1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
García S A, Costa M, Perez A, Pastor O. CardioGraph: a platform to study variations associated with familiar cardiopathies. BMC Med Inform Decis Mak 2024; 23:303. [PMID: 39434095 PMCID: PMC11494761 DOI: 10.1186/s12911-024-02700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Familiar cardiopathies are genetic disorders that affect the heart. Cardiologists face a significant problem when treating patients suffering from these disorders: most DNA variations are novel (i.e., they have not been classified before). To facilitate the analysis of novel variations, we present CardioGraph, a platform specially designed to support the analysis of novel variations and help determine whether they are relevant for diagnosis. To do this, CardioGraph identifies and annotates the consequence of variations and provides contextual information regarding which heart structures, pathways, and biological processes are potentially affected by those variations. METHODS We conducted our work through three steps. First, we define a data model to support the representation of the heterogeneous information. Second, we instantiate this data model to integrate and represent all the genomics knowledge available for familiar cardiopathies. In this step, we consider genomic data sources and the scientific literature. Third, the design and implementation of the CardioGraph platform. A three-tier structure was used: the database, the backend, and the frontend. RESULTS Three main results were obtained: the data model, the knowledge base generated with the instantiation of the data model, and the platform itself. The platform code has been included as supplemental material in this manuscript. Besides, an instance is publicly available in the following link: https://genomics-hub.pros.dsic.upv.es:3090 . CONCLUSION CardioGraph is a platform that supports the analysis of novel variations. Future work will expand the body of knowledge about familiar cardiopathies and include new information about hotspots, functional studies, and previously reported variations.
Collapse
Affiliation(s)
- Alberto García S
- PROS Research Center, VRAIN Research Institute, Universitat Politècnica de València, Camino de Vera, Valencia, Spain.
| | - Mireia Costa
- PROS Research Center, VRAIN Research Institute, Universitat Politècnica de València, Camino de Vera, Valencia, Spain
| | - Ana Perez
- PROS Research Center, VRAIN Research Institute, Universitat Politècnica de València, Camino de Vera, Valencia, Spain
| | - Oscar Pastor
- PROS Research Center, VRAIN Research Institute, Universitat Politècnica de València, Camino de Vera, Valencia, Spain
| |
Collapse
|
3
|
Joyce W, He K, Zhang M, Ogunsola S, Wu X, Joseph KT, Bogomolny D, Yu W, Springer MS, Xie J, Signore AV, Campbell KL. Genetic excision of the regulatory cardiac troponin I extension in high-heart rate mammal clades. Science 2024; 385:1466-1471. [PMID: 39325895 DOI: 10.1126/science.adi8146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/18/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024]
Abstract
Mammalian cardiac troponin I (cTnI) contains a highly conserved amino-terminal extension harboring protein kinase A targets [serine-23 and -24 (Ser23/24)] that are phosphorylated during β-adrenergic stimulation to defend diastolic filling by means of an increased cardiomyocyte relaxation rate. In this work, we show that the Ser23/24-encoding exon 3 of TNNI3 was pseudoexonized multiple times in shrews and moles to mimic Ser23/24 phosphorylation without adrenergic stimulation, facilitating the evolution of exceptionally high resting heart rates (~1000 beats per minute). We further reveal alternative exon 3 splicing in distantly related bat families and confirm that both cTnI splice variants are incorporated into cardiac myofibrils. Because exon 3 of human TNNI3 exhibits a relatively low splice strength score, our findings offer an evolutionarily informed strategy to excise this exon to improve diastolic function during heart failure.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Mengdie Zhang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Samuel Ogunsola
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xini Wu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Kelvin T Joseph
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David Bogomolny
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wenhua Yu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Mark S Springer
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Anthony V Signore
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
Xiao F, Nguyen NUN, Wang P, Li S, Hsu CC, Thet S, Kimura W, Luo X, Lam NT, Menendez-Montes I, Elhelaly WM, Cardoso AC, Pereira AHM, Singh R, Sadayappan S, Kanchwala M, Xing C, Ladha FA, Hinson JT, Hajjar RJ, Hill JA, Sadek HA. Adducin Regulates Sarcomere Disassembly During Cardiomyocyte Mitosis. Circulation 2024; 150:791-805. [PMID: 38708635 DOI: 10.1161/circulationaha.122.059102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/29/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Recent interest in understanding cardiomyocyte cell cycle has been driven by potential therapeutic applications in cardiomyopathy. However, despite recent advances, cardiomyocyte mitosis remains a poorly understood process. For example, it is unclear how sarcomeres are disassembled during mitosis to allow the abscission of daughter cardiomyocytes. METHODS Here, we use a proteomics screen to identify adducin, an actin capping protein previously not studied in cardiomyocytes, as a regulator of sarcomere disassembly. We generated many adeno-associated viruses and cardiomyocyte-specific genetic gain-of-function models to examine the role of adducin in neonatal and adult cardiomyocytes in vitro and in vivo. RESULTS We identify adducin as a regulator of sarcomere disassembly during mammalian cardiomyocyte mitosis. α/γ-adducins are selectively expressed in neonatal mitotic cardiomyocytes, and their levels decline precipitously thereafter. Cardiomyocyte-specific overexpression of various splice isoforms and phospho-isoforms of α-adducin in vitro and in vivo identified Thr445/Thr480 phosphorylation of a short isoform of α-adducin as a potent inducer of neonatal cardiomyocyte sarcomere disassembly. Concomitant overexpression of this α-adducin variant along with γ-adducin resulted in stabilization of the adducin complex and persistent sarcomere disassembly in adult mice, which is mediated by interaction with α-actinin. CONCLUSIONS These results highlight an important mechanism for coordinating cytoskeletal morphological changes during cardiomyocyte mitosis.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Ping Wang
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Shujuan Li
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Ching-Cheng Hsu
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Suwannee Thet
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Wataru Kimura
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (W.K.)
| | - Xiang Luo
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Nicholas T Lam
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Ivan Menendez-Montes
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Waleed M Elhelaly
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Alisson Campos Cardoso
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
- Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas (A.C.C., A.H.M.P.)
| | - Ana Helena Macedo Pereira
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
- Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas (A.C.C., A.H.M.P.)
| | - Rohit Singh
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, OH (R.S., S.S.)
- Amgen Research, Department of Cardiometabolic Disorders, Amgen, South San Francisco, CA (R.S.)
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, OH (R.S., S.S.)
| | - Mohammed Kanchwala
- Eugene McDermott Center for Human Growth and Development (M.K., C.X.), University of Texas Southwestern Medical Center, Dallas
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development (M.K., C.X.), University of Texas Southwestern Medical Center, Dallas
- Lyda Hill Department of Bioinformatics (C.X.), University of Texas Southwestern Medical Center, Dallas
- O'Donnell School of Public Health (C.X.), University of Texas Southwestern Medical Center, Dallas
| | - Feria A Ladha
- University of Connecticut Health Center, Farmington (F.A.L., J.T.H.)
| | - J Travis Hinson
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
- University of Connecticut Health Center, Farmington (F.A.L., J.T.H.)
- Jackson Laboratory for Genomic Medicine, Farmington, CT (J.T.H.)
| | - Roger J Hajjar
- Gene & Cell Therapy Institute, Mass General Brigham, Cambridge, MA (R.J.H.)
| | - Joseph A Hill
- Moss Heart Center (J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Department of Molecular Biology (J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Hesham A Sadek
- Department of Internal Medicine (Cardiology) (F.X., N.U.N.N., P.W., S.L., C.-C.H., S.T., W.K., X.L., N.T.L., I.M.-M., W.M.E., A.C.C., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
- Department of Molecular Biology (J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
- Department of Biophysics (H.A.S.), University of Texas Southwestern Medical Center, Dallas
- Hamon Center for Regenerative Science and Medicine (H.A.S.), University of Texas Southwestern Medical Center, Dallas
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (H.A.S.)
| |
Collapse
|
5
|
Liu S, Yuan P, Zheng Y, Guo C, Ren Y, Weng S, Zhang Y, Liu L, Xing Z, Wang L, Han X. Machine learning-driven diagnostic signature provides new insights in clinical management of hypertrophic cardiomyopathy. ESC Heart Fail 2024; 11:2234-2248. [PMID: 38629342 PMCID: PMC11287386 DOI: 10.1002/ehf2.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 07/31/2024] Open
Abstract
AIMS In an era of evolving diagnostic possibilities, existing diagnostic systems are not fully sufficient to promptly recognize patients with early-stage hypertrophic cardiomyopathy (HCM) without symptomatic and instrumental features. Considering the sudden death of HCM, developing a novel diagnostic model to clarify the patients with early-stage HCM and the immunological characteristics can avoid misdiagnosis and attenuate disease progression. METHODS AND RESULTS Three hundred eighty-five samples from four independent cohorts were systematically retrieved. The weighted gene co-expression network analysis, differential expression analysis (|log2(foldchange)| > 0.5 and adjusted P < 0.05), and protein-protein interaction network were sequentially performed to identify HCM-related hub genes. With a machine learning algorithm, the least absolute shrinkage and selection operator regression algorithm, a stable diagnostic model was developed. The immune-cell infiltration and biological functions of HCM were also explored to characterize its underlying pathogenic mechanisms and the immune signature. Two key modules were screened based on weighted gene co-expression network analysis. Pathogenic mechanisms relevant to extracellular matrix and immune pathways have been discovered. Twenty-seven co-regulated genes were recognized as HCM-related hub genes. Based on the least absolute shrinkage and selection operator algorithm, a stable HCM diagnostic model was constructed, which was further validated in the remaining three cohorts (n = 385). Considering the tight association between HCM and immune-related functions, we assessed the infiltrating abundance of various immune cells and stromal cells based on the xCell algorithm, and certain immune cells were significantly different between high-risk and low-risk groups. CONCLUSIONS Our study revealed a number of hub genes and novel pathways to provide potential targets for the treatment of HCM. A stable model was developed, providing an efficient tool for the diagnosis of HCM.
Collapse
Affiliation(s)
- Shutong Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
| | - Peiyu Yuan
- Department of Cardiovascular MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Youyang Zheng
- Department of Cardiovascular MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunguang Guo
- Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuqing Ren
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Siyuan Weng
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
| | - Yuyuan Zhang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
| | - Long Liu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhe Xing
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xinwei Han
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
| |
Collapse
|
6
|
Gülersoy E, Balıkçı C, Şahan A, Günal İ, Atlı MO. NMR-based metabolomic investigation of dogs with acute flaccid paralysis due to tick paralysis. Vet Med Sci 2024; 10:e1528. [PMID: 38952268 PMCID: PMC11217601 DOI: 10.1002/vms3.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Acute flaccid paralysis (AFP) is a complex clinical syndrome with various aetiologies. If untreated, AFP may lead to death due to failure of respiratory muscles. Tick paralysis, which is a noninfectious neurologic syndrome of AFP, occurs following tick attachment, engorgement, and injection of tick saliva toxins. There is no specific diagnostic test for tick paralysis, and mortality increases as definitive diagnosis is delayed. Although metabolomic investigation of tick saliva was conducted, there is a lack of research on metabolomic evaluation of hosts affected by tick paralysis. OBJECTIVES Thus, the aim of this study is to investigate metabolomic changes in serum samples of dogs with tick paralysis due to Rhipicephalus sanguineus using NMR-based metabolomics and to identify potential diagnostic/prognostic markers. MATERIALS AND METHODS Forty dogs infested with R. sanguineus, with clinical findings compatible with AFP and with a confirmed tick paralysis diagnosis ex juvantibus, constituted the Paralysis Group. Ten healthy dogs, which were admitted either for vaccination and/or check-up purposes, constituted the Control Group. After the confirmation tick paralysis, medical history, vaccination and nutritional status, body surface area and estimated tick numbers of all the dogs were noted. Physical examination included body temperature, heart and respiratory rate, capillary refill time evaluation and Modified Glasgow Coma Scale calculation. Serum samples were extracted from venous blood samples of all the dogs and were prepared for NMR analysis, and NMR-based metabolomics identification and quantification were performed. RESULTS NMR-based serum metabolomics of the present study revealed distinct up/down-regulated expressions, presenting a promising avenue. Moreover, it was observed that energy metabolism and especially liver functions were impaired in dogs with tick paralysis, and not only the respiratory system but also the kidneys were affected. CONCLUSION It was concluded that the present approach may help to better understand the pathological mechanisms developing in cases of AFP due to tick paralysis.
Collapse
Affiliation(s)
- Erdem Gülersoy
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Canberk Balıkçı
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Adem Şahan
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - İsmail Günal
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Mehmet Osman Atlı
- Veterinary FacultyDepartment of Reproduction and Artificial InseminationHarran UniversityŞanlıurfaTurkey
| |
Collapse
|
7
|
Cheung EC, Nilsson A, Venter I, Kowalik G, Ribeiro C, Rodriguez J, Kuraoka K, Russo R, Escobar JB, Alber BR, Mendelowitz D, Kay MW, Schunke KJ. Sex differences in cardiac transcriptomic response to neonatal sleep apnea. Physiol Rep 2024; 12:e16110. [PMID: 38981849 PMCID: PMC11233197 DOI: 10.14814/phy2.16110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Pediatric obstructive sleep apnea poses a significant health risk, with potential long-term consequences on cardiovascular health. This study explores the dichotomous nature of neonatal cardiac response to chronic intermittent hypoxia (CIH) between males and females, aiming to fill a critical knowledge gap in the understanding of sex-specific cardiovascular consequences of sleep apnea in early life. Neonates were exposed to CIH until p28 and underwent comprehensive in vivo physiological assessments, including whole-body plethysmography, treadmill stress-tests, and echocardiography. Results indicated that male CIH rats weighed 13.7% less than age-matched control males (p = 0.0365), while females exhibited a mild yet significant increased respiratory drive during sleep (93.94 ± 0.84 vs. 95.31 ± 0.81;p = 0.02). Transcriptomic analysis of left ventricular tissue revealed a substantial sex-based difference in the cardiac response to CIH, with males demonstrating a more pronounced alteration in gene expression compared to females (5986 vs. 3174 genes). The dysregulated miRNAs in males target metabolic genes, potentially predisposing the heart to altered metabolism and substrate utilization. Furthermore, CIH in males was associated with thinner left ventricular walls and dysregulation of genes involved in the cardiac action potential, possibly predisposing males to CIH-related arrhythmia. These findings emphasize the importance of considering sex-specific responses in understanding the cardiovascular implications of pediatric sleep apnea.
Collapse
Affiliation(s)
- Emily C. Cheung
- Department of Biomedical EngineeringThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Department of Pharmacology and PhysiologyThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Anna Nilsson
- Department of Anatomy, Biochemistry & PhysiologyUniversity of HawaiiHonoluluHawaiiUSA
| | - Ian Venter
- Department of Anatomy, Biochemistry & PhysiologyUniversity of HawaiiHonoluluHawaiiUSA
| | - Grant Kowalik
- Department of Biomedical EngineeringThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Caitlin Ribeiro
- Department of Pharmacology and PhysiologyThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Jeannette Rodriguez
- Department of Biomedical EngineeringThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Kiralee Kuraoka
- Department of Anatomy, Biochemistry & PhysiologyUniversity of HawaiiHonoluluHawaiiUSA
| | - Rebekah Russo
- Department of Biomedical EngineeringThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Joan B. Escobar
- Department of Pharmacology and PhysiologyThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Bridget R. Alber
- Department of Biomedical EngineeringThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - David Mendelowitz
- Department of Pharmacology and PhysiologyThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Matthew W. Kay
- Department of Biomedical EngineeringThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Kathryn J. Schunke
- Department of Biomedical EngineeringThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Department of Anatomy, Biochemistry & PhysiologyUniversity of HawaiiHonoluluHawaiiUSA
| |
Collapse
|
8
|
Edwards CV, Ferri GM, Villegas-Galaviz J, Ghosh S, Bawa PS, Wang F, Klimtchuk E, Ajayi TB, Morgan GJ, Prokaeva T, Staron A, Ruberg FL, Sanchorawala V, Giadone RM, Murphy GJ. Abnormal global longitudinal strain and reduced serum inflammatory markers in cardiac AL amyloidosis patients without significant amyloid fibril deposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584987. [PMID: 38558967 PMCID: PMC10980073 DOI: 10.1101/2024.03.14.584987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Cardiac dysfunction in AL amyloidosis is thought to be partly related to the direct impact of AL LCs on cardiomyocyte function, with the degree of dysfunction at diagnosis as a major determinant of clinical outcomes. Nonetheless, mechanisms underlying LC-induced myocardial toxicity are not well understood. Methods We identified gene expression changes correlating with human cardiac cells exposed to a cardiomyopathy-associated κAL LC. We then sought to confirm these findings in a clinical dataset by focusing on clinical parameters associated with the pathways dysregulated at the gene expression level. Results Upon exposure to a cardiomyopathy-associated κAL LC, cardiac cells exhibited gene expression changes related to myocardial contractile function and inflammation, leading us to hypothesize that there could be clinically detectable changes in GLS on echocardiogram and serum inflammatory markers in patients. Thus, we identified 29 patients with normal IVSd but abnormal cardiac biomarkers suggestive of LC-induced cardiac dysfunction. These patients display early cardiac biomarker staging, abnormal GLS, and significantly reduced serum inflammatory markers compared to patients with clinically evident amyloid fibril deposition. Conclusion Collectively, our findings highlight early molecular and functional signatures of cardiac AL amyloidosis, with potential impact for developing improved patient biomarkers and novel therapeutics.
Collapse
|
9
|
Mathur P, Saxena S, Saxena B, Rani V. MicroRNAs Targeting Critical Molecular Pathways in Diabetic Cardiomyopathy Emerging Valuable for Therapy. Cardiovasc Hematol Agents Med Chem 2024; 22:298-307. [PMID: 38265401 DOI: 10.2174/0118715257265947231129074526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 01/25/2024]
Abstract
MicroRNAs have emerged as an important regulator of post-transcriptional gene expression studied extensively in many cancers, fetal development, and cardiovascular diseases. Their endogenous nature and easy manipulation have made them potential diagnostic and therapeutic molecules. Diseases with complex pathophysiology such as Diabetic Cardiomyopathy display symptoms at a late stage when the risk of heart failure has become very high. Therefore, the utilization of microRNAs as a tool to study pathophysiology and device-sustainable treatments for DCM could be considered. The present review focuses on the mechanistic insights of diabetic cardiomyopathy and the potential role of microRNAs.
Collapse
Affiliation(s)
- Priyanka Mathur
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| | - Sharad Saxena
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| | - Bhawna Saxena
- Department of Computer Science & Engineering and Information Technology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307, Uttar Pradesh, India
| | - Vibha Rani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| |
Collapse
|
10
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
11
|
Hilderink S, Schuldt M, Goebel M, Jansen VJ, Manders E, Moorman S, Dorsch LM, van Steenbeek FG, van der Velden J, Kuster DWD. Characterization of heterozygous and homozygous mouse models with the most common hypertrophic cardiomyopathy mutation MYBPC3 c.2373InsG in the Netherlands. J Mol Cell Cardiol 2023; 185:65-76. [PMID: 37844837 DOI: 10.1016/j.yjmcc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in the cardiac myosin binding protein-C (cMyBP-C) encoding gene MYBPC3. In the Netherlands, approximately 25% of patients carry the MYBPC3c.2373InsG founder mutation. Most patients are heterozygous (MYBPC3+/InsG) and have highly variable phenotypic expression, whereas homozygous (MYBPC3InsG/InsG) patients have severe HCM at a young age. To improve understanding of disease progression and genotype-phenotype relationship based on the hallmarks of human HCM, we characterized mice with CRISPR/Cas9-induced heterozygous and homozygous mutations. At 18-28 weeks of age, we assessed the cardiac phenotype of Mybpc3+/InsG and Mybpc3InsG/InsG mice with echocardiography, and performed histological analyses. Cytoskeletal proteins and cardiomyocyte contractility of 3-4 week old and 18-28 week old Mybpc3c.2373InsG mice were compared to wild-type (WT) mice. Expectedly, knock-in of Mybpc3c.2373InsG resulted in the absence of cMyBP-C and our 18-28 week old homozygous Mybpc3c.2373InsG model developed cardiac hypertrophy and severe left ventricular systolic and diastolic dysfunction, whereas HCM was not evident in Mybpc3+/InsG mice. Mybpc3InsG/InsG cardiomyocytes also presented with slowed contraction-relaxation kinetics, to a greater extent in 18-28 week old mice, partially due to increased levels of detyrosinated tubulin and desmin, and reduced cardiac troponin I (cTnI) phosphorylation. Impaired cardiomyocyte contraction-relaxation kinetics were successfully normalized in 18-28 week old Mybpc3InsG/InsG cardiomyocytes by combining detyrosination inhibitor parthenolide and β-adrenergic receptor agonist isoproterenol. Both the 3-4 week old and 18-28 week old Mybpc3InsG/InsG models recapitulate HCM, with a severe phenotype present in the 18-28 week old model.
Collapse
Affiliation(s)
- Sarah Hilderink
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Maike Schuldt
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Max Goebel
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Valentijn J Jansen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Emmy Manders
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands
| | - Stan Moorman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Larissa M Dorsch
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Jolanda van der Velden
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Zhang L, Qi D, Peng M, Meng B, Wang X, Zhang X, Zuo Z, Li L, Wang Z, Zou W, Hu Z, Qian Z. Decoding molecular signature on heart of septic mice with distinct left ventricular ejection fraction. iScience 2023; 26:107825. [PMID: 37736036 PMCID: PMC10509301 DOI: 10.1016/j.isci.2023.107825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Dysregulated cardiac function after sepsis in intensive care unit is known to predict poor long-term outcome and increase mortality. Their pathological feature and molecular mechanism remain unclear. We observed that septic patients with depressed left ventricular ejection fraction (LVEF) have the highest in-hospital and 28 days mortality comparing to patients with hyperdynamic LVEF or with heart failure with preserved LVEF. Echocardiograms reveal that survivors post cecum ligation and puncture (CLP) on rodents have stable LVEF and non-survivors have fluctuated LVEF at CLP early phase. CLP-induced mice fall into three groups based on LVEF 24 h post-surgery: high-, low-, and normal-LVEF. Transcriptomic and proteomic analyses identify jointly and distinctively changed genes, proteins and biologically essential pathways in left ventricles from three CLP groups. Notably, transmission electron microscopy shows different mitochondrial and sarcomere defects associated with LVEF variances. Together, this study systematically characterizes the molecular, morphological, and functional alterations in CLP-induced cardiac injury.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital) Changsha, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Changsha 410008, China
| | - Desheng Qi
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Milin Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital) Changsha, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Changsha 410008, China
| | - Binbin Meng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xinrun Wang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaolei Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhihong Zuo
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Li Li
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital) Changsha, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Changsha 410008, China
| | - Zhanwen Wang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital) Changsha, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Changsha 410008, China
| | - Wenxuan Zou
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhonghua Hu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital) Changsha, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Changsha 410008, China
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital) Changsha, Changsha 410008, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Changsha 410008, China
| |
Collapse
|
13
|
Del Gaudio F, Liu D, Andaloussi Mäe M, Braune EB, Hansson EM, Wang QD, Betsholtz C, Lendahl U. Left ventricular hypertrophy and metabolic resetting in the Notch3-deficient adult mouse heart. Sci Rep 2023; 13:15022. [PMID: 37699967 PMCID: PMC10497627 DOI: 10.1038/s41598-023-42010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
The heart depends on a functional vasculature for oxygenation and transport of nutrients, and it is of interest to learn how primary impairment of the vasculature can indirectly affect cardiac function and heart morphology. Notch3-deficiency causes vascular smooth muscle cell (VSMC) loss in the vasculature but the consequences for the heart remain largely elusive. Here, we demonstrate that Notch3-/- mice have enlarged hearts with left ventricular hypertrophy and mild fibrosis. Cardiomyocytes were hypertrophic but not hyperproliferative, and the expression of several cardiomyocyte markers, including Tnt2, Myh6, Myh7 and Actn2, was altered. Furthermore, expression of genes regulating the metabolic status of the heart was affected: both Pdk4 and Cd36 were downregulated, indicating a metabolic switch from fatty acid oxidation to glucose consumption. Notch3-/- mice furthermore showed lower liver lipid content. Notch3 was expressed in heart VSMC and pericytes but not in cardiomyocytes, suggesting that a perturbation of Notch signalling in VSMC and pericytes indirectly impairs the cardiomyocytes. In keeping with this, Pdgfbret/ret mice, characterized by reduced numbers of VSMC and pericytes, showed left ventricular and cardiomyocyte hypertrophy. In conclusion, we demonstrate that reduced Notch3 or PDGFB signalling in vascular mural cells leads to cardiomyocyte dysfunction.
Collapse
Affiliation(s)
- Francesca Del Gaudio
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Dongli Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics at the First Affiliated Hospital, Guangxi Medical University in Nanning, Guangxi, People's Republic of China
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Eike-Benjamin Braune
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emil M Hansson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Coscarella IL, Landim-Vieira M, Rastegarpouyani H, Chase PB, Irianto J, Pinto JR. Nucleus Mechanosensing in Cardiomyocytes. Int J Mol Sci 2023; 24:13341. [PMID: 37686151 PMCID: PMC10487505 DOI: 10.3390/ijms241713341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cardiac muscle contraction is distinct from the contraction of other muscle types. The heart continuously undergoes contraction-relaxation cycles throughout an animal's lifespan. It must respond to constantly varying physical and energetic burdens over the short term on a beat-to-beat basis and relies on different mechanisms over the long term. Muscle contractility is based on actin and myosin interactions that are regulated by cytoplasmic calcium ions. Genetic variants of sarcomeric proteins can lead to the pathophysiological development of cardiac dysfunction. The sarcomere is physically connected to other cytoskeletal components. Actin filaments, microtubules and desmin proteins are responsible for these interactions. Therefore, mechanical as well as biochemical signals from sarcomeric contractions are transmitted to and sensed by other parts of the cardiomyocyte, particularly the nucleus which can respond to these stimuli. Proteins anchored to the nuclear envelope display a broad response which remodels the structure of the nucleus. In this review, we examine the central aspects of mechanotransduction in the cardiomyocyte where the transmission of mechanical signals to the nucleus can result in changes in gene expression and nucleus morphology. The correlation of nucleus sensing and dysfunction of sarcomeric proteins may assist the understanding of a wide range of functional responses in the progress of cardiomyopathic diseases.
Collapse
Affiliation(s)
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Hosna Rastegarpouyani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
15
|
Algül S, Schuldt M, Manders E, Jansen V, Schlossarek S, de Goeij-de Haas R, Henneman AA, Piersma SR, Jimenez CR, Michels M, Carrier L, Helmes M, van der Velden J, Kuster DWD. EGFR/IGF1R Signaling Modulates Relaxation in Hypertrophic Cardiomyopathy. Circ Res 2023; 133:387-399. [PMID: 37477020 DOI: 10.1161/circresaha.122.322133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Diastolic dysfunction is central to diseases such as heart failure with preserved ejection fraction and hypertrophic cardiomyopathy (HCM). However, therapies that improve cardiac relaxation are scarce, partly due to a limited understanding of modulators of cardiomyocyte relaxation. We hypothesized that cardiac relaxation is regulated by multiple unidentified proteins and that dysregulation of kinases contributes to impaired relaxation in patients with HCM. METHODS We optimized and increased the throughput of unloaded shortening measurements and screened a kinase inhibitor library in isolated adult cardiomyocytes from wild-type mice. One hundred fifty-seven kinase inhibitors were screened. To assess which kinases are dysregulated in patients with HCM and could contribute to impaired relaxation, we performed a tyrosine and global phosphoproteomics screen and integrative inferred kinase activity analysis using HCM patient myocardium. Identified hits from these 2 data sets were validated in cardiomyocytes from a homozygous MYBPC3c.2373insG HCM mouse model. RESULTS Screening of 157 kinase inhibitors in wild-type (N=33) cardiomyocytes (n=24 563) resulted in the identification of 17 positive inotropes and 21 positive lusitropes, almost all of them novel. The positive lusitropes formed 3 clusters: cell cycle, EGFR (epidermal growth factor receptor)/IGF1R (insulin-like growth factor 1 receptor), and a small Akt (α-serine/threonine protein kinase) signaling cluster. By performing phosphoproteomic profiling of HCM patient myocardium (N=24 HCM and N=8 donors), we demonstrated increased activation of 6 of 8 proteins from the EGFR/IGFR1 cluster in HCM. We validated compounds from this cluster in mouse HCM (N=12) cardiomyocytes (n=2023). Three compounds from this cluster were able to improve relaxation in HCM cardiomyocytes. CONCLUSIONS We showed the feasibility of screening for functional modulators of cardiomyocyte relaxation and contraction, parameters that we observed to be modulated by kinases involved in EGFR/IGF1R, Akt, cell cycle signaling, and FoxO (forkhead box class O) signaling, respectively. Integrating the screening data with phosphoproteomics analysis in HCM patient tissue indicated that inhibition of EGFR/IGF1R signaling is a promising target for treating impaired relaxation in HCM.
Collapse
Affiliation(s)
- Sila Algül
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Maike Schuldt
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Emmy Manders
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
- CytoCypher BV, Wageningen, the Netherlands (E.M., M.H.)
| | - Valentijn Jansen
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.)
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany (S.S., L.C.)
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Alex A Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Michelle Michels
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, the Netherlands (M.M.)
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.)
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany (S.S., L.C.)
| | - Michiel Helmes
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
- CytoCypher BV, Wageningen, the Netherlands (E.M., M.H.)
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| |
Collapse
|
16
|
Glavaški M, Velicki L, Vučinić N. Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1424. [PMID: 37629714 PMCID: PMC10456451 DOI: 10.3390/medicina59081424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent heritable cardiomyopathy. HCM is considered to be caused by mutations in cardiac sarcomeric protein genes. Recent research suggests that the genetic foundation of HCM is much more complex than originally postulated. The clinical presentations of HCM are very variable. Some mutation carriers remain asymptomatic, while others develop severe HCM, terminal heart failure, or sudden cardiac death. Heterogeneity regarding both genetic mutations and the clinical course of HCM hinders the establishment of universal genotype-phenotype correlations. However, some trends have been identified. The presence of a mutation in some genes encoding sarcomeric proteins is associated with earlier HCM onset, more severe left ventricular hypertrophy, and worse clinical outcomes. There is a diversity in the mechanisms implicated in the pathogenesis of HCM. They may be classified into groups, but they are interrelated. The lack of known supplementary elements that control the progression of HCM indicates that molecular mechanisms that exist between genotype and clinical presentations may be crucial. Secondary molecular changes in pathways implicated in HCM pathogenesis, post-translational protein modifications, and epigenetic factors affect HCM phenotypes. Cardiac loading conditions, exercise, hypertension, diet, alcohol consumption, microbial infection, obstructive sleep apnea, obesity, and environmental factors are non-molecular aspects that change the HCM phenotype. Many mechanisms are implicated in the course of HCM. They are mostly interconnected and contribute to some extent to final outcomes.
Collapse
Affiliation(s)
- Mila Glavaški
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
- Institute of Cardiovascular Diseases Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Nataša Vučinić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (L.V.)
| |
Collapse
|
17
|
Tikunova SB, Thuma J, Davis JP. Mouse Models of Cardiomyopathies Caused by Mutations in Troponin C. Int J Mol Sci 2023; 24:12349. [PMID: 37569724 PMCID: PMC10419064 DOI: 10.3390/ijms241512349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiac muscle contraction is regulated via Ca2+ exchange with the hetero-trimeric troponin complex located on the thin filament. Binding of Ca2+ to cardiac troponin C, a Ca2+ sensing subunit within the troponin complex, results in a series of conformational re-arrangements among the thin filament components, leading to an increase in the formation of actomyosin cross-bridges and muscle contraction. Ultimately, a decline in intracellular Ca2+ leads to the dissociation of Ca2+ from troponin C, inhibiting cross-bridge cycling and initiating muscle relaxation. Therefore, troponin C plays a crucial role in the regulation of cardiac muscle contraction and relaxation. Naturally occurring and engineered mutations in troponin C can lead to altered interactions among components of the thin filament and to aberrant Ca2+ binding and exchange with the thin filament. Mutations in troponin C have been associated with various forms of cardiac disease, including hypertrophic, restrictive, dilated, and left ventricular noncompaction cardiomyopathies. Despite progress made to date, more information from human studies, biophysical characterizations, and animal models is required for a clearer understanding of disease drivers that lead to cardiomyopathies. The unique use of engineered cardiac troponin C with the L48Q mutation that had been thoroughly characterized and genetically introduced into mouse myocardium clearly demonstrates that Ca2+ sensitization in and of itself should not necessarily be considered a disease driver. This opens the door for small molecule and protein engineering strategies to help boost impaired systolic function. On the other hand, the engineered troponin C mutants (I61Q and D73N), genetically introduced into mouse myocardium, demonstrate that Ca2+ desensitization under basal conditions may be a driving factor for dilated cardiomyopathy. In addition to enhancing our knowledge of molecular mechanisms that trigger hypertrophy, dilation, morbidity, and mortality, these cardiomyopathy mouse models could be used to test novel treatment strategies for cardiovascular diseases. In this review, we will discuss (1) the various ways mutations in cardiac troponin C might lead to disease; (2) relevant data on mutations in cardiac troponin C linked to human disease, and (3) all currently existing mouse models containing cardiac troponin C mutations (disease-associated and engineered).
Collapse
Affiliation(s)
- Svetlana B. Tikunova
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA (J.P.D.)
| | | | | |
Collapse
|
18
|
Lother A, Kohl P. The heterocellular heart: identities, interactions, and implications for cardiology. Basic Res Cardiol 2023; 118:30. [PMID: 37495826 PMCID: PMC10371928 DOI: 10.1007/s00395-023-01000-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The heterocellular nature of the heart has been receiving increasing attention in recent years. In addition to cardiomyocytes as the prototypical cell type of the heart, non-myocytes such as endothelial cells, fibroblasts, or immune cells are coming more into focus. The rise of single-cell sequencing technologies enables identification of ever more subtle differences and has reignited the question of what defines a cell's identity. Here we provide an overview of the major cardiac cell types, describe their roles in homeostasis, and outline recent findings on non-canonical functions that may be of relevance for cardiology. We highlight modes of biochemical and biophysical interactions between different cardiac cell types and discuss the potential implications of the heterocellular nature of the heart for basic research and therapeutic interventions.
Collapse
Affiliation(s)
- Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
- Interdisciplinary Medical Intensive Care, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Dewan S, Witayavanitkul N, Kumar M, Mayer BJ, Betancourt L, Cazorla O, de Tombe PP. Depressed myocardial cross-bridge cycling kinetics in a female guinea pig model of diastolic heart failure. J Gen Physiol 2023; 155:e202213288. [PMID: 37102986 PMCID: PMC10140646 DOI: 10.1085/jgp.202213288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Cardiac hypertrophy is associated with diastolic heart failure (DHF), a syndrome in which systolic function is preserved but cardiac filling dynamics are depressed. The molecular mechanisms underlying DHF and the potential role of altered cross-bridge cycling are poorly understood. Accordingly, chronic pressure overload was induced by surgically banding the thoracic ascending aorta (AOB) in ∼400 g female Dunkin Hartley guinea pigs (AOB); Sham-operated age-matched animals served as controls. Guinea pigs were chosen to avoid the confounding impacts of altered myosin heavy chain (MHC) isoform expression seen in other small rodent models. In vivo cardiac function was assessed by echocardiography; cardiac hypertrophy was confirmed by morphometric analysis. AOB resulted in left ventricle (LV) hypertrophy and compromised diastolic function with normal systolic function. Biochemical analysis revealed exclusive expression of β-MHC isoform in both sham control and AOB LVs. Myofilament function was assessed in skinned multicellular preparations, skinned single myocyte fragments, and single myofibrils prepared from frozen (liquid N2) LVs. The rates of force-dependent ATP consumption (tension-cost) and force redevelopment (Ktr), as well as myofibril relaxation time (Timelin) were significantly blunted in AOB, indicating reduced cross-bridge cycling kinetics. Maximum Ca2+ activated force development was significantly reduced in AOB myocytes, while no change in myofilament Ca2+ sensitivity was observed. Our results indicate blunted cross-bridge cycle in a β-MHC small animal DHF model. Reduced cross-bridge cycling kinetics may contribute, at least in part, to the development of DHF in larger mammals, including humans.
Collapse
Affiliation(s)
- Sukriti Dewan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Namthip Witayavanitkul
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Mohit Kumar
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Beth J Mayer
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Lauren Betancourt
- Phymedexp INSERM, CNRS, University of Montpellier , Montpellier, France
| | - Olivier Cazorla
- Phymedexp INSERM, CNRS, University of Montpellier , Montpellier, France
| | - Pieter P de Tombe
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
- Phymedexp INSERM, CNRS, University of Montpellier , Montpellier, France
| |
Collapse
|
20
|
Wu H, Tang LX, Wang XM, Li LP, Chen XK, He YJ, Yang DZ, Shi Y, Shou JL, Zhang ZS, Wang L, Lu BJ, An SM, Zeng CY, Wang WE. Porcupine inhibitor CGX1321 alleviates heart failure with preserved ejection fraction in mice by blocking WNT signaling. Acta Pharmacol Sin 2023; 44:1149-1160. [PMID: 36473990 PMCID: PMC10203103 DOI: 10.1038/s41401-022-01025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is highly prevalent, and lacks effective treatment. The aberration of WNT pathway underlies many pathological processes including cardiac fibrosis and hypertrophy, while porcupine is an acyltransferase essential for the secretion of WNT ligands. In this study we investigated the role of WNT signaling pathway in HFpEF as well as whether blocking WNT signaling by a novel porcupine inhibitor CGX1321 alleviated HFpEF. We established two experimental HFpEF mouse models, namely the UNX/DOCA model and high fat diet/L-NAME ("two-hit") model. The UNX/DOCA and "two-hit" mice were treated with CGX1321 (3 mg·kg-1·d-1) for 4 and 10 weeks, respectively. We showed that CGX1321 treatment significantly alleviated cardiac hypertrophy and fibrosis, thereby improving cardiac diastolic function and exercise performance in both models. Furthermore, both canonical and non-canonical WNT signaling pathways were activated, and most WNT proteins, especially WNT3a and WNT5a, were upregulated during the development of HEpEF in mice. CGX1321 treatment inhibited the secretion of WNT ligands and repressed both canonical and non-canonical WNT pathways, evidenced by the reduced phosphorylation of c-Jun and the nuclear translocation of β-catenin and NFATc3. In an in vitro HFpEF model, MCM and ISO-treated cardiomyocytes, knockdown of porcupine by siRNA leads to a similar inhibitory effect on WNT pathways, cardiomyocyte hypertrophy and cardiac fibroblast activation as CGX1321 did, whereas supplementation of WNT3a and WNT5a reversed the anti-hypertrophy and anti-fibrosis effect of CGX1321. We conclude that WNT signaling activation plays an essential role in the pathogenesis of HFpEF, and porcupine inhibitor CGX1321 exerts a therapeutic effect on HFpEF in mice by attenuating cardiac hypertrophy, alleviating cardiac fibrosis and improving cardiac diastolic function.
Collapse
Affiliation(s)
- Hao Wu
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Lu-Xun Tang
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, 610083, China
| | - Xue-Mei Wang
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Liang-Peng Li
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Xiao-Kang Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Yan-Ji He
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - De-Zhong Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Yu Shi
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Jia-Ling Shou
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Zong-Shu Zhang
- Guangzhou Curegenix Co. Ltd., International Business Incubator, Guangzhou Science City, Guangzhou, 510663, China
| | - Liang Wang
- Guangzhou Curegenix Co. Ltd., International Business Incubator, Guangzhou Science City, Guangzhou, 510663, China
| | - Bing-Jun Lu
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Songzhu Michael An
- Guangzhou Curegenix Co. Ltd., International Business Incubator, Guangzhou Science City, Guangzhou, 510663, China
- Curegenix, Inc., Burlingame, CA, 94010, USA
| | - Chun-Yu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China.
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, 400042, China.
- Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, 350001, China.
- Department of Cardiology, Chongqing General Hospital, Chongqing, 401147, China.
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, 400722, China.
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Military Medical University), Chongqing, 400042, China.
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China.
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
21
|
Asencio A, Malingen S, Kooiker KB, Powers JD, Davis J, Daniel T, Moussavi-Harami F. Machine learning meets Monte Carlo methods for models of muscle's molecular machinery to classify mutations. J Gen Physiol 2023; 155:e202213291. [PMID: 37000171 PMCID: PMC10067704 DOI: 10.1085/jgp.202213291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/14/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
The timing and magnitude of force generation by a muscle depend on complex interactions in a compliant, contractile filament lattice. Perturbations in these interactions can result in cardiac muscle diseases. In this study, we address the fundamental challenge of connecting the temporal features of cardiac twitches to underlying rate constants and their perturbations associated with genetic cardiomyopathies. Current state-of-the-art metrics for characterizing the mechanical consequence of cardiac muscle disease do not utilize information embedded in the complete time course of twitch force. We pair dimension reduction techniques and machine learning methods to classify underlying perturbations that shape the timing of twitch force. To do this, we created a large twitch dataset using a spatially explicit Monte Carlo model of muscle contraction. Uniquely, we modified the rate constants of this model in line with mouse models of cardiac muscle disease and varied mutation penetrance. Ultimately, the results of this study show that machine learning models combined with biologically informed dimension reduction techniques can yield excellent classification accuracy of underlying muscle perturbations.
Collapse
Affiliation(s)
- Anthony Asencio
- Department of Biology, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
- Center for Transnational Muscle Research, University of Washington, Seattle, WA, USA
| | - Sage Malingen
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center for Transnational Muscle Research, University of Washington, Seattle, WA, USA
| | - Kristina B. Kooiker
- Division of Cardiology, University of Washington, Seattle, WA, USA
- Center for Transnational Muscle Research, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Joseph D. Powers
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center for Transnational Muscle Research, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine Pathology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Thomas Daniel
- Department of Biology, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center for Transnational Muscle Research, University of Washington, Seattle, WA, USA
| | - Farid Moussavi-Harami
- Division of Cardiology, University of Washington, Seattle, WA, USA
- Center for Transnational Muscle Research, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine Pathology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Han SW, Boldt K, Joumaa V, Herzog W. Characterizing residual and passive force enhancements in cardiac myofibrils. Biophys J 2023; 122:1538-1547. [PMID: 36932677 PMCID: PMC10147830 DOI: 10.1016/j.bpj.2023.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/07/2022] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Residual force enhancement (RFE), an increase in isometric force after active stretching of a muscle compared with the purely isometric force at the corresponding length, has been consistently observed throughout the structural hierarchy of skeletal muscle. Similar to RFE, passive force enhancement (PFE) is also observable in skeletal muscle and is defined as an increase in passive force when a muscle is deactivated after it has been actively stretched compared with the passive force following deactivation of a purely isometric contraction. These history-dependent properties have been investigated abundantly in skeletal muscle, but their presence in cardiac muscle remains unresolved and controversial. The purpose of this study was to investigate whether RFE and PFE exist in cardiac myofibrils and whether the magnitudes of RFE and PFE increase with increasing stretch magnitudes. Cardiac myofibrils were prepared from the left ventricles of New Zealand White rabbits, and the history-dependent properties were tested at three different final average sarcomere lengths (n = 8 for each), 1.8, 2, and 2.2 μm, while the stretch magnitude was kept at 0.2 μm/sarcomere. The same experiment was repeated with a final average sarcomere length of 2.2 μm and a stretching magnitude of 0.4 μm/sarcomere (n = 8). All 32 cardiac myofibrils exhibited increased forces after active stretching compared with the corresponding purely isometric reference conditions (p < 0.05). Furthermore, the magnitude of RFE was greater when myofibrils were stretched by 0.4 compared with 0.2 μm/sarcomere (p < 0.05). We conclude that, like in skeletal muscle, RFE and PFE are properties of cardiac myofibrils and are dependent on stretch magnitude.
Collapse
Affiliation(s)
- Seong-Won Han
- Institute of Physiology II, Faculty of Medicine, University of Münster, Münster, Germany; Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| | - Kevin Boldt
- Faculty of Kinesiology, University of Calgary, Calgary, Canada; Kinesiology Program, Trent University, Peterborough, ON, Canada; Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
| | - Venus Joumaa
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Walter Herzog
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
23
|
Perazza LR, Wei G, Thompson LV. Fast and slow skeletal myosin binding protein-C and aging. GeroScience 2023; 45:915-929. [PMID: 36409445 PMCID: PMC9886727 DOI: 10.1007/s11357-022-00689-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
Aging is associated with skeletal muscle strength decline and cardiac diastolic dysfunction. The structural arrangements of the sarcomeric proteins, such as myosin binding protein-C (MyBP-C) are shown to be pivotal in the pathogenesis of diastolic dysfunction. Yet, the role of fast (fMyBP-C) and slow (sMyBP-C) skeletal muscle MyBP-C remains to be elucidated. Herein, we aimed to characterize MyBP-C and its paralogs in the fast tibialis anterior (TA) muscle from adult and old mice. Immunoreactivity preparations showed that the relative abundance of the fMyBP-C paralog was greater in the TA of both adult and old, but no differences were noted between groups. We further found that the expression level of cardiac myosin binding protein-C (cMyBP-C), an important modulator of cardiac output, was lowered by age. Standard SDS-PAGE along with Pro-Q Diamond phosphoprotein staining did not identify age-related changes in phosphorylated MyBP-C proteins from TA and cardiac muscles; however, it revealed that MyBP-C paralogs in fast skeletal and cardiac muscle were highly phosphorylated. Mass spectrometry further identified glycogen phosphorylase, desmin, actin, troponin T, and myosin regulatory light chain 2 as phosphorylated myofilament proteins in both ages. MyBP-C protein-bound carbonyls were determined using anti-DNP immunostaining and found the carbonyl level of fMyBP-C, sMyBP-C, and cMyBP-C to be similar between old and adult animals. In summary, our data showed some differences regarding the MyBP-C paralog expression and identified an age-related reduction of cMyBP-C expression. Future studies are needed to elucidate which are the age-driven post-translational modifications in the MyBP-C paralogs.
Collapse
Affiliation(s)
- L. R. Perazza
- Department of Physical Therapy, College of Health & Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Ave, Boston, MA 02215 USA
| | - G. Wei
- Department of Physical Therapy, College of Health & Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Ave, Boston, MA 02215 USA
| | - L. V. Thompson
- Department of Physical Therapy, College of Health & Rehabilitation Sciences: Sargent College, Boston University, 635 Commonwealth Ave, Boston, MA 02215 USA
| |
Collapse
|
24
|
Chapman EA, Aballo TJ, Melby JA, Zhou T, Price SJ, Rossler KJ, Lei I, Tang PC, Ge Y. Defining the Sarcomeric Proteoform Landscape in Ischemic Cardiomyopathy by Top-Down Proteomics. J Proteome Res 2023; 22:931-941. [PMID: 36800490 PMCID: PMC10115148 DOI: 10.1021/acs.jproteome.2c00729] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Ischemic cardiomyopathy (ICM) is a prominent form of heart failure, but the molecular mechanisms underlying ICM remain relatively understudied due to marked phenotypic heterogeneity. Alterations in post-translational modifications (PTMs) and isoform switches in sarcomeric proteins play important roles in cardiac pathophysiology. Thus, it is essential to define sarcomeric proteoform landscape to better understand ICM. Herein, we have implemented a top-down liquid chromatography (LC)-mass spectrometry (MS)-based proteomics method for the identification and quantification of sarcomeric proteoforms in the myocardia of donors without heart diseases (n = 16) compared to end-stage ICM patients (n = 16). Importantly, quantification of post-translational modifications (PTMs) and expression reveal significant changes in various sarcomeric proteins extracted from ICM tissues. Changes include altered phosphorylation and expression of cardiac troponin I (cTnI) and enigma homologue 2 (ENH2) as well as an increase in muscle LIM protein (MLP) and calsarcin-1 (Cal-1) phosphorylation in ICM hearts. Our results imply that the contractile apparatus of the sarcomere is severely dysregulated during ICM. Thus, this is the first study to uncover significant molecular changes to multiple sarcomeric proteins in the LV myocardia of the end-stage ICM patients using liquid chromatography-mass spectrometry (LC-MS)-based top-down proteomics. Raw data are available via the PRIDE repository with identifier PXD038066.
Collapse
Affiliation(s)
- Emily A. Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Timothy J. Aballo
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Tianhua Zhou
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Scott J. Price
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kalina J. Rossler
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Ienglam Lei
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Paul C. Tang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
25
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
26
|
Udani R, Schilter KF, Tyler RC, Smith BA, Wendt-Andrae JL, Kappes UP, Scharer G, Lehman A, Steinraths M, Reddi HV. A novel variant of TNNC1 associated with severe dilated cardiomyopathy causing infant mortality and stillbirth: a case of germline mosaicism. J Genet 2023. [DOI: 10.1007/s12041-022-01412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Joyce W, Ripley DM, Gillis T, Black AC, Shiels HA, Hoffmann FG. A Revised Perspective on the Evolution of Troponin I and Troponin T Gene Families in Vertebrates. Genome Biol Evol 2022; 15:6904147. [PMID: 36518048 PMCID: PMC9825255 DOI: 10.1093/gbe/evac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The troponin (Tn) complex, responsible for the Ca2+ activation of striated muscle, is composed of three interacting protein subunits: TnC, TnI, and TnT, encoded by TNNC, TNNI, and TNNT genes. TNNI and TNNT are sister gene families, and in mammals the three TNNI paralogs (TNNI1, TNNI2, TNNI3), which encode proteins with tissue-specific expression, are each in close genomic proximity with one of the three TNNT paralogs (TNNT2, TNNT3, TNNT1, respectively). It has been widely presumed that all vertebrates broadly possess genes of these same three classes, although earlier work has overlooked jawless fishes (cyclostomes) and cartilaginous fishes (chimeras, rays, and sharks), which are distantly related to other jawed vertebrates. With a new phylogenetic and synteny analysis of a diverse array of vertebrates including these taxonomic groups, we define five distinct TNNI classes (TNNI1-5), with TNNI4 and TNNI5 being only present in non-amniote vertebrates and typically found in tandem, and four classes of TNNT (TNNT1-4). These genes are located in four genomic loci that were generated by the 2R whole-genome duplications. TNNI3, encoding "cardiac TnI" in tetrapods, was independently lost in cartilaginous and ray-finned fishes. Instead, ray-finned fishes predominantly express TNNI1 in the heart. TNNI5 is highly expressed in shark hearts and contains a N-terminal extension similar to that of TNNI3 found in tetrapod hearts. Given that TNNI3 and TNNI5 are distantly related, this supports the hypothesis that the N-terminal extension may be an ancestral feature of vertebrate TNNI and not an innovation unique to TNNI3, as has been commonly believed.
Collapse
Affiliation(s)
| | - Daniel M Ripley
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Todd Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Amanda Coward Black
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi 39762, USA
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | | |
Collapse
|
28
|
Costache AD, Leon-Constantin MM, Roca M, Maștaleru A, Anghel RC, Zota IM, Drugescu A, Costache II, Chetran A, Moisă ȘM, Huzum B, Mitu O, Cumpăt C, Honceriu C, Mitu F. Cardiac Biomarkers in Sports Cardiology. J Cardiovasc Dev Dis 2022; 9:453. [PMID: 36547450 PMCID: PMC9781597 DOI: 10.3390/jcdd9120453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Sustained physical activity induces morphological and functional changes in the cardiovascular system. While mostly physiological, they can also become a trigger for major adverse cardiovascular events, the most severe of which are sudden cardiac arrest and sudden cardiac death. Therefore, any novel method which can help more accurately estimate the cardiovascular risk should be considered for further studying and future implementation in the standard protocols. The study of biomarkers is gaining more and more ground as they have already established their utility in diagnosing ischemic cardiac disease or in evaluating cardiac dysfunction in patients with heart failure. Nowadays, they are being implemented in the screening of apparently healthy individuals for the assessment of the cardiovascular risk. The aim of this paper is to gather published data regarding the measurements of cardiac biomarkers in athletes, i.e., troponins, myoglobin, CK-MB, NT-proBNP, and D-Dimers, and their potential use in the field of sports cardiology.
Collapse
Affiliation(s)
- Alexandru-Dan Costache
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Maria-Magdalena Leon-Constantin
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Mihai Roca
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alexandra Maștaleru
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Răzvan-Constantin Anghel
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana-Mădălina Zota
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Andrei Drugescu
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Irina-Iuliana Costache
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Cardiology, ”St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Adriana Chetran
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Cardiology, ”St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Ștefana-Maria Moisă
- Department of Mother and Child Medicine-Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Pediatrics I, “St. Maria” Clinical Emergency Hospital, 700309 Iasi, Romania
| | - Bogdan Huzum
- Department of Morphofunctional Sciences II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Orthopaedics and Traumatology, “Sf. Spiridon” Emergency Hospital, 700111 Iasi, Romania
| | - Ovidiu Mitu
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Cardiology, ”St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Carmen Cumpăt
- Department of Management, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Cezar Honceriu
- Faculty of Physical Education and Sports, “Alexandru Ioan Cuza” University, 700115 Iasi, Romania
| | - Florin Mitu
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
29
|
Kuo CW, Pratiwi FW, Liu YT, Chueh DY, Chen P. Revealing the nanometric structural changes in myocardial infarction models by time-lapse intravital imaging. Front Bioeng Biotechnol 2022; 10:935415. [PMID: 36051583 PMCID: PMC9424828 DOI: 10.3389/fbioe.2022.935415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the development of bioinspired nanomaterials for therapeutic applications, it is very important to validate the design of nanomaterials in the disease models. Therefore, it is desirable to visualize the change of the cells in the diseased site at the nanoscale. Heart diseases often start with structural, morphological, and functional alterations of cardiomyocyte components at the subcellular level. Here, we developed straightforward technique for long-term real-time intravital imaging of contracting hearts without the need of cardiac pacing and complex post processing images to understand the subcellular structural and dynamic changes in the myocardial infarction model. A two-photon microscope synchronized with electrocardiogram signals was used for long-term in vivo imaging of a contracting heart with subcellular resolution. We found that the structural and dynamic behaviors of organelles in cardiomyocytes closely correlated with heart function. In the myocardial infarction model, sarcomere shortening decreased from ∼15% (healthy) to ∼8% (diseased) as a result of impaired cardiac function, whereas the distances between sarcomeres increased by 100 nm (from 2.11 to 2.21 μm) in the diastolic state. In addition, T-tubule system regularity analysis revealed that T-tubule structures that were initially highly organized underwent significant remodeling. Morphological remodeling and changes in dynamic activity at the subcellular level are essential to maintain heart function after infarction in a heart disease model.
Collapse
Affiliation(s)
- Chiung Wen Kuo
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | | | - Yen-Ting Liu
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
- *Correspondence: Peilin Chen,
| |
Collapse
|
30
|
Anderson CL, Munawar S, Reilly L, Kamp TJ, January CT, Delisle BP, Eckhardt LL. How Functional Genomics Can Keep Pace With VUS Identification. Front Cardiovasc Med 2022; 9:900431. [PMID: 35859585 PMCID: PMC9291992 DOI: 10.3389/fcvm.2022.900431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/09/2022] [Indexed: 01/03/2023] Open
Abstract
Over the last two decades, an exponentially expanding number of genetic variants have been identified associated with inherited cardiac conditions. These tremendous gains also present challenges in deciphering the clinical relevance of unclassified variants or variants of uncertain significance (VUS). This review provides an overview of the advancements (and challenges) in functional and computational approaches to characterize variants and help keep pace with VUS identification related to inherited heart diseases.
Collapse
Affiliation(s)
- Corey L. Anderson
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Saba Munawar
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Louise Reilly
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy J. Kamp
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Craig T. January
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian P. Delisle
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lee L. Eckhardt
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
31
|
Okhovatian S, Mohammadi MH, Rafatian N, Radisic M. Engineering Models of the Heart Left Ventricle. ACS Biomater Sci Eng 2022; 8:2144-2160. [PMID: 35523206 DOI: 10.1021/acsbiomaterials.1c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite capturing the imagination of scientists for decades, the goal of creating an artificial heart for transplantation proved to be significantly more challenging than initially anticipated. Toward this goal, recent ground-breaking studies demonstrate the development of functional left ventricular (LV) models. LV models are artificially constructed 3D chambers that are capable of containing liquid within the engineered cavity and exhibit the functionality of native LV including contraction, ejection of fluid, and electrical impulse propagation. Various hydrogels and polymers have been used in manufacturing of LV models, relying on techniques such as electrospinning, bioprinting, casting, and molding. Most studies scaled down the models based on the dimensions of the human or rat ventricle. Initially, neonatal rat cardiomyocytes were the cell type of choice for construction the LV models. Yet, as the stem cell biology field advanced, recent studies focused on the use of cardiomyocytes derived from human induced pluripotent stem cells. In this review, we first describe the physiological characteristics of the human heart, to establish the parameter space for modeling. We then elaborate on current advances in the field and compare recently developed LV models among themselves and with the native human left ventricle. Fabrication methods, cell types, biomaterials, functional properties, and disease modeling capability are some of the major parameters that have distinguished these models. We also highlight some of the current challenges in this field, such as vascularization, cell composition and fidelity, and discuss potential solutions to overcome them.
Collapse
Affiliation(s)
- Sargol Okhovatian
- Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Mohammad Hossein Mohammadi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Naimeh Rafatian
- Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.,Toronto General Research Institute, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
32
|
Costache AD, Roca M, Honceriu C, Costache II, Leon-Constantin MM, Mitu O, Miftode RȘ, Maștaleru A, Iliescu-Halițchi D, Halițchi-Iliescu CO, Ion A, Duca ȘT, Popa DM, Abălasei B, Mocanu V, Mitu F. Cardiopulmonary Exercise Testing and Cardiac Biomarker Measurements in Young Football Players: A Pilot Study. J Clin Med 2022; 11:2772. [PMID: 35628899 PMCID: PMC9143869 DOI: 10.3390/jcm11102772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
Constant and intense physical activity causes physiological adaptive changes in the human body, but it can also become a trigger for adverse events, such as sudden cardiac arrest or sudden cardiac death. Our main objective was to assess the use of combined cardiopulmonary exercise testing (CPET) and cardiac biomarker determinants in young professional athletes. We conducted a study which involved the full examination of 19 football players, all male, aged between 18 and 20 years old. They underwent standard clinical and paraclinical evaluation, a 12-lead electrocardiogram (ECG), and transthoracic echocardiography (TTE). Afterwards, a tailored CPET was performed and peripheral venous blood samples were taken before and 3 h after the test in order to determine five biomarker levels at rest and post-effort. The measured biomarkers were cardiac troponin I (cTnI), myoglobin (Myo), the MB isoenzyme of creatine-kinase (CK-MB), the N-terminal prohormone of brain natriuretic peptide (NT-proBNP) and D-dimers. While cTnI and NT-proBNP levels were undetectable both at rest and post-effort in all subjects, the variations in Myo, CK-MB and D-dimers showed significant correlations with CPET parameters. This highlights the potential use of combined CPET and biomarker determinants to evaluate professional athletes, and encourages further research on larger study groups.
Collapse
Affiliation(s)
- Alexandru-Dan Costache
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (I.-I.C.); (M.-M.L.-C.); (O.M.); (R.-Ș.M.); (A.M.); (D.I.-H.); (A.I.); (Ș.-T.D.); (D.-M.P.); (F.M.)
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Mihai Roca
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (I.-I.C.); (M.-M.L.-C.); (O.M.); (R.-Ș.M.); (A.M.); (D.I.-H.); (A.I.); (Ș.-T.D.); (D.-M.P.); (F.M.)
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Cezar Honceriu
- Faculty of Physical Education and Sports, “Alexandru Ioan Cuza” University, 700115 Iasi, Romania; (C.H.); (B.A.)
| | - Irina-Iuliana Costache
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (I.-I.C.); (M.-M.L.-C.); (O.M.); (R.-Ș.M.); (A.M.); (D.I.-H.); (A.I.); (Ș.-T.D.); (D.-M.P.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Maria-Magdalena Leon-Constantin
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (I.-I.C.); (M.-M.L.-C.); (O.M.); (R.-Ș.M.); (A.M.); (D.I.-H.); (A.I.); (Ș.-T.D.); (D.-M.P.); (F.M.)
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ovidiu Mitu
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (I.-I.C.); (M.-M.L.-C.); (O.M.); (R.-Ș.M.); (A.M.); (D.I.-H.); (A.I.); (Ș.-T.D.); (D.-M.P.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Radu-Ștefan Miftode
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (I.-I.C.); (M.-M.L.-C.); (O.M.); (R.-Ș.M.); (A.M.); (D.I.-H.); (A.I.); (Ș.-T.D.); (D.-M.P.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Alexandra Maștaleru
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (I.-I.C.); (M.-M.L.-C.); (O.M.); (R.-Ș.M.); (A.M.); (D.I.-H.); (A.I.); (Ș.-T.D.); (D.-M.P.); (F.M.)
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Dan Iliescu-Halițchi
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (I.-I.C.); (M.-M.L.-C.); (O.M.); (R.-Ș.M.); (A.M.); (D.I.-H.); (A.I.); (Ș.-T.D.); (D.-M.P.); (F.M.)
- Department of Cardiology, Arcadia Hospital, 700620 Iasi, Romania
| | - Codruța-Olimpiada Halițchi-Iliescu
- Department of Mother and Child Medicine-Pediatrics, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
- Department of Pediatrics, Arcadia Hospital, 700620 Iasi, Romania
| | - Adriana Ion
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (I.-I.C.); (M.-M.L.-C.); (O.M.); (R.-Ș.M.); (A.M.); (D.I.-H.); (A.I.); (Ș.-T.D.); (D.-M.P.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Ștefania-Teodora Duca
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (I.-I.C.); (M.-M.L.-C.); (O.M.); (R.-Ș.M.); (A.M.); (D.I.-H.); (A.I.); (Ș.-T.D.); (D.-M.P.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Delia-Melania Popa
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (I.-I.C.); (M.-M.L.-C.); (O.M.); (R.-Ș.M.); (A.M.); (D.I.-H.); (A.I.); (Ș.-T.D.); (D.-M.P.); (F.M.)
| | - Beatrice Abălasei
- Faculty of Physical Education and Sports, “Alexandru Ioan Cuza” University, 700115 Iasi, Romania; (C.H.); (B.A.)
| | - Veronica Mocanu
- Department of Morphofunctional Sciences II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Florin Mitu
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (I.-I.C.); (M.-M.L.-C.); (O.M.); (R.-Ș.M.); (A.M.); (D.I.-H.); (A.I.); (Ș.-T.D.); (D.-M.P.); (F.M.)
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
33
|
Ichise N, Sato T, Fusagawa H, Yamazaki H, Kudo T, Ogon I, Tohse N. Ultrastructural Assessment and Proteomic Analysis in Myofibrillogenesis in the Heart Primordium After Heartbeat Initiation in Rats. Front Physiol 2022; 13:907924. [PMID: 35615667 PMCID: PMC9124805 DOI: 10.3389/fphys.2022.907924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Myofibrillogenesis is an essential process for cardiogenesis and is closely related to excitation-contraction coupling and the maintenance of heartbeat. It remains unclear whether the formation of myofibrils and sarcomeres is associated with heartbeat initiation in the early embryonic heart development. Here, we investigated the association between the ultrastructure of myofibrils assessed by transmission electron microscopy and their proteomic profiling assessed by data-independent acquisition mass spectrometry (DIA-MS) in the rat heart primordia before and after heartbeat initiation at embryonic day 10.0, when heartbeat begins in rats, and in the primitive heart tube at embryonic day 11.0. Bundles of myofilaments were scattered in a few cells of the heart primordium after heartbeat initiation, whereas there were no typical sarcomeres in the heart primordia both before and after heartbeat initiation. Sarcomeres with Z-lines were identified in cells of the primitive heart tube, though myofilaments were not aligned. DIA-MS proteome analysis revealed that only 43 proteins were significantly upregulated by more than 2.0 fold among a total of 7,762 detected proteins in the heart primordium after heartbeat initiation compared with that before heartbeat initiation. Indeed, of those upregulated proteins, 12 (27.9%) were constituent proteins of myofibrils and 10 (23.3%) were proteins that were accessories and regulators for myofibrillogenesis, suggesting that upregulated proteins that are associated with heartbeat initiation were enriched in myofibrillogenesis. Collectively, our results suggest that the establishment of heartbeat is induced by development of bundles of myofilaments with upregulated proteins associated with myofibrillogensis, whereas sarcomeres are not required for the initial heartbeat.
Collapse
Affiliation(s)
- Nobutoshi Ichise
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- *Correspondence: Tatsuya Sato,
| | - Hiroyori Fusagawa
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroya Yamazaki
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taiki Kudo
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Izaya Ogon
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
34
|
Camors EM, Roth AH, Alef JR, Sullivan RD, Johnson JN, Purevjav E, Towbin JA. Progressive Reduction in Right Ventricular Contractile Function Due to Altered Actin Expression in an Aging Mouse Model of Arrhythmogenic Cardiomyopathy. Circulation 2022; 145:1609-1624. [PMID: 35437032 DOI: 10.1161/circulationaha.120.049261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is an inherited genetic disorder of desmosomal dysfunction, and plakophilin-2 (PKP2) has been reported to be the most common disease-causing gene when mutation-positive. In the early "concealed" phase, the ACM heart is at high risk of sudden cardiac death before cardiac remodeling occurs due to mistargeted ion channels and altered Ca2+ handling. However, the results of pathogenic PKP2 variants on myocyte contraction in ACM pathogenesis remain unknown. METHODS We studied the outcomes of a human truncating variant of PKP2 on myocyte contraction using a novel knock-in mouse model with insertion of thymidine in exon 5 of Pkp2, which mimics a familial case of ACM (PKP2-L404fsX5). We used serial echocardiography, electrocardiography, blood pressure measurements, histology, cardiomyocyte contraction, intracellular calcium measurements, and gene and protein expression studies. RESULTS Serial echocardiography of Pkp2 heterozygous (Pkp2-Het) mice revealed progressive failure of the right ventricle (RV) in animals older than three months of age. By contrast, left ventricular (LV) function remained normal. Electrocardiograms of six-month-old anesthetized Pkp2-Het mice showed normal baseline heart rates and QRS complexes. Cardiac responses to β-adrenergic agonist isoproterenol (2 mg.kg-1) plus caffeine (120 mg.kg-1) were also normal. However, adrenergic stimulation enhanced the susceptibility of Pkp2-Het hearts to tachyarrhythmia and sudden cardiac death. Histologic staining showed no significant fibrosis or adipocyte infiltration in the RVs and LVs of six- and twelve-month-old Pkp2-Het hearts. Contractility assessment of isolated myocytes demonstrated progressively reduced Pkp2-Het RV cardiomyocyte function consistent with RV failure measured by echocardiography. However, aging Pkp2-Het and control RV myocytes loaded with intracellular Ca2+ indicator Fura-2 showed comparable Ca2+ transients. Western blotting of Pkp2-RV homogenates revealed a 40% decrease in actin, while actin immunoprecipitation followed by a 2, 4-dinitrophenylhydrazine staining showed doubled oxidation level. This correlated with a 39% increase in troponin-I phosphorylation. In contrast, Pkp2-Het LV myocytes had normal contraction, actin expression and oxidation, and troponin-I phosphorylation. Finally, Western blotting of cardiac biopsies revealed actin expression was 40% decreased in RVs of end-stage ACM patients. CONCLUSIONS During the early "concealed" phase of ACM, reduced actin expression drives loss of RV myocyte contraction, contributing to progressive RV dysfunction.
Collapse
Affiliation(s)
- Emmanuel M Camors
- Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN
| | - Alyson H Roth
- Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN
| | - Joseph R Alef
- Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN
| | - Ryan D Sullivan
- Department of Internal Medicine, University of Arizona College of Medicine, Phoenix, AR
| | - Jason N Johnson
- Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN; Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Enkhsaikhan Purevjav
- Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN
| | - Jeffrey A Towbin
- Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN; Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
35
|
Hesaraki M, Bora U, Pahlavan S, Salehi N, Mousavi SA, Barekat M, Rasouli SJ, Baharvand H, Ozhan G, Totonchi M. A Novel Missense Variant in Actin Binding Domain of MYH7 Is Associated With Left Ventricular Noncompaction. Front Cardiovasc Med 2022; 9:839862. [PMID: 35463789 PMCID: PMC9024299 DOI: 10.3389/fcvm.2022.839862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiomyopathies are a group of common heart disorders that affect numerous people worldwide. Left ventricular non-compaction (LVNC) is a structural disorder of the ventricular wall, categorized as a type of cardiomyopathy that mostly caused by genetic disorders. Genetic variations are underlying causes of developmental deformation of the heart wall and the resultant contractile insufficiency. Here, we investigated a family with several affected members exhibiting LVNC phenotype. By whole-exome sequencing (WES) of three affected members, we identified a novel heterozygous missense variant (c.1963C>A:p.Leu655Met) in the gene encoding myosin heavy chain 7 (MYH7). This gene is evolutionary conserved among different organisms. We identified MYH7 as a highly enriched myosin, compared to other types of myosin heavy chains, in skeletal and cardiac muscles. Furthermore, MYH7 was among a few classes of MYH in mouse heart that highly expresses from early embryonic to adult stages. In silico predictions showed an altered actin-myosin binding, resulting in weaker binding energy that can cause LVNC. Moreover, CRISPR/Cas9 mediated MYH7 knockout in zebrafish caused impaired cardiovascular development. Altogether, these findings provide the first evidence for involvement of p.Leu655Met missense variant in the incidence of LVNC, most probably through actin-myosin binding defects during ventricular wall morphogenesis.
Collapse
Affiliation(s)
- Mahdi Hesaraki
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ugur Bora
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Turkey
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Najmeh Salehi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Seyed Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Barekat
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Javad Rasouli
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Turkey
- *Correspondence: Gunes Ozhan
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Mehdi Totonchi
| |
Collapse
|
36
|
Croon M, Szczepanowska K, Popovic M, Lienkamp C, Senft K, Brandscheid CP, Bock T, Gnatzy-Feik L, Ashurov A, Acton RJ, Kaul H, Pujol C, Rosenkranz S, Krüger M, Trifunovic A. FGF21 modulates mitochondrial stress response in cardiomyocytes only under mild mitochondrial dysfunction. SCIENCE ADVANCES 2022; 8:eabn7105. [PMID: 35385313 PMCID: PMC8986112 DOI: 10.1126/sciadv.abn7105] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/11/2022] [Indexed: 05/10/2023]
Abstract
The mitochondrial integrated stress response (mitoISR) has emerged as a major adaptive pathway to respiratory chain deficiency, but both the tissue specificity of its regulation, and how mitoISR adapts to different levels of mitochondrial dysfunction are largely unknown. Here, we report that diverse levels of mitochondrial cardiomyopathy activate mitoISR, including high production of FGF21, a cytokine with both paracrine and endocrine function, shown to be induced by respiratory chain dysfunction. Although being fully dispensable for the cell-autonomous and systemic responses to severe mitochondrial cardiomyopathy, in the conditions of mild-to-moderate cardiac OXPHOS dysfunction, FGF21 regulates a portion of mitoISR. In the absence of FGF21, a large part of the metabolic adaptation to mitochondrial dysfunction (one-carbon metabolism, transsulfuration, and serine and proline biosynthesis) is strongly blunted, independent of the primary mitoISR activator ATF4. Collectively, our work highlights the complexity of mitochondrial stress responses by revealing the importance of the tissue specificity and dose dependency of mitoISR.
Collapse
Affiliation(s)
- Marijana Croon
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Karolina Szczepanowska
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Milica Popovic
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Cologne Cardiovascular Research Center (CCRC), University of Cologne, 50931 Cologne, Germany
| | - Christina Lienkamp
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Katharina Senft
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Christoph Paul Brandscheid
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Theresa Bock
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Genetics, University of Cologne, 50931 Cologne, Germany
| | - Leoni Gnatzy-Feik
- Cologne Cardiovascular Research Center (CCRC), University of Cologne, 50931 Cologne, Germany
- Klinik III für Innere Medizin, Herzzentrum, University of Cologne, Kerpener Str, 62, 50937 Cologne, Germany
| | - Artem Ashurov
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Richard James Acton
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Harshita Kaul
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Claire Pujol
- Institut Pasteur, UMR3691 CNRS, Université de Paris, 75015 Paris, France
| | - Stephan Rosenkranz
- Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
- Cologne Cardiovascular Research Center (CCRC), University of Cologne, 50931 Cologne, Germany
- Klinik III für Innere Medizin, Herzzentrum, University of Cologne, Kerpener Str, 62, 50937 Cologne, Germany
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
- Institute of Genetics, University of Cologne, 50931 Cologne, Germany
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
37
|
Huang AW, Janssen PML. The Case for, and Challenges of, Human Cardiac Tissue in Advancing Phosphoprotein Research. Front Physiol 2022; 13:853511. [PMID: 35399265 PMCID: PMC8984461 DOI: 10.3389/fphys.2022.853511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular disease (CVD) and stroke affect over 92 million Americans and account for nearly 1 out of 3 deaths in the US. The use of animal models in cardiovascular research has led to considerable advances in treatment and in our understanding of the pathophysiology of many CVDs. Still, animals may not fully recapitulate human disease states; species differences have long been postulated to be one of the main reasons for a failure of translation between animals and humans in drug discovery and development. Indeed, it has become increasingly clear over the past few decades that to answer certain biomedical questions, like the physiological mechanisms that go awry in many human CVDs, animal tissues may not always be the best option to use. While human cardiac tissue has long been used for laboratory research, published findings often contradict each other, leading to difficulties in interpretation. Current difficulties in utilizing human cardiac tissue include differences in acquisition time, varying tissue procurement protocols, and the struggle to define a human “control” sample. With the tremendous emphasis on translational research that continues to grow, research studies using human tissues are becoming more common. This mini review will discuss advantages, disadvantages, and considerations of using human cardiac tissue in the study of CVDs, paying specific attention to the study of phosphoproteins.
Collapse
|
38
|
Monitoring the maturation of the sarcomere network: a super-resolution microscopy-based approach. Cell Mol Life Sci 2022; 79:149. [PMID: 35199227 PMCID: PMC8866374 DOI: 10.1007/s00018-022-04196-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 12/17/2022]
Abstract
The in vitro generation of human cardiomyocytes derived from induced pluripotent stem cells (iPSC) is of great importance for cardiac disease modeling, drug-testing applications and for regenerative medicine. Despite the development of various cultivation strategies, a sufficiently high degree of maturation is still a decisive limiting factor for the successful application of these cardiac cells. The maturation process includes, among others, the proper formation of sarcomere structures, mediating the contraction of cardiomyocytes. To precisely monitor the maturation of the contractile machinery, we have established an imaging-based strategy that allows quantitative evaluation of important parameters, defining the quality of the sarcomere network. iPSC-derived cardiomyocytes were subjected to different culture conditions to improve sarcomere formation, including prolonged cultivation time and micro patterned surfaces. Fluorescent images of α-actinin were acquired using super-resolution microscopy. Subsequently, we determined cell morphology, sarcomere density, filament alignment, z-Disc thickness and sarcomere length of iPSC-derived cardiomyocytes. Cells from adult and neonatal heart tissue served as control. Our image analysis revealed a profound effect on sarcomere content and filament orientation when iPSC-derived cardiomyocytes were cultured on structured, line-shaped surfaces. Similarly, prolonged cultivation time had a beneficial effect on the structural maturation, leading to a more adult-like phenotype. Automatic evaluation of the sarcomere filaments by machine learning validated our data. Moreover, we successfully transferred this approach to skeletal muscle cells, showing an improved sarcomere formation cells over different differentiation periods. Overall, our image-based workflow can be used as a straight-forward tool to quantitatively estimate the structural maturation of contractile cells. As such, it can support the establishment of novel differentiation protocols to enhance sarcomere formation and maturity.
Collapse
|
39
|
Sharma P, Liu Chung Ming C, Wang X, Bienvenu LA, Beck D, Figtree GA, Boyle A, Gentile C. Biofabrication of advanced in vitro3D models to study ischaemic and doxorubicin-induced myocardial damage. Biofabrication 2022; 14. [PMID: 34983029 DOI: 10.1088/1758-5090/ac47d8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
Current preclinicalin vitroandin vivomodels of cardiac injury typical of myocardial infarction (MI, or heart attack) and drug induced cardiotoxicity mimic only a few aspects of these complex scenarios. This leads to a poor translation of findings from the bench to the bedside. In this study, we biofabricated for the first time advancedin vitromodels of MI and doxorubicin (DOX) induced injury by exposing cardiac spheroids (CSs) to pathophysiological changes in oxygen (O2) levels or DOX treatment. Then, contractile function and cell death was analyzed in CSs in control versus I/R and DOX CSs. For a deeper dig into cell death analysis, 3D rendering analyses and mRNA level changes of cardiac damage-related genes were compared in control versus I/R and DOX CSs. Overall,in vitroCSs recapitulated major features typical of thein vivoMI and drug induced cardiac damages, such as adapting intracellular alterations to O2concentration changes and incubation with cardiotoxic drug, mimicking the contraction frequency and fractional shortening and changes in mRNA expression levels for genes regulating sarcomere structure, calcium transport, cell cycle, cardiac remodelling and signal transduction. Taken together, our study supports the use of I/R and DOX CSs as advancedin vitromodels to study MI and DOX-induced cardiac damage by recapitulating their complex in vivoscenario.
Collapse
Affiliation(s)
- Poonam Sharma
- The University of Newcastle Faculty of Health and Medicine, Kookaburra Cct, New Lambton Heights, New South Wales, 2305, AUSTRALIA
| | - Clara Liu Chung Ming
- University of Technology Sydney Faculty of Engineering, Building 11, Level 10, Room 115, University of Technology Sydney, Ultimo, Sydney, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| | - Xiaowei Wang
- Baker Heart and Diabetes Institute South Australia, 75 Commercial Road, Melbourne, Victoria, 3004, AUSTRALIA
| | - Laura A Bienvenu
- Baker Heart and Diabetes Institute South Australia, 75 Commercial Road, Melbourne, Victoria, 3004, AUSTRALIA
| | - Domink Beck
- University of Technology Sydney Faculty of Engineering, Building 11, Level 10, Room 115, University of Technology Sydney, Ultimo, Sydney, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| | - Gemma A Figtree
- , The University of Sydney Faculty of Medicine and Health, Reserve Rd, Sydney, New South Wales, 2000, AUSTRALIA
| | - Andrew Boyle
- The University of Newcastle Faculty of Health and Medicine, Kookaburra Cct, New Lambton Heights, New South Wales, 2305, AUSTRALIA
| | - Carmine Gentile
- University of Technology Sydney Faculty of Engineering, Building 11, Level 10, Room 115, 81 Broadway St, Ultimo, Sydney, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| |
Collapse
|
40
|
Grondin S, Davies B, Cadrin-Tourigny J, Steinberg C, Cheung CC, Jorda P, Healey JS, Green MS, Sanatani S, Alqarawi W, Angaran P, Arbour L, Antiperovitch P, Khan H, Leather R, Guerra PG, Rivard L, Simpson CS, Gardner M, MacIntyre C, Seifer C, Fournier A, Joza J, Gollob MH, Lettre G, Talajic M, Laksman ZW, Roberts JD, Krahn AD, Tadros R. OUP accepted manuscript. Eur Heart J 2022; 43:3071-3081. [PMID: 35352813 PMCID: PMC9392649 DOI: 10.1093/eurheartj/ehac145] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Aims Genetic testing is recommended in specific inherited heart diseases but its role remains unclear and it is not currently recommended in unexplained cardiac arrest (UCA). We sought to assess the yield and clinical utility of genetic testing in UCA using whole-exome sequencing (WES). Methods and results Survivors of UCA requiring external defibrillation were included from the Cardiac Arrest Survivor with Preserved Ejection fraction Registry. Whole-exome sequencing was performed, followed by assessment of rare variants in previously reported cardiovascular disease genes. A total of 228 UCA survivors (mean age at arrest 39 ± 13 years) were included. The majority were males (66%) and of European ancestry (81%). Following advanced clinical testing at baseline, the likely aetiology of cardiac arrest was determined in 21/228 (9%) cases. Whole-exome sequencing identified a pathogenic or likely pathogenic (P/LP) variant in 23/228 (10%) of UCA survivors overall, increasing the proportion of ‘explained’ cases from 9% only following phenotyping to 18% when combining phenotyping with WES. Notably, 13 (57%) of the 23 P/LP variants identified were located in genes associated with cardiomyopathy, in the absence of a diagnosis of cardiomyopathy at the time of arrest. Conclusions Genetic testing identifies a disease-causing variant in 10% of apparent UCA survivors. The majority of disease-causing variants was located in cardiomyopathy-associated genes, highlighting the arrhythmogenic potential of such variants in the absence of an overt cardiomyopathy diagnosis. The present study supports the use of genetic testing including assessment of arrhythmia and cardiomyopathy genes in survivors of UCA.
Collapse
Affiliation(s)
- Steffany Grondin
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Brianna Davies
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Christian Steinberg
- Institut universitaire de cardiologie et pneumologie de Québec, Université Laval, Québec City, QC, Canada
| | - Christopher C Cheung
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paloma Jorda
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Jeffrey S Healey
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Martin S Green
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Shubhayan Sanatani
- Division of Pediatric Cardiology, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - Wael Alqarawi
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cardiac Sciences, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Paul Angaran
- Cardiac Arrhythmia Service, St Michael’s Hospital, Toronto, ON, Canada
| | - Laura Arbour
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Pavel Antiperovitch
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Habib Khan
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Richard Leather
- Division of Cardiology, Royal Jubilee Hospital, Victoria, BC, Canada
| | - Peter G Guerra
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Lena Rivard
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | | | - Martin Gardner
- Queen Elizabeth II Health Sciences Center, Halifax, NS, Canada
| | | | - Colette Seifer
- St Boniface Hospital, University of Manitoba, Winnipeg, MB, Canada
| | - Anne Fournier
- Ste-Justine Hospital, Université de Montréal, Montreal, QC, Canada
| | - Jacqueline Joza
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Michael H Gollob
- Division of Cardiology, University Health Network, Toronto General Hospital, Toronto, ON, Canada
| | - Guillaume Lettre
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Mario Talajic
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada H1T 1C8
| | - Zachary W Laksman
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, ON, Canada
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Andrew D Krahn
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rafik Tadros
- Corresponding author. Tel: +1 514 376 3330, Fax: +1 514 593 2158, , Twitter: @rafik_tadros
| |
Collapse
|
41
|
Omerovic E, Citro R, Bossone E, Redfors B, Backs J, Bruns B, Ciccarelli M, Couch LS, Dawson D, Grassi G, Iacoviello M, Parodi G, Schneider B, Templin C, Ghadri JR, Thum T, Chioncel O, Tocchetti CG, Van Der Velden J, Heymans S, Lyon AR. Pathophysiology of Takotsubo Syndrome - a joint scientific statement from the Heart Failure Association Takotsubo Syndrome Study Group and Myocardial Function Working Group of the European Society of Cardiology - Part 1: Overview and the central role for catecholamines and sympathetic nervous system. Eur J Heart Fail 2021; 24:257-273. [PMID: 34907620 DOI: 10.1002/ejhf.2400] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022] Open
Abstract
This is the first part of a scientific statement from the Heart Failure Association of the European Society of Cardiology focused upon the pathophysiology of Takotsubo syndrome and is complimentary to the previous HFA Position Statement on Takotsubo syndrome which focused upon clinical management. In part 1 we provide an overview of the pathophysiology of Takotsubo syndrome and fundamental questions to consider. We then review and discuss the central role of catecholamines and the sympathetic nervous system in the pathophysiology, and the direct effects of high surges in catecholamines upon myocardial biology including β-adrenergic receptor signaling, G protein coupled receptor kinases, cardiomyocyte calcium physiology, myofilament physiology, cardiomyocyte gene expression, myocardial electrophysiology and arrhythmogenicity, myocardial inflammation, metabolism and energetics. The integrated effects upon ventricular haemodynamics are discussed and integrated into the pathophysiological model. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elmir Omerovic
- Department of Cardiology, Sahlgrenska University Hospital and Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Rodolfo Citro
- Heart Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Eduardo Bossone
- Division of Cardiology, A. Cardarelli Hospital, Naples, Italy
| | - Bjorn Redfors
- Department of Cardiology, Sahlgrenska University Hospital and Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Bastian Bruns
- Institute of Experimental Cardiology, Heidelberg University, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany.,Department of General Internal Medicine and Psychosomatics, University of Heidelberg, Heidelberg, Germany
| | - Michele Ciccarelli
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Salerno, Italy
| | - Liam S Couch
- National Heart and Lung Institute, Imperial College, London, UK
| | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, Scotland, UK
| | - Guido Grassi
- Clinica Medica, University of Milano Bicocca, Milan, Italy
| | - Massimo Iacoviello
- University Cardiology Unit, Cardiothoracic Department, University Hospital, Bari, Italy
| | - Guido Parodi
- Clinical and Interventional Cardiology, Sassari University Hospital, Sassari, Italy
| | | | - Christian Templin
- University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Jelena R Ghadri
- University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu', Bucharest, Romania and University of Medicine Carol Davila, Bucharest, Romania
| | - C Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center for Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | | | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, The Netherlands and Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology and Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Alexander R Lyon
- National Heart and Lung Institute, Imperial College, London, UK.,Department of Cardiology, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
42
|
Zhao SR, Shen M, Lee C, Zha Y, Guevara JV, Wheeler MT, Wu JC. Generation of three induced pluripotent stem cell lines from hypertrophic cardiomyopathy patients carrying TNNI3 mutations. Stem Cell Res 2021; 57:102597. [PMID: 34798544 PMCID: PMC9095754 DOI: 10.1016/j.scr.2021.102597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common inherited heart disease with a prevalence of about 0.2%. HCM is typically caused by mutations in genes encoding sarcomere or sarcomere-associated proteins. Here, we characterized induced pluripotent stem cell (iPSC) lines generated from the peripheral blood mononuclear cells of three HCM patients each carrying c.433C > T, c.610C > T, or c.235C > T mutation in the TNNI3 gene by non-integrated Sendai virus. All of the three lines exhibited normal morphology, expression of pluripotent markers, stable karyotype, and the potential of trilineage differentiation. The cardiomyocytes differentiated from these iPSC lines can serve as useful tools to model HCM in vitro.
Collapse
Affiliation(s)
- Shane Rui Zhao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chelsea Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yanjun Zha
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julio V Guevara
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
43
|
Crocini C, Gotthardt M. Cardiac sarcomere mechanics in health and disease. Biophys Rev 2021; 13:637-652. [PMID: 34745372 PMCID: PMC8553709 DOI: 10.1007/s12551-021-00840-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
The sarcomere is the fundamental structural and functional unit of striated muscle and is directly responsible for most of its mechanical properties. The sarcomere generates active or contractile forces and determines the passive or elastic properties of striated muscle. In the heart, mutations in sarcomeric proteins are responsible for the majority of genetically inherited cardiomyopathies. Here, we review the major determinants of cardiac sarcomere mechanics including the key structural components that contribute to active and passive tension. We dissect the molecular and structural basis of active force generation, including sarcomere composition, structure, activation, and relaxation. We then explore the giant sarcomere-resident protein titin, the major contributor to cardiac passive tension. We discuss sarcomere dynamics exemplified by the regulation of titin-based stiffness and the titin life cycle. Finally, we provide an overview of therapeutic strategies that target the sarcomere to improve cardiac contraction and filling.
Collapse
Affiliation(s)
- Claudia Crocini
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Neuromuscular and Cardiovascular Cell Biology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- BioFrontiers Institute & Department of Molecular and Cellular Development, University of Colorado Boulder, Boulder, USA
| | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Neuromuscular and Cardiovascular Cell Biology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
44
|
3D bioprinted and integrated platforms for cardiac tissue modeling and drug testing. Essays Biochem 2021; 65:545-554. [PMID: 34269790 DOI: 10.1042/ebc20200106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022]
Abstract
Recent advances in biofabrication techniques, including 3D bioprinting, have allowed for the fabrication of cardiac models that are similar to the human heart in terms of their structure (e.g., volumetric scale and anatomy) and function (e.g., contractile and electrical properties). The importance of developing techniques for assessing the characteristics of 3D cardiac substitutes in real time without damaging their structures has also been emphasized. In particular, the heart has two primary mechanisms for transporting blood through the body: contractility and an electrical system based on intra and extracellular calcium ion exchange. This review introduces recent trends in 3D bioprinted cardiac tissues and the measurement of their structural, contractile, and electrical properties in real time. Cardiac models have also been regarded as alternatives to animal models as drug-testing platforms. Thus, perspectives on the convergence of 3D bioprinted cardiac tissues and their assessment for use in drug development are also presented.
Collapse
|
45
|
Chavez JD, Wippel HH, Tang X, Keller A, Bruce JE. In-Cell Labeling and Mass Spectrometry for Systems-Level Structural Biology. Chem Rev 2021; 122:7647-7689. [PMID: 34232610 PMCID: PMC8966414 DOI: 10.1021/acs.chemrev.1c00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological systems have evolved to utilize proteins to accomplish nearly all functional roles needed to sustain life. A majority of biological functions occur within the crowded environment inside cells and subcellular compartments where proteins exist in a densely packed complex network of protein-protein interactions. The structural biology field has experienced a renaissance with recent advances in crystallography, NMR, and CryoEM that now produce stunning models of large and complex structures previously unimaginable. Nevertheless, measurements of such structural detail within cellular environments remain elusive. This review will highlight how advances in mass spectrometry, chemical labeling, and informatics capabilities are merging to provide structural insights on proteins, complexes, and networks that exist inside cells. Because of the molecular detection specificity provided by mass spectrometry and proteomics, these approaches provide systems-level information that not only benefits from conventional structural analysis, but also is highly complementary. Although far from comprehensive in their current form, these approaches are currently providing systems structural biology information that can uniquely reveal how conformations and interactions involving many proteins change inside cells with perturbations such as disease, drug treatment, or phenotypic differences. With continued advancements and more widespread adaptation, systems structural biology based on in-cell labeling and mass spectrometry will provide an even greater wealth of structural knowledge.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
46
|
Koshy L, Jeemon P, Ganapathi S, Madhavan M, Urulangodi M, Sharma M, Harikrishnan S. Association of South Asian-specific MYBPC3Δ deletion polymorphism and cardiomyopathy: A systematic review and meta-analysis. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
47
|
Martin TG, Myers VD, Dubey P, Dubey S, Perez E, Moravec CS, Willis MS, Feldman AM, Kirk JA. Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover. Nat Commun 2021; 12:2942. [PMID: 34011988 PMCID: PMC8134551 DOI: 10.1038/s41467-021-23272-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
The association between reduced myofilament force-generating capacity (Fmax) and heart failure (HF) is clear, however the underlying molecular mechanisms are poorly understood. Here, we show impaired Fmax arises from reduced BAG3-mediated sarcomere turnover. Myofilament BAG3 expression decreases in human HF and positively correlates with Fmax. We confirm this relationship using BAG3 haploinsufficient mice, which display reduced Fmax and increased myofilament ubiquitination, suggesting impaired protein turnover. We show cardiac BAG3 operates via chaperone-assisted selective autophagy (CASA), conserved from skeletal muscle, and confirm sarcomeric CASA complex localization is BAG3/proteotoxic stress-dependent. Using mass spectrometry, we characterize the myofilament CASA interactome in the human heart and identify eight clients of BAG3-mediated turnover. To determine if increasing BAG3 expression in HF can restore sarcomere proteostasis/Fmax, HF mice were treated with rAAV9-BAG3. Gene therapy fully rescued Fmax and CASA protein turnover after four weeks. Our findings indicate BAG3-mediated sarcomere turnover is fundamental for myofilament functional maintenance. Decreased expression of BAG3 in the heart is associated with contractile dysfunction and heart failure. Here the authors show that this is due to decreased BAG3-dependent sarcomere protein turnover, which impairs mechanical function, and that sarcomere force-generating capacity is restored with BAG3 gene therapy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Valerie D Myers
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Praveen Dubey
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Shubham Dubey
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Edith Perez
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Christine S Moravec
- Department of Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arthur M Feldman
- Department of Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
48
|
Isola R, Broccia F, Casti A, Loy F, Isola M, Vargiu R. STZ-diabetic rat heart maintains developed tension amplitude by increasing sarcomere length and crossbridge density. Exp Physiol 2021; 106:1572-1586. [PMID: 33977604 PMCID: PMC8362044 DOI: 10.1113/ep089000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
New Findings What is the central question of this study? In the papillary muscle from type I diabetic rats, does diabetes‐associated altered ventricular function result from changes of acto‐myosin interactions and are these modifications attributable to a possible sarcomere rearrangement? What is the main finding and its importance? For the first time, we showed that type‐I diabetes altered sarcomeric ultrastructure, as seen by transmission electron microscopy, consistent with physiological parameters. The diabetic condition induced slower timing parameters, which is compatible with a diastolic dysfunction. At the sarcomeric level, augmented β‐myosin heavy chain content and increased sarcomere length and crossbridges' number preserve myocardial stroke and could concur to maintain the ejection fraction.
Abstract We investigated whether diabetes‐associated altered ventricular function, in a type I diabetes animal model, results from a modification of acto‐myosin interactions, through the in vitro recording of left papillary muscle mechanical parameters and examination of sarcomere morphology by transmission electron microscopy (TEM). Experiments were performed on streptozotocin‐induced diabetic and age‐matched control female Wistar rats. Mechanical isometric and isotonic indexes and timing parameters were determined. Using Huxley's equations, we calculated mechanics, kinetics and energetics of myosin crossbridges. Sarcomere length and A‐band length were measured on TEM images. Type I and III collagen and β‐myosin heavy chain (MHC) expression were determined by immunoblotting. No variation in resting and developed tension or maximum extent of shortening was evident between groups, but diabetic rats showed lower maximum shortening velocity and prolonged timing parameters. Compared to controls, diabetics also displayed a higher number of crossbridges with lower unitary force. Moreover, no change in type I and III collagen was associated to diabetes, but pathological rats showed a two‐fold enhancement of β‐MHC content and longer sarcomeres and A‐band, detected by ultrastructural morphometry. Overall, these data address whether a preserved systolic function accompanied by an altered diastolic phase results from a recruitment of super‐relaxed myosin heads or the phosphorylation of the regulatory light chain site in myosin. Although the early signs of diabetic cardiomyopathy were well expressed, the striking finding of our study was that, in diabetics, sarcomere modification may be a possible compensatory mechanism that preserves systolic function.
Collapse
Affiliation(s)
- Raffaella Isola
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Francesca Broccia
- Department of Biomedical Sciences, Division of Physiology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Alberto Casti
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Francesco Loy
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Michela Isola
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| | - Romina Vargiu
- Department of Biomedical Sciences, Division of Physiology, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Monserrato, Italy
| |
Collapse
|
49
|
Monma Y, Shindo T, Eguchi K, Kurosawa R, Kagaya Y, Ikumi Y, Ichijo S, Nakata T, Miyata S, Matsumoto A, Sato H, Miura M, Kanai H, Shimokawa H. Low-intensity pulsed ultrasound ameliorates cardiac diastolic dysfunction in mice: a possible novel therapy for heart failure with preserved left ventricular ejection fraction. Cardiovasc Res 2021; 117:1325-1338. [PMID: 32683442 DOI: 10.1093/cvr/cvaa221] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/30/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
AIMS Heart failure with preserved left ventricular ejection fraction (HFpEF) is a serious health problem worldwide, as no effective therapy is yet available. We have previously demonstrated that our low-intensity pulsed ultrasound (LIPUS) therapy is effective and safe for angina and dementia. In this study, we aimed to examine whether the LIPUS therapy also ameliorates cardiac diastolic dysfunction in mice. METHODS AND RESULTS Twelve-week-old obese diabetic mice (db/db) and their control littermates (db/+) were treated with either the LIPUS therapy [1.875 MHz, 32 cycles, Ispta (spatial peak temporal average intensity) 117-162 mW/cm2, 0.25 W/cm2] or placebo procedure two times a week for 4 weeks. At 20-week-old, transthoracic echocardiography and invasive haemodynamic analysis showed that cardiac diastolic function parameters, such as e', E/e', end-diastolic pressure-volume relationship, Tau, and dP/dt min, were all deteriorated in placebo-treated db/db mice compared with db/+ mice, while systolic function was preserved. Importantly, these cardiac diastolic function parameters were significantly ameliorated in the LIPUS-treated db/db mice. We also measured the force (F) and intracellular Ca2+ ([Ca2+]i) in trabeculae dissected from ventricles. We found that relaxation time and [Ca2+]i decay (Tau) were prolonged during electrically stimulated twitch contractions in db/db mice, both of which were significantly ameliorated in the LIPUS-treated db/db mice, indicating that the LIPUS therapy also improves relaxation properties at tissue level. Functionally, exercise capacity was also improved in the LIPUS-treated db/db mice. Histologically, db/db mice displayed progressed cardiomyocyte hypertrophy and myocardial interstitial fibrosis, while those changes were significantly suppressed in the LIPUS-treated db/db mice. Mechanistically, western blot showed that the endothelial nitric oxide synthase (eNOS)-nitric oxide (NO)-cGMP-protein kinase G (PKG) pathway and Ca2+-handling molecules were up-regulated in the LIPUS-treated heart. CONCLUSIONS These results indicate that the LIPUS therapy ameliorates cardiac diastolic dysfunction in db/db mice through improvement of eNOS-NO-cGMP-PKG pathway and cardiomyocyte Ca2+-handling system, suggesting its potential usefulness for the treatment of HFpEF patients.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Disease Models, Animal
- Fibrosis
- Heart Failure, Diastolic/genetics
- Heart Failure, Diastolic/metabolism
- Heart Failure, Diastolic/physiopathology
- Heart Failure, Diastolic/therapy
- Isolated Heart Preparation
- Mice, Knockout
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Receptors, Leptin/genetics
- Receptors, Leptin/metabolism
- Stroke Volume
- Ultrasonic Therapy
- Ultrasonic Waves
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/therapy
- Ventricular Function, Left
- Mice
Collapse
Affiliation(s)
- Yuto Monma
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Kumiko Eguchi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Ryo Kurosawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yuta Kagaya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yosuke Ikumi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Sadamitsu Ichijo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Takashi Nakata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Satoshi Miyata
- Department of Evidence-Based Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayana Matsumoto
- Department of Clinical Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruka Sato
- Department of Clinical Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahito Miura
- Department of Clinical Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kanai
- Department of Electronic Engineering, Tohoku University Graduate School of Engineering, Sendai, Japan
- Division of Biomedical Measurements and Diagnostics, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
50
|
Regulatory Light Chains in Cardiac Development and Disease. Int J Mol Sci 2021; 22:ijms22094351. [PMID: 33919432 PMCID: PMC8122660 DOI: 10.3390/ijms22094351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022] Open
Abstract
The role of regulatory light chains (RLCs) in cardiac muscle function has been elucidated progressively over the past decade. The RLCs are among the earliest expressed markers during cardiogenesis and persist through adulthood. Failing hearts have shown reduced RLC phosphorylation levels and that restoring baseline levels of RLC phosphorylation is necessary for generating optimal force of muscle contraction. The signalling mechanisms triggering changes in RLC phosphorylation levels during disease progression remain elusive. Uncovering this information may provide insights for better management of heart failure patients. Given the cardiac chamber-specific expression of RLC isoforms, ventricular RLCs have facilitated the identification of mature ventricular cardiomyocytes, opening up possibilities of regenerative medicine. This review consolidates the standing of RLCs in cardiac development and disease and highlights knowledge gaps and potential therapeutic advancements in targeting RLCs.
Collapse
|