurodegeneration. Front Aging Neurosci 2022; 13:786897. [PMID: 35058771 PMCID: PMC8764243 DOI: 10.3389/fnagi.2021.786897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
The etiology of aging-associated neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), still remains elusive and no curative treatment is available. Age is the major risk factor for PD and AD, but the molecular link between aging and neurodegeneration is not fully understood. Aging is defined by several hallmarks, some of which partially overlap with pathways implicated in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable elements (TEs) and that this derepression might have important implications in the pathogenesis of NDs. Almost half of the human DNA is composed of repetitive sequences derived from TEs and TE mobility participated in shaping the mammalian genomes during evolution. Although most TEs are mutated and no longer mobile, more than 100 LINE-1 elements have retained their full coding potential in humans and are thus retrotransposition competent. Uncontrolled activation of TEs has now been reported in various models of neurodegeneration and in diseased human brain tissues. We will discuss in this review the potential contribution of LINE-1 elements in inducing DNA damage and genomic instability, which are emerging pathological features in NDs. TEs might represent an important molecular link between aging and neurodegeneration, and a potential target for urgently needed novel therapeutic disease-modifying interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Collège de France, Université PSL, Paris, France
| |
Collapse
|
13
|
Ibad RT, Quenech'du N, Prochiantz A, Moya KL. OTX2 stimulates adult retinal ganglion cell regeneration. Neural Regen Res 2022; 17:690-696. [PMID: 34380911 PMCID: PMC8504389 DOI: 10.4103/1673-5374.320989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Retinal ganglion cell (RGC) axons provide the only link between the light sensitive and photon transducing neural retina and visual centers of the brain. RGC axon degeneration occurs in a number of blinding diseases and the ability to stimulate axon regeneration from surviving ganglion cells could provide the anatomic substrate for restoration of vision. OTX2 is a homeoprotein transcription factor expressed in the retina and previous studies showed that, in response to stress, exogenous OTX2 increases the in vitro and in vivo survival of RGCs. Here we examined and quantified the effects of OTX2 on adult RGC axon regeneration in vitro and in vivo. The results show that exogenous OTX2 stimulates the regrowth of axons from RGCs in cultures of dissociated adult retinal cells and from explants of adult retinal tissue and that RGCs respond directly to OTX2 as regrowth is observed in cultures of purified adult rat RGCs. Importantly, after nerve crush in vivo, we observed a positive effect of OTX2 on the number of regenerating axons up to the optic chiasm within 14 days post crush and a very modest level of acuity absent in control mice. The effect of OTX2 on RGC survival and regeneration is of potential interest for degenerative diseases affecting this cell type. All animal procedures were approved by the local “Comié d’éιthique en expérimentation animale n°59” and authorization n° 00702.01 delivered March 28, 2014 by the French “Ministére de l’enseignement supérieur et de la recherche”.
Collapse
Affiliation(s)
- Raoul Torero Ibad
- Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Nicole Quenech'du
- Centre for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, Paris Sciences et Lettres Research University, Paris, France
| | - Alain Prochiantz
- BrainEver, 74 rue du Faubourg Saint Antoine, 75012 Paris and Institute of Neurosciences, 320 Yeu Yang Rd, Shanghai 200031, China
| | - Kenneth L Moya
- Centre for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, Paris Sciences et Lettres Research University, Paris, France
| |
Collapse
|
14
|
Trofimenko E, Homma Y, Fukuda M, Widmann C. The endocytic pathway taken by cationic substances requires Rab14 but not Rab5 and Rab7. Cell Rep 2021; 37:109945. [PMID: 34731620 DOI: 10.1016/j.celrep.2021.109945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/23/2021] [Accepted: 10/13/2021] [Indexed: 02/01/2023] Open
Abstract
Endocytosis and endosome dynamics are controlled by proteins of the small GTPase Rab family. Besides possible recycling routes to the plasma membrane and various organelles, previously described endocytic pathways (e.g., clathrin-mediated endocytosis, macropinocytosis, CLIC/GEEC pathway) all appear to funnel the endocytosed material to Rab5-positive early endosomes that then mature into Rab7-positive late endosomes/lysosomes. By studying the uptake of a series of cell-penetrating peptides (CPPs), we identify an endocytic pathway that moves material to nonacidic Lamp1-positive late endosomes. Trafficking via this endocytic route is fully independent of Rab5 and Rab7 but requires the Rab14 protein. The pathway taken by CPPs differs from the conventional Rab5-dependent endocytosis at the stage of vesicle formation already, as it is not affected by a series of compounds that inhibit macropinocytosis or clathrin-mediated endocytosis. The Rab14-dependent pathway is also used by physiological cationic molecules such as polyamines and homeodomains found in homeoproteins.
Collapse
Affiliation(s)
- Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
15
|
Vincent C, Gilabert-Juan J, Gibel-Russo R, Alvarez-Fischer D, Krebs MO, Le Pen G, Prochiantz A, Di Nardo AA. Non-cell-autonomous OTX2 transcription factor regulates anxiety-related behavior in the mouse. Mol Psychiatry 2021; 26:6469-6480. [PMID: 33963285 PMCID: PMC8760049 DOI: 10.1038/s41380-021-01132-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
The OTX2 homeoprotein transcription factor is expressed in the dopaminergic neurons of the ventral tegmental area, which projects to limbic structures controlling complex behaviors. OTX2 is also produced in choroid plexus epithelium, from which it is secreted into cerebrospinal fluid and transferred to limbic structure parvalbumin interneurons. Previously, adult male mice subjected to early-life stress were found susceptible to anxiety-like behaviors, with accompanying OTX2 expression changes in ventral tegmental area or choroid plexus. Here, we investigated the consequences of reduced OTX2 levels in Otx2 heterozygote mice, as well as in Otx2+/AA and scFvOtx2tg/0 mouse models for decreasing OTX2 transfer from choroid plexus to parvalbumin interneurons. Both male and female adult mice show anxiolysis-like phenotypes in all three models. In Otx2 heterozygote mice, we observed no changes in dopaminergic neuron numbers and morphology in ventral tegmental area, nor in their metabolic output and projections to target structures. However, we found reduced expression of parvalbumin in medial prefrontal cortex, which could be rescued in part by adult overexpression of Otx2 specifically in choroid plexus, resulting in increased anxiety-like behavior. Taken together, OTX2 synthesis by the choroid plexus followed by its secretion into the cerebrospinal fluid is an important regulator of anxiety-related phenotypes in the mouse.
Collapse
Affiliation(s)
- Clémentine Vincent
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Javier Gilabert-Juan
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rachel Gibel-Russo
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France
| | | | - Marie-Odile Krebs
- Laboratoire de Physiopathologie des Maladies Psychiatriques, INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
- Institut de Psychiatrie, CNRS GDR 3557, Paris, France
- Faculté de Médecine, Université de Paris, Pôle Hospitalo-Universitaire Evaluation Prévention et Innovation Thérapeutique, GHU Paris Psychiatrie et Neurosciences site Sainte-Anne, Paris, France
| | - Gwenaëlle Le Pen
- Laboratoire de Physiopathologie des Maladies Psychiatriques, INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France.
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France.
| |
Collapse
|
16
|
Ravel-Godreuil C, Znaidi R, Bonnifet T, Joshi RL, Fuchs J. Transposable elements as new players in neurodegenerative diseases. FEBS Lett 2021; 595:2733-2755. [PMID: 34626428 DOI: 10.1002/1873-3468.14205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases (NDs), including the most prevalent Alzheimer's disease and Parkinson disease, share common pathological features. Despite decades of gene-centric approaches, the molecular mechanisms underlying these diseases remain widely elusive. In recent years, transposable elements (TEs), long considered 'junk' DNA, have gained growing interest as pathogenic players in NDs. Age is the major risk factor for most NDs, and several repressive mechanisms of TEs, such as heterochromatinization, fail with age. Indeed, heterochromatin relaxation leading to TE derepression has been reported in various models of neurodegeneration and NDs. There is also evidence that certain pathogenic proteins involved in NDs (e.g., tau, TDP-43) may control the expression of TEs. The deleterious consequences of TE activation are not well known but they could include DNA damage and genomic instability, altered host gene expression, and/or neuroinflammation, which are common hallmarks of neurodegeneration and aging. TEs might thus represent an overlooked pathogenic culprit for both brain aging and neurodegeneration. Certain pathological effects of TEs might be prevented by inhibiting their activity, pointing to TEs as novel targets for neuroprotection.
Collapse
Affiliation(s)
- Camille Ravel-Godreuil
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rania Znaidi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Tom Bonnifet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rajiv L Joshi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
17
|
Moya KL, Ibad RT. OTX2 signaling in retinal dysfunction, degeneration and regeneration. Neural Regen Res 2021; 16:2002-2003. [PMID: 33642378 PMCID: PMC8343299 DOI: 10.4103/1673-5374.308094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/21/2020] [Accepted: 12/18/2020] [Indexed: 11/04/2022] Open
Affiliation(s)
- Kenneth. L. Moya
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
- Univ. Lille, CNRS, UMR 8523 -PhLAM -Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Raoul Torero Ibad
- Univ. Lille, CNRS, UMR 8523 -PhLAM -Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
18
|
Photoreceptor cKO of OTX2 Enhances OTX2 Intercellular Transfer in the Retina and Causes Photophobia. eNeuro 2021; 8:ENEURO.0229-21.2021. [PMID: 34475267 PMCID: PMC8496205 DOI: 10.1523/eneuro.0229-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
In the mature mouse retina, Otx2 is expressed in both retinal pigmented epithelium (RPE) and photoreceptor (PR) cells, and Otx2 knock-out (KO) in the RPE alone results in PR degeneration. To study the cell-autonomous function of OTX2 in PRs, we performed PR-specific Otx2 KO (cKO) in adults. As expected, the protein disappears completely from PR nuclei but is still observed in PR inner and outer segments while its level concomitantly decreases in the RPE, suggesting a transfer of OTX2 from RPE to PRs in response to Otx2 ablation in PRs. The ability of OTX2 to transfer from RPE to PRs was verified by viral expression of tagged-OTX2 in the RPE. Transferred OTX2 distributed across the PR cytoplasm, suggesting functions distinct from nuclear transcription regulation. PR-specific Otx2 cKO did not alter the structure of the retina but impaired the translocation of PR arrestin-1 on illumination changes, making mice photophobic. RNA-seq analyses following Otx2 KO revealed downregulation of genes involved in the cytoskeleton that might account for the arrestin-1 translocation defect, and of genes involved in extracellular matrix (ECM) and signaling factors that may participate in the enhanced transfer of OTX2. Interestingly, several RPE-specific OTX2 target genes involved in melanogenesis were downregulated, lending weight to a decrease of OTX2 levels in the RPE following PR-specific Otx2 cKO. Our study reveals a new role of endogenous OTX2 in PR light adaptation and demonstrates the existence of OTX2 transfer from RPE to PR cells, which is increased on PR-specific Otx2 ablation and might participate in PR neuroprotection.
Collapse
|
19
|
Planques A, Oliveira Moreira V, Benacom D, Bernard C, Jourdren L, Blugeon C, Dingli F, Masson V, Loew D, Prochiantz A, Di Nardo AA. OTX2 Homeoprotein Functions in Adult Choroid Plexus. Int J Mol Sci 2021; 22:8951. [PMID: 34445655 PMCID: PMC8396604 DOI: 10.3390/ijms22168951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
The choroid plexus is an important blood barrier that secretes cerebrospinal fluid, which essential for embryonic brain development and adult brain homeostasis. The OTX2 homeoprotein is a transcription factor that is critical for choroid plexus development and remains highly expressed in adult choroid plexus. Through RNA sequencing analyses of constitutive and conditional knockdown adult mouse models, we reveal putative functional roles for OTX2 in adult choroid plexus function, including cell signaling and adhesion, and show that OTX2 regulates the expression of factors that are secreted into the cerebrospinal fluid, notably transthyretin. We also show that Otx2 expression impacts choroid plexus immune and stress responses, and affects splicing, leading to changes in the mRNA isoforms of proteins that are implicated in the oxidative stress response and DNA repair. Through mass spectrometry analysis of OTX2 protein partners in the choroid plexus, and in known non-cell-autonomous target regions, such as the visual cortex and subventricular zone, we identify putative targets that are involved in cell adhesion, chromatin structure, and RNA processing. Thus, OTX2 retains important roles for regulating choroid plexus function and brain homeostasis throughout life.
Collapse
Affiliation(s)
- Anabelle Planques
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - Vanessa Oliveira Moreira
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - David Benacom
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - Clémence Bernard
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - Laurent Jourdren
- Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, PSL University, 75005 Paris, France; (L.J.); (C.B.)
| | - Corinne Blugeon
- Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, PSL University, 75005 Paris, France; (L.J.); (C.B.)
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, CEDEX 05, 75248 Paris, France; (F.D.); (V.M.); (D.L.)
| | - Vanessa Masson
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, CEDEX 05, 75248 Paris, France; (F.D.); (V.M.); (D.L.)
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, CEDEX 05, 75248 Paris, France; (F.D.); (V.M.); (D.L.)
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
- Institute of Neurosciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ariel A. Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| |
Collapse
|
20
|
Features of Retinal Neurogenesis as a Key Factor of Age-Related Neurodegeneration: Myth or Reality? Int J Mol Sci 2021; 22:ijms22147373. [PMID: 34298993 PMCID: PMC8303671 DOI: 10.3390/ijms22147373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial neurodegenerative disease that constitutes the most common cause of irreversible blindness in the elderly in the developed countries. Incomplete knowledge about its pathogenesis prevents the search for effective methods of prevention and treatment of AMD, primarily of its "dry" type which is by far the most common (90% of all AMD cases). In the recent years, AMD has become "younger": late stages of the disease are now detected in relatively young people. It is known that AMD pathogenesis-according to the age-related structural and functional changes in the retina-is linked with inflammation, hypoxia, oxidative stress, mitochondrial dysfunction, and an impairment of neurotrophic support, but the mechanisms that trigger the conversion of normal age-related changes to the pathological process as well as the reason for early AMD development remain unclear. In the adult mammalian retina, de novo neurogenesis is very limited. Therefore, the structural and functional features that arise during its maturation and formation can exert long-term effects on further ontogenesis of this tissue. The aim of this review was to discuss possible contributions of the changes/disturbances in retinal neurogenesis to the early development of AMD.
Collapse
|
21
|
Diurnal changes in perineuronal nets and parvalbumin neurons in the rat medial prefrontal cortex. Brain Struct Funct 2021; 226:1135-1153. [PMID: 33585984 DOI: 10.1007/s00429-021-02229-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/21/2021] [Indexed: 01/08/2023]
Abstract
Perineuronal nets (PNNs) surrounding fast-spiking, parvalbumin (PV) interneurons provide excitatory:inhibitory balance, which is impaired in several disorders associated with altered diurnal rhythms, yet few studies have examined diurnal rhythms of PNNs or PV cells. We measured the intensity and number of PV cells and PNNs labeled with Wisteria floribunda agglutinin (WFA) and also the oxidative stress marker 8-oxo-deoxyguanosine (8-oxo-dG) in rat prelimbic medial prefrontal cortex (mPFC) at Zeitgeber times (ZT) ZT0 (lights-on, inactive phase), ZT6 (mid-inactive phase), ZT12 (lights-off, active phase), and ZT18 (mid-active phase). Relative to ZT0, the intensities of PNN and PV labeling were increased in the dark (active) phase compared with the light (inactive) phase. The intensity of 8-oxo-dG was decreased from ZT0 at all times (ZT6,12,18). We also measured GAD 65/67 and vGLUT1 puncta apposed to PV cells with and without PNNs. There were more excitatory puncta on PV cells with PNNs at ZT18 vs. ZT6, but no changes in PV cells without PNNs and no changes in inhibitory puncta. Whole-cell slice recordings in fast-spiking (PV) cells with PNNs showed an increased ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor:N-methyl-D-aspartate receptor (AMPA: NMDA) at ZT18 vs. ZT6. The number of PV cells and PV/PNN cells containing orthodenticle homeobox 2 (OTX2), which maintains PNNs, showed a strong trend toward an increase from ZT6 to ZT18. Diurnal fluctuations in PNNs and PV cells are expected to alter cortical excitatory:inhibitory balance and provide new insights into treatments for diseases impacted by disturbances in sleep and circadian rhythms.
Collapse
|
22
|
Sachon E, Walrant A, Sagan S, Cribier S, Rodriguez N. Binding and crossing: Methods for the characterization of membrane-active peptides interactions with membranes at the molecular level. Arch Biochem Biophys 2021; 699:108751. [PMID: 33421380 DOI: 10.1016/j.abb.2021.108751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 11/16/2022]
Abstract
Antimicrobial and cell-penetrating peptides have been the object of extensive studies for more than 60 years. Initially these two families were studied separately, and more recently parallels have been drawn. These studies have given rise to numerous methodological developments both in terms of observation techniques and membrane models. This review presents some of the most recent original and innovative developments in this field, namely droplet interface bilayers (DIBs), new fluorescence approaches, force measurements, and photolabelling.
Collapse
Affiliation(s)
- Emmanuelle Sachon
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
| | - Astrid Walrant
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
| | - Sandrine Sagan
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
| | - Sophie Cribier
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France.
| | - Nicolas Rodriguez
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
| |
Collapse
|
23
|
H 2O 2 and Engrailed 2 paracrine activity synergize to shape the zebrafish optic tectum. Commun Biol 2020; 3:536. [PMID: 32994473 PMCID: PMC7524761 DOI: 10.1038/s42003-020-01268-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Although a physiological role for redox signaling is now clearly established, the processes sensitive to redox signaling remains to be identified. Ratiometric probes selective for H2O2 have revealed its complex spatiotemporal dynamics during neural development and adult regeneration and perturbations of H2O2 levels disturb cell plasticity and morphogenesis. Here we ask whether endogenous H2O2 could participate in the patterning of the embryo. We find that perturbations of endogenous H2O2 levels impact on the distribution of the Engrailed homeoprotein, a strong determinant of midbrain patterning. Engrailed 2 is secreted from cells with high H2O2 levels and taken up by cells with low H2O2 levels where it leads to increased H2O2 production, steering the directional spread of the Engrailed gradient. These results illustrate the interplay between protein signaling pathways and metabolic processes during morphogenetic events.
Collapse
|
24
|
OTX2 Non-Cell Autonomous Activity Regulates Inner Retinal Function. eNeuro 2020; 7:ENEURO.0012-19.2020. [PMID: 32737182 PMCID: PMC7477954 DOI: 10.1523/eneuro.0012-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
OTX2 is a homeoprotein transcription factor expressed in photoreceptors and bipolar cells in the retina. OTX2, like many other homeoproteins, transfers between cells and exerts non-cell autonomous effects such as promoting the survival of retinal ganglion cells that do not express the protein. Here we used a genetic approach to target extracellular OTX2 in the retina by conditional expression of a secreted single-chain anti-OTX2 antibody. Compared with control mice, the expression of this antibody by parvalbumin-expressing neurons in the retina is followed by a reduction in visual acuity in 1-month-old mice with no alteration of the retinal structure or cell type number or aspect. The a-waves and b-waves measured by electroretinogram were also indistinguishable from those of control mice, suggesting no functional deficit of photoreceptors and bipolar cells. Mice expressing the OTX2-neutralizing antibody did show a significant doubling in the flicker amplitude and a reduction in oscillatory potential, consistent with a change in inner retinal function. Our results show that interfering in vivo with OTX2 non-cell autonomous activity in the postnatal retina leads to an alteration in inner retinal cell functions and causes a deficit in visual acuity.
Collapse
|
25
|
Amblard I, Dupont E, Alves I, Miralvès J, Queguiner I, Joliot A. Bidirectional transfer of homeoprotein EN2 across the plasma membrane requires PIP 2. J Cell Sci 2020; 133:jcs244327. [PMID: 32434869 DOI: 10.1242/jcs.244327] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023] Open
Abstract
Homeoproteins are a class of transcription factors sharing the unexpected property of intercellular trafficking that confers to homeoproteins a paracrine mode of action. Homeoprotein paracrine action participates in the control of patterning processes, including axonal guidance, brain plasticity and boundary formation. Internalization and secretion, the two steps of intercellular transfer, rely on unconventional mechanisms, but the cellular mechanisms at stake still need to be fully characterized. Thanks to the design of new quantitative and sensitive assays dedicated to the study of homeoprotein transfer within HeLa cells in culture, we demonstrate a core role of phosphatidylinositol (4,5)-bisphosphate (PIP2) together with cholesterol in the translocation of the homeobox protein engrailed-2 (EN2) across the plasma membrane. By using drug and enzyme treatments, we show that both secretion and internalization are regulated according to PIP2 levels. The requirement for PIP2 and cholesterol in EN2 trafficking correlates with their selective affinity for this protein in artificial bilayers, which is drastically decreased in a paracrine-deficient mutant of EN2. We propose that the bidirectional plasma membrane translocation events that occur during homeoprotein secretion and internalization are parts of a common process.
Collapse
Affiliation(s)
- Irène Amblard
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Sorbonne University, Paris, France
| | - Edmond Dupont
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Isabel Alves
- CBMN, UMR 5248 CNRS, University of Bordeaux, 33600 Pessac, France
| | - Julie Miralvès
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Isabelle Queguiner
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
26
|
Alles SRA, Nascimento F, Luján R, Luiz AP, Millet Q, Bangash MA, Santana-Varela S, Zhou X, Cox JJ, Okorokov AL, Beato M, Zhao J, Wood JN. Sensory neuron-derived Na V1.7 contributes to dorsal horn neuron excitability. SCIENCE ADVANCES 2020; 6:eaax4568. [PMID: 32128393 PMCID: PMC7030926 DOI: 10.1126/sciadv.aax4568] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 12/04/2019] [Indexed: 05/08/2023]
Abstract
Expression of the voltage-gated sodium channel NaV1.7 in sensory neurons is required for pain sensation. We examined the role of NaV1.7 in the dorsal horn of the spinal cord using an epitope-tagged NaV1.7 knock-in mouse. Immuno-electron microscopy showed the presence of NaV1.7 in dendrites of superficial dorsal horn neurons, despite the absence of mRNA. Rhizotomy of L5 afferent nerves lowered the levels of NaV1.7 in the dorsal horn. Peripheral nervous system-specific NaV1.7 null mutant mice showed central deficits, with lamina II dorsal horn tonic firing neurons more than halved and single spiking neurons more than doubled. NaV1.7 blocker PF05089771 diminished excitability in dorsal horn neurons but had no effect on NaV1.7 null mutant mice. These data demonstrate an unsuspected functional role of primary afferent neuron-generated NaV1.7 in dorsal horn neurons and an expression pattern that would not be predicted by transcriptomic analysis.
Collapse
Affiliation(s)
- Sascha R. A. Alles
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Filipe Nascimento
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain
| | - Ana P. Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Queensta Millet
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - M. Ali Bangash
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Xuelong Zhou
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Department of Anesthesiology, The First Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - James J. Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Andrei L. Okorokov
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Marco Beato
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
- Corresponding author. (M.B.); (J.Z.); (J.N.W.)
| | - Jing Zhao
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Corresponding author. (M.B.); (J.Z.); (J.N.W.)
| | - John N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Corresponding author. (M.B.); (J.Z.); (J.N.W.)
| |
Collapse
|
27
|
|
28
|
Homeoprotein Neuroprotection of Embryonic Neuronal Cells. eNeuro 2019; 6:ENEURO.0061-19.2019. [PMID: 31451602 PMCID: PMC6763833 DOI: 10.1523/eneuro.0061-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 11/21/2022] Open
Abstract
Most homeoprotein transcription factors have a highly conserved internalization domain used in intercellular transfer. Internalization of homeoproteins ENGRAILED1 or ENGRAILED2 promotes the survival of adult dopaminergic cells, whereas that of OTX2 protects adult retinal ganglion cells. Here we characterize the in vitro neuroprotective activity of several homeoproteins in response to H2O2. Protection is observed with ENGRAILED1, ENGRAILED2, OTX2, GBX2, and LHX9 on midbrain and striatal embryonic neurons, whereas cell-permeable c-MYC shows no protective effects. Therefore, five homeoproteins belonging to three different classes (ANTENNAPEDIA, PAIRED, and LIM) share the ability to protect embryonic neurons from midbrain and striatum. Because midbrain and striatal neurons do not express the same repertoire of the four proteins, a lack of neuronal specificity together with a general protective activity can be proposed. Interestingly, hEN1 and GBX2 provided protection to primary midbrain astrocytes but not to non-neural cells, including mouse embryo fibroblasts, macrophages or HeLa cells. For the four proteins, protection against cell death correlated with a reduction in the number of H2O2-induced DNA break foci in midbrain and striatal neurons. In conclusion, within the limit of the number of cell types and homeoproteins tested, homeoprotein protection against oxidative stress-induced DNA breaks and death is specific to neurons and astrocytes but shows no homeoprotein or neuronal type specificity.
Collapse
|
29
|
Kaddour H, Coppola E, Di Nardo AA, Le Poupon C, Mailly P, Wizenmann A, Volovitch M, Prochiantz A, Pierani A. Extracellular Pax6 Regulates Tangential Cajal–Retzius Cell Migration in the Developing Mouse Neocortex. Cereb Cortex 2019; 30:465-475. [DOI: 10.1093/cercor/bhz098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- H Kaddour
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique Unité mixte de recherche 7241/Institut national de la santé et de la recherche médicale U1050, Paris Science Lettre University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, Paris, France
- Institut Jacques Monod, Centre National de la Recherche Scientifique Unité mixte de recherche 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, Paris, France
- Imagine Institute for Genetic Diseases, Université Paris Descartes, 24 Boulevard du Montparnasse, Paris, France
- Institute of Psychiatry and Neuroscience of Paris, Université Paris Descartes, 102–108 Rue de la Santé, Paris, France
| | - E Coppola
- Institut Jacques Monod, Centre National de la Recherche Scientifique Unité mixte de recherche 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, Paris, France
- Imagine Institute for Genetic Diseases, Université Paris Descartes, 24 Boulevard du Montparnasse, Paris, France
- Institute of Psychiatry and Neuroscience of Paris, Université Paris Descartes, 102–108 Rue de la Santé, Paris, France
| | - A A Di Nardo
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique Unité mixte de recherche 7241/Institut national de la santé et de la recherche médicale U1050, Paris Science Lettre University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, Paris, France
| | - C Le Poupon
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique Unité mixte de recherche 7241/Institut national de la santé et de la recherche médicale U1050, Paris Science Lettre University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, Paris, France
| | - P Mailly
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique, Core Facility Orion, 11 Place Marcelin Berthelot, Paris, France
| | - A Wizenmann
- Department of Anatomy, Institute of Clinical Anatomy and Cell, University of Tübingen, Osterbergstrasse 3, Tübingen, Germany
| | - M Volovitch
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique Unité mixte de recherche 7241/Institut national de la santé et de la recherche médicale U1050, Paris Science Lettre University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, Paris, France
| | - A Prochiantz
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique Unité mixte de recherche 7241/Institut national de la santé et de la recherche médicale U1050, Paris Science Lettre University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, Paris, France
| | - A Pierani
- Institut Jacques Monod, Centre National de la Recherche Scientifique Unité mixte de recherche 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, Paris, France
- Imagine Institute for Genetic Diseases, Université Paris Descartes, 24 Boulevard du Montparnasse, Paris, France
- Institute of Psychiatry and Neuroscience of Paris, Université Paris Descartes, 102–108 Rue de la Santé, Paris, France
| |
Collapse
|
30
|
Thomasson N, Pioli E, Friedel C, Monseur A, Lavaur J, Moya KL, Bezard E, Bousseau A, Prochiantz A. Engrailed-1 induces long-lasting behavior benefit in an experimental Parkinson primate model. Mov Disord 2019; 34:1082-1084. [PMID: 31077447 DOI: 10.1002/mds.27714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/03/2019] [Accepted: 04/19/2019] [Indexed: 01/23/2023] Open
Affiliation(s)
| | | | | | | | | | - Kenneth L Moya
- Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique Unité Mixte de Recherche Paris-Sciences-Lettres 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Erwan Bezard
- Motac Neuroscience, Manchester, UK.,Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | | | - Alain Prochiantz
- Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique Unité Mixte de Recherche Paris-Sciences-Lettres 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
31
|
OTX2 Signals from the Choroid Plexus to Regulate Adult Neurogenesis. eNeuro 2019; 6:ENEURO.0262-18.2019. [PMID: 31064838 PMCID: PMC6506823 DOI: 10.1523/eneuro.0262-18.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 01/09/2023] Open
Abstract
Proliferation and migration during adult neurogenesis are regulated by a microenvironment of signaling molecules originating from local vasculature, from CSF produced by the choroid plexus, and from local supporting cells including astrocytes. Here, we focus on the function of OTX2 homeoprotein transcription factor in the mouse adult ventricular-subventricular zone (V-SVZ), which generates olfactory bulb neurons. We find that OTX2 secreted by choroid plexus is transferred to the supporting cells of the V-SVZ and rostral migratory stream. Deletion of Otx2 in choroid plexus affects neuroblast migration and reduces the number of olfactory bulb newborn neurons. Adult neurogenesis was also decreased by expressing secreted single-chain antibodies to sequester OTX2 in the CSF, demonstrating the importance of non-cell-autonomous OTX2. We show that OTX2 activity modifies extracellular matrix components and signaling molecules produced by supporting astrocytes. Thus, we reveal a multilevel and non-cell-autonomous role of a homeoprotein and reinforce the choroid plexus and astrocytes as key niche compartments affecting adult neurogenesis.
Collapse
|