1
|
Gopaldass N, Chen KE, Collins B, Mayer A. Assembly and fission of tubular carriers mediating protein sorting in endosomes. Nat Rev Mol Cell Biol 2024; 25:765-783. [PMID: 38886588 DOI: 10.1038/s41580-024-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
Endosomes are central protein-sorting stations at the crossroads of numerous membrane trafficking pathways in all eukaryotes. They have a key role in protein homeostasis and cellular signalling and are involved in the pathogenesis of numerous diseases. Endosome-associated protein assemblies or coats collect transmembrane cargo proteins and concentrate them into retrieval domains. These domains can extend into tubular carriers, which then pinch off from the endosomal membrane and deliver the cargoes to appropriate subcellular compartments. Here we discuss novel insights into the structure of a number of tubular membrane coats that mediate the recruitment of cargoes into these carriers, focusing on sorting nexin-based coats such as Retromer, Commander and ESCPE-1. We summarize current and emerging views of how selective tubular endosomal carriers form and detach from endosomes by fission, highlighting structural aspects, conceptual challenges and open questions.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brett Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
2
|
Dutta M, Su Y, Plescia CB, Voth GA, Stahelin RV. The SARS-CoV-2 nucleoprotein associates with anionic lipid membranes. J Biol Chem 2024; 300:107456. [PMID: 38866325 PMCID: PMC11298601 DOI: 10.1016/j.jbc.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a lipid-enveloped virus that acquires its lipid bilayer from the host cell it infects. SARS-CoV-2 can spread from cell to cell or from patient to patient by undergoing assembly and budding to form new virions. The assembly and budding of SARS-CoV-2 is mediated by several structural proteins known as envelope (E), membrane (M), nucleoprotein (N), and spike (S), which can form virus-like particles (VLPs) when co-expressed in mammalian cells. Assembly and budding of SARS-CoV-2 from the host ER-Golgi intermediate compartment is a critical step in the virus acquiring its lipid bilayer. To date, little information is available on how SARS-CoV-2 assembles and forms new viral particles from host membranes. In this study, we used several lipid binding assays and found the N protein can strongly associate with anionic lipids including phosphoinositides and phosphatidylserine. Moreover, we show lipid binding occurs in the N protein C-terminal domain, which is supported by extensive in silico analysis. We demonstrate anionic lipid binding occurs for both the free and the N oligomeric forms, suggesting N can associate with membranes in the nucleocapsid form. Based on these results, we present a lipid-dependent model based on in vitro, cellular, and in silico data for the recruitment of N to assembly sites in the lifecycle of SARS-CoV-2.
Collapse
Affiliation(s)
- Mandira Dutta
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA
| | - Yuan Su
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Caroline B Plescia
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Gregory A Voth
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA; Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, The University of Chicago, Chicago, Illinois, USA.
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
3
|
Tsai FC, Guérin G, Pernier J, Bassereau P. Actin-membrane linkers: Insights from synthetic reconstituted systems. Eur J Cell Biol 2024; 103:151402. [PMID: 38461706 DOI: 10.1016/j.ejcb.2024.151402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
At the cell surface, the actin cytoskeleton and the plasma membrane interact reciprocally in a variety of processes related to the remodeling of the cell surface. The actin cytoskeleton has been known to modulate membrane organization and reshape the membrane. To this end, actin-membrane linking molecules play a major role in regulating actin assembly and spatially direct the interaction between the actin cytoskeleton and the membrane. While studies in cells have provided a wealth of knowledge on the molecular composition and interactions of the actin-membrane interface, the complex molecular interactions make it challenging to elucidate the precise actions of the actin-membrane linkers at the interface. Synthetic reconstituted systems, consisting of model membranes and purified proteins, have been a powerful approach to elucidate how actin-membrane linkers direct actin assembly to drive membrane shape changes. In this review, we will focus only on several actin-membrane linkers that have been studied by using reconstitution systems. We will discuss the design principles of these reconstitution systems and how they have contributed to the understanding of the cellular functions of actin-membrane linkers. Finally, we will provide a perspective on future research directions in understanding the intricate actin-membrane interaction.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| | - Gwendal Guérin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France
| | - Julien Pernier
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| |
Collapse
|
4
|
Hoque M, Li FQ, Weber WD, Chen JJ, Kim EN, Kuo PL, Visconti PE, Takemaru KI. The Cby3/ciBAR1 complex positions the annulus along the sperm flagellum during spermiogenesis. J Cell Biol 2024; 223:e202307147. [PMID: 38197861 PMCID: PMC10783431 DOI: 10.1083/jcb.202307147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Proper compartmentalization of the sperm flagellum is essential for fertility. The annulus is a septin-based ring that demarcates the midpiece (MP) and the principal piece (PP). It is assembled at the flagellar base, migrates caudally, and halts upon arriving at the PP. However, the mechanisms governing annulus positioning remain unknown. We report that a Chibby3 (Cby3)/Cby1-interacting BAR domain-containing 1 (ciBAR1) complex is required for this process. Ablation of either gene in mice results in male fertility defects, caused by kinked sperm flagella with the annulus mispositioned in the PP. Cby3 and ciBAR1 interact and colocalize to the annulus near the curved membrane invagination at the flagellar pocket. In the absence of Cby3, periannular membranes appear to be deformed, allowing the annulus to migrate over the fibrous sheath into the PP. Collectively, our results suggest that the Cby3/ciBAR1 complex regulates local membrane properties to position the annulus at the MP/PP junction.
Collapse
Affiliation(s)
- Mohammed Hoque
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - William David Weber
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jun Jie Chen
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Eunice N. Kim
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
5
|
Noguchi H. Curvature sensing of curvature-inducing proteins with internal structure. Phys Rev E 2024; 109:024403. [PMID: 38491597 DOI: 10.1103/physreve.109.024403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/15/2024] [Indexed: 03/18/2024]
Abstract
Many types of peripheral and transmembrane proteins can sense and generate membrane curvature. Laterally isotropic proteins and crescent proteins with twofold rotational symmetry, such as Bin/Amphiphysin/Rvs superfamily proteins, have been studied theoretically. However, proteins often have an asymmetric structure or a higher rotational symmetry. We studied theoretically the curvature sensing of proteins with asymmetric structures and structural deformations. First, we examined proteins consisting of two rodlike segments. When proteins have mirror symmetry, their sensing ability is similar to that of single-rod proteins; hence, with increasing protein density on a cylindrical membrane tube, a second- or first-order transition occurs at a middle or small tube radius, respectively. As asymmetry is introduced, this transition becomes a continuous change and metastable states appear at high protein densities. Protein with threefold, fivefold, or higher rotational symmetry has laterally isotropic bending energy. However, when a structural deformation is allowed, the protein can have a preferred orientation and stronger curvature sensing.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
6
|
Sim PF, Chek MF, Nguyen NTH, Nishimura T, Inaba T, Hakoshima T, Suetsugu S. The SH3 binding site in front of the WH1 domain contributes to the membrane binding of the BAR domain protein endophilin A2. J Biochem 2023; 175:57-67. [PMID: 37812440 DOI: 10.1093/jb/mvad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain of endophilin binds to the cell membrane and shapes it into a tubular shape for endocytosis. Endophilin has a Src-homology 3 (SH3) domain at their C-terminal. The SH3 domain interacts with the proline-rich motif (PRM) that is found in proteins such as neural Wiskott-Aldrich syndrome protein (N-WASP). Here, we re-examined the binding sites of the SH3 domain of endophilin in N-WASP by machine learning-based prediction and identified the previously unrecognized binding site. In addition to the well-recognized PRM at the central proline-rich region, we found a PRM in front of the N-terminal WASP homology 1 (WH1) domain of N-WASP (NtPRM) as a binding site of the endophilin SH3 domain. Furthermore, the diameter of the membrane tubules in the presence of NtPRM mutant was narrower and wider than that in the presence of N-WASP and in its absence, respectively. Importantly, the NtPRM of N-WASP was involved in the membrane localization of endophilin A2 in cells. Therefore, the NtPRM contributes to the binding of endophilin to N-WASP in membrane remodeling.
Collapse
Affiliation(s)
- Pei Fang Sim
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Min Fey Chek
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Nhung Thi Hong Nguyen
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tamako Nishimura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Takehiko Inaba
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Toshio Hakoshima
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shiro Suetsugu
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
7
|
Li T, Wang X, Li C, Fu Q, Shi X, Wang B. Investigation of Acid Tolerance Mechanism of Acetobacter pasteurianus under Different Concentrations of Substrate Acetic Acid Based on 4D Label-Free Proteomic Analysis. Foods 2023; 12:4471. [PMID: 38137274 PMCID: PMC10742644 DOI: 10.3390/foods12244471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Acetobacter pasteurianus is always used to brew vinegar because of its ability of producing and tolerating a high concentration of acetic acid. During vinegar fermentation, initial acetic acid contributes to acetic acid accumulation, which varies with initial concentrations. In this study, to investigate the mechanisms of tolerating and producing acetic acid of Acetobacter pasteurianus under different concentrations of substrate acetic acid, four-dimensional label-free proteomic technology has been used to analyze the protein profiles of Acetobacter pasteurianus at different growth stages (the lag and exponential phases) and different substrate acetic acid concentrations (0%, 3%, and 6%). A total of 2093 proteins were quantified in this study. The differentially expressed proteins were majorly involved in gene ontology terms of metabolic processes, cellular metabolic processes, and substance binding. Under acetic acid stress, strains might attenuate the toxicity of acetic acid by intensifying fatty acid metabolism, weakening the tricarboxylic acid cycle, glycerophospholipid and energy metabolism during the lag phase, while strains might promote the assimilation of acetic acid and inter-conversion of substances during the exponential phase by enhancing the tricarboxylic acid cycle, glycolysis, pyruvate, and energy metabolism to produce and tolerate acid. Besides, cell cycle regulation and protein translation might be potential acid tolerance pathways under high acid stress. The result contributes to the exploration of new potential acid tolerance mechanisms in Acetobacter pasteurianus from four-dimensional label-free relative quantitative proteomics analysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Wang
- Food College, Shihezi University, Shihezi 832000, China
| |
Collapse
|
8
|
Has C, Das SL. The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation. J Membr Biol 2023; 256:343-372. [PMID: 37650909 DOI: 10.1007/s00232-023-00289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Proteins and peptides with hydrophobic and amphiphilic segments are responsible for many biological functions. The sensing and generation of membrane curvature are the functions of several protein domains or motifs. While some specific membrane proteins play an essential role in controlling the curvature of distinct intracellular membranes, others participate in various cellular processes such as clathrin-mediated endocytosis, where several proteins sort themselves at the neck of the membrane bud. A few membrane-inserting proteins form nanopores that permeate selective ions and water to cross the membrane. In addition, many natural and synthetic small peptides and protein toxins disrupt the membrane by inducing nonspecific pores in the membrane. The pore formation causes cell death through the uncontrolled exchange between interior and exterior cellular contents. In this article, we discuss the insertion depth and orientation of protein/peptide helices, and their role as a sensor and inducer of membrane curvature as well as a pore former in the membrane. We anticipate that this extensive review will assist biophysicists to gain insight into curvature sensing, generation, and pore formation by membrane insertion.
Collapse
Affiliation(s)
- Chandra Has
- Department of Chemical Engineering, GSFC University, Vadodara, 391750, Gujarat, India.
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory and Department of Mechanical Engineering, Indian Institute of Technology, Palakkad, 678623, Kerala, India
| |
Collapse
|
9
|
Golonka I, Pucułek JE, Greber KE, Dryś A, Sawicki W, Musiał W. Evaluation of the Effect of Antibacterial Peptides on Model Monolayers. Int J Mol Sci 2023; 24:14861. [PMID: 37834308 PMCID: PMC10573695 DOI: 10.3390/ijms241914861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of the study was to assess the effect of the synthesized antibacterial peptides: P2 (WKWK)2-KWKWK-NH2, P4 (C12)2-KKKK-NH2, P5 (KWK)2-KWWW-NH2, and P6 (KK)2-KWWW-NH2 on the physicochemical properties of a model biological membrane made of azolectin or lecithin. The Langmuir Wilhelmy method was used for the experiments. Based on the compressibility factor, it was determined that the monolayers formed of azolectin and peptides in the aqueous subphase are in the condensed liquid phase. At the boundary between the condensed and expanded liquid phases, there was a monolayer made of lecithin and P4, P5 or P6 in the aqueous subphase. In turn, the film consisting of lecithin alone (37.7 mN/m) and lecithin and P2 (42.6 mN/m) in the water subphase was in the expanded liquid phase. All peptides change, to varying degrees, the organization and packing of molecules in the monolayer, both those made of azolectin and of lecithin. The test results can be used for further research to design a system with the expected properties for specific organisms.
Collapse
Affiliation(s)
- Iwona Golonka
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50–556 Wrocław, Poland; (I.G.); (J.E.P.); (A.D.)
| | - Jakub E. Pucułek
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50–556 Wrocław, Poland; (I.G.); (J.E.P.); (A.D.)
| | - Katarzyna E. Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (K.E.G.); (W.S.)
| | - Andrzej Dryś
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50–556 Wrocław, Poland; (I.G.); (J.E.P.); (A.D.)
| | - Wiesław Sawicki
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (K.E.G.); (W.S.)
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50–556 Wrocław, Poland; (I.G.); (J.E.P.); (A.D.)
| |
Collapse
|
10
|
Tomoe R, Fujimoto K, Tanaka T, Arakaki A, Kisailus D, Yoshino T. Lipid membrane modulated control of magnetic nanoparticles within bacterial systems. J Biosci Bioeng 2023; 136:253-260. [PMID: 37422334 DOI: 10.1016/j.jbiosc.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Bacterial magnetosomes synthesized by the magnetotactic bacterium Magnetospirillum magneticum are suitable for biomedical and biotechnological applications because of their high level of chemical purity of mineral with well-defined morphological features and a biocompatible lipid bilayer coating. However, utilizations of native magnetosomes are not sufficient for maximum effectiveness in many applications as the appropriate particle size differs. In this study, a method to control magnetosome particle size is developed for integration into targeted technological applications. The size and morphology of magnetosome crystals are highly regulated by the complex interactions of magnetosome synthesis-related genes; however, these interactions have not been fully elucidated. In contrast, previous studies have shown a positive correlation between vesicle and crystal sizes. Therefore, control of the magnetosome vesicle size is tuned by modifying the membrane lipid composition. Exogenous phospholipid synthesis pathways have been genetically introduced into M. magneticum. The experimental results show that these phospholipids altered the properties of the magnetosome membrane vesicles, which yielded larger magnetite crystal sizes. The genetic engineering approach presented in this study is shown to be useful for controlling magnetite crystal size without involving complex interactions of magnetosome synthesis-related genes.
Collapse
Affiliation(s)
- Ryoto Tomoe
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazushi Fujimoto
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Atsushi Arakaki
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
11
|
Wang H, Guo H, Sun J, Wang Y. Multi-omics analyses based on genes associated with oxidative stress and phospholipid metabolism revealed the intrinsic molecular characteristics of pancreatic cancer. Sci Rep 2023; 13:13564. [PMID: 37604837 PMCID: PMC10442332 DOI: 10.1038/s41598-023-40560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
Oxidative stress (OS), which impacts lipid metabolic reprogramming, can affect the biological activities of cancer cells. How oxidative stress and phospholipid metabolism (OSPM) influence the prognosis of pancreatic cancer (PC) needs to be elucidated. The metabolic data of 35 pancreatic tumor samples, 34 para-carcinoma samples, and 31 normal pancreatic tissues were obtained from the previously published literature. Pan-cancer samples were obtained from The Cancer Genome Atlas (TCGA). And the Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), ArrayExpress, and the Genotype-Tissue Expression (GTEx) databases were searched for more PC and normal pancreatic samples. The metabolites in PC were compared with normal and para-carcinoma tissues. The characteristics of the key OSPM genes were summarized in pan-cancer. The random survival forest analysis and multivariate Cox regression analysis were utilized to construct an OSPM-related signature. Based on this signature, PC samples were divided into high- and low-risk subgroups. The dysregulations of the tumor immune microenvironment were further investigated. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was conducted to investigate the expression of genes in the signature in PC and normal tissues. The protein levels of these genes were further demonstrated. In PC, metabolomic studies revealed the alteration of PM, while transcriptomic studies showed different expressions of OSPM-related genes. Then 930 PC samples were divided into three subtypes with different prognoses, and an OSPM-related signature including eight OSPM-related genes (i.e., SLC2A1, MMP14, TOP2A, MBOAT2, ANLN, ECT2, SLC22A3, and FGD6) was developed. High- and low-risk subgroups divided by the signature showed different prognoses, expression levels of immune checkpoint genes, immune cell infiltration, and tumor microenvironment. The risk score was negatively correlated with the proportion of TIL, pDC, Mast cell, and T cell co-stimulation. The expression levels of genes in the signature were verified in PC and normal samples. The protein levels of SLC2A1, MMP14, TOP2A, MBOAT2, ANLN, and SLC22A3 showed up-regulation in PC samples compared with normal tissues. After integrating metabolomics and transcriptomics data, the alterations in OSPM in PC were investigated, and an OSPM-related signature was developed, which was helpful for the prognostic assessment and individualized treatment for PC.
Collapse
Affiliation(s)
- Hongdong Wang
- Department of Hepatobiliary Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuefeng Wang
- Department of Hepatobiliary Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
12
|
Bura A, Čabrijan S, Đurić I, Bruketa T, Jurak Begonja A. A Plethora of Functions Condensed into Tiny Phospholipids: The Story of PI4P and PI(4,5)P 2. Cells 2023; 12:1411. [PMID: 37408244 PMCID: PMC10216963 DOI: 10.3390/cells12101411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Phosphoinositides (PIs) are small, phosphorylated lipids that serve many functions in the cell. They regulate endo- and exocytosis, vesicular trafficking, actin reorganization, and cell mobility, and they act as signaling molecules. The most abundant PIs in the cell are phosphatidylinositol-4-monophosphate (PI4P) and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. PI4P is mostly localized at the Golgi apparatus where it regulates the anterograde trafficking from the Golgi apparatus to the plasma membrane (PM), but it also localizes at the PM. On the other hand, the main localization site of PI(4,5)P2 is the PM where it regulates the formation of endocytic vesicles. The levels of PIs are regulated by many kinases and phosphatases. Four main kinases phosphorylate the precursor molecule phosphatidylinositol into PI4P, divided into two classes (PI4KIIα, PI4KIIβ, PI4KIIIα, and PI4KIIIβ), and three main kinases phosphorylate PI4P to form PI(4,5)P2 (PI4P5KIα, PI4P5KIβ, and PI4P5KIγ). In this review, we discuss the localization and function of the kinases that produce PI4P and PI(4,5)P2, as well as the localization and function of their product molecules with an overview of tools for the detection of these PIs.
Collapse
Affiliation(s)
| | | | | | | | - Antonija Jurak Begonja
- Laboratory of Hematopoiesis, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
13
|
Minegishi T, Kastian RF, Inagaki N. Mechanical regulation of synapse formation and plasticity. Semin Cell Dev Biol 2023; 140:82-89. [PMID: 35659473 DOI: 10.1016/j.semcdb.2022.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 01/28/2023]
Abstract
Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics.
Collapse
Affiliation(s)
- Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ria Fajarwati Kastian
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; Research Center for Genetic Engineering, National Research and Innovation Agency Republic of Indonesia, Cibinong, Bogor, Indonesia
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
14
|
Noguchi H. Disappearance, division, and route change of excitable reaction-diffusion waves in deformable membranes. Sci Rep 2023; 13:6207. [PMID: 37069214 PMCID: PMC10110617 DOI: 10.1038/s41598-023-33376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
Shapes of biomembrane in living cells are regulated by curvature-inducing proteins. However, the effects of membrane deformation on signal transductions such as chemical waves have not been researched adequately. Here, we report that membrane deformation can alter the propagation of excitable reaction-diffusion waves using state-of-the-art simulations. Reaction waves can induce large shape transformations, such as membrane budding and necking, that erase or divide the wave, depending on the curvature generated by the waves, feedback to the wave propagation, and the ratio of the reaction and deformation times. In genus-2 vesicles, wave division occurs at branching points and collided waves disappear together. We demonstrate that the occasional disappearance of the waves can alter the pathway of wave propagation. Our findings suggest that membrane deformation and reaction waves can together regulate signal transductions on biomembranes.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan.
| |
Collapse
|
15
|
Fulton MD, Najahi-Missaoui W. Liposomes in Cancer Therapy: How Did We Start and Where Are We Now. Int J Mol Sci 2023; 24:ijms24076615. [PMID: 37047585 PMCID: PMC10095497 DOI: 10.3390/ijms24076615] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Since their first discovery in the 1960s by Alec Bangham, liposomes have been shown to be effective drug delivery systems for treating various cancers. Several liposome-based formulations received approval by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA), with many others in clinical trials. Liposomes have several advantages, including improved pharmacokinetic properties of the encapsulated drug, reduced systemic toxicity, extended circulation time, and targeted disposition in tumor sites due to the enhanced permeability and retention (EPR) mechanism. However, it is worth noting that despite their efficacy in treating various cancers, liposomes still have some potential toxicity and lack specific targeting and disposition. This explains, in part, why their translation into the clinic has progressed only incrementally, which poses the need for more research to focus on addressing such translational limitations. This review summarizes the main properties of liposomes, their current status in cancer therapy, and their limitations and challenges to achieving maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Melody D. Fulton
- Department of Chemistry, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
16
|
Sotodosos-Alonso L, Pulgarín-Alfaro M, Del Pozo MA. Caveolae Mechanotransduction at the Interface between Cytoskeleton and Extracellular Matrix. Cells 2023; 12:cells12060942. [PMID: 36980283 PMCID: PMC10047380 DOI: 10.3390/cells12060942] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The plasma membrane (PM) is subjected to multiple mechanical forces, and it must adapt and respond to them. PM invaginations named caveolae, with a specific protein and lipid composition, play a crucial role in this mechanosensing and mechanotransduction process. They respond to PM tension changes by flattening, contributing to the buffering of high-range increases in mechanical tension, while novel structures termed dolines, sharing Caveolin1 as the main component, gradually respond to low and medium forces. Caveolae are associated with different types of cytoskeletal filaments, which regulate membrane tension and also initiate multiple mechanotransduction pathways. Caveolar components sense the mechanical properties of the substrate and orchestrate responses that modify the extracellular matrix (ECM) according to these stimuli. They perform this function through both physical remodeling of ECM, where the actin cytoskeleton is a central player, and via the chemical alteration of the ECM composition by exosome deposition. Here, we review mechanotransduction regulation mediated by caveolae and caveolar components, focusing on how mechanical cues are transmitted through the cellular cytoskeleton and how caveolae respond and remodel the ECM.
Collapse
Affiliation(s)
- Laura Sotodosos-Alonso
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Marta Pulgarín-Alfaro
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| |
Collapse
|
17
|
Mukherjee A, Ron JE, Hu HT, Nishimura T, Hanawa‐Suetsugu K, Behkam B, Mimori‐Kiyosue Y, Gov NS, Suetsugu S, Nain AS. Actin Filaments Couple the Protrusive Tips to the Nucleus through the I-BAR Domain Protein IRSp53 during the Migration of Cells on 1D Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207368. [PMID: 36698307 PMCID: PMC9982589 DOI: 10.1002/advs.202207368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Indexed: 05/31/2023]
Abstract
The cell migration cycle, well-established in 2D, proceeds with forming new protrusive structures at the cell membrane and subsequent redistribution of contractile machinery. Three-dimensional (3D) environments are complex and composed of 1D fibers, and 1D fibers are shown to recapitulate essential features of 3D migration. However, the establishment of protrusive activity at the cell membrane and contractility in 1D fibrous environments remains partially understood. Here the role of membrane curvature regulator IRSp53 is examined as a coupler between actin filaments and plasma membrane during cell migration on single, suspended 1D fibers. IRSp53 depletion reduced cell-length spanning actin stress fibers that originate from the cell periphery, protrusive activity, and contractility, leading to uncoupling of the nucleus from cellular movements. A theoretical model capable of predicting the observed transition of IRSp53-depleted cells from rapid stick-slip migration to smooth and slower migration due to reduced actin polymerization at the cell edges is developed, which is verified by direct measurements of retrograde actin flow using speckle microscopy. Overall, it is found that IRSp53 mediates actin recruitment at the cellular tips leading to the establishment of cell-length spanning fibers, thus demonstrating a unique role of IRSp53 in controlling cell migration in 3D.
Collapse
Affiliation(s)
- Apratim Mukherjee
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Jonathan Emanuel Ron
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot7610001Israel
| | - Hooi Ting Hu
- Division of Biological ScienceGraduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | - Tamako Nishimura
- Division of Biological ScienceGraduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | | | - Bahareh Behkam
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Yuko Mimori‐Kiyosue
- Laboratory for Molecular and Cellular DynamicsRIKEN Center for Biosystems Dynamics ResearchMinatojima‐minaminachiChuo‐kuKobeHyogo650‐0047Japan
| | - Nir Shachna Gov
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot7610001Israel
| | - Shiro Suetsugu
- Division of Biological ScienceGraduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
- Data Science CenterNara Institute of Science and TechnologyIkoma630‐0192Japan
- Center for Digital Green‐innovationNara Institute of Science and TechnologyIkoma630‐0192Japan
| | | |
Collapse
|
18
|
Saltukoglu D, Özdemir B, Holtmannspötter M, Reski R, Piehler J, Kurre R, Reth M. Plasma membrane topography governs the 3D dynamic localization of IgM B cell antigen receptor clusters. EMBO J 2023; 42:e112030. [PMID: 36594262 PMCID: PMC9929642 DOI: 10.15252/embj.2022112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
B lymphocytes recognize bacterial or viral antigens via different classes of the B cell antigen receptor (BCR). Protrusive structures termed microvilli cover lymphocyte surfaces, and are thought to perform sensory functions in screening antigen-bearing surfaces. Here, we have used lattice light-sheet microscopy in combination with tailored custom-built 4D image analysis to study the cell-surface topography of B cells of the Ramos Burkitt's Lymphoma line and the spatiotemporal organization of the IgM-BCR. Ramos B-cell surfaces were found to form dynamic networks of elevated ridges bridging individual microvilli. A fraction of membrane-localized IgM-BCR was found in clusters, which were mainly associated with the ridges and the microvilli. The dynamic ridge-network organization and the IgM-BCR cluster mobility were linked, and both were controlled by Arp2/3 complex activity. Our results suggest that dynamic topographical features of the cell surface govern the localization and transport of IgM-BCR clusters to facilitate antigen screening by B cells.
Collapse
Affiliation(s)
- Deniz Saltukoglu
- Department of Molecular Immunology, Biology III, Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Signaling Research Centers CIBSS and BIOSSUniversity of FreiburgFreiburgGermany
| | - Bugra Özdemir
- Signaling Research Centers CIBSS and BIOSSUniversity of FreiburgFreiburgGermany
- Plant Biotechnology, Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Present address:
Euro‐BioImaging, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Michael Holtmannspötter
- Department of Biology/Chemistry and Center for Cellular NanoanalyticsOsnabrück UniversityOsnabrückGermany
| | - Ralf Reski
- Signaling Research Centers CIBSS and BIOSSUniversity of FreiburgFreiburgGermany
- Plant Biotechnology, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular NanoanalyticsOsnabrück UniversityOsnabrückGermany
| | - Rainer Kurre
- Department of Biology/Chemistry and Center for Cellular NanoanalyticsOsnabrück UniversityOsnabrückGermany
| | - Michael Reth
- Department of Molecular Immunology, Biology III, Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Signaling Research Centers CIBSS and BIOSSUniversity of FreiburgFreiburgGermany
| |
Collapse
|
19
|
Prakash S, Krishna A, Sengupta D. Cofilin-Membrane Interactions: Electrostatic Effects in Phosphoinositide Lipid Binding. Chemphyschem 2023; 24:e202200509. [PMID: 36200760 DOI: 10.1002/cphc.202200509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/06/2022] [Indexed: 02/04/2023]
Abstract
The actin cytoskeleton interacts with the cell membrane primarily through the indirect interactions of actin-binding proteins such as cofilin-1. The molecular mechanisms underlying the specific interactions of cofilin-1 with membrane lipids are still unclear. Here, we performed coarse-grain molecular dynamics simulations of cofilin-1 with complex lipid bilayers to analyze the specificity of protein-lipid interactions. We observed the maximal interactions with phosphoinositide (PIP) lipids, especially PIP2 and PIP3 lipids. A good match was observed between the residues predicted to interact and previous experimental studies. The clustering of PIP lipids around the membrane bound protein leads to an overall lipid demixing and gives rise to persistent membrane curvature. Further, through a series of control simulations, we observe that both electrostatics and geometry are critical for specificity of lipid binding. Our current study is a step towards understanding the physico-chemical basis of cofilin-PIP lipid interactions.
Collapse
Affiliation(s)
- Shikha Prakash
- CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Anjali Krishna
- CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Current Address: School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Durba Sengupta
- CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
20
|
Noguchi H. Membrane domain formation induced by binding/unbinding of curvature-inducing molecules on both membrane surfaces. SOFT MATTER 2023; 19:679-688. [PMID: 36597888 DOI: 10.1039/d2sm01536f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The domain formation of curvature-inducing molecules, such as peripheral or transmembrane proteins and conical surfactants, is studied in thermal equilibrium and nonequilibrium steady states using meshless membrane simulations. These molecules can bind to both surfaces of a bilayer membrane and also move to the opposite leaflet by a flip-flop. Under symmetric conditions for the two leaflets, the membrane domains form checkerboard patterns in addition to striped and spot patterns. The unbound membrane stabilizes the vertices of the checkerboard. Under asymmetric conditions, the domains form kagome-lattice and thread-like patterns. In the nonequilibrium steady states, a flow of the binding molecules between the upper and lower solutions can occur via flip-flop.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| |
Collapse
|
21
|
Remodeling of the Plasma Membrane by Surface-Bound Protein Monomers and Oligomers: The Critical Role of Intrinsically Disordered Regions. J Membr Biol 2022; 255:651-663. [PMID: 35930019 PMCID: PMC9718270 DOI: 10.1007/s00232-022-00256-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022]
Abstract
The plasma membrane (PM) of cells is a dynamic structure whose morphology and composition is in constant flux. PM morphologic changes are particularly relevant for the assembly and disassembly of signaling platforms involving surface-bound signaling proteins, as well as for many other mechanochemical processes that occur at the PM surface. Surface-bound membrane proteins (SBMP) require efficient association with the PM for their function, which is often achieved by the coordinated interactions of intrinsically disordered regions (IDRs) and globular domains with membrane lipids. This review focuses on the role of IDR-containing SBMPs in remodeling the composition and curvature of the PM. The ability of IDR-bearing SBMPs to remodel the Gaussian and mean curvature energies of the PM is intimately linked to their ability to sort subsets of phospholipids into nanoclusters. We therefore discuss how IDRs of many SBMPs encode lipid-binding specificity or facilitate cluster formation, both of which increase their membrane remodeling capacity, and how SBMP oligomers alter membrane shape by monolayer surface area expansion and molecular crowding.
Collapse
|
22
|
Zhu Y, Li S, Jaume A, Jani RA, Delevoye C, Raposo G, Marks MS. Type II phosphatidylinositol 4-kinases function sequentially in cargo delivery from early endosomes to melanosomes. J Biophys Biochem Cytol 2022; 221:213509. [PMID: 36169639 PMCID: PMC9524207 DOI: 10.1083/jcb.202110114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
Melanosomes are pigment cell-specific lysosome-related organelles in which melanin pigments are synthesized and stored. Melanosome maturation requires delivery of melanogenic cargoes via tubular transport carriers that emanate from early endosomes and that require BLOC-1 for their formation. Here we show that phosphatidylinositol-4-phosphate (PtdIns4P) and the type II PtdIns-4-kinases (PI4KIIα and PI4KIIβ) support BLOC-1-dependent tubule formation to regulate melanosome biogenesis. Depletion of either PI4KIIα or PI4KIIβ with shRNAs in melanocytes reduced melanin content and misrouted BLOC-1-dependent cargoes to late endosomes/lysosomes. Genetic epistasis, cell fractionation, and quantitative live-cell imaging analyses show that PI4KIIα and PI4KIIβ function sequentially and non-redundantly downstream of BLOC-1 during tubule elongation toward melanosomes by generating local pools of PtdIns4P. The data show that both type II PtdIns-4-kinases are necessary for efficient BLOC-1-dependent tubule elongation and subsequent melanosome contact and content delivery during melanosome biogenesis. The independent functions of PtdIns-4-kinases in tubule extension are downstream of likely redundant functions in BLOC-1-dependent tubule initiation.
Collapse
Affiliation(s)
- Yueyao Zhu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA
| | - Shuixing Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Department of Pathology and Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alexa Jaume
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Department of Pathology and Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Riddhi Atul Jani
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, France
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Department of Pathology and Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Tsai FC, Henderson JM, Jarin Z, Kremneva E, Senju Y, Pernier J, Mikhajlov O, Manzi J, Kogan K, Le Clainche C, Voth GA, Lappalainen P, Bassereau P. Activated I-BAR IRSp53 clustering controls the formation of VASP-actin-based membrane protrusions. SCIENCE ADVANCES 2022; 8:eabp8677. [PMID: 36240267 PMCID: PMC9565809 DOI: 10.1126/sciadv.abp8677] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Filopodia are actin-rich membrane protrusions essential for cell morphogenesis, motility, and cancer invasion. How cells control filopodium initiation on the plasma membrane remains elusive. We performed experiments in cellulo, in vitro, and in silico to unravel the mechanism of filopodium initiation driven by the membrane curvature sensor IRSp53 (insulin receptor substrate protein of 53 kDa). We showed that full-length IRSp53 self-assembles into clusters on membranes depending on PIP2. Using well-controlled in vitro reconstitution systems, we demonstrated that IRSp53 clusters recruit the actin polymerase VASP (vasodilator-stimulated phosphoprotein) to assemble actin filaments locally on membranes, leading to the generation of actin-filled membrane protrusions reminiscent of filopodia. By pulling membrane nanotubes from live cells, we observed that IRSp53 can only be enriched and trigger actin assembly in nanotubes at highly dynamic membrane regions. Our work supports a regulation mechanism of IRSp53 in its attributes of curvature sensation and partner recruitment to ensure a precise spatial-temporal control of filopodium initiation.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| | - J. Michael Henderson
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Université de Paris, CNRS UMR 3691, 75015 Paris, France
| | - Zack Jarin
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Elena Kremneva
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Yosuke Senju
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Oleg Mikhajlov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - John Manzi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Konstantin Kogan
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| |
Collapse
|
24
|
Tsai FC, Henderson JM, Jarin Z, Kremneva E, Senju Y, Pernier J, Mikhajlov O, Manzi J, Kogan K, Le Clainche C, Voth GA, Lappalainen P, Bassereau P. Activated I-BAR IRSp53 clustering controls the formation of VASP-actin-based membrane protrusions. SCIENCE ADVANCES 2022; 8:eabp8677. [PMID: 36240267 DOI: 10.1101/2022.03.04.483020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Filopodia are actin-rich membrane protrusions essential for cell morphogenesis, motility, and cancer invasion. How cells control filopodium initiation on the plasma membrane remains elusive. We performed experiments in cellulo, in vitro, and in silico to unravel the mechanism of filopodium initiation driven by the membrane curvature sensor IRSp53 (insulin receptor substrate protein of 53 kDa). We showed that full-length IRSp53 self-assembles into clusters on membranes depending on PIP2. Using well-controlled in vitro reconstitution systems, we demonstrated that IRSp53 clusters recruit the actin polymerase VASP (vasodilator-stimulated phosphoprotein) to assemble actin filaments locally on membranes, leading to the generation of actin-filled membrane protrusions reminiscent of filopodia. By pulling membrane nanotubes from live cells, we observed that IRSp53 can only be enriched and trigger actin assembly in nanotubes at highly dynamic membrane regions. Our work supports a regulation mechanism of IRSp53 in its attributes of curvature sensation and partner recruitment to ensure a precise spatial-temporal control of filopodium initiation.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - J Michael Henderson
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Université de Paris, CNRS UMR 3691, 75015 Paris, France
| | - Zack Jarin
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Elena Kremneva
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Yosuke Senju
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Oleg Mikhajlov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - John Manzi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Konstantin Kogan
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| |
Collapse
|
25
|
Poderyte M, Ramanavicius A, Valiūnienė A. Scanning electrochemical microscopy based irreversible destruction of living cells. Biosens Bioelectron 2022; 216:114621. [PMID: 36007410 DOI: 10.1016/j.bios.2022.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 08/02/2022] [Indexed: 11/02/2022]
Abstract
In this research, scanning electrochemical microscopy combined with electrochemical impedance spectroscopy has been applied to irreversible electroporation of active yeast cells by causing cell death. This finding is important for the development of irreversible electroporation technique, which could be suitable for the curing of cancerous tissues, because during this research cell death has been achieved using relatively low ultramicro-electrode (UME) voltage, precisely of 2.0 V vs Ag/AgCl,Cl-sat. It was determined that the irreversibly electroporated area of immobilized yeast cells was located directly below the UME and was of approximately 20 times larger width than the diameter of the UME, leaving undamaged cells out of this area. The ability of SECM to move the UME with high accuracy in x, y, and z directions and the ability to use electrodes of various diameters as well as the fact that the diameter of the electroporated area depends on the diameter of the UME and on the distance between the UME and the surface, what offers the possibility to establish targeted electroporation systems for selective treatment of tissues.
Collapse
Affiliation(s)
- Margarita Poderyte
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Naugarduko 24, Vilnius, LT, 03225, Lithuania
| | - Arunas Ramanavicius
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Naugarduko 24, Vilnius, LT, 03225, Lithuania
| | - Aušra Valiūnienė
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Naugarduko 24, Vilnius, LT, 03225, Lithuania.
| |
Collapse
|
26
|
Tamemoto N, Noguchi H. Excitable reaction-diffusion waves of curvature-inducing proteins on deformable membrane tubes. Phys Rev E 2022; 106:024403. [PMID: 36110014 DOI: 10.1103/physreve.106.024403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Living cells employ excitable reaction-diffusion waves for internal cellular functions, in which curvature-inducing proteins are often involved. However, the role of their mechanochemical coupling is not well understood. Here, we report the membrane deformation induced by the excitable reaction-diffusion waves of curvature-inducing proteins and the alternation in the waves due to the deformation, using a coarse-grained simulation of tubular membranes with a modified FitzHugh-Nagumo model. Protein-propagating waves deform tubular membranes and large deformations induce budding and erase waves. The wave speed and shape are determined by a combination of membrane deformation and spatial distribution of the curvature-inducing protein. Waves are also undulated in the azimuthal direction depending on the condition. Rotationally symmetric waves locally deform the tubes into a symmetric shape but maintain a straight shape on average. Our simulation method can be applied to other chemical reaction models and used to investigate various biomembrane phenomena.
Collapse
Affiliation(s)
- Naoki Tamemoto
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
27
|
Heterologous Expressed NbSWP12 from Microsporidia Nosema bombycis Can Bind with Phosphatidylinositol 3-phosphate and Affect Vesicle Genesis. J Fungi (Basel) 2022; 8:jof8080764. [PMID: 35893133 PMCID: PMC9332396 DOI: 10.3390/jof8080764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Microsporidia are a big group of single-celled obligate intracellular organisms infecting most animals and some protozoans. These minimalist eukaryotes lack numerous genes in metabolism and vesicle trafficking. Here, we demonstrated that the spore wall protein NbSWP12 of microsporidium Nosema bombycis belongs to Bin/Amphiphysin/Rvs (BAR) protein family and can specifically bind with phosphatidylinositol 3-phosphate [Ptdlns(3)P]. Since Ptdlns(3)P is involved in endosomal vesicle biogenesis and trafficking, we heterologous expressed NbSWP12 in yeast Saccharomyces cerevisiae and proved that NbSWP12 can target the cell membrane and endocytic vesicles. Nbswp12 transformed into Gvp36 (a BAR protein of S. cerevisiae) deletion mutant rescued the defect phenotype of vesicular traffic. This study identified a BAR protein function in vesicle genesis and sorting and provided clues for further understanding of how microsporidia internalize nutrients and metabolites during proliferation.
Collapse
|
28
|
Noguchi H. Membrane shape deformation induced by curvature-inducing proteins consisting of chiral crescent binding and intrinsically disordered domains. J Chem Phys 2022; 157:034901. [DOI: 10.1063/5.0098249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Curvature-inducing proteins containing a bin/amphiphysin/Rvs domain often have intrinsically disordered domains. Recent experiments have shown that these disordered chains enhance curvature sensing and generation. Here, we report on the modification of protein–membrane interactions by disordered chains using meshless membrane simulations. The protein and bound membrane are modeled together as a chiral crescent protein rod with two excluded-volume chains. As the chain length increases, the repulsion between them reduces the cluster size of the proteins. It induces spindle-shaped vesicles and a transition between arc-shaped and circular protein assemblies in a disk-shaped vesicle. For flat membranes, an intermediate chain length induces many tubules owing to the repulsion between the protein assemblies, whereas longer chains promote perpendicular elongation of tubules. Moreover, protein rods with zero rod curvature and sufficiently long chains stabilize the spherical buds. For proteins with a negative rod curvature, an intermediate chain length induces a rugged membrane with branched protein assemblies, whereas longer chains induce the formation of tubules with periodic concave-ring structures.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
29
|
Oe Y, Kakuda K, Yoshimura SI, Hara N, Hasegawa J, Terawaki S, Kimura Y, Ikenaka K, Suetsugu S, Mochizuki H, Yoshimori T, Nakamura S. PACSIN1 is indispensable for amphisome-lysosome fusion during basal autophagy and subsets of selective autophagy. PLoS Genet 2022; 18:e1010264. [PMID: 35771772 PMCID: PMC9246181 DOI: 10.1371/journal.pgen.1010264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/19/2022] [Indexed: 12/09/2022] Open
Abstract
Autophagy is an indispensable process that degrades cytoplasmic materials to maintain cellular homeostasis. During autophagy, double-membrane autophagosomes surround cytoplasmic materials and either fuse with endosomes (called amphisomes) and then lysosomes, or directly fuse with lysosomes, in both cases generating autolysosomes that degrade their contents by lysosomal hydrolases. However, it remains unclear if there are specific mechanisms and/or conditions which distinguish these alternate routes. Here, we identified PACSIN1 as a novel autophagy regulator. PACSIN1 deletion markedly decreased autophagic activity under basal nutrient-rich conditions but not starvation conditions, and led to amphisome accumulation as demonstrated by electron microscopic and co-localization analysis, indicating inhibition of lysosome fusion. PACSIN1 interacted with SNAP29, an autophagic SNARE, and was required for proper assembly of the STX17 and YKT6 complexes. Moreover, PACSIN1 was required for lysophagy, aggrephagy but not mitophagy, suggesting cargo-specific fusion mechanisms. In C. elegans, deletion of sdpn-1, a homolog of PACSINs, inhibited basal autophagy and impaired clearance of aggregated protein, implying a conserved role of PACSIN1. Taken together, our results demonstrate the amphisome-lysosome fusion process is preferentially regulated in response to nutrient state and stress, and PACSIN1 is a key to specificity during autophagy.
Collapse
Affiliation(s)
- Yukako Oe
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Keita Kakuda
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shin-ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naohiro Hara
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junya Hasegawa
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seigo Terawaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Okayama, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan
- Center for Digital Green-Innovation, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- * E-mail: (TY); (SN)
| | - Shuhei Nakamura
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
- * E-mail: (TY); (SN)
| |
Collapse
|
30
|
Noguchi H, Tozzi C, Arroyo M. Binding of anisotropic curvature-inducing proteins onto membrane tubes. SOFT MATTER 2022; 18:3384-3394. [PMID: 35416229 DOI: 10.1039/d2sm00274d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bin/Amphiphysin/Rvs superfamily proteins and other curvature-inducing proteins have anisotropic shapes and anisotropically bend biomembranes. Here, we report how the anisotropic proteins bind the membrane tube and are orientationally ordered using mean-field theory including an orientation-dependent excluded volume. The proteins exhibit a second-order or first-order nematic transition with increasing protein density depending on the radius of the membrane tube. The tube curvatures for the maximum protein binding and orientational order are different and varied by the protein density and rigidity. As the external force along the tube axis increases, a first-order transition from a large tube radius with low protein density to a small radius with high density occurs once, and subsequently, the protein orientation tilts to the tube-axis direction. When an isotropic bending energy is used for the proteins with an elliptic shape, the force-dependence curves become symmetric and the first-order transition occurs twice. This theory quantitatively reproduces the results of meshless membrane simulation for short proteins, whereas deviations are seen for long proteins owing to the formation of protein clusters.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| | - Caterina Tozzi
- Universitat Politèdcnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
| | - Marino Arroyo
- Universitat Politèdcnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), 08034 Barcelona, Spain
| |
Collapse
|
31
|
Insights into Membrane Curvature Sensing and Membrane Remodeling by Intrinsically Disordered Proteins and Protein Regions. J Membr Biol 2022; 255:237-259. [PMID: 35451616 PMCID: PMC9028910 DOI: 10.1007/s00232-022-00237-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
Abstract
Cellular membranes are highly dynamic in shape. They can rapidly and precisely regulate their shape to perform various cellular functions. The protein’s ability to sense membrane curvature is essential in various biological events such as cell signaling and membrane trafficking. As they are bound, these curvature-sensing proteins may also change the local membrane shape by one or more curvature driving mechanisms. Established curvature-sensing/driving mechanisms rely on proteins with specific structural features such as amphipathic helices and intrinsically curved shapes. However, the recent discovery and characterization of many proteins have shattered the protein structure–function paradigm, believing that the protein functions require a unique structural feature. Typically, such structure-independent functions are carried either entirely by intrinsically disordered proteins or hybrid proteins containing disordered regions and structured domains. It is becoming more apparent that disordered proteins and regions can be potent sensors/inducers of membrane curvatures. In this article, we outline the basic features of disordered proteins and regions, the motifs in such proteins that encode the function, membrane remodeling by disordered proteins and regions, and assays that may be employed to investigate curvature sensing and generation by ordered/disordered proteins.
Collapse
|
32
|
Belessiotis-Richards A, Larsen AH, Higgins SG, Stevens MM, Alexander-Katz A. Coarse-Grained Simulations Suggest Potential Competing Roles of Phosphoinositides and Amphipathic Helix Structures in Membrane Curvature Sensing of the AP180 N-Terminal Homology Domain. J Phys Chem B 2022; 126:2789-2797. [PMID: 35394774 PMCID: PMC9036517 DOI: 10.1021/acs.jpcb.2c00239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Indexed: 11/30/2022]
Abstract
The generation and sensing of membrane curvature by proteins has become of increasing interest to researchers with multiple mechanisms, from hydrophobic insertion to protein crowding, being identified. However, the role of charged lipids in the membrane curvature-sensing process is still far from understood. Many proteins involved in endocytosis bind phosphatidylinositol 4,5-bisphosphate (PIP2) lipids, allowing these proteins to accumulate at regions of local curvature. Here, using coarse-grained molecular dynamics simulations, we study the curvature-sensing behavior of the ANTH domain, a protein crucial for endocytosis. We selected three ANTH crystal structures containing either an intact, split, or truncated terminal amphipathic helix. On neutral membranes, the ANTH domain has innate curvature-sensing ability. In the presence of PIP2, however, only the domain with an intact helix senses curvature. Our work sheds light on the role of PIP2 and its modulation of membrane curvature sensing by proteins.
Collapse
Affiliation(s)
- Alexis Belessiotis-Richards
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Andreas H. Larsen
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Stuart G. Higgins
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Molly M. Stevens
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Alfredo Alexander-Katz
- Department
of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
33
|
Kamasaki T, Uehara R, Fujita Y. Ultrastructural Characteristics of Finger-Like Membrane Protrusions in Cell Competition. Microscopy (Oxf) 2022; 71:195-205. [PMID: 35394538 PMCID: PMC9340795 DOI: 10.1093/jmicro/dfac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/27/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
A small number of oncogenic mutated cells sporadically arise within the epithelial monolayer. Newly emerging Ras- or Src-transformed epithelial cells are often apically eliminated during competitive interactions between normal and transformed cells. Our recent electron microscopy (EM) analyses revealed that characteristic finger-like membrane protrusions are formed at the interface between normal and RasV12-transformed cells via the cdc42–formin-binding protein 17 (FBP17) pathway, potentially playing a positive role in intercellular recognition during apical extrusion. However, the spatial distribution and ultrastructural characteristics of finger-like protrusions remain unknown. In this study, we performed both X–Y and X–Z EM analyses of finger-like protrusions during the apical extrusion of RasV12-transformed cells. Quantification of the distribution and widths of the protrusions showed comparable results between the X–Y and X–Z sections. Finger-like protrusions were observed throughout the cell boundary between normal and RasV12 cells, except for apicalmost tight junctions. In addition, a non-cell-autonomous reduction in protrusion widths was observed between RasV12 cells and surrounding normal cells under the mix culture condition. In the finger-like protrusions, intercellular adhesions via thin electron-dense plaques were observed, implying that immature and transient forms of desmosomes, adherens junctions or unknown weak adhesions were distributed. Interestingly, unlike RasV12-transformed cells, Src-transformed cells form fewer evident protrusions, and FBP17 in Src cells is dispensable for apical extrusion. Collectively, these results suggest that the dynamic reorganization of intercellular adhesions via finger-like protrusions may positively control cell competition between normal and RasV12-transformed cells. Furthermore, our data indicate a cell context–dependent diversity in the modes of apical extrusion.
Collapse
Affiliation(s)
- Tomoko Kamasaki
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Hokkaido, 060-0815, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Ryota Uehara
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Hokkaido, 060-0815, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
34
|
Tae H, Park S, Kim SO, Yorulmaz Avsar S, Cho NJ. Selective Recognition of Phosphatidylinositol Phosphate Receptors by C-Terminal Tail of Mitotic Kinesin-like Protein 2 (MKlp2). J Phys Chem B 2022; 126:2345-2352. [PMID: 35316051 DOI: 10.1021/acs.jpcb.1c10534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mitotic kinesin-like protein 2 (MKlp2) plays a key role in the proper completion of cytokinetic abscission. Specifically, the C-terminal tail of MKlp2 (CTM peptides) offers a stable tethering on the plasma membrane and microtubule cytoskeleton in the midbody during abscission. However, little is known about the underlying mechanism of how the CTM peptides bind to the plasma membrane of the intercellular bridge. Herein, we identify the specific molecular interaction between the CTM peptides and phosphatidylinositol phosphate (PIP) receptors using quartz crystal microbalance-dissipation and atomic force microscopy force spectroscopic measurements. To systematically examine the effects of amino acids, we designed a series of synthetic 33-mer peptides derived from the wild-type (CTM1). First, we evaluated the peptide binding amount caused by electrostatic interactions based on 100% zwitterionic and 30% negatively charged model membranes, whereby the nonspecific attractions were nearly proportional to the net charge of peptides. Upon incubating with PIP-containing model membranes, the wild-type CTM1 and its truncated mutation showed significant PI(3)P-specific binding, which was evidenced by a 15-fold higher binding mass and 6-fold stronger adhesion force compared to other negatively charged membranes. The extent of the specific binding was predominantly dependent on the existence of S21, whereby substitution or deletion of S21 significantly hindered the binding affinity. Taken together, our findings based on a correlative measurement platform enabled the quantification of the nonelectrostatic, selective binding interactions of the C-terminal of MKlp2 to certain PIP receptors and contributed to understanding the molecular mechanisms on complete cytokinetic abscission in cells.
Collapse
Affiliation(s)
- Hyunhyuk Tae
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Seong-Oh Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Saziye Yorulmaz Avsar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore.,China-Singapore International Joint Research Institute (CSIJRI), Guangzhou 510000, China
| |
Collapse
|
35
|
Kumar M, Singh A, Del Secco B, Baranov MV, van den Bogaart G, Sacanna S, Thutupalli S. Assembling anisotropic colloids using curvature-mediated lipid sorting. SOFT MATTER 2022; 18:1757-1766. [PMID: 35072193 DOI: 10.1039/d1sm01517f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The use of colloid supported lipid bilayers (CSLBs) for assembling colloidal structures has been of recent interest. Here, we use multi-component lipid bilayer membranes formed around anisotropic colloids and show that the curvature anisotropy of the colloids drives a sorting of the lipids in the membrane along the colloids. We then exploit this curvature-sensitive lipid sorting to create "shape-anisotropic patchy colloids" - specifically, we use colloids with six rods sticking out of a central cubic core, "hexapods", for this purpose and demonstrate that membrane patches self-assemble at the tip of each of the six colloidal rods. The membrane patches are rendered sticky using biotinylated lipids in complement with a biotin-binding streptavidin protein. Finally, using these "shape-anisotropic patchy colloids", we demonstrate the directed assembly of colloidal links, paving the way for the creation of heterogeneous and flexible colloidal structures.
Collapse
Affiliation(s)
- Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| | - Anupam Singh
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| | - Benedetta Del Secco
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, USA
| | - Maksim V Baranov
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Geert van den Bogaart
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Stefano Sacanna
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, USA
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
36
|
Hori K, Yoshimoto S, Yoshino T, Zako T, Hirao G, Fujita S, Nakamura C, Yamagishi A, Kamiya N. Recent advances in research on biointerfaces: From cell surfaces to artificial interfaces. J Biosci Bioeng 2022; 133:195-207. [PMID: 34998688 DOI: 10.1016/j.jbiosc.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Biointerfaces are regions where biomolecules, cells, and organic materials are exposed to environmental media or come in contact with other biomaterials, cells, and inorganic/organic materials. In this review article, six research topics on biointerfaces are described to show examples of state-of-art research approaches. First, biointerface design of nanoparticles for molecular detection is described. Functionalized gold nanoparticles can be used for sensitive detection of various target molecules, including chemical compounds and biomolecules, such as DNA, proteins, cells, and viruses. Second, the interaction between bacterial cell surfaces and material surfaces, including the introduction of advances in analytical methods and theoretical calculations, are explained as well as their applications to bioprocesses. Third, bioconjugation technologies for localizing functional proteins at biointerfaces are introduced, in particular, by focusing the potential of enzymes as a catalytic tool for designing different types of bioconjugates that function at biointerfaces. Forth topics is focusing on lipid-protein interaction in cell membranes as natural biointerfaces. Examples of membrane lipid engineering are introduced, and it is mentioned how their compositional profiles affect membrane protein functions. Fifth topic is the physical method for molecular delivery across the biointerface being developed currently, such as highly efficient nanoinjection, electroporation, and nanoneedle devices, in which the key is how to perforate the cell membrane. Final topic is the chemical design of lipid- or polymer-based RNA delivery carriers and their behavior on the cell interface, which are currently attracting attention as RNA vaccine technologies targeting COVID-19. Finally, future directions of biointerface studies are presented.
Collapse
Affiliation(s)
- Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | - Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tamotsu Zako
- Faculty of Science, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Gen Hirao
- Faculty of Science, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Satoshi Fujita
- Photo BIO-OIL, National Institute of Advanced Industrial Science and Technology, Suita, Osaka 565-0871, Japan; Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chikashi Nakamura
- DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ayana Yamagishi
- DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
37
|
Kluge C, Pöhnl M, Böckmann RA. Spontaneous local membrane curvature induced by transmembrane proteins. Biophys J 2022; 121:671-683. [PMID: 35122737 PMCID: PMC8943716 DOI: 10.1016/j.bpj.2022.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
The (local) curvature of cellular membranes acts as a driving force for the targeting of membrane-associated proteins to specific membrane domains, as well as a sorting mechanism for transmembrane proteins, e.g., by accumulation in regions of matching spontaneous curvature. The latter measure was previously experimentally employed to study the curvature induced by the potassium channel KvAP and by aquaporin AQP0. However, the direction of the reported spontaneous curvature levels as well as the molecular driving forces governing the membrane curvature induced by these integral transmembrane proteins could not be addressed experimentally. Here, using both coarse-grained and atomistic molecular dynamics (MD) simulations, we report induced spontaneous curvature values for the homologous potassium channel Kv 1.2/2.1 Chimera (KvChim) and AQP0 embedded in unrestrained lipid bicelles that are in very good agreement with experiment. Importantly, the direction of curvature could be directly assessed from our simulations: KvChim induces a strong positive membrane curvature (≈0.036 nm-1) whereas AQP0 causes a comparably small negative curvature (≈-0.019 nm-1). Analyses of protein-lipid interactions within the bicelle revealed that the potassium channel shapes the surrounding membrane via structural determinants. Differences in shape of the protein-lipid interface of the voltage-gating domains between the extracellular and cytosolic membrane leaflets induce membrane stress and thereby promote a protein-proximal membrane curvature. In contrast, the water pore AQP0 displayed a high structural stability and an only faint effect on the surrounding membrane environment that is connected to its wedge-like shape.
Collapse
Affiliation(s)
- Christoph Kluge
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matthias Pöhnl
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany,National Center for High-Performance Computing Erlangen (NHR@FAU), Erlangen, Germany,Corresponding author
| |
Collapse
|
38
|
Abstract
Abstract
α-Synuclein is a small neuronal protein that reversibly associates with lipid membranes. The membrane interactions are believed to be central to the healthy function of this protein involved in synaptic plasticity and neurotransmitter release. α-Synuclein has been speculated to induce vesicle fusion as well as fission, processes which are analogous to each other but proceed in different directions and involve different driving forces. In the current work, we analyse α-synuclein-induced small unilamellar vesicle deformation from a thermodynamics point of view. We show that the structures interpreted in the literature as fusion intermediates are in fact a stable deformed state and neither fusion nor vesicle clustering occurs. We speculate on the driving force for the observed deformation and put forward a hypothesis that α-synuclein self-assembly on the lipid membrane precedes and induces membrane remodelling.
Collapse
|
39
|
Noguchi H. Binding of curvature-inducing proteins onto tethered vesicles. SOFT MATTER 2021; 17:10469-10478. [PMID: 34749394 DOI: 10.1039/d1sm01360b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A tethered vesicle, which consists of a cylindrical membrane tube and a spherical vesicle, is produced by a mechanical force that is experimentally imposed by optical tweezers and a micropipette. This tethered vesicle is employed for examining the curvature sensing of curvature-inducing proteins. In this study, we clarify how the binding of proteins with a laterally isotropic spontaneous curvature senses and generates the membrane curvatures of the tethered vesicle using mean-field theory and meshless membrane simulation. The force-dependence curves of the protein density in the membrane tube and the tube curvature are reflection symmetric and point symmetric, respectively, from the force point, in which the tube has a sensing curvature. The bending rigidity and spontaneous curvature of the bound proteins can be estimated from these force-dependence curves. First-order transitions can occur between low and high protein densities in the tube at both low and high force amplitudes. The simulation results of the homogeneous phases agree very well with the theoretical predictions. In addition, beaded-necklace-like tubes with microphase separation are found in the simulation.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| |
Collapse
|
40
|
Tsujita K, Satow R, Asada S, Nakamura Y, Arnes L, Sako K, Fujita Y, Fukami K, Itoh T. Homeostatic membrane tension constrains cancer cell dissemination by counteracting BAR protein assembly. Nat Commun 2021; 12:5930. [PMID: 34635648 PMCID: PMC8505629 DOI: 10.1038/s41467-021-26156-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/16/2021] [Indexed: 01/06/2023] Open
Abstract
Malignancy is associated with changes in cell mechanics that contribute to extensive cell deformation required for metastatic dissemination. We hypothesized that the cell-intrinsic physical factors that maintain epithelial cell mechanics could function as tumor suppressors. Here we show, using optical tweezers, genetic interference, mechanical perturbations, and in vivo studies, that epithelial cells maintain higher plasma membrane (PM) tension than their metastatic counterparts and that high PM tension potently inhibits cancer cell migration and invasion by counteracting membrane curvature sensing/generating BAR family proteins. This tensional homeostasis is achieved by membrane-to-cortex attachment (MCA) regulated by ERM proteins, whose disruption spontaneously transforms epithelial cells into a mesenchymal migratory phenotype powered by BAR proteins. Consistently, the forced expression of epithelial–mesenchymal transition (EMT)-inducing transcription factors results in decreased PM tension. In metastatic cells, increasing PM tension by manipulating MCA is sufficient to suppress both mesenchymal and amoeboid 3D migration, tumor invasion, and metastasis by compromising membrane-mediated mechanosignaling by BAR proteins, thereby uncovering a previously undescribed mechanical tumor suppressor mechanism. Changes in cell mechanics contribute to cancer cell dissemination. Here the authors show that high plasma membrane (PM) tension inhibits cancer dissemination by counteracting mechanosensitive BAR family protein assembly, while restoration of PM tension phenotypically convert malignant cells into a non-motile epithelial cell state.
Collapse
Affiliation(s)
- Kazuya Tsujita
- Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan. .,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan. .,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| | - Reiko Satow
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Shinobu Asada
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yoshikazu Nakamura
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Luis Arnes
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Keisuke Sako
- National Cerebral and Cardiovascular Center Research Institute, Osaka, 565-8565, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Toshiki Itoh
- Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan.,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
41
|
Kamasaki T, Miyazaki Y, Ishikawa S, Hoshiba K, Kuromiya K, Tanimura N, Mori Y, Tsutsumi M, Nemoto T, Uehara R, Suetsugu S, Itoh T, Fujita Y. FBP17-mediated finger-like membrane protrusions in cell competition between normal and RasV12-transformed cells. iScience 2021; 24:102994. [PMID: 34485872 PMCID: PMC8405961 DOI: 10.1016/j.isci.2021.102994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/02/2021] [Accepted: 08/13/2021] [Indexed: 01/23/2023] Open
Abstract
At the initial stage of carcinogenesis, cell competition often occurs between newly emerging transformed cells and the neighboring normal cells, leading to the elimination of transformed cells from the epithelial layer. For instance, when RasV12-transformed cells are surrounded by normal cells, RasV12 cells are apically extruded from the epithelium. However, the underlying mechanisms of this tumor-suppressive process still remain enigmatic. We first show by electron microscopic analysis that characteristic finger-like membrane protrusions are projected from both normal and RasV12 cells at their interface. In addition, FBP17, a member of the F-BAR proteins, accumulates in RasV12 cells, as well as surrounding normal cells, which plays a positive role in the formation of finger-like protrusions and apical elimination of RasV12 cells. Furthermore, cdc42 acts upstream of these processes. These results suggest that the cdc42/FBP17 pathway is a crucial trigger of cell competition, inducing “protrusion to protrusion response” between normal and RasV12-transformed cells. EM analysis shows finger-like membrane protrusions between normal and RasV12 cells Cdc42/FBP17 regulate the formation of the finger-like membrane protrusions Cdc42/FBP17-mediated finger-like protrusions promote elimination of RasV12 cells ‘Protrusion to protrusion response’ triggers cell competition
Collapse
Affiliation(s)
- Tomoko Kamasaki
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Hokkaido 060-0815, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Yumi Miyazaki
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Hokkaido 060-0815, Japan
| | - Susumu Ishikawa
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Hokkaido 060-0815, Japan
| | - Kazuya Hoshiba
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Hokkaido 060-0815, Japan
| | - Keisuke Kuromiya
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Hokkaido 060-0815, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Nobuyuki Tanimura
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Hokkaido 060-0815, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yusuke Mori
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Hokkaido 060-0815, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Motosuke Tsutsumi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) & National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Tomomi Nemoto
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) & National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Ryota Uehara
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Toshiki Itoh
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.,Biosignal Research Center, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Hokkaido 060-0815, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
42
|
Khanal P, Hotulainen P. Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins. Cells 2021; 10:cells10092392. [PMID: 34572042 PMCID: PMC8468246 DOI: 10.3390/cells10092392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Dendritic spines are small, bulbous protrusions along neuronal dendrites where most of the excitatory synapses are located. Dendritic spine density in normal human brain increases rapidly before and after birth achieving the highest density around 2-8 years. Density decreases during adolescence, reaching a stable level in adulthood. The changes in dendritic spines are considered structural correlates for synaptic plasticity as well as the basis of experience-dependent remodeling of neuronal circuits. Alterations in spine density correspond to aberrant brain function observed in various neurodevelopmental and neuropsychiatric disorders. Dendritic spine initiation affects spine density. In this review, we discuss the importance of spine initiation in brain development, learning, and potential complications resulting from altered spine initiation in neurological diseases. Current literature shows that two Bin Amphiphysin Rvs (BAR) domain-containing proteins, MIM/Mtss1 and SrGAP3, are involved in spine initiation. We review existing literature and open databases to discuss whether other BAR-domain proteins could also take part in spine initiation. Finally, we discuss the potential molecular mechanisms on how BAR-domain proteins could regulate spine initiation.
Collapse
Affiliation(s)
- Pushpa Khanal
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- HiLIFE-Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- Correspondence:
| |
Collapse
|
43
|
Nishimura T, Oyama T, Hu HT, Fujioka T, Hanawa-Suetsugu K, Ikeda K, Yamada S, Kawana H, Saigusa D, Ikeda H, Kurata R, Oono-Yakura K, Kitamata M, Kida K, Hikita T, Mizutani K, Yasuhara K, Mimori-Kiyosue Y, Oneyama C, Kurimoto K, Hosokawa Y, Aoki J, Takai Y, Arita M, Suetsugu S. Filopodium-derived vesicles produced by MIM enhance the migration of recipient cells. Dev Cell 2021; 56:842-859.e8. [PMID: 33756122 DOI: 10.1016/j.devcel.2021.02.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/31/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are classified as large EVs (l-EVs, or microvesicles) and small EVs (s-EVs, or exosomes). S-EVs are thought to be generated from endosomes through a process that mainly depends on the ESCRT protein complex, including ALG-2 interacting protein X (ALIX). However, the mechanisms of l-EV generation from the plasma membrane have not been identified. Membrane curvatures are generated by the bin-amphiphysin-rvs (BAR) family proteins, among which the inverse BAR (I-BAR) proteins are involved in filopodial protrusions. Here, we show that the I-BAR proteins, including missing in metastasis (MIM), generate l-EVs by scission of filopodia. Interestingly, MIM-containing l-EV production was promoted by in vivo equivalent external forces and by the suppression of ALIX, suggesting an alternative mechanism of vesicle formation to s-EVs. The MIM-dependent l-EVs contained lysophospholipids and proteins, including IRS4 and Rac1, which stimulated the migration of recipient cells through lamellipodia formation. Thus, these filopodia-dependent l-EVs, which we named as filopodia-derived vesicles (FDVs), modify cellular behavior.
Collapse
Affiliation(s)
- Tamako Nishimura
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Takuya Oyama
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hooi Ting Hu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Toshifumi Fujioka
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kyoko Hanawa-Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; Kazusa DNA Research Institute, 2-6-7 Kazusa, kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Sohei Yamada
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hiroki Kawana
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Daisuke Saigusa
- Tohoku University Tohoku Medical Megabank Organization, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Hiroki Ikeda
- Department of Embryology, Nara Medical University, Kashihara 634-0813, Nara, Japan
| | - Rie Kurata
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kayoko Oono-Yakura
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Manabu Kitamata
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kazuki Kida
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Tomoya Hikita
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Kiyohito Mizutani
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Yuko Mimori-Kiyosue
- Laboratory for Molecular and Cellular Dynamics, RIKEN Center for Biosystems Dynamics Research, Minatojima-minaminachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Kashihara 634-0813, Nara, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Junken Aoki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yoshimi Takai
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-0011, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| |
Collapse
|
44
|
Noguchi H. Vesicle budding induced by binding of curvature-inducing proteins. Phys Rev E 2021; 104:014410. [PMID: 34412221 DOI: 10.1103/physreve.104.014410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Vesicle budding induced by protein binding that generates an isotropic spontaneous curvature is studied using a mean-field theory. Many spherical buds are formed via protein binding. As the binding chemical potential increases, the proteins first bind to the buds and then to the remainder of the vesicle. For a high spontaneous curvature and/or high bending rigidity of the bound membrane, it is found that a first-order transition occurs between a small number of large buds and a large number of small buds. These two states coexist around the transition point. The proposed scheme is simple and easily applicable to many interaction types, so we investigate the effects of interprotein interactions, the protein-insertion-induced changes in area, the variation of the saddle-splay modulus, and the area-difference-elasticity energy. The differences in the preferred curvatures for curvature sensing and generation are also clarified.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
45
|
Recent developments in membrane curvature sensing and induction by proteins. Biochim Biophys Acta Gen Subj 2021; 1865:129971. [PMID: 34333084 DOI: 10.1016/j.bbagen.2021.129971] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/11/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Membrane-bound intracellular organelles have characteristic shapes attributed to different local membrane curvatures, and these attributes are conserved across species. Over the past decade, it has been confirmed that specific proteins control the large curvatures of the membrane, whereas many others due to their specific structural features can sense the curvatures and bind to the specific geometrical cues. Elucidating the interplay between sensing and induction is indispensable to understand the mechanisms behind various biological processes such as vesicular trafficking and budding. SCOPE OF REVIEW We provide an overview of major classes of membrane proteins and the mechanisms of curvature sensing and induction. We then discuss the importance of membrane elastic characteristics to induce the membrane shapes similar to intracellular organelles. Finally, we survey recently available assays developed for studying the curvature sensing and induction by many proteins. MAJOR CONCLUSIONS Recent theoretical/computational modeling along with experimental studies have uncovered fascinating connections between lipid membrane and protein interactions. However, the phenomena of protein localization and synchronization to generate spatiotemporal dynamics in membrane morphology are yet to be fully understood. GENERAL SIGNIFICANCE The understanding of protein-membrane interactions is essential to shed light on various biological processes. This further enables the technological applications of many natural proteins/peptides in therapeutic treatments. The studies of membrane dynamic shapes help to understand the fundamental functions of membranes, while the medicinal roles of various macromolecules (such as proteins, peptides, etc.) are being increasingly investigated.
Collapse
|
46
|
Tamemoto N, Noguchi H. Reaction-diffusion waves coupled with membrane curvature. SOFT MATTER 2021; 17:6589-6596. [PMID: 34166481 DOI: 10.1039/d1sm00540e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reaction-diffusion waves of proteins are known to be involved in fundamental cellular functions, such as cell migration, cell division, and vesicular transportation. In some of these phenomena, pattern formation on the membranes is induced by the coupling between membrane deformation and the reaction-diffusion system through curvature-inducing proteins that bend the biological membranes. Although the membrane shape and the dynamics of the curvature-inducing proteins affect each other in these systems, the effect of such mechanochemical feedback loops on the waves has not been studied in detail. In this study, reaction-diffusion waves coupled with membrane deformation are investigated using simulations combining a dynamically triangulated membrane model with the Brusselator model extended to include the effect of membrane curvature. It is found that the propagating wave patterns change into nonpropageting patterns and spiral wave patterns due to the mechanochemical effects. Moreover, the wave speed is positively or negatively correlated with the local membrane curvature depending on the spontaneous curvature and bending rigidity. In addition, self-oscillation of the vesicle shape occurs, associated with the reaction-diffusion waves of curvature-inducing proteins. This agrees with the experimental observation of GUVs with a reconstituted Min system, which plays a key role in the cell division of Escherichia coli. The findings of this study demonstrate the importance of mechanochemical coupling in biological phenomena.
Collapse
Affiliation(s)
- Naoki Tamemoto
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| |
Collapse
|
47
|
Goutaland Q, van Wijland F, Fournier JB, Noguchi H. Binding of thermalized and active membrane curvature-inducing proteins. SOFT MATTER 2021; 17:5560-5573. [PMID: 33978669 DOI: 10.1039/d1sm00027f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The phase behavior of a membrane induced by the binding of curvature-inducing proteins is studied by a combination of analytical and numerical approaches. In thermal equilibrium under the detailed balance between binding and unbinding, the membrane exhibits three phases: an unbound uniform flat phase (U), a bound uniform flat phase (B), and a separated/corrugated phase (SC). In the SC phase, the bound proteins form hexagonally-ordered bowl-shaped domains. The transitions between the U and SC phases and between the B and SC phases are second order and first order, respectively. At a small spontaneous curvature of the protein or high surface tension, the transition between B and SC phases becomes continuous. Moreover, a first-order transition between the U and B phases is found at zero spontaneous curvature driven by the Casimir-like interactions between rigid proteins. Furthermore, nonequilibrium dynamics is investigated by the addition of active binding and unbinding at a constant rate. The active binding and unbinding processes alter the stability of the SC phase.
Collapse
Affiliation(s)
- Quentin Goutaland
- Laboratoire Matière et Systèmes Complexes (MSC), Université de Paris & CNRS, 75013 Paris, France
| | - Frédéric van Wijland
- Laboratoire Matière et Systèmes Complexes (MSC), Université de Paris & CNRS, 75013 Paris, France
| | - Jean-Baptiste Fournier
- Laboratoire Matière et Systèmes Complexes (MSC), Université de Paris & CNRS, 75013 Paris, France
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan. and Institut Lumière Matière, UMR 5306 CNRS, Université Lyon 1, F-69622 Villeurbanne, France
| |
Collapse
|
48
|
Localization of synthetic glycolipids in the cell and the dynamics of their insertion/loss. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183645. [PMID: 34019901 DOI: 10.1016/j.bbamem.2021.183645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022]
Abstract
Modification of the cell surface with synthetic glycolipids opens up a wide range of possibilities for studying the function of glycolipids. Synthetic glycolipids called Function-Spacer-Lipids (FSL; where F is a glycan or label, S is a spacer, and L is dioleoylphosphatidyl ethanolamine) easily and controllably modify the membrane of a living cells. This current study investigates the dynamics and mechanism of the FSL insertion and release/loss. FSL insert into the cell membrane (~1 million molecules per cell) within tens of minutes, almost regardless of the nature of the cells (including the thickness of their glycocalyx) and the size of the FSL glycan. FSLs do not accumulate uniformly, but instead form patches >300 nm in size either entrapped in the glycocalyx, or integrated in the plane of the plasma membrane, but always outside the cell rafts. The natural release (loss) of FSL from the modified cell was two orders of magnitude slower than attachment/insertion and occurred mainly in the form of released microvesicles with a size of 140 ± 5 nm. The accumulation of FSL as patches in the cell membrane is similar to the coalescence of natural glycosphingolipids and supports (along with their long residence time in the membrane) the use of FSL as probes for the study of glycosphingolipid-protein interactions.
Collapse
|
49
|
PI(3,4)P 2-mediated membrane tubulation promotes integrin trafficking and invasive cell migration. Proc Natl Acad Sci U S A 2021; 118:2017645118. [PMID: 33947811 PMCID: PMC8126793 DOI: 10.1073/pnas.2017645118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Invadopodia are integrin-mediated adhesions with abundant PI(3,4)P2 However, the functional role of PI(3,4)P2 in adhesion signaling remains unclear. Here, we find that the PI(3,4)P2 biogenesis regulates the integrin endocytosis at invadopodia. PI(3,4)P2 is locally produced by PIK3CA and SHIP2 and is concentrated at the trailing edge of the invadopodium arc. The PI(3,4)P2-rich compartment locally forms small puncta (membrane buds) in a SNX9-dependent manner, recruits dynein activator Hook1 through AKTIP, and rearranges into micrometer-long tubular invaginations (membrane tubes). The uncurving membrane tube extends rapidly, follows the retrograde movement of dynein along microtubule tracks, and disconnects from the plasma membrane. Activated integrin-beta3 is locally internalized through the pathway of PI(3,4)P2-mediated membrane invagination and is then actively recycled. Blockages of PI3K, SHIP2, and SNX9 suppress integrin-beta3 endocytosis, delay adhesion turnover, and impede transwell invasion of MEF-Src and MDA-MB-231 cells. Thus, the production of PI(3,4)P2 promotes invasive cell migration by stimulating the trafficking of integrin receptor at the invadopodium.
Collapse
|
50
|
Tsai FC, Simunovic M, Sorre B, Bertin A, Manzi J, Callan-Jones A, Bassereau P. Comparing physical mechanisms for membrane curvature-driven sorting of BAR-domain proteins. SOFT MATTER 2021; 17:4254-4265. [PMID: 33870384 DOI: 10.1039/d0sm01573c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein enrichment at specific membrane locations in cells is crucial for many cellular functions. It is well-recognized that the ability of some proteins to sense membrane curvature contributes partly to their enrichment in highly curved cellular membranes. In the past, different theoretical models have been developed to reveal the physical mechanisms underlying curvature-driven protein sorting. This review aims to provide a detailed discussion of the two continuous models that are based on the Helfrich elasticity energy, (1) the spontaneous curvature model and (2) the curvature mismatch model. These two models are commonly applied to describe experimental observations of protein sorting. We discuss how they can be used to explain the curvature-induced sorting data of two BAR proteins, amphiphysin and centaurin. We further discuss how membrane rigidity, and consequently the membrane curvature generated by BAR proteins, could influence protein organization on the curved membranes. Finally, we address future directions in extending these models to describe some cellular phenomena involving protein sorting.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France.
| | - Mijo Simunovic
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA and Department of Genetics and Development, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, NY 10032, USA
| | - Benoit Sorre
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France. and Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université de Paris, Paris, France.
| | - Aurélie Bertin
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France.
| | - John Manzi
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France.
| | - Andrew Callan-Jones
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS, Université de Paris, Paris, France.
| | - Patricia Bassereau
- Institut Curie, Université PSL, CNRS UMR168, Sorbonne Université, Laboratoire Physico Chimie Curie, 75005 Paris, France.
| |
Collapse
|