1
|
Long Y, Huang F, Zhang J, Zhang J, Cheng R, Zhu L, Chen Q, Yang D, Pan X, Yang W, Qin M, Huang J. Identification of SUMOylation-related signature genes associated with immune infiltration in ulcerative colitis through bioinformatics analysis and experimental validation. Gene 2025; 935:148996. [PMID: 39395728 DOI: 10.1016/j.gene.2024.148996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE Ulcerative colitis (UC) is a chronic inflammatory disorder challenging to diagnose clinically. We focused on identifying and validating SUMOylation-related signature genes in UC and their association with immune infiltration. METHODS Five eligible gene expression profiles were selected from the Gene Expression Omnibus (GEO) database and merged into a single dataset comprising 260 UC patients and 76 healthy controls (HC). Differentially expressed genes (DEGs) were identified, and these were intersected with SUMOylation-related genes to obtain differentially expressed SUMOylation-related genes (DESRGs). Next, we identify the signature genes and validate them through comprehensive analyses employing GO, KEGG, GSVA, Lasso-cox regression, ROC curves, and clustering analysis. The infiltrating immune cells were analyzed using the CIBERSORT algorithm and Pearson correlation analysis. Finally, in vitro and in vivo experiments validated the identified signature genes. RESULTS PALMD, THRB, MAGED1, PARP1, and SLC16A1 were identified. Next, an excellent predictive model for UC was established and distinct subgroups of patients associated with SUMOylation were identified. Moreover, the NF-κB signaling pathway likely plays a pivotal role in the regulation of SUMOylation in UC. Additionally, we validated that the alterations in PALMD, THRB, and MAGED1 expression in LPS-induced Caco-2 cells concurred with our bioinformatics findings, particularly demonstrating statistically significant differences in PALMD and THRB expression. Finally, in a DSS-induced mouse colitis model, we observed a significant upregulation of PALMD expression. Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation. CONCLUSION This study comprehensively elucidates the biological roles of SUMOylation-related genes in UC, identifying PALMD, MAGED1, THRB, PARP1, and SLC16A1 as signature genes that represent promising biomarkers for UC diagnosis and prognosis.
Collapse
Affiliation(s)
- Ying Long
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China; Department of Gastroenterology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545006, People's Republic of China
| | - Feihong Huang
- Spine and Osteopathy Ward, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Juan Zhang
- Department of Pediatrics, Zhuzhou Central Hospital, Zhuzhou 412000, People's Republic of China
| | - Jinxiu Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Ruoxi Cheng
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Liye Zhu
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Qiuling Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Dan Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Xiaoping Pan
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Wenfang Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Mengbin Qin
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China.
| | - Jiean Huang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China.
| |
Collapse
|
2
|
Wang P, Qiu J, Fang Y, Li S, Liu K, Cao Y, Zhang G, Wang Z, Gu X, Wu J, Jiang C. SENP3 inhibition suppresses hepatocellular carcinoma progression and improves the efficacy of anti-PD-1 immunotherapy. Cell Death Differ 2025:10.1038/s41418-024-01437-9. [PMID: 39755756 DOI: 10.1038/s41418-024-01437-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025] Open
Abstract
The importance of SUMOylation in tumorigenesis has received increasing attention, and research on therapeutic agents targeting this pathway has progressed. However, the potential function of SUMOylation during hepatocellular carcinoma (HCC) progression and the underlying molecular mechanisms remain unclear. Here, we identified that SUMO-Specific Peptidase 3 (SENP3) was upregulated in HCC tissues and correlated with a poor prognosis. Multiple functional experiments demonstrated that SENP3 promotes the malignant phenotype of HCC cells. Mechanistically, SENP3 deSUMOylates RACK1 and subsequently increases its stability and interaction with PKCβII, thereby promoting eIF4E phosphorylation and translation of oncogenes, including Bcl2, Snail and Cyclin D1. Additionally, tumor-intrinsic SENP3 promotes the infiltration of tumor-associated macrophages (TAMs) while reducing cytotoxic T cells to facilitate immune evasion. Mechanistically, SENP3 promotes translation of CCL20 via the RACK1 /eIF4E axis. Liver-specific knockdown of SENP3 significantly inhibits liver tumorigenesis in a chemically induced HCC model. SENP3 inhibition enhances the therapeutic efficacy of PD-1 blockade in an HCC mouse model. Collectively, SENP3 plays cell-intrinsic and cell-extrinsic roles in HCC progression and immune evasion by modulating oncogene and cytokine translation. Targeting SENP3 is a novel therapeutic target for boosting HCC responsiveness to immunotherapy.
Collapse
Affiliation(s)
- Peng Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Jiannan Qiu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yuan Fang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songmao Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease,, Nanjing Medical University, Nanjing, China
| | - Kua Liu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yin Cao
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guang Zhang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhongxia Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaosong Gu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Chunping Jiang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
3
|
Soares ES, Queiroz LY, Canever JB, Griebner G, Stahler CU, Mansur DS, Prediger RDS, Cimarosti HI. SENP3 knockdown improves motor and cognitive impairments in the intranasal MPTP rodent model of Parkinson's disease. Physiol Behav 2025; 288:114725. [PMID: 39488250 DOI: 10.1016/j.physbeh.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/04/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Several mechanisms underlying Parkinson's disease (PD) remain unclear, and effective treatments are still lacking. The conjugation of the small ubiquitin-like modifier (SUMO), known as SUMOylation, to key proteins in PD has shown potential beneficial effects. Considering that this process is reversed by SUMO-specific proteases (SENPs), this study addressed the effects of increased SUMO-2/3 conjugation, mediated by SENP3 knockdown, in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model of PD. Two weeks after infusion of the shRNA-containing lentiviral vector into the dorsolateral striatum and one week following intranasal MPTP administration, male Wistar rats were evaluated using cognitive and motor behavioural tests. Infection efficiency was confirmed by detecting GFP expression in the dorsolateral striatum. SENP3 knockdown, verified by Western blotting, resulted in increased SUMO-2/3 conjugation. MPTP-administered rats displayed impairments in both recognition and spatial memories, while SENP3 knockdown prevented these deficits. Rats exposed to MPTP also exhibited motor dysfunction, which was ameliorated by SENP3 knockdown. These findings underscore the involvement of SUMO-2/3 conjugation in PD and its potential as a novel therapeutic target to counteract cognitive and motor impairments induced by neurodegeneration.
Collapse
Affiliation(s)
- Ericks S Soares
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Leticia Y Queiroz
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil; Postgraduate Program in Neuroscience, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Jaquelini B Canever
- Postgraduate Program in Neuroscience, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Gustavo Griebner
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Carolina U Stahler
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Daniel S Mansur
- Department of Microbiology, Immunology, and Parasitology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rui Daniel S Prediger
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil; Postgraduate Program in Neuroscience, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Helena I Cimarosti
- Department of Pharmacology, Postgraduate Program in Pharmacology, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil; Postgraduate Program in Neuroscience, Centre for Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil.
| |
Collapse
|
4
|
Wang Y, Zou H, Ji W, Huang M, You B, Sun N, Qiao Y, Liu P, Xu L, Zhang X, Cai M, Kuang Y, Fu S, Sun W, Jia X, Wu J. Repression of the SUMO-conjugating enzyme UBC9 is associated with lowered double minutes and reduced tumor progression. Cancer Biol Ther 2024; 25:2323768. [PMID: 38465861 PMCID: PMC10936631 DOI: 10.1080/15384047.2024.2323768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Double minutes (DMs), extrachromosomal gene fragments found within certain tumors, have been noted to carry onco- and drug resistance genes contributing to tumor pathogenesis and progression. After screening for SUMO-related molecule expression within various tumor sample and cell line databases, we found that SUMO-conjugating enzyme UBC9 has been associated with genome instability and tumor cell DM counts, which was confirmed both in vitro and in vivo. Karyotyping determined DM counts post-UBC9 knockdown or SUMOylation inhibitor 2-D08, while RT-qPCR and Western blot were used to measure DM-carried gene expression in vitro. In vivo, fluorescence in situ hybridization (FISH) identified micronucleus (MN) expulsion. Western blot and immunofluorescence staining were then used to determine DNA damage extent, and a reporter plasmid system was constructed to detect changes in homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Our research has shown that UBC9 inhibition is able to attenuate DM formation and lower DM-carried gene expression, in turn reducing tumor growth and malignant phenotype, via MN efflux of DMs and lowering NHEJ activity to increase DNA damage. These findings thus reveal a relationship between heightened UBC9 activity, increased DM counts, and tumor progression, providing a potential approach for targeted therapies, via UBC9 inhibition.
Collapse
Affiliation(s)
- Yusi Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Hongyan Zou
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Wei Ji
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Min Huang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Benhui You
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Nan Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Yuandong Qiao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Lidan Xu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Xuelong Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Mengdi Cai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Ye Kuang
- Department of Gynecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
- Future Medical Laboratory, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Jiang H, Li Q, Yang X, Jia L, Cheng H, Wang J, Wang S, Li X, Xie Y, Wang J, Wang Y, Hu M, Guo J, Peng Z, Wang M, Li T, Zhao H, Wang L, Liu Z. Bone marrow stromal cells protect myeloma cells from ferroptosis through GPX4 deSUMOylation. Cancer Lett 2024; 611:217388. [PMID: 39653239 DOI: 10.1016/j.canlet.2024.217388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Bone marrow stromal cells (BMSCs) are vital for preventing chemotherapy induced apoptosis of multiple myeloma (MM), but roles and machinery in other forms of cell death have not been well elucidated. Here, using an in vitro BMSC-MM interacting model, we observed BMSCs protected MM cells from labile iron pool (LIP) and reactive oxygen species (ROS) triggered ferroptosis by elevating glutathione peroxidase 4 (GPX4). Mechanistically, direct interaction with BMSCs upregulated the expression of SUMO-specific protease 3 (SENP3) in MM cells through CD40/CD40L signaling pathway, and SENP3 de-conjugated SUMO2 at lysine 75 residue to stabilize GPX4 protein, thereby consuming ROS to obviate ferroptosis in MM cells from the Vk∗MYC mouse model, as well as in CD138+B220- cells separated from the Cd40lfl/fl;Prx1Cre/+ mice (CD40-CKO) and Sumo2 knock out (SUMO2-KO) mice. Using the NOD-scid IL2Rgammanull (NSG) mouse based xenograft model and intra-bone MM growth model, we validated that target SENP3 enhanced the killing effect of GPX4 inhibitor RSL3, thereby reduced tumor burden, prolonged survival of mice, and alleviated bone disruption of mice bearing MM tumors. Our study deciphers the mechanism of BMSCs preventing MM cells from spontaneous ferroptosis, and clarifies the therapeutic potential of non-apoptosis strategies in managing refractory or relapsed MM patients.
Collapse
Affiliation(s)
- Hongmei Jiang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China; Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Qian Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xudan Yang
- Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Linchuang Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Hao Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Jingya Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Sheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Ying Xie
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jingjing Wang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yixuan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Meilin Hu
- Tianjin Medical University School of Stomatology, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Jing Guo
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Ziyi Peng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Mengqi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Tiantian Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Haifeng Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Lijuan Wang
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, 276037, China.
| | - Zhiqiang Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
6
|
Shao Z, Liu S, Sun W, Zhuang X, Yin S, Cheng J, Xia X, Liao Y, Liu J, Huang H. SENP3 mediates deSUMOylation of SIX1 to promote prostate cancer proliferation and migration. Cell Mol Biol Lett 2024; 29:146. [PMID: 39623295 PMCID: PMC11613746 DOI: 10.1186/s11658-024-00665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Sentrin/SUMO-specific protease 3 (SENP3) is essential to regulate protein stability and function in normal and cancer cells. Nevertheless, its role and action mechanisms in prostate cancer (PCa) remain elusive. Thus, clarification of SENP3's involvement and the SUMOylation process in PCa is pivotal for discovering potential targets and understanding SUMOylation dynamics. METHODS Cell viability, EdU staining, live cell imaging, and cell cycle assays were used to determine proliferation of PCa cells. Transwell and wound-healing assays were used to detect migration of PCa cells. The interaction between SENP3 and SIX1 was determined by co-immunoprecipitation, western blotting, and immunofluorescence assays. Xenograft models established on NOD-SCID mice were used to evaluate in vivo effects post SENP3 knockdown. Immunohistochemistry was performed to investigate the expression of SENP3 in PCa tissues. RESULTS This study found that SENP3 is highly expressed in PCa cell lines and tissues from PCa patients. Overexpressed SENP3 is associated with metastatic malignancy in PCa. Various in vivo and in vitro experiments confirmed that SENP3 promotes the proliferation and migration of PCa. In addition, SENP3 interacts with the SD domain of SIX1 and mediates its deSUMOylation and protein stability. Lys154 (K154) is required for the SUMOylation of SIX1. More importantly, SENP3 promotes the malignancy of PCa through the regulation of SIX1. CONCLUSIONS We unravel the significant role of SENP3 in regulating protein stability of SIX1 and progression of PCa, which may deepen our understanding of the SUMOylation modification and provide a promising target for management of metastatic PCa.
Collapse
Affiliation(s)
- Zhenlong Shao
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Shutong Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Wenshuang Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Xuefen Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Shusha Yin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Ji Cheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Xiaohong Xia
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - Yuning Liao
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| | - Jinbao Liu
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| | - Hongbiao Huang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| |
Collapse
|
7
|
Li L, Gao PP, Chen TT, Li N, Zhang HJ, Li MQ, Chen YN, Wei W, Wang H, Sun WY. SUMO: A new perspective to decipher fibrosis. Acta Physiol (Oxf) 2024; 240:e14240. [PMID: 39404508 DOI: 10.1111/apha.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 11/10/2024]
Abstract
Fibrosis is characterized by excessive extracellular matrix (ECM) deposition resulting from dysregulated wound healing and connective tissue repair mechanisms. Excessive accumulation of ECM leads to fibrous tissue formation, impairing organ function and driving the progression of various fibrotic diseases. Recently, the role of small ubiquitin-like modifiers (SUMO) in fibrotic diseases has attracted significant attention. SUMO-mediated SUMOylation, a highly conserved posttranslational modification, participates in a variety of biological processes, including nuclear-cytosolic transport, cell cycle progression, DNA damage repair, and cellular metabolism. Conversely, SUMO-specific proteases cleave the isopeptide bond of SUMO conjugates, thereby regulating the deSUMOylation process. Mounting evidence indicates that SUMOylation and deSUMOylation regulate the functions of several proteins, such as Smad3, NF-κB, and promyelocytic leukemia protein, which are implicated in fibrotic diseases like liver fibrosis, myocardial fibrosis, and pulmonary fibrosis. This review summarizes the role of SUMO in fibrosis-related pathways and explores its pathological relevance in various fibrotic diseases. All evidence suggest that the SUMO pathway is important targets for the development of treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Ling Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ping-Ping Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Hui-Juan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Meng-Qi Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ya-Ning Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Hua Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| |
Collapse
|
8
|
Soares ES, Queiroz LY, Gerhardt E, Prediger RDS, Outeiro TF, Cimarosti HI. SUMOylation modulates mitochondrial dynamics in an in vitro rotenone model of Parkinson's disease. Mol Cell Neurosci 2024; 131:103969. [PMID: 39260456 DOI: 10.1016/j.mcn.2024.103969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
SUMOylation is a post-translational modification essential for various biological processes. SUMO proteins bind to target substrates in a three-step enzymatic pathway, which is rapidly reversible by the action of specific proteases, known as SENPs. Studies have shown that SUMOylation is dysregulated in several human disorders, including neurodegenerative diseases that are characterized by the progressive loss of neurons, mitochondrial dysfunction, deficits in autophagy, and oxidative stress. Considering the potential neuroprotective roles of SUMOylation, the aim of this study was to investigate the effects of SENP3 knockdown in H4 neuroglioma cells exposed to rotenone, an in vitro model of cytotoxicity that mimics dopaminergic loss in Parkinson's disease (PD). The current data show that SENP3 knockdown increases SUMO-2/3 conjugates, which is accompanied by reduced levels of the mitochondrial fission protein Drp1 and increased levels of the mitochondrial fusion protein OPA1. Of high interest, SENP3 knockdown prevented rotenone-induced superoxide production and cellular death. Taken together, these findings highlight the importance of SUMOylation in maintaining mitochondrial homeostasis and the neuroprotective potential of this modification in PD.
Collapse
Affiliation(s)
- Ericks Sousa Soares
- Postgraduate Program in Pharmacology, Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Letícia Yoshitome Queiroz
- Postgraduate Program in Pharmacology, Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Postgraduate Program in Neuroscience, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Rui Daniel S Prediger
- Postgraduate Program in Pharmacology, Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Postgraduate Program in Neuroscience, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, 37073 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Helena Iturvides Cimarosti
- Postgraduate Program in Pharmacology, Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Postgraduate Program in Neuroscience, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil.
| |
Collapse
|
9
|
Liao Y, Zhang W, Zhou M, Zhu C, Zou Z. Ubiquitination in pyroptosis pathway: A potential therapeutic target for sepsis. Cytokine Growth Factor Rev 2024; 80:72-86. [PMID: 39294049 DOI: 10.1016/j.cytogfr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Sepsis remains a significant clinical challenge, causing numerous deaths annually and representing a major global health burden. Pyroptosis, a unique form of programmed cell death characterized by cell lysis and the release of inflammatory mediators, is a crucial factor in the pathogenesis and progression of sepsis, septic shock, and organ dysfunction. Ubiquitination, a key post-translational modification influencing protein fate, has emerged as a promising target for managing various inflammatory conditions, including sepsis. This review integrates the current knowledge on sepsis, pyroptosis, and the ubiquitin system, focusing on the molecular mechanisms of ubiquitination within pyroptotic pathways activated during sepsis. By exploring how modulating ubiquitination can regulate pyroptosis and its associated inflammatory signaling pathways, this review provides insights into potential therapeutic strategies for sepsis, highlighting the need for further research into these complex molecular networks.
Collapse
Affiliation(s)
- Yan Liao
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Miao Zhou
- Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
10
|
Chen X, Li D, Su Q, Ling X, Ding S, Xu R, Liu Z, Qin Y, Zhang J, Yang Z, Kang X, Qi Y, Wu H. MicroRNA-145-5p inhibits the tumorigenesis of breast cancer through SENP2-regulated ubiquitination of ERK2. Cell Mol Life Sci 2024; 81:461. [PMID: 39578257 PMCID: PMC11584840 DOI: 10.1007/s00018-024-05505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Breast carcinoma exhibits the highest incidence among various cancers and is the foremost cause of mortality in women. Increasing evidence shows that SUMOylation of proteins plays a critical role in the progression of breast cancer; however, the role of SENP2 and its molecular mechanism in breast cancer remain underexplored. Here, we discerned that SENP2 promoted the tumorigenesis of breast cancer both in vitro and in vivo. Furthermore, we identified that ERK2 was SUMOylated and that SENP2 played a role by deconjugating ERK2 SUMOylation in breast cancer. SUMOylation of ERK2 promoted its ubiquitin-proteasomal degradation, thus inhibiting the epithelial-to-mesenchymal transition in breast cancer cells. Furthermore, microRNA-145-5p (miR-145-5p) has emerged as a scarce commodity in breast cancer and binds to the 3'-untranslated region of SENP2 mRNA to govern the regulatory dynamics of SENP2 expression. Finally, miR-145-5p inhibits SENP2 transcription, enhances ERK2 SUMOylation, and ultimately suppresses the progression of breast cancer. These revelations suggest evolving ideas for the miR-145-5p-SENP2 axis in therapeutic intervention, thus heralding transformative prospects for the clinical management of breast cancer.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Danqing Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qi Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Ling
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Siyu Ding
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Runxiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhaoxia Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuanyuan Qin
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jinping Zhang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xunlei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Lai H, Yang Y, Zhang J. Advances in post-translational modifications and recurrent spontaneous abortion. Gene 2024; 927:148700. [PMID: 38880188 DOI: 10.1016/j.gene.2024.148700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Recurrent spontaneous abortion (RSA) is defined as two or more pregnancy loss, which affects approximately 1-2% of women's fertility. The etiology of RSA has not yet been fully revealed, which poses a great problem for clinical treatment. Post- translational modifications(PTMs) are chemical modifications that play a crucial role in the functional proteome. A considerable number of published studies have shown the relationship between post-translational modifications of various proteins and RSA. The study of PTMs contributes to elucidating the role of modified proteins in the pathogenesis of RSA, as well as the design of more effective diagnostic/prognostic tools and more targeted treatments. Most reviews in the field of RSA have only focused on RNA epigenomics research. The present review reports the latest research developments of PTMs related to RSA, such as glycosylation, phosphorylation, Methylation, Acetylation, Ubiquitination, etc.
Collapse
Affiliation(s)
- Hanhong Lai
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yi Yang
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Jun Zhang
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China.
| |
Collapse
|
12
|
Xu Z, Lei Z, Peng S, Fu X, Xu Y, Pan G. Dysregulation of deubiquitinases in gastric cancer progression. Front Oncol 2024; 14:1456710. [PMID: 39605891 PMCID: PMC11598704 DOI: 10.3389/fonc.2024.1456710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Gastric cancer (GC), characterized by a high incidence rate, poses significant clinical challenges owing to its poor prognosis despite advancements in diagnostic and therapeutic approaches. Therefore, a comprehensive understanding of the molecular mechanisms driving GC progression is crucial for identifying predictive markers and defining treatment targets. Deubiquitinating enzymes (DUBs), also called deubiquitinases, function as reverse transcriptases within the ubiquitin-proteasome system to counteract protein degradation. Recent findings suggest that DUB dysregulation could be a crucial factor in GC pathogenesis. In this review, we examined recent research findings on DUBs in the context of GC, elucidating their molecular characteristics, categorizations, and roles while also exploring the potential mechanisms underlying their dysregulation in GC. Furthermore, we assessed the therapeutic efficacy of DUB inhibitors in treating malignancies and evaluated the prevalence of aberrant DUB expression in GC.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoqing Pan
- First Affiliated Hospital of Kunming Medical University, Department of Pathology, Kunming, China
| |
Collapse
|
13
|
Tang N, Deng W, Wu Y, Deng Z, Wu X, Xiong J, Zhao Q. Single-Cell Spatial-Temporal Analysis of ZNF451 in Mediating Drug Resistance and CD8 + T Cell Dysfunction. RESEARCH (WASHINGTON, D.C.) 2024; 7:0530. [PMID: 39534688 PMCID: PMC11555180 DOI: 10.34133/research.0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Cisplatin is widely used to treat osteosarcoma, but recurrent cases often develop resistance, allowing the disease to progress and complicating clinical management. This study aimed to elucidate the immune microenvironment of osteosarcoma, providing insights into the mechanisms of recurrence and identifying potential therapeutic strategies. By analyzing multiple single-cell and bulk RNA-sequencing datasets, we discovered that the SUMOylation-related gene ZNF451 promotes osteosarcoma recurrence and alters its immune microenvironment. ZNF451 was found to importantly enhance the growth, migration, and invasion of resistant cells while also reducing their sensitivity to cisplatin and lowering their apoptosis rate. Moreover, our data indicated that ZNF451 plays a crucial role in bone resorption and epithelial-mesenchymal transition. ZNF451 also regulates CD8+ T cell function, leading to their exhaustion and transition to the CD8T.EXH state. Additionally, β-cryptoxanthin has been identified as a potential therapeutic agent that inhibits osteosarcoma progression by targeting ZNF451. In summary, these findings highlight the critical role of ZNF451 in promoting osteosarcoma progression and underscore its potential as a therapeutic target and biomarker for osteosarcoma.
Collapse
Affiliation(s)
- Ning Tang
- Department of Orthopaedics, Third Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Department of Orthopaedics, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, China
| | - Woding Deng
- Xiangya School of Medicine,
Central South University, Changsha, Hunan, China
| | - Yupeng Wu
- Department of Spine Surgery,
First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zhixuan Deng
- Institute of Cell Biology, Hengyang Medical School,
University of South China, Hengyang, Hunan, China
| | - Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jianbin Xiong
- Department of Orthopaedics, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, China
| | - Qiangqiang Zhao
- Department of Hematology,
Liuzhou People’s Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
- Department of Hematology,
The Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| |
Collapse
|
14
|
Zhang Z, Yang W, Wang L, Zhu C, Cui S, Wang T, Gu X, Liu Y, Qiu P. Unraveling the role and mechanism of mitochondria in postoperative cognitive dysfunction: a narrative review. J Neuroinflammation 2024; 21:293. [PMID: 39533332 PMCID: PMC11559051 DOI: 10.1186/s12974-024-03285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a frequent neurological complication encountered during the perioperative period with unclear mechanisms and no effective treatments. Recent research into the pathogenesis of POCD has primarily focused on neuroinflammation, oxidative stress, changes in neural synaptic plasticity and neurotransmitter imbalances. Given the high-energy metabolism of neurons and their critical dependency on mitochondria, mitochondrial dysfunction directly affects neuronal function. Additionally, as the primary organelles generating reactive oxygen species, mitochondria are closely linked to the pathological processes of neuroinflammation. Surgery and anesthesia can induce mitochondrial dysfunction, increase mitochondrial oxidative stress, and disrupt mitochondrial quality-control mechanisms via various pathways, hence serving as key initiators of the POCD pathological process. We conducted a review on the role and potential mechanisms of mitochondria in postoperative cognitive dysfunction by consulting relevant literature from the PubMed and EMBASE databases spanning the past 25 years. Our findings indicate that surgery and anesthesia can inhibit mitochondrial respiration, thereby reducing ATP production, decreasing mitochondrial membrane potential, promoting mitochondrial fission, inducing mitochondrial calcium buffering abnormalities and iron accumulation, inhibiting mitophagy, and increasing mitochondrial oxidative stress. Mitochondrial dysfunction and damage can ultimately lead to impaired neuronal function, abnormal synaptic transmission, impaired synthesis and release of neurotransmitters, and even neuronal death, resulting in cognitive dysfunction. Targeted mitochondrial therapies have shown positive outcomes, holding promise as a novel treatment for POCD.
Collapse
Affiliation(s)
- Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chengyao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Shuyan Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Tian Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
15
|
Wang T, Jiang J, Zhang X, Ke X, Qu Y. Ubiquitin-like modification dependent proteasomal degradation and disease therapy. Trends Mol Med 2024; 30:1061-1075. [PMID: 38851992 DOI: 10.1016/j.molmed.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024]
Abstract
Although it is believed that ubiquitin (Ub) modification is required for protein degradation in the proteasome system (UPS), several proteins are subject to Ub-independent proteasome degradation, and in many cases ubiquitin-like (UBL) modifications, including neddylation, FAT10ylation, SUMOylation, ISGylation, and urmylation, are essential instead. In this Review, we focus on UBL-dependent proteasome degradation (UBLPD), on proteasome regulators especially shuttle factors and receptors, as well as potential competition and coordination with UPS. We propose that there is a distinct UBL-proteasome system (UBLPS) that might be underestimated in protein degradation. Finally, we investigate the association of UBLPD with muscle wasting and neurodegenerative diseases in which the proteasome is abnormally activated and impaired, respectively, and suggest strategies to modulate UBLPD for disease therapy.
Collapse
Affiliation(s)
- Tiantian Wang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Jiang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
16
|
Wang B, Wang Z, Tang Y, Zhong N, Wu J. Cotton BOP1 mediates SUMOylation of GhBES1 to regulate fibre development and plant architecture. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3054-3067. [PMID: 39003587 PMCID: PMC11500983 DOI: 10.1111/pbi.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
The Arabidopsis BLADE-ON-PETIOLE (BOP) genes are primarily known for their roles in regulating leaf and floral patterning. However, the broader functions of BOPs in regulating plant traits remain largely unexplored. In this study, we investigated the role of the Gossypium hirsutum BOP1 gene in the regulation of fibre length and plant height through the brassinosteroid (BR) signalling pathway. Transgenic cotton plants overexpressing GhBOP1 display shorter fibre lengths and reduced plant height compared to the wild type. Conversely, GhBOP1 knockdown led to increased plant height and longer fibre, indicating a connection with phenotypes influenced by the BR pathway. Our genetic evidence supports the notion that GhBOP1 regulates fibre length and plant height in a GhBES1-dependent manner, with GhBES1 being a major transcription factor in the BR signalling pathway. Yeast two-hybrid, luciferase complementation assay and pull-down assay results demonstrated a direct interaction between GhBOP1 and GhSUMO1, potentially forming protein complexes with GhBES1. In vitro and in vivo SUMOylation analyses revealed that GhBOP1 functions in an E3 ligase-like manner to mediate GhBES1 SUMOylation and subsequent degradation. Therefore, our study not only uncovers a novel mechanism of GhBES1 SUMOylation but also provides significant insights into how GhBOP1 regulates fibre length and plant height by controlling GhBES1 accumulation.
Collapse
Affiliation(s)
- Bingting Wang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Zhian Wang
- Institute of Cotton Research, Shanxi Agricultural UniversityYunchengChina
| | - Ye Tang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Naiqin Zhong
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Jiahe Wu
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
17
|
Gu Y, Xu T, Fang Y, Shao J, Hu T, Wu X, Shen H, Xu Y, Zhang J, Song Y, Xia Y, Shu Y, Ma P. CBX4 counteracts cellular senescence to desensitize gastric cancer cells to chemotherapy by inducing YAP1 SUMOylation. Drug Resist Updat 2024; 77:101136. [PMID: 39154499 DOI: 10.1016/j.drup.2024.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
AIMS As our comprehension of the intricate relationship between cellular senescence and tumor biology continues to evolve, the therapeutic potential of cellular senescence is gaining increasing recognition. Here, we identify chromobox 4 (CBX4), a Small Ubiquitin-related Modifier (SUMO) E3 ligase, as an antagonist of cellular senescence and elucidate a novel mechanism by which CBX4 promotes drug resistance and malignant progression of gastric cancer (GC). METHODS In vitro and in vivo models were conducted to investigate the manifestation and impact of CBX4 on cellular senescence and chemoresistance. High-throughput sequencing, chromatin immunoprecipitation, and co-immunoprecipitation techniques were utilized to identify the upstream regulators and downstream effectors associated with CBX4, revealing its intricate regulatory network. RESULTS CBX4 diminishes the sensitivity of GC cells to cellular senescence, facilitating chemoresistance and GC development by deactivating the senescence-related Hippo pathway. Mechanistically, low-dose cisplatin transcriptionally downregulates CBX4 through CEBPB. In addition, CBX4 preserves the stability and cytoplasm-nuclear transport of YAP1, the key player of Hippo pathway, by inducing SUMO1 modification at K97 and K280, which competitively inhibits YAP1-S127 phosphorylation. CONCLUSIONS Our study highlights the anti-senescence role of CBX4 and suggests that CBX4 inhibition in combination with low-dose cisplatin has the potential to overcome chemoresistance and effectively restrict GC progression.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tingting Xu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuan Fang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Shao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tong Hu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xi Wu
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Haoyang Shen
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yangyue Xu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingxin Zhang
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Clinic School of Nanjing Medical University, Zhenjiang 212002, China
| | - Yu Song
- Zhangjiagang Hospital affiliated to Soochow University, China.
| | - Yang Xia
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yongqian Shu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, China.
| | - Pei Ma
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
18
|
Martínez-López A, Infante G, Mendiburu-Eliçabe M, Machuca A, Antón OM, González-Fernández M, Luque-García JL, Clarke RB, Castillo-Lluva S. SUMOylation regulates the aggressiveness of breast cancer-associated fibroblasts. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01005-w. [PMID: 39432155 DOI: 10.1007/s13402-024-01005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are the most abundant stromal cellular component in the tumor microenvironment (TME). CAFs contribute to tumorigenesis and have been proposed as targets for anticancer therapies. Similarly, dysregulation of SUMO machinery components can disrupt the balance of SUMOylation, contributing to tumorigenesis and drug resistance in various cancers, including breast cancer. We explored the role of SUMOylation in breast CAFs and evaluated its potential as a therapeutic strategy in breast cancer. METHODS We used pharmacological and genetic approaches to analyse the functional crosstalk between breast tumor cells and CAFs. We treated breast CAFs with the SUMO1 inhibitor ginkgolic acid (GA) at two different concentrations and conditioned media was used to analyse the proliferation, migration, and invasion of breast cancer cells from different molecular subtypes. Additionally, we performed quantitative proteomics (SILAC) to study the differential signalling pathways expressed in CAFs treated with low or high concentrations of GA. We confirmed these results both in vitro and in vivo. Moreover, we used samples from metastatic breast cancer patients to evaluate the use of GA as a therapeutic strategy. RESULTS Inhibition of SUMOylation with ginkgolic acid (GA) induces death in breast cancer cells but does not affect the viability of CAFs, indicating that CAFs are resistant to this therapy. While CAF viability is unaffected, CAF-conditioned media (CM) is altered by GA, impacting tumor cell behaviour in different ways depending on the overall degree to which SUMO1-SUMOylated proteins are dysregulated. Breast cancer cell lines exhibited a concentration-dependent response to conditioned media (CM) from CAFs. At a low concentration of GA (10 µM), there was an increase in proliferation, migration and invasion of breast cancer cells. However, at a higher concentration of GA (30 µM), these processes were inhibited. Similarly, analysis of tumor development revealed that at 10 µM of GA, the tumors were heavier and there was a greater degree of metastasis compared to the tumors treated with the higher concentration of GA (30 µM). Moreover, some of these effects could be explained by an alteration in the activity of the GTPase Rac1 and the activation of the AKT signalling pathway. The results obtained using SILAC suggest that different concentrations of GA affected cellular processes differentially, possibly influencing the secretome of CAFs. Treatment of metastatic breast cancer with GA demonstrated the use of SUMOylation inhibition as an alternative therapeutic strategy. CONCLUSION The study highlights the importance of SUMOylation in the tumor microenvironment, specifically in cancer-associated fibroblasts (CAFs). Targeting SUMOylation in CAFs affects their signalling pathways and secretome in a concentration-dependent manner, regulating the protumorigenic properties of CAFs.
Collapse
Affiliation(s)
- Angelica Martínez-López
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Guiomar Infante
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Marina Mendiburu-Eliçabe
- Departamento de Estadística e Investigación Operativa, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid, Spain
| | - Andrés Machuca
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Olga M Antón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Mónica González-Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - José L Luque-García
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Robert B Clarke
- Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
19
|
Zhao W, Wang J, Zhao F, Li Y, Li Z, Li X, Chen A. SUMOylation modification of HNRNPK at the K422 site promotes invasion in glioblastoma. Int J Biol Sci 2024; 20:5715-5730. [PMID: 39494331 PMCID: PMC11528450 DOI: 10.7150/ijbs.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly heterogeneous brain tumor with limited treatment options. Recent studies revealed cellular heterogeneity and the potential for interconversion between distinct cell types on the basis of RNA sequencing and single-cell analyses. The ability of different cell types to adapt to their surrounding environment and undergo transformation significantly complicates the study and treatment of GBM. In this study, we reveal that HNRNPK-SUMO1 expression is predominantly found in the GBM infiltration area. SUMOylation of the K422 residue of HNRNPK interferes with its DNA binding ability, thereby disrupting downstream transcription, and ultimately leading to transitions between different states of glioblastoma stem cells. Although the proneural subtype is considered to have a better prognosis, transitioning towards this state promotes tumor invasion. These findings serve as a reminder to exercise caution when considering treatments targeting specific cellular subtypes.
Collapse
Affiliation(s)
- Wenguo Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250017, China
| | - Jiazheng Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250017, China
| | - Feihu Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250017, China
| | - Yaquan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250017, China
| | - Zhuo Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250017, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250017, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250017, China
| |
Collapse
|
20
|
Zhang X, Ding T, Yang F, Zhang J, Xu H, Bai Y, Shi Y, Yang J, Chen C, Zhu C, Zhang H. Peptidylprolyl isomerase A guides SENP5/GAU1 DNA-lncRNA triplex generation for driving tumorigenesis. Nat Commun 2024; 15:9068. [PMID: 39433793 PMCID: PMC11494105 DOI: 10.1038/s41467-024-53493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
The three-stranded DNA-RNA triplex hybridization is involved in various biological processes, including gene expression regulation, DNA repair, and chromosomal stability. However, the DNA-RNA triplex mediating mechanisms underlying tumorigenesis remain to be fully elucidated. Here, we show that peptidylprolyl isomerase A (PPIA) serves as anchor to recruit GAU1 lncRNA by interacting with exon 4 of GAU1 and enhances the formation of SENP5/GAU1 DNA-lncRNA triplex. Intriguingly, TFR4 region of GAU1 exon 3 and TTS4 region of SENP5 promoter DNA constitute fragments forming the SENP5/GAU1 triplex. The SENP5/GAU1 triplex subsequently triggers the recruitment of the methyltransferase SET1A to exon 1 of GAU1, leading to the enrichment of H3K4 trimethylation and the activation of SENP5 transcription for driving the tumorigenesis of gastric cancer in vitro and in vivo. Our study reveals a mechanism of PPIA-guided SENP5/GAU1 DNA-lncRNA triplex formation in tumorigenesis and providing a concept in the dynamics of isomerase assisted DNA-RNA hybridization.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, P. R. China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
| | - Tianyi Ding
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, P. R. China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
| | - Fan Yang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, P. R. China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
| | - Jixing Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, P. R. China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
| | - Haowen Xu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, P. R. China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
| | - Yiran Bai
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, P. R. China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
| | - Yibing Shi
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, P. R. China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
| | - Jiaqi Yang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, P. R. China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
| | - Chaoqun Chen
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, P. R. China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
| | - Chengbo Zhu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, P. R. China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi Province, P. R. China
| | - He Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, P. R. China.
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Medical Department of Jinggangshan University, Ji'an, Jiangxi Province, P. R. China.
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi Province, P. R. China.
| |
Collapse
|
21
|
Zhang F, Yang J, Cheng Y. Impact of RANGAP1 SUMOylation on Smad4 nuclear export by bioinformatic analysis and cell assays. BIOMOLECULES & BIOMEDICINE 2024; 24:1620-1636. [PMID: 38801243 PMCID: PMC11496865 DOI: 10.17305/bb.2024.10443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Small Ubiquitin-like Modifier (SUMOylation) regulates a variety of cellular activities, and its dysregulation has been associated with glioma etiology. The aim of this research was to clarify the function of SUMOylation-related genes in glioma and determine relevant prognostic markers. The Cancer Genome Atlas (TCGA) Glioma and GSE16011 datasets were analyzed through bioinformatics to identify Ran GTPase activating protein 1 (RANGAP1) as the hub gene for further study. Experimental validation consisted of quantitative real-time polymerase chain reaction (qRT-PCR), western blotting (WB), and immunoprecipitation (IP) to evaluate RANGAP1 expression, function, and interaction with SUMO1. To assess the role of RANGAP1 knockdown and SUMOylation in glioma cells, various assays were conducted, including cell proliferation, migration, invasion, and apoptosis. In addition, cell cycle analysis and immunofluorescence were performed. Through bioinformatics, RANGAP1 was identified as a crucial prognostic gene for glioma. Experimental studies confirmed the downregulation of RANGAP1 in glioma cells and verified that RANGAP1 repair impedes tumor growth. When it comes to RANGAP1 silencing, it enhanced cell proliferation, invasion and migration. Additionally, SUMO1 was identified as a specific SUMO molecule coupled to RANGAP1, affecting the location of Sma and Mad related protein 4 (Smad4) in the nucleocytoplasm and the transforming growth factor (TGF)-β/Smad signaling pathway. The functional impact of RANGAP1 SUMOylation on cell proliferation and migration was further confirmed through experiments using a SUMOylation-impairing mutation (K524R). Our findings suggest that RANGAP1 may be a potential prognostic marker in gliomas and could play a role in regulating cell proliferation, migration, and invasion. SUMOylation of RANGAP1 is responsible for regulating the TGF-β/Smad signaling pathway, which is crucial for the progression of tumors. Further investigations and experiments are necessary to confirm these results.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Yang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yifei Cheng
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Zhang X, Shi S, Du Y, Chai R, Guo Z, Duan C, Wang H, Hu Y, Chang X, Du B. Shaping cardiac destiny: the role of post-translational modifications on endoplasmic reticulum - mitochondria crosstalk in cardiac remodeling. Front Pharmacol 2024; 15:1423356. [PMID: 39464632 PMCID: PMC11502351 DOI: 10.3389/fphar.2024.1423356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiac remodeling is a shared pathological change in most cardiovascular diseases. Encompassing both adaptive physiological responses and decompensated pathological changes. Anatomically, atrial remodeling is primarily caused by atrial fibrillation, whereas ventricular remodeling is typically induced by myocardial infarction, hypertension, or cardiomyopathy. Mitochondria, the powerhouse of cardiomyocytes, collaborate with other organelles such as the endoplasmic reticulum to control a variety of pathophysiological processes such as calcium signaling, lipid transfer, mitochondrial dynamics, biogenesis, and mitophagy. This mechanism is proven to be essential for cardiac remodeling. Post-translational modifications can regulate intracellular signaling pathways, gene expression, and cellular stress responses in cardiac cells by modulating protein function, stability, and interactions, consequently shaping the myocardial response to injury and stress. These modifications, in particular phosphorylation, acetylation, and ubiquitination, are essential for the regulation of the complex molecular pathways that underlie cardiac remodeling. This review provides a comprehensive overview of the crosstalk between the endoplasmic reticulum and mitochondria during cardiac remodeling, focusing on the regulatory effects of various post-translational modifications on these interactions.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Department of Internal Medicine, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihang Du
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruoning Chai
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezhen Guo
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Chenglin Duan
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai Du
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Wang J, Zhang R, Wu C, Wang L, Liu P, Li P. Exploring potential targets for natural product therapy of DN: the role of SUMOylation. Front Pharmacol 2024; 15:1432724. [PMID: 39431155 PMCID: PMC11486755 DOI: 10.3389/fphar.2024.1432724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Diabetic nephropathy (DN) is a common and serious micro-vascular complication of diabetes and a leading cause of end-stage renal disease globally. This disease primarily affects middle-aged and elderly individuals, especially those with a diabetes history of over 10 years and poor long-term blood glucose control. Small ubiquitin-related modifiers (SUMOs) are a group of reversible post-translational modifications of proteins that are widely expressed in eukaryotes. SUMO proteins intervene in the progression of DN by modulating various signaling cascades, such as Nrf2-mediated oxidative stress, NF-κB, TGF-β, and MAPK pathways. Recent advancements indicate that natural products regulating SUMOylation hold promise as targets for intervening in DN. In a previous article published in 2022, we reviewed the mechanisms by which SUMOylation intervenes in renal fibrosis and presented a summary of some natural products with therapeutic potential. Therefore, this paper will focus on DN. The aim of this review is to elucidate the mechanism of action of SUMOylation in DN and related natural products with therapeutic potential, thereby summarising the targets and candidate natural products for the treatment of DN through the modulation of SUMOylation, such as ginkgolic acid, ginkgolide B, resveratrol, astragaloside IV, etc., and highlighting that natural product-mediated modulation of SUMOylation is a potential therapeutic strategy for the treatment of DN as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jingjing Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
24
|
Liao Y, Zhang W, Liu Y, Zhu C, Zou Z. The role of ubiquitination in health and disease. MedComm (Beijing) 2024; 5:e736. [PMID: 39329019 PMCID: PMC11424685 DOI: 10.1002/mco2.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Ubiquitination is an enzymatic process characterized by the covalent attachment of ubiquitin to target proteins, thereby modulating their degradation, transportation, and signal transduction. By precisely regulating protein quality and quantity, ubiquitination is essential for maintaining protein homeostasis, DNA repair, cell cycle regulation, and immune responses. Nevertheless, the diversity of ubiquitin enzymes and their extensive involvement in numerous biological processes contribute to the complexity and variety of diseases resulting from their dysregulation. The ubiquitination process relies on a sophisticated enzymatic system, ubiquitin domains, and ubiquitin receptors, which collectively impart versatility to the ubiquitination pathway. The widespread presence of ubiquitin highlights its potential to induce pathological conditions. Ubiquitinated proteins are predominantly degraded through the proteasomal system, which also plays a key role in regulating protein localization and transport, as well as involvement in inflammatory pathways. This review systematically delineates the roles of ubiquitination in maintaining protein homeostasis, DNA repair, genomic stability, cell cycle regulation, cellular proliferation, and immune and inflammatory responses. Furthermore, the mechanisms by which ubiquitination is implicated in various pathologies, alongside current modulators of ubiquitination are discussed. Enhancing our comprehension of ubiquitination aims to provide novel insights into diseases involving ubiquitination and to propose innovative therapeutic strategies for clinical conditions.
Collapse
Affiliation(s)
- Yan Liao
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Wangzheqi Zhang
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Yang Liu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Chenglong Zhu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Zui Zou
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| |
Collapse
|
25
|
Chen X, Li D, Su Q, Ling X, Yang Y, Liu Y, Zhu X, He A, Ding S, Xu R, Liu Z, Long X, Zhang J, Yang Z, Qi Y, Wu H. SENP3 mediates the deSUMOylation and degradation of YAP1 to regulate the progression of triple-negative breast cancer. J Biol Chem 2024; 300:107764. [PMID: 39270822 PMCID: PMC11490879 DOI: 10.1016/j.jbc.2024.107764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a prevalent malignancy in women, casting a formidable shadow on their well-being. Positioned within the nucleolus, SUMO-specific protease 3 (SENP3) assumes a pivotal role in the realms of development and tumorigenesis. However, the participation of SENP3 in TNBC remains a mystery. Here, we elucidate that SENP3 exerts inhibitory effects on migration and invasion capacities, as well as on the stem cell-like phenotype, within TNBC cells. Further experiments showed that YAP1 is the downstream target of SENP3, and SENP3 regulates tumorigenesis in a YAP1-dependent manner. YAP1 is found to be SUMOylated and SENP3 deconjugates SUMOylated YAP1 and promotes degradation mediated by the ubiquitin-proteasome system. More importantly, YAP1 with a mutation at the SUMOylation site impedes the capacity of WT YAP1 in TNBC tumorigenesis. Taken together, our findings firmly establish the pivotal role of SENP3 in the modulation of YAP1 deSUMOylation, unveiling novel mechanistic insight into the important role of SENP3 in the regulation of TNBC tumorigenesis in a YAP1-dependent manner.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Danqing Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qi Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Ling
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinjie Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Anqi He
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Siyu Ding
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Runxiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhaoxia Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaojun Long
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jinping Zhang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
26
|
Yang Y, Wu J, Zhou W, Ji G, Dang Y. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm (Beijing) 2024; 5:e752. [PMID: 39355507 PMCID: PMC11442990 DOI: 10.1002/mco2.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
27
|
Duan Y, Liu D, Yu H, Zhang S, Xia Y, Du Z, Qin Y, Wang Y, Ma X, Liu H, Du Y. Transcription and post-translational mechanisms: dual regulation of adiponectin-mediated Occludin expression in diabetes. Cell Biosci 2024; 14:126. [PMID: 39354565 PMCID: PMC11443667 DOI: 10.1186/s13578-024-01306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Occludin, a crucial component of tight junctions, has emerged as a promising biomarker for the diagnosis of acute ischemic disease, highlighting its significant potential in clinical applications. In the diabetes, Occludin serves as a downstream target gene intricately regulated by the adiponectin (APN) signaling pathway. However, the specific mechanism by which adiponectin regulates Occludin expression remains unclear. METHODS AND RESULTS Endothelial-specific Ocln knockdown reduced APN-mediated blood flow recovery after femoral artery ligation and nullified APN's protection against high-fat diet (HFD)-triggered apoptosis and angiogenesis inhibition in vivo. Mechanically, we have meticulously elucidated APN's regulatory role in Occludin expression through a comprehensive analysis spanning transcriptional and post-translational dimensions. Foxo1 has been elucidated as a crucial transcriptional regulator of Occludin that is modulated by the APN/APPL1 signaling axis, as evidenced by validation through ChIP-qPCR assays and Western blot analysis. APN hindered Occludin degradation via the ubiquitin-proteasome pathway. Mass spectrometry analysis has recently uncovered a novel phosphorylation site, Tyr467, on Occludin. This site responds to APN, playing a crucial role in inhibiting Occludin ubiquitination by APN. The anti-apoptotic and pro-angiogenic effects of APN were attenuated in vitro and in vivo following Foxo1 knockdown or expression of a non-phosphorylatable mutant, OccludinY467A. Clinically, elevated plasma concentrations of Occludin were observed in patients with diabetes. A significant negative correlation was found between Occludin levels and APN concentrations. CONCLUSION Our study proposes that APN modulates Occludin expression through mechanisms involving both transcriptional and post-translational interactions, thereby conferring a protective effect on endothelial integrity within diabetic vasculature.
Collapse
Affiliation(s)
- Yanru Duan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Demin Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Huahui Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Shihan Zhang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, People's Republic of China
| | - Yihua Xia
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhiyong Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Yanwen Qin
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, China.
| | - Yunhui Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, People's Republic of China.
| |
Collapse
|
28
|
Ma Z, Li Q, Wang W, Deng Z. Transcription factor E2F4 facilitates SUMOylation to promote HCC progression through interaction with LIN9. Int J Oncol 2024; 65:98. [PMID: 39239750 PMCID: PMC11387118 DOI: 10.3892/ijo.2024.5686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/14/2024] [Indexed: 09/07/2024] Open
Abstract
SUMOylation plays a crucial role in numerous cellular biological and pathophysiological processes associated with human disease; however, the mechanisms regulating the genes involved in SUMOylation remain unclear. In the present study, E2F transcription factor 4 (E2F4) was identified as an E2F member related to hepatocellular carcinoma (HCC) progression by public database analysis. It was found that E2F4 promoted the proliferation and invasiveness of HCC cells via SUMOylation using Soft agar and Transwell migration assays. Mechanistically, it was demonstrated that E2F4 upregulated the transcript and protein expression levels of baculoviral IAP repeat containing 5, cell division cycle associated 8 and DNA topoisomerase II α using western blotting. Furthermore, the interaction between E2F4 with lin‑9 DREAM multi‑vulva class B core complex component (LIN9) was explored by co‑immunoprecipitation, immunofluorescence co‑localization and bimolecular fluorescence complementation assays. Moreover, it was demonstrated that E2F4 promoted the progression of HCC cells via LIN9. Rescue experiments revealed that LIN9 facilitated the SUMOylation and proliferation of HCC cells, which was prevented by knocking down E2F4 expression. In conclusion, the findings of the present study indicated that E2F4 plays a major role in the proliferation of HCC cells and may be a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Hepatobiliary and Pancreatic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, P.R. China
| | - Qilan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wenjing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhengdong Deng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
29
|
Wang J, Wang Z, Zhang K, Cui Y, Zhou J, Liu J, Li H, Zhao M, Jiang J. The role of the ubiquitin system in the onset and reversal of neuropathic pain. Biomed Pharmacother 2024; 179:117127. [PMID: 39191026 DOI: 10.1016/j.biopha.2024.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024] Open
Abstract
Neuropathic pain (NP) remains one of the world's most difficult problems, and people suffering from NP have their quality of life affected to a great extent and constantly suffer from pain. Sensitization of injurious receptors, ectopic firing of afferent nerves after nerve injury, and coupling between sympathetic and sensory neurons are involved in the onset or development of NP, but the pathogenesis of NP is still not well understood. We found that the ubiquitin system is involved in the pathogenesis of NP and has a crucial role in it. The ubiquitin system can be involved in the onset or reversal of NP by affecting ion channels, cellular signal transduction, glial cells, and the regulation of non-coding RNAs. This provides new ideas for the treatment of NP. The ubiquitin system may be a new effective target for the treatment of NP. A continued, in-depth understanding of the mechanisms of the ubiquitin system involved in NP could further refine the study of analgesic targets and improve pharmacological studies.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kexin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanping Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingruo Zhou
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiazhou Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huanyi Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingxia Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
30
|
Grandin N, Charbonneau M. Dysfunction of Telomeric Cdc13-Stn1-Ten1 Simultaneously Activates DNA Damage and Spindle Checkpoints. Cells 2024; 13:1605. [PMID: 39404369 PMCID: PMC11475793 DOI: 10.3390/cells13191605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Telomeres, the ends of eukaryotic linear chromosomes, are composed of repeated DNA sequences and specialized proteins, with the conserved telomeric Cdc13/CTC1-Stn1-Ten1 (CST) complex providing chromosome stability via telomere end protection and the regulation of telomerase accessibility. In this study, SIZ1, coding for a SUMO E3 ligase, and TOP2 (a SUMO target for Siz1 and Siz2) were isolated as extragenic suppressors of Saccharomyces cerevisiae CST temperature-sensitive mutants. ten1-sz, stn1-sz and cdc13-sz mutants were isolated next due to being sensitive to intracellular Siz1 dosage. In parallel, strong negative genetic interactions between mutants of CST and septins were identified, with septins being noticeably sumoylated through the action of Siz1. The temperature-sensitive arrest in these new mutants of CST was dependent on the G2/M Mad2-mediated and Bub2-mediated spindle checkpoints as well as on the G2/M Mec1-mediated DNA damage checkpoint. Our data suggest the existence of yet unknown functions of the telomeric Cdc13-Stn1-Ten1 complex associated with mitotic spindle positioning and/or assembly that could be further elucidated by studying these new ten1-sz, stn1-sz and cdc13-sz mutants.
Collapse
Affiliation(s)
| | - Michel Charbonneau
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 Place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France;
| |
Collapse
|
31
|
Xie G, Li N, Li K, Xu Y, Zhang Y, Cao S, Huang B, Liu R, Zhou P, Ding Y, Ding Y, Yang J, Jia Z, Huang Z. Phosphatase LHPP confers prostate cancer ferroptosis activation by modulating the AKT-SKP2-ACSL4 pathway. Cell Death Dis 2024; 15:665. [PMID: 39261475 PMCID: PMC11390745 DOI: 10.1038/s41419-024-07007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
LHPP, a novel, recognized tumor suppressor, exerts a critical influence on the regulation of tumor cell proliferation and survival by modulating various signaling pathways with its phosphatase activity. Here, we unveil a robust correlation between reduced LHPP expression and adverse prognosis in prostate cancer. We demonstrate that LHPP interacts with AKT, thereby dampening AKT phosphorylation and subsequently inhibiting ACSL4 phosphorylation at the T624 site. This interaction impedes phosphorylation-dependent ubiquitination, thwarting SKP2 from recognizing and binding to ACSL4 at the K621 site. As a result, ACSL4 is spared from lysosomal degradation, leading to its accumulation and the promotion of lipid peroxidation, and ferroptosis. Moreover, our findings reveal that Panobinostat, a potent histone-deacetylase inhibitor, intricately regulates LHPP expression at multiple levels through the inhibition of HDAC3. This complex modulation enhances the ferroptosis pathway, offering a novel mechanism for curtailing the growth of prostate tumors and highlighting its significant translational potential for clinical application.
Collapse
Affiliation(s)
- Guoqing Xie
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ningyang Li
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Keqiang Li
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yating Xu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shun Cao
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Budeng Huang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruoyang Liu
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Peijie Zhou
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Ding
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinghui Ding
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinjian Yang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhankui Jia
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhenlin Huang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
32
|
Liu Z, Bian X, Li L, Liu L, Feng C, Wang Y, Ni J, Li S, Lu D, Li Y, Ma C, Yu T, Xiao X, Xue N, Wang Y, Zhang C, Ma X, Gao X, Fan X, Liu X, Fan G. SENP1-Mediated HSP90ab1 DeSUMOylation in Cardiomyocytes Prevents Myocardial Fibrosis by Paracrine Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400741. [PMID: 38992961 PMCID: PMC11425837 DOI: 10.1002/advs.202400741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/06/2024] [Indexed: 07/13/2024]
Abstract
Myocardial infarction (MI) triggers a poor ventricular remodeling response, but the underlying mechanisms remain unclear. Here, the authors show that sentrin-specific protease 1 (SENP1) is downregulated in post-MI mice and in patients with severe heart failure. By generating cardiomyocyte-specific SENP1 knockout and overexpression mice to assess cardiac function and ventricular remodeling responses under physiological and pathological conditions. Increased cardiac fibrosis in the cardiomyocyte-specific SENP1 deletion mice, associated with increased fibronectin (Fn) expression and secretion in cardiomyocytes, promotes fibroblast activation in response to myocardial injury. Mechanistically, SENP1 deletion in mouse cardiomyocytes increases heat shock protein 90 alpha family class B member 1 (HSP90ab1) SUMOylation with (STAT3) activation and Fn secretion after ventricular remodeling initiated. Overexpression of SENP1 or mutation of the HSP90ab1 Lys72 ameliorates adverse ventricular remodeling and dysfunction after MI. Taken together, this study identifies SENP1 as a positive regulator of cardiac repair and a potential drug target for the treatment of MI. Inhibition of HSP90ab1 SUMOylation stabilizes STAT3 to inhibit the adverse ventricular remodeling response.
Collapse
Affiliation(s)
- Zhihao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Xiyun Bian
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Lan Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Li Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Chao Feng
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, 300051, China
| | - Ying Wang
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Sheng Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
| | - Dading Lu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Yanxia Li
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Tian Yu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Xiaolin Xiao
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Na Xue
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Yuxiang Wang
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Chunyan Zhang
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Xiaofang Ma
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Xiumei Gao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin fifth Central Hospital, Tianjin, 300450, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
33
|
Wada H, Maruyama T, Niikura T. SUMO1 modification of 0N4R-tau is regulated by PIASx, SENP1, SENP2, and TRIM11. Biochem Biophys Rep 2024; 39:101800. [PMID: 39286522 PMCID: PMC11403297 DOI: 10.1016/j.bbrep.2024.101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 09/19/2024] Open
Abstract
Tau is a microtubule-associated protein that contributes to cytoskeletal stabilization. Aggregation of tau proteins is associated with neurodegenerative disorders such as Alzheimer's disease. Several types of posttranslational modifications that alter the physical properties of tau proteins have been identified. SUMOylation is a reversible modification of lysine residues by a small ubiquitin-like modifier (SUMO). In this study, we examined the enzymes that regulate the SUMOylation and deSUMOylation of tau in an alternatively spliced form, 0N4R-tau. Among SUMO E3 ligases, we found protein inhibitor of activated STAT (PIAS)xα and PIASxβ increase the levels of SUMOylated tau. The deSUMOylation enzymes sentrin-specific protease (SENP)1 and SENP2 reduced the levels of SUMO-conjugated tau. SUMO1 modification increased the level of phosphorylated tau, which was suppressed in the presence of SENP1. Furthermore, we examined the effect of tripartite motif (TRIM)11, which was recently identified as an E3 ligase for SUMO2 modification of tau. We found that TRIM11 increased the modification of both 2N4R- and 0N4R-tau by SUMO1, which was attenuated by mutation of the target lysine residue to arginine. These findings suggest that the expression and activity of SUMOylation regulatory proteins modulate the physical properties of tau proteins and may contribute to the onset and/or progression of tau-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Harmony Wada
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, 102-8554, Japan
| | - Takuma Maruyama
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, 102-8554, Japan
| | - Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, 102-8554, Japan
| |
Collapse
|
34
|
Zhou L, Huang C, HuangFu C, Shen P, Hu Y, Wang N, Li G, Deng H, Xia T, Zhou Y, Li J, Bai Z, Zhou W, Gao Y. Low-dose radiation-induced SUMOylation of NICD1 negatively regulates osteogenic differentiation in BMSCs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116655. [PMID: 38968871 DOI: 10.1016/j.ecoenv.2024.116655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Various biological effects of ionizing radiation, especially continuous exposure to low-dose radiation (LDR), have attracted considerable attention. Impaired bone structure caused by LDR has been reported, but little is known about the mechanism involved in the disruption of bone metabolism. In this study, given that LDR was found to (at a cumulative dose of 0.10 Gy) disturb the serum Mg2+ level and Notch1 signal in the mouse femur tissues, the effects of LDR on osteogenesis and the underlying molecular mechanisms were investigated based on an in vitro culture system for bone marrow stromal cells (BMSCs). Our data showed that cumulative LDR suppressed the osteogenic potential in BMSCs as a result of upregulation of Notch1 signaling. Further analyses indicated that the upregulation of NICD1 (Notch1 intracellular domain), the key intracellular domain for Notch1 signaling, under LDR was a consequence of enhanced protein stabilization caused by SUMOylation (small ubiquitin-like modification). Specifically, the downregulation of SENP1 (sentrin/SUMO-specific protease 1) expression induced by LDR enhanced the SUMOylation of NICD1, causing the accumulation of Notch1 signaling, which eventually inhibited the osteogenic potential of BMSCs. In conclusion, this work expounded on the mechanisms underlying the impacts of LDR on bone metabolism and shed light on the research on bone regeneration under radiation.
Collapse
Affiliation(s)
- Lei Zhou
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Congshu Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chaoji HuangFu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yangyi Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Gaofu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Huifang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tiantian Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yongqiang Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jiamiao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhijie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yue Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
35
|
Zhang X, Hu Q, Peng H, Huang J, Sang W, Guan J, Huang Z, Jiang B, Sun D. Therapeutic potential of flavopiridol in diabetic retinopathy: Targeting DDX58. Int Immunopharmacol 2024; 137:112504. [PMID: 38897127 DOI: 10.1016/j.intimp.2024.112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Diabetic retinopathy (DR), a common complication of diabetes, is characterized by inflammation and neovascularization, and is intricately regulated by the ubiquitin-proteasome system (UPS). Despite advancements, identifying ubiquitin-related genes and drugs specifically targeting DR remains a significant challenge. In this study, bioinformatics analyses and the Connectivity Map (CMAP) database were utilized to explore the therapeutic potential of genes and drugs for DR. Through these methodologies, flavopiridol was identified as a promising therapeutic candidate. To evaluate flavopiridol's therapeutic potential in DR, an in vitro model using Human Umbilical Vein Endothelial Cells (HUVECs) induced by high glucose (HG) conditions was established. Additionally, in vivo models using mice with streptozotocin (STZ)-induced DR and oxygen-induced retinopathy (OIR) were employed. The current study reveals that flavopiridol possesses robust anti-inflammatory and anti-neovascularization properties. To further elucidate the molecular mechanisms of flavopiridol, experimental validation and molecular docking techniques were employed. These efforts identified DDX58 as a predictive target for flavopiridol. Notably, our research demonstrated that flavopiridol modulates the DDX58/NLRP3 signaling pathway, thereby exerting its therapeutic effects in suppressing inflammation and neovascularization in DR. This study unveils groundbreaking therapeutic agents and innovative targets for DR, and establishes a progressive theoretical framework for the application of ubiquitin-related therapies in DR.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Qiang Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hongsong Peng
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiayang Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wei Sang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jitian Guan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zhangxin Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Bo Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
36
|
Ma XN, Li MY, Qi GQ, Wei LN, Zhang DK. SUMOylation at the crossroads of gut health: insights into physiology and pathology. Cell Commun Signal 2024; 22:404. [PMID: 39160548 PMCID: PMC11331756 DOI: 10.1186/s12964-024-01786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
SUMOylation, a post-translational modification involving the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target substrates, plays a pivotal role at the intersection of gut health and disease, influencing various aspects of intestinal physiology and pathology. This review provides a comprehensive examination of SUMOylation's diverse roles within the gut microenvironment. We examine its critical roles in maintaining epithelial barrier integrity, regulating immune responses, and mediating host-microbe interactions, thereby highlighting the complex molecular mechanisms that underpin gut homeostasis. Furthermore, we explore the impact of SUMOylation dysregulation in various intestinal disorders, including inflammatory bowel diseases and colorectal cancer, highlighting its implications as a potential diagnostic biomarker and therapeutic target. By integrating current research findings, this review offers valuable insights into the dynamic interplay between SUMOylation and gut health, paving the way for novel therapeutic strategies aimed at restoring intestinal equilibrium and combating associated pathologies.
Collapse
Affiliation(s)
- Xue-Ni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Mu-Yang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Guo-Qing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Li-Na Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - De-Kui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China.
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
37
|
Zhang D, Li J, Zhang C, Xue J, Li P, Shang K, Zhang X, Lang B. The deubiquitinating enzyme USP35 regulates the stability of NRF2 protein. Open Life Sci 2024; 19:20220935. [PMID: 39156988 PMCID: PMC11330172 DOI: 10.1515/biol-2022-0935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Many cancers exhibit resistance to chemotherapy, resulting in a poor prognosis. The transcription factor NRF2, activated in response to cellular antioxidants, plays a crucial role in cell survival, proliferation, and resistance to chemotherapy. This factor may serve as a promising target for therapeutic interventions in esophageal carcinoma. Recent research suggests that NRF2 activity is modulated by ubiquitination mediated by the KEAP1-CUL3 E3 ligase complex, highlighting the importance of deubiquitination. However, the specific deubiquitinase responsible for regulating NRF2 in esophageal cancer remains unknown. In this study, a novel regulator of the NRF2 protein, Ubiquitin-Specific Protease 35 (USP35), has been identified. Mechanistically, USP35 modulates NRF2 stability through enzymatic deubiquitination. USP35 interacts with NRF2 and facilitates its deubiquitination. Knockdown of USP35 leads to a notable increase in NRF2 levels and enhances the sensitivity of cells to chemotherapy. These findings suggest that the USP35-NRF2 axis is a key player in the regulation of therapeutic strategies for esophageal cancer.
Collapse
Affiliation(s)
- Dian Zhang
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| | - Jiawen Li
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| | - Chao Zhang
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| | - Jinliang Xue
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| | - Peihao Li
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| | - Kai Shang
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| | - Xiao Zhang
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| | - Baoping Lang
- Department of Thoracic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Xigong District, Luoyang, China
| |
Collapse
|
38
|
Li Y, Sun M, Sui Z, Zhang Z, Shan Y, Zhang L, Zhang Y. Site-specific identification and quantitation of endogenous SUMOylation based on SUMO-specific protease and strong anion exchange chromatography. J Chromatogr A 2024; 1730:465064. [PMID: 38865749 DOI: 10.1016/j.chroma.2024.465064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Small ubiquitin-like modifier (SUMO) modification regulates various eukaryotic cellular processes and plays a pivotal role in interferon (IFN)-mediated antiviral defense. While immunoprecipitation enrichment method is widely used for proteome-wide analysis of endogenous SUMOylation, the inability to target all SUMO forms and high cost of antibodies limited its further application. Herein, we proposed an antibody-free enrichment method based on SUMO-specific protease and strong anion exchange chromatography (SPAX) to globally profile the endogenous SUMOylation. The SUMO1/2/3-modified peptides could be simultaneously enriched by SAX chromatography by utilizing its electrostatic interaction with SUMO1/2/3 remnants, which contained multiple aspartic acids (D) and glutamic acids (E). To remove the co-enriched D/E-containing peptides which might interfere with the detection of low-abundance SUMOylated peptides, SUMO-specific protease was used to cleave the SUMO1/2/3 remnants from enriched SUMOylated peptides. As the deSUMOylated peptides lost SUMO remnants, their interaction with SAX materials became weaker, and the D/E-containing peptides could thus be depleted through the second SAX separation. The SPAX method identified over twice the SUMOylated sites than using SAX method only, greatly improving the identification coverage of endogenous SUMOylated sites. Our strategy was then applied to the site-specific identification and quantification of endogenous SUMOylation in A549 cells stimulated by IFN-γ for the first time. A total of 226 SUMOylated sites on 146 proteins were confidently identified, among which multiple up-regulated sites were involved in IFN-mediated antiviral defense, demonstrating the great promise of SPAX to globally profile and discover endogenous SUMOylation with significant biological functions.
Collapse
Affiliation(s)
- Yang Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.
| | - Mingwei Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Zhenbin Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yichu Shan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| |
Collapse
|
39
|
Galán-Vidal J, García-Gaipo L, Molinuevo R, Dias S, Tsoi A, Gómez-Román J, Elder JT, Hochegger H, Gandarillas A. Sumo-regulatory SENP2 controls the homeostatic squamous mitosis-differentiation checkpoint. Cell Death Dis 2024; 15:596. [PMID: 39152119 PMCID: PMC11329632 DOI: 10.1038/s41419-024-06969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Squamous or epidermoid cancer arises in stratified epithelia but also is frequent in the non-epidermoid epithelium of the lung by unclear mechanisms. A poorly studied mitotic checkpoint drives epithelial cells bearing irreparable genetic damage into epidermoid differentiation. We performed an RNA-sequencing gene search to target unknown regulators of this response and selected the SUMO regulatory protein SENP2. Alterations of SENP2 expression have been associated with some types of cancer. We found the protein to be strongly localised to mitotic spindles of freshly isolated human epidermal cells. Primary cells rapidly differentiated after silencing SENP2 with specific shRNAs. Loss of SENP2 produced in synchronised epithelial cells delays in mitotic entry and exit and defects in chromosomal alignment. The results altogether strongly argue for an essential role of SENP2 in the mitotic spindle and hence in controlling differentiation. In addition, the expression of SENP2 displayed an inverse correlation with the immuno-checkpoint biomarker PD-L1 in a pilot collection of aggressive lung carcinomas. Consistently, metastatic head and neck cancer cells that do not respond to the mitosis-differentiation checkpoint were resistant to depletion of SENP2. Our results identify SENP2 as a novel regulator of the epithelial mitosis-differentiation checkpoint and a potential biomarker in epithelial cancer.
Collapse
Affiliation(s)
- Jesús Galán-Vidal
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Lorena García-Gaipo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Rut Molinuevo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Samantha Dias
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN19RQ, UK
| | - Alex Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Dermatology Service, Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Javier Gómez-Román
- Pathology Department, Marqués de Valdecilla University Hospital, Institute of Research Valdecilla (IDIVAL), School of Medicine, University of Cantabria, 39008, Santander, Spain
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Dermatology Service, Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN19RQ, UK
| | - Alberto Gandarillas
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- Institut national de la santé et de la recherche médicale, (INSERM), Délégation Occitanie, 34394, Montpellier, France.
| |
Collapse
|
40
|
Wang Y, Sun C, Liu M, Xu P, Li Y, Zhang Y, Huang J. Dysregulated gene expression of SUMO machinery components induces the resistance to anti-PD-1 immunotherapy in lung cancer by upregulating the death of peripheral blood lymphocytes. Front Immunol 2024; 15:1424393. [PMID: 39211047 PMCID: PMC11357960 DOI: 10.3389/fimmu.2024.1424393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background The majority of patients with lung cancer exhibit drug resistance after anti-PD-1 immunotherapy, leading to shortened patient survival time. Previous studies have suggested an association between epigenetic abnormalities such as methylation and clinical response to anti-PD-1 immunotherapy, while the role of SUMOylation in resistance to anti-PD-1 antibody immunotherapy is still unclear. Methods Here, the mRNA expression of 15 SUMO machinery components in PBMC from lung cancer patients receiving anti-PD-1 immunotherapy were analyzed using real-time PCR. Base on the percentage change in mRNA levels, the relationship between the expression of SUMO machinery components and outcomes of anti-PD-1 immunotherapy, and the influencing factors of SUMOylation were evaluated. PBMC was treated with different concentrations of 2-D08 (a specific inhibitor of SUMOylation) in vitro, and analyzed the activation and the death rates of lymphocyte subsets by flow cytometry analysis. Results A predictive method, base on the gene expression of three SUMO machinery components (SUMO1, SUMO3 and UBE2I), were developed to distinguish non-responders to PD-1 inhibitors. Furthermore, the number of lymphocytes in peripheral blood significantly reduced in the dysregulated SUMOylation groups (the percentage change >100 or -50 ~ -100 groups). In vitro studies confirmed that lightly low SUMOylation level improved the activation status of T and NK lymphocytes, but extremely low SUMOylation level lead to the increased death rates of lymphocytes. Conclusion Our findings implied that dysregulated gene expression of SUMO machinery components could induce the resistance of anti-PD-1 immunotherapy in lung cancer by upregulating the death of peripheral blood lymphocytes. These data might provide effective circulating biomarkers for predicting the efficacy of anti-PD-1 immunotherapy, and uncovered a novel regulatory mechanism of resistance to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Chao Sun
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Mengmeng Liu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Panyang Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yanyan Li
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yongsheng Zhang
- Prenatal Diagnosis Center, Reproductive Medicine Center, The First Hospital of Jilin University, Changchun, China
| | - Jing Huang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Wei B, Yang F, Yu L, Qiu C. Crosstalk between SUMOylation and other post-translational modifications in breast cancer. Cell Mol Biol Lett 2024; 29:107. [PMID: 39127633 DOI: 10.1186/s11658-024-00624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer represents the most prevalent tumor type and a foremost cause of mortality among women globally. The complex pathophysiological processes of breast cancer tumorigenesis and progression are regulated by protein post-translational modifications (PTMs), which are triggered by different carcinogenic factors and signaling pathways, with small ubiquitin-like modifier (SUMOylation) emerging as a particularly pivotal player in this context. Recent studies have demonstrated that SUMOylation does not act alone, but interacts with other PTMs, such as phosphorylation, ubiquitination, acetylation, and methylation, thereby leading to the regulation of various pathological activities in breast cancer. This review explores novel and existing mechanisms of crosstalk between SUMOylation and other PTMs. Typically, SUMOylation is regulated by phosphorylation to exert feedback control, while also modulates subsequent ubiquitination, acetylation, or methylation. The crosstalk pairs in promoting or inhibiting breast cancer are protein-specific and site-specific. In mechanism, alterations in amino acid side chain charges, protein conformations, or the occupation of specific sites at specific domains or sites underlie the complex crosstalk. In summary, this review centers on elucidating the crosstalk between SUMOylation and other PTMs in breast cancer oncogenesis and progression and discuss the molecular mechanisms contributing to these interactions, offering insights into their potential applications in facilitating novel treatments for breast cancer.
Collapse
Affiliation(s)
- Bajin Wei
- The Department of Breast Surgery, Key Laboratory of Organ Transplantation, Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zijingang Campus, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Cong Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zijingang Campus, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
42
|
Hui Y, Xia K, Zhong J, Zhang Y, Qiu Q, Chen Z, Wang L, Liu X. SENP1 reduces oxidative stress and apoptosis in renal ischaemia-reperfusion injury by deSUMOylation of HIF-1α. J Cell Mol Med 2024; 28:e70043. [PMID: 39205481 PMCID: PMC11358391 DOI: 10.1111/jcmm.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Renal ischaemia-reperfusion injury (RIRI) is a primary cause of acute kidney damage, occurring frequently in situations like renal transplantation, yet the underlying mechanisms were not fully understood. Sentrin-specific protease 1 (SENP1) is an important member of the SENP family, which is widely involved in various diseases. However, the role of SENP1 in RIRI has been unclear. In our study, we discovered that SENP1 was involved in RIRI and reduced renal cell apoptosis and oxidative stress at elevated levels. Further mechanistic studies showed that hypoxia-inducible factor-1α (HIF-1α) was identified as a substrate of SENP1. Furthermore, SENP1 deSUMOylated HIF-1α, which reduced the degradation of HIF-1α, and exerted a renoprotective function. In addition, the protective function was lost after application of the HIF-1α specific inhibitor KC7F2. Briefly, our results fully demonstrated that SENP1 reduced the degradation of HIF-1α and attenuated oxidative stress and apoptosis in RIRI by regulating the deSUMOylation of HIF-1α, suggesting that SENP1 may serve as a potential therapeutic target for the treatment of RIRI.
Collapse
Affiliation(s)
- Yumin Hui
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Kang Xia
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jiacheng Zhong
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ye Zhang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qiangmin Qiu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhiyuan Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lei Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiuheng Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
43
|
Li M, Zhang J, Li Z, Xu Z, Qian S, Tay LJ, Zhang Z, Yang F, Huang Y. The role and mechanism of SUMO modification in liver disease. Biomed Pharmacother 2024; 177:116898. [PMID: 38878635 DOI: 10.1016/j.biopha.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
Liver disease affects millions of people in the world, and China has the highest prevalence of liver disease in the world. Small ubiquitin-related modifier (SUMO) modification is a highly conserved post-translational modification of proteins. They are widely expressed in a variety of tissues, including the heart, liver, kidney and lung. SUMOylation of protein plays a key role in the occurrence and development of liver disease. Therefore, this study reviewed the effects of SUMO protein on non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases to provide novel strategies for targeted treatment of liver disease.
Collapse
Affiliation(s)
- Mengxue Li
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Jingrong Zhang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zihao Li
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zhou Xu
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Shishun Qian
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Lynn Jia Tay
- School of International Education, Anhui Medical University, Hefei 230032, China
| | - Ziwen Zhang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Furong Yang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| | - Yan Huang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; School of International Education, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
44
|
Ou X, Wang H, Shen Y, Zhang W, Sun J, Liu S. SENP1 regulates intermittent hypoxia-induced microglia mediated inflammation and cognitive dysfunction via wnt/β-catenin pathway. Eur J Pharmacol 2024; 975:176659. [PMID: 38762158 DOI: 10.1016/j.ejphar.2024.176659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS), characterized by repeated narrow or collapse of the upper airway during sleep, resulting in periodic reductions or cessations in ventilation, consequent hypoxia, hypercapnia, increased sympathetic activity and sleep fragmentation, places a serious burden on society and health care. Intermittent hypoxia (IH), which cause central nervous system (CNS) inflammation, and ultimately lead to neuropathy, is thought to be a crucial contributor to cognitive impairment in OSAS. Wnt signaling pathway exerts an important role in the regulation of CNS disorders. Particularly, it may be involved in the regulation of neuroinflammation and cognitive dysfunction. However, its underlying mechanism remains poorly understood. Accumulating evidence demonstrated that Wnt signaling pathway may inhibited in a variety of neurological disorders. Recently studies revealed that SUMOylation was participated in the regulation of neuroinflammation. Members of Wnt/β-catenin pathway may be targets of SUMOylation. In vitro and in vivo molecular biology experiments explored the regulatory mechanism of SUMOylation on Wnt/β-catenin in IH-induced neuroinflammation and neuronal injury, which demonstrated that IH induced the SUMOylation of β-catenin, microglia mediated inflammation and neuronal damage. Moreover, SENP1 regulated the de-SUMOylation of β-catenin, triggered Wnt/β-catenin pathway, and alleviated neuroinflammation and neuronal injury, thus improving IH-related mice cognitive dysfunction.
Collapse
Affiliation(s)
- Xiwen Ou
- Department of Respiratory Medicine and Sleep Lab, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongwei Wang
- Department of Respiratory Medicine and Sleep Lab, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yubin Shen
- Department of Respiratory Medicine and Sleep Lab, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weiyu Zhang
- Department of Respiratory Medicine and Sleep Lab, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jinyuan Sun
- Department of Respiratory Medicine and Sleep Lab, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Song Liu
- Department of Respiratory Medicine and Sleep Lab, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
45
|
Wu J, Huang M, Dong W, Chen Y, Zhou Q, Zhang Q, Zheng J, Liu Y, Zhang Y, Liu S, Yang C, Chen S, Huang J, Lin T, Chen X. SUMO E3 ligase MUL1 inhibits lymph node metastasis of bladder cancer by mediating mitochondrial HSPA9 translocation. Int J Biol Sci 2024; 20:3986-4006. [PMID: 39113711 PMCID: PMC11302872 DOI: 10.7150/ijbs.98772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Lymph node (LN) metastasis is the dominant cause of death in bladder cancer (BCa) patients, but the underlying mechanism remains largely unknown. In recent years, accumulating studies have confirmed that bidirectional mitochondria-nucleus communication is essential for sustaining multiple function of mitochondria. However, little has been studied regarding whether and how the translocation of mitochondrial proteins is involved in LN metastasis. In this study, we first identified that the SUMO E3 ligase MUL1 was significantly downregulated in LN-metastatic BCa tissues and correlated with a good prognosis. Mechanistically, MUL1 SUMOylated HSPA9 at the K612 residue, leading to HSPA9 export from mitochondria and interaction with SUZ12 and in the nucleus. Consequently, MUL1 induced the ubiquitination-mediated degradation of SUZ12 and EZH2 and induced downstream STAT3 pathway inhibition in a HSPA9-dependent manner. Importantly, mutation of HSPA9 SUMO-conjugation motifs limited the translocation of mitochondrial HSPA9 and blocked the HSPA9-SUZ12 and HSPA9-EZH2 interactions. With mutation of the HSPA9 K612 site, the suppressive role of MUL1 overexpression was lost in BCa cells. Further in vitro and in vivo assays revealed that MUL1 inhibits the metastasis and proliferation of BCa cells. Overall, our study reveals a novel function and molecular mechanism of SUMO E3 ligases in LN metastasis.
Collapse
Affiliation(s)
- Jilin Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, China
| | - Yuelong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Qiang Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Junjiong Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Yeqing Liu
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Yangjie Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Sen Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Chenwei Yang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Siting Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
46
|
Gou Y, Liu D, Chen M, Wei Y, Huang X, Han C, Feng Z, Zhang C, Lu T, Peng D, Xue Y. GPS-SUMO 2.0: an updated online service for the prediction of SUMOylation sites and SUMO-interacting motifs. Nucleic Acids Res 2024; 52:W238-W247. [PMID: 38709873 PMCID: PMC11223847 DOI: 10.1093/nar/gkae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Small ubiquitin-like modifiers (SUMOs) are tiny but important protein regulators involved in orchestrating a broad spectrum of biological processes, either by covalently modifying protein substrates or by noncovalently interacting with other proteins. Here, we report an updated server, GPS-SUMO 2.0, for the prediction of SUMOylation sites and SUMO-interacting motifs (SIMs). For predictor training, we adopted three machine learning algorithms, penalized logistic regression (PLR), a deep neural network (DNN), and a transformer, and used 52 404 nonredundant SUMOylation sites in 8262 proteins and 163 SIMs in 102 proteins. To further increase the accuracy of predicting SUMOylation sites, a pretraining model was first constructed using 145 545 protein lysine modification sites, followed by transfer learning to fine-tune the model. GPS-SUMO 2.0 exhibited greater accuracy in predicting SUMOylation sites than did other existing tools. For users, one or multiple protein sequences or identifiers can be input, and the prediction results are shown in a tabular list. In addition to the basic statistics, we integrated knowledge from 35 public resources to annotate SUMOylation sites or SIMs. The GPS-SUMO 2.0 server is freely available at https://sumo.biocuckoo.cn/. We believe that GPS-SUMO 2.0 can serve as a useful tool for further analysis of SUMOylation and SUMO interactions.
Collapse
Affiliation(s)
- Yujie Gou
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Dan Liu
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Miaomiao Chen
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Yuxiang Wei
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Xinhe Huang
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Cheng Han
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Zihao Feng
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Chi Zhang
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Teng Lu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing100190, China
| | - Di Peng
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Yu Xue
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
- Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing210031, China
| |
Collapse
|
47
|
Yang W, Mei FC, Lin W, White MA, Li L, Li Y, Pan S, Cheng X. Protein SUMOylation promotes cAMP-independent EPAC1 activation. Cell Mol Life Sci 2024; 81:283. [PMID: 38963422 PMCID: PMC11335207 DOI: 10.1007/s00018-024-05315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Protein SUMOylation is a prevalent stress-response posttranslational modification crucial for maintaining cellular homeostasis. Herein, we report that protein SUMOylation modulates cellular signaling mediated by cAMP, an ancient and universal stress-response second messenger. We identify K561 as a primary SUMOylation site in exchange protein directly activated by cAMP (EPAC1) via site-specific mapping of SUMOylation using mass spectrometry. Sequence and site-directed mutagenesis analyses reveal that a functional SUMO-interacting motif in EPAC1 is required for the binding of SUMO-conjugating enzyme UBC9, formation of EPAC1 nuclear condensate, and EPAC1 cellular SUMOylation. Heat shock-induced SUMO modification of EPAC1 promotes Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.
Collapse
Affiliation(s)
- Wenli Yang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Wei Lin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Mark A White
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Li Li
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Yue Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Cell Therapy Manufacturing Center, 2130 W Holcombe Blvd, Houston, TX, 77030, USA
| | - Sheng Pan
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA.
- Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX, USA.
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
48
|
Berkholz J, Karle W. Unravelling the molecular interplay: SUMOylation, PML nuclear bodies and vascular cell activity in health and disease. Cell Signal 2024; 119:111156. [PMID: 38574938 DOI: 10.1016/j.cellsig.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
In the seemingly well-researched field of vascular research, there are still many underestimated factors and molecular mechanisms. In recent years, SUMOylation has become increasingly important. SUMOylation is a post-translational modification in which small ubiquitin-related modifiers (SUMO) are covalently attached to target proteins. Sites where these SUMO modification processes take place in the cell nucleus are PML nuclear bodies (PML-NBs) - multiprotein complexes with their essential main component and organizer, the PML protein. PML and SUMO, either alone or as partners, influence a variety of cellular processes, including regulation of transcription, senescence, DNA damage response and defence against microorganisms, and are involved in innate immunity and inflammatory responses. They also play an important role in maintaining homeostasis in the vascular system and in pathological processes leading to the development and progression of cardiovascular diseases. This review summarizes information about the function of SUMO(ylation) and PML(-NBs) in the human vasculature from angiogenesis to disease and highlights their clinical potential as drug targets.
Collapse
Affiliation(s)
- Janine Berkholz
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.
| | - Weronika Karle
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
49
|
Chen H, Xing H, Zhong C, Lin X, Chen R, Luo N, Chen L, Huang Y. METTL3 confers protection against mitochondrial dysfunction and cognitive impairment in an Alzheimer disease mouse model by upregulating Mfn2 via N6-methyladenosine modification. J Neuropathol Exp Neurol 2024; 83:606-614. [PMID: 38408379 DOI: 10.1093/jnen/nlae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Mitofusin 2 (MFN2) has been found to be downregulated in patients with Alzheimer disease (AD) but little is known about its roles in the pathogenesis of AD. We explored the mechanism of N6-methyladenosine (m6A) methylation of Mfn2 in hippocampal mitochondrial dysfunction in an AD mouse model. APP/PS1 transgenic mice underwent stereotaxic injection of adeno-associated viruses and their behaviors were assessed. METTL3 and MFN2 expressions were measured by qRT-PCR and Western blot, accompanied by assessment of mitochondrial morphology, ATP, mitochondrial membrane potential, and amyloid-β content. Binding between METTL3 and MFN2, the total amount of m6A, and the m6A modification of Mfn2 were also determined. METTL3 and MFN2 were downregulated in hippocampal tissues of the AD model mice; METTL3 enhanced MFN2 expression via m6A modification. Overexpression of METTL3 or MFN2 ameliorated mitochondrial dysfunction indicated by fewer damaged mitochondria, increased ATP and JC-1 levels, and reduced Aβ content; improved cognitive impairment in the mice was indicated by the novel object discrimination index and Morris water maze tests. Effects of METTL3 overexpression were abrogated by further knockdown of MFN2. Thus, METTL3 ameliorated mitochondrial dysfunction and cognitive impairment in the AD model mice by increasing MFN2 expression via m6A modification.
Collapse
Affiliation(s)
- Hao Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Huaijie Xing
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Changhui Zhong
- Department of Intensive Care Unit, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Xuejuan Lin
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Ruipeng Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Ning Luo
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Lijun Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Yusheng Huang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| |
Collapse
|
50
|
Wang X, Zhu Z. Role of Ubiquitin-conjugating enzyme E2 (UBE2) in two immune-mediated inflammatory skin diseases: a mendelian randomization analysis. Arch Dermatol Res 2024; 316:249. [PMID: 38795139 PMCID: PMC11127807 DOI: 10.1007/s00403-024-02976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
Psoriasis vulgaris (PV) and Atopic dermatitis (AD) are the two major types of immune-mediated inflammatory skin disease (IMISD). Limited studies reported the association between Ubiquitin-conjugating enzyme E2 (UBE2) and IMISD. We employed a two-sample Mendelian randomization (MR) study to assess the causality between UBE2 and PV & AD. UBE2 association genome-wide association study (GWAS) data were collected. The inverse variance weighted (IVW) method was utilized as the principal method in our Mendelian randomization (MR) study, with additional using the MR-Egger, weighted median, simple mode, and weighted mode methods. The MR-Egger intercept test, Cochran's Q test, MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) and leave-one-out analysis were conducted to identify heterogeneity and pleiotropy, colocalization analysis was also performed. The results showed that Ubiquitin-conjugating enzyme E2 variant 1 (UBE2V1) was causally associated with PV (OR = 0.909, 95% CI: 0.830-0.996, P = 0.040), Ubiquitin-conjugating enzyme E2 L3 (UBE2L3) was causally associated with AD (OR = 0.799, 95% CI: 0.709-0.990, P < 0.001). Both UBE2V1 and UBE2L3 may play protective roles in patients with PV or AD, respectively. No other significant result has been investigated. No heterogeneity or pleiotropy was observed. This study provided new evidence of the relationship between UBE2V1 and PV, UBE2L3 and AD. Our MR suggested that UBE2V1 plays an inhibitory role in PV progression, UBE2L3 plays an inhibitory role in AD. These could be novel and effective ways to treat PV and AD.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zexin Zhu
- Department of Surgical Oncology, The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|