1
|
Jia X, Sun J, Zhuo Q, Zhao B, Liu Y. Effect of the NLRP3 inflammasome on increased hypoxic ventilation response after CIH exposure in mice. Respir Physiol Neurobiol 2024; 321:104204. [PMID: 38128772 DOI: 10.1016/j.resp.2023.104204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Chronic intermittent hypoxia (CIH) increases the hypoxic ventilation response (HVR). The downstream cytokine IL-1β of the NLRP3 inflammasome regulates respiration by acting on the carotid body (CB) and neurons in the respiratory center, but the effect of the NLRP3 inflammasome on HVR induced by CIH remains unclear. OBJECTIVE To investigate the effect of NLRP3 on the increased HVR and spontaneous apnea events and duration induced by CIH, the expression and localization of NLRP3 in the respiratory regulatory center of the rostral ventrolateral medulla (RVLM), and the effect of CIH on the activation of the NLRP3 inflammasome in the RVLM. METHODS Eighteen male, 7-week-old C57BL/6 N mice and eighteen male, 7-week-old C57BL/6 N NLRP3 knockout mice were randomly divided into CON-WT, CON-NLRP3-/-, CIH-WT and CIH-NLRP3-/- groups. Respiratory changes in mice were continuously detected using whole-body plethysmography. The expression and localization of the NLRP3 protein and the formation of apoptosis-associated speck-like protein containing CARD (ASC) specks were detected using immunofluorescence staining. RESULTS NLRP3 knockout reduced the increased HVR and the incidence and duration of spontaneous apnea events associated with CIH. The increase in HVR caused by CIH partially recovered after reoxygenation. After CIH, NLRP3 inflammasome activation in the RVLM, which is related to respiratory regulation after hypoxia, increased, which was consistent with the trend of the ventilation response. CONCLUSION The NLRP3 inflammasome may be involved in the increase in the HVR and the incidence and duration of spontaneous apnea induced by CIH. NLRP3 inhibitors may help reduce the increase in the HVR after CIH, which is important for ensuring sleep quality at night in patients with obstructive sleep apnea.
Collapse
Affiliation(s)
- Xinyun Jia
- Department of Respiratory, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China; Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China
| | - Jianxia Sun
- Department of Respiratory, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China; Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China
| | - Qingya Zhuo
- Department of Respiratory, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China; Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Yuzhen Liu
- Department of Respiratory, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China; Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China; Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| |
Collapse
|
2
|
Olmos-Pastoresa CA, Vázquez-Mendoza E, López-Meraz ML, Pérez-Estudillo CA, Beltran-Parrazal L, Morgado-Valle C. Transgenic rodents as dynamic models for the study of respiratory rhythm generation and modulation: a scoping review and a bibliometric analysis. Front Physiol 2023; 14:1295632. [PMID: 38179140 PMCID: PMC10764557 DOI: 10.3389/fphys.2023.1295632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The pre-Bötzinger complex, situated in the ventrolateral medulla, serves as the central generator for the inspiratory phase of the respiratory rhythm. Evidence strongly supports its pivotal role in generating, and, in conjunction with the post-inspiratory complex and the lateral parafacial nucleus, in shaping the respiratory rhythm. While there remains an ongoing debate concerning the mechanisms underlying these nuclei's ability to generate and modulate breathing, transgenic rodent models have significantly contributed to our understanding of these processes. However, there is a significant knowledge gap regarding the spectrum of transgenic rodent lines developed for studying respiratory rhythm, and the methodologies employed in these models. In this study, we conducted a scoping review to identify commonly used transgenic rodent lines and techniques for studying respiratory rhythm generation and modulation. Following PRISMA guidelines, we identified relevant papers in PubMed and EBSCO on 29 March 2023, and transgenic lines in Mouse Genome Informatics and the International Mouse Phenotyping Consortium. With strict inclusion and exclusion criteria, we identified 80 publications spanning 1997-2022 using 107 rodent lines. Our findings revealed 30 lines focusing on rhythm generation, 61 on modulation, and 16 on both. The primary in vivo method was whole-body plethysmography. The main in vitro method was hypoglossal/phrenic nerve recordings using the en bloc preparation. Additionally, we identified 119 transgenic lines with the potential for investigating the intricate mechanisms underlying respiratory rhythm. Through this review, we provide insights needed to design more effective experiments with transgenic animals to unravel the mechanisms governing respiratory rhythm. The identified transgenic rodent lines and methodological approaches compile current knowledge and guide future research towards filling knowledge gaps in respiratory rhythm generation and modulation.
Collapse
Affiliation(s)
| | | | | | | | - Luis Beltran-Parrazal
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Consuelo Morgado-Valle
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
3
|
Phillips RS, Baertsch NA. Interdependence of cellular and network properties in respiratory rhythmogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564834. [PMID: 37961254 PMCID: PMC10634953 DOI: 10.1101/2023.10.30.564834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
How breathing is generated by the preBötzinger Complex (preBötC) remains divided between two ideological frameworks, and the persistent sodium current (INaP) lies at the heart of this debate. Although INaP is widely expressed, the pacemaker hypothesis considers it essential because it endows a small subset of neurons with intrinsic bursting or "pacemaker" activity. In contrast, burstlet theory considers INaP dispensable because rhythm emerges from "pre-inspiratory" spiking activity driven by feed-forward network interactions. Using computational modeling, we discover that changes in spike shape can dissociate INaP from intrinsic bursting. Consistent with many experimental benchmarks, conditional effects on spike shape during simulated changes in oxygenation, development, extracellular potassium, and temperature alter the prevalence of intrinsic bursting and pre-inspiratory spiking without altering the role of INaP. Our results support a unifying hypothesis where INaP and excitatory network interactions, but not intrinsic bursting or pre-inspiratory spiking, are critical interdependent features of preBötC rhythmogenesis.
Collapse
Affiliation(s)
- Ryan S Phillips
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle WA, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle WA, USA
- Pulmonary, Critical Care and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle WA, USA
| |
Collapse
|
4
|
Vagnozzi AN, Moore MT, Lin M, Brozost EM, KC R, Agarwal A, Schwarz LA, Duan X, Zampieri N, Landmesser LT, Philippidou P. Coordinated cadherin functions sculpt respiratory motor circuit connectivity. eLife 2022; 11:e82116. [PMID: 36583530 PMCID: PMC9910829 DOI: 10.7554/elife.82116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Breathing, and the motor circuits that control it, is essential for life. At the core of respiratory circuits are Dbx1-derived interneurons, which generate the rhythm and pattern of breathing, and phrenic motor neurons (MNs), which provide the final motor output that drives diaphragm muscle contractions during inspiration. Despite their critical function, the principles that dictate how respiratory circuits assemble are unknown. Here, we show that coordinated activity of a type I cadherin (N-cadherin) and type II cadherins (Cadherin-6, -9, and -10) is required in both MNs and Dbx1-derived neurons to generate robust respiratory motor output. Both MN- and Dbx1-specific cadherin inactivation in mice during a critical developmental window results in perinatal lethality due to respiratory failure and a striking reduction in phrenic MN bursting activity. This combinatorial cadherin code is required to establish phrenic MN cell body and dendritic topography; surprisingly, however, cell body position appears to be dispensable for the targeting of phrenic MNs by descending respiratory inputs. Our findings demonstrate that type I and II cadherins function cooperatively throughout the respiratory circuit to generate a robust breathing output and reveal novel strategies that drive the assembly of motor circuits.
Collapse
Affiliation(s)
- Alicia N Vagnozzi
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Matthew T Moore
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Minshan Lin
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Elyse M Brozost
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Ritesh KC
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Aambar Agarwal
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Lindsay A Schwarz
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Xin Duan
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
| | - Niccolò Zampieri
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Lynn T Landmesser
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| |
Collapse
|
5
|
Gemici A, Sinen O, Bülbül M. Sexual dimorphism in rats exposed to maternal high fat diet: alterations in medullary sympathetic network. Metab Brain Dis 2021; 36:1305-1314. [PMID: 33914222 DOI: 10.1007/s11011-021-00736-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Exposure to high fat diet during perinatal period (PHFD) leads to neuroplastic changes in autonomic circuits, however, the role of gender has been incompletely understood. This study aims to investigate (i) short, and (ii) long-term effects of PHFD on autonomic outflow, and (iii) sexual dimorphic variations emerge at adulthood. Male and female rats were fed a control diet (13.5 % kcal from fat) or PHFD (60 % kcal from fat) from embryonic day-14 to postnatal day-21. To assess changes in autonomic outflow, heart rate variability (HRV) was analyzed at 10- and 20-week-old ages. Expressions of tyrosine hydroxylase (TH), metabotropic glutamate2/3 receptor (mGlu2/3R), N-methyl-D-aspartate1 receptor (NMDA1R), and gamma aminobutyric acidA receptor (GABAAR) were evaluated by immunohistochemistry. PHFD did not affect the body weight of 4-, 10-or 20-week-old male or female offsprings. PHFD significantly increased the sympathetic marker low frequency (LF) component, and sympatho-vagal balance (LF:HF) only in 10-week-old PHFD males. Compared with control, the propranolol-induced (4 mg·kg- 1, ip) decline in LF was observed more prominently in PHFD rats, however, these changes were found to be restored at the age of 20 weeks. In caudal ventrolateral medulla and nucleus tractus solitarius, expression of mGlu2/3R was downregulated in PHFD males, whereas no change was detected in NMDA1R. The number of GABAAR-expressing TH-immunoreactive cells was decreased in rostral ventrolateral medulla of PHFD males. The findings of this study suggest that exposure to maternal high-fat diet could lead to autonomic imbalance with increased sympathetic tone in the early adulthood of male offspring rats without developing obesity.
Collapse
Affiliation(s)
- Ayşegül Gemici
- Department of Physiology, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey
| | - Mehmet Bülbül
- Department of Physiology, Faculty of Medicine, Akdeniz University, 07070, Antalya, Turkey.
| |
Collapse
|
6
|
Cinelli E, Mutolo D, Pantaleo T, Bongianni F. Neural mechanisms underlying respiratory regulation within the preBötzinger complex of the rabbit. Respir Physiol Neurobiol 2021; 293:103736. [PMID: 34224867 DOI: 10.1016/j.resp.2021.103736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
The preBötzinger complex (preBötC) is a medullary area essential for normal breathing and widely recognized as necessary and sufficient to generate the inspiratory phase of respiration. It has been studied mainly in rodents. Here we report the main results of our studies revealing the characteristics of the rabbit preBötC identified by means of neuronal recordings, D,L-homocysteic acid microinjections and histological controls. A crucial role in the respiratory rhythmogenesis within this neural substrate is played by excitatory amino acids, but also GABA and glycine display important contributions. Increases in respiratory frequency are induced by microinjections of neurokinins, somatostatin as well by serotonin (5-HT) through an action on 5-HT1A and 5-HT3 receptors or the disinhibition of a GABAergic circuit. Respiratory depression is observed in response to microinjections of the μ-opioid receptor agonist DAMGO. Our results show similarities and differences with the rodent preBötC and emphasize the importance of comparative studies on the mechanisms underlying respiratory rhythmogenesis in different animal species.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università Degli Studi di Firenze, Viale G.B. Morgagni 63, Firenze, 50134, Italy.
| |
Collapse
|
7
|
Erickson JT. Central serotonin and autoresuscitation capability in mammalian neonates. Exp Neurol 2020; 326:113162. [DOI: 10.1016/j.expneurol.2019.113162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/04/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
|
8
|
Zimmer MB, Fong AY, Milsom WK. Effect of temperature, age and the pons on respiratory rhythm in the rat brainstem-spinal cord. Respir Physiol Neurobiol 2019; 273:103333. [PMID: 31634578 DOI: 10.1016/j.resp.2019.103333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Neonatal animals are extremely tolerant of hypothermia. However, cooling will ultimately lead to ventilatory arrest, or cessation of respiratory movements. Upon rewarming, ventilation can recover spontaneously (autoresuscitation). This study examined the effect of age (P0-P5) and the pons on respiratory-related output during hypothermic ventilatory arrest and recovery using a brainstem-spinal cord preparation of neonatal rats. As temperature fell, burst frequency slowed, burst duration increased, burst shape became fragmented and eventually respiratory arrest occurred in all preparations. Removing the pons had little effect on younger preparations (P0-P2). Older preparations (P4-P5) with the pons removed continued to burst at cooler temperatures compared to pons-intact preparations and burst durations were significantly longer. Episodic breathing patterns were observed in all preparations (all ages, pons on or off) at lower temperatures. At 27 °C, however, episodic breathing was only observed in younger preparations with the pons on. These data suggest that developmental changes occurring at the level of the pons underlie the loss of hypothermic tolerance and episodic breathing.
Collapse
Affiliation(s)
- M Beth Zimmer
- Department of Biological Sciences, Ferris State University, Big Rapids, MI, 49307, USA.
| | - Angelina Y Fong
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, V6R 1ZT, Canada
| |
Collapse
|
9
|
Maternal thyroid hormone deficiency and cardiorespiratory disorder in rat pups. Exp Neurol 2019; 320:112960. [DOI: 10.1016/j.expneurol.2019.112960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 11/17/2022]
|
10
|
V2a Neurons Constrain Extradiaphragmatic Respiratory Muscle Activity at Rest. eNeuro 2019; 6:ENEURO.0492-18.2019. [PMID: 31324674 PMCID: PMC6709210 DOI: 10.1523/eneuro.0492-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 02/01/2023] Open
Abstract
Breathing requires precise control of respiratory muscles to ensure adequate ventilation. Neurons within discrete regions of the brainstem produce oscillatory activity to control the frequency of breathing. Less is understood about how spinal and pontomedullary networks modulate the activity of respiratory motor neurons to produce different patterns of activity during different behaviors (i.e., during exercise, coughing, swallowing, vocalizing, or at rest) or following disease or injury. Here, we use a chemogenetic approach to inhibit the activity of glutamatergic V2a neurons in the brainstem and spinal cord of neonatal and adult mice to assess their potential roles in respiratory rhythm generation and patterning respiratory muscle activity. Using whole-body plethysmography (WBP), we show that V2a neuron function is required in neonatal mice to maintain the frequency and regularity of respiratory rhythm. However, silencing V2a neurons in adult mice increases respiratory frequency and ventilation, without affecting regularity. Thus, the excitatory drive provided by V2a neurons is less critical for respiratory rhythm generation in adult compared to neonatal mice. In addition, we used simultaneous EMG recordings of the diaphragm and extradiaphragmatic respiratory muscles in conscious adult mice to examine the role of V2a neurons in patterning respiratory muscle activity. We find that silencing V2a neurons activates extradiaphragmatic respiratory muscles at rest, when they are normally inactive, with little impact on diaphragm activity. Thus, our results indicate that V2a neurons participate in a circuit that serves to constrain the activity of extradiaphragmatic respiratory muscles so that they are active only when needed.
Collapse
|
11
|
Mechanisms underlying a critical period of respiratory development in the rat. Respir Physiol Neurobiol 2019; 264:40-50. [PMID: 30999061 DOI: 10.1016/j.resp.2019.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 01/13/2023]
Abstract
Twenty-five years ago, Filiano and Kinney (1994) proposed that a critical period of postnatal development constitutes one of the three risk factors for sudden infant death syndrome (SIDS). The underlying mechanism was poorly understood. In the last 17 years, much has been uncovered on this period in the rat. Against several expected trends of development, abrupt neurochemical, metabolic, ventilatory, and electrophysiological changes occur in the respiratory system at P12-13. This results in a transient synaptic imbalance with suppressed excitation and enhanced inhibition, and the response to acute hypoxia is the weakest at this time, both at the cellular and system's levels. The basis for the synaptic imbalance is likely to be contributed by a reduced expression of brain-derived neurotrophic factor (BDNF) and its TrkB receptors in multiple brain stem respiratory-related nuclei during the critical period. Exogenous BDNF or a TrkB agonist partially reverses the synaptic imbalance, whereas a TrkB antagonist accentuates the imbalance. A transient down-regulation of pituitary adenylate cyclase-activating polypeptide (PACAP) at P12 in respiratory-related nuclei also contributes to the vulnerability of this period. Carotid body denervation during this time or perinatal hyperoxia merely delays and sometimes prolongs, but not eliminate the critical period. The rationale for the necessity of the critical period in postnatal development is discussed.
Collapse
|
12
|
Mu L, Xia DD, Michalkiewicz T, Hodges M, Mouradian G, Konduri GG, Wong-Riley MTT. Effects of neonatal hyperoxia on the critical period of postnatal development of neurochemical expressions in brain stem respiratory-related nuclei in the rat. Physiol Rep 2019. [PMID: 29516654 PMCID: PMC5842315 DOI: 10.14814/phy2.13627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have identified a critical period of respiratory development in rats at postnatal days P12‐13, when inhibitory influence dominates and when the response to hypoxia is at its weakest. This critical period has significant implications for Sudden Infant Death Syndrome (SIDS), the cause of which remains elusive. One of the known risk factors for SIDS is prematurity. A common intervention used in premature infants is hyperoxic therapy, which, if prolonged, can alter the ventilatory response to hypoxia and induce sustained inhibition of lung alveolar growth and pulmonary remodeling. The goal of this study was to test our hypothesis that neonatal hyperoxia from postnatal day (P) 0 to P10 in rat pups perturbs the critical period by altering the normal progression of neurochemical development in brain stem respiratory‐related nuclei. An in‐depth, semiquantitative immunohistochemical study was undertaken at P10 (immediately after hyperoxia and before the critical period), P12 (during the critical period), P14 (immediately after the critical period), and P17 (a week after the cessation of hyperoxia). In agreement with our previous findings, levels of cytochrome oxidase, brain‐derived neurotrophic factor (BDNF), TrkB (BDNF receptor), and several serotonergic proteins (5‐HT1A and 2A receptors, 5‐HT synthesizing enzyme tryptophan hydroxylase [TPH], and serotonin transporter [SERT]) all fell in several brain stem respiratory‐related nuclei during the critical period (P12) in control animals. However, in hyperoxic animals, these neurochemicals exhibited a significant fall at P14 instead. Thus, neonatal hyperoxia delayed but did not eliminate the critical period of postnatal development in multiple brain stem respiratory‐related nuclei, with little effect on the nonrespiratory cuneate nucleus.
Collapse
Affiliation(s)
- Lianwei Mu
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dong Dong Xia
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Matthew Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gary Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Girija G Konduri
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret T T Wong-Riley
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Iovino L, Mutolo D, Cinelli E, Contini M, Pantaleo T, Bongianni F. Breathing stimulation mediated by 5-HT1A and 5-HT3 receptors within the preBötzinger complex of the adult rabbit. Brain Res 2019; 1704:26-39. [DOI: 10.1016/j.brainres.2018.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
|
14
|
Loiseau C, Cayetanot F, Joubert F, Perrin-Terrin AS, Cardot P, Fiamma MN, Frugiere A, Straus C, Bodineau L. Current Perspectives for the use of Gonane Progesteronergic Drugs in the Treatment of Central Hypoventilation Syndromes. Curr Neuropharmacol 2018; 16:1433-1454. [PMID: 28721821 PMCID: PMC6295933 DOI: 10.2174/1570159x15666170719104605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Central alveolar hypoventilation syndromes (CHS) encompass neurorespiratory diseases resulting from congenital or acquired neurological disorders. Hypercapnia, acidosis, and hypoxemia resulting from CHS negatively affect physiological functions and can be lifethreatening. To date, the absence of pharmacological treatment implies that the patients must receive assisted ventilation throughout their lives. OBJECTIVE To highlight the relevance of determining conditions in which using gonane synthetic progestins could be of potential clinical interest for the treatment of CHS. METHODS The mechanisms by which gonanes modulate the respiratory drive were put into the context of those established for natural progesterone and other synthetic progestins. RESULTS The clinical benefits of synthetic progestins to treat respiratory diseases are mixed with either positive outcomes or no improvement. A benefit for CHS patients has only recently been proposed. We incidentally observed restoration of CO2 chemosensitivity, the functional deficit of this disease, in two adult CHS women by desogestrel, a gonane progestin, used for contraception. This effect was not observed by another group, studying a single patient. These contradictory findings are probably due to the complex nature of the action of desogestrel on breathing and led us to carry out mechanistic studies in rodents. Our results show that desogestrel influences the respiratory command by modulating the GABAA and NMDA signaling in the respiratory network, medullary serotoninergic systems, and supramedullary areas. CONCLUSION Gonanes show promise for improving ventilation of CHS patients, although the conditions of their use need to be better understood.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Laurence Bodineau
- Address correspondence to this author at the Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75013, Paris, France; Tel: 33 1 40 77 97 15; Fax: 33 1 40 77 97 89; E-mail:
| |
Collapse
|
15
|
Congenital central hypoventilation syndrome: An overview of etiopathogenesis, associated pathologies, clinical presentation, and management. Auton Neurosci 2017; 210:1-9. [PMID: 29249648 DOI: 10.1016/j.autneu.2017.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/10/2017] [Accepted: 11/12/2017] [Indexed: 12/19/2022]
Abstract
Congenital central hypoventilation syndrome (CCHS), known colloquially as Ondine's curse, is a rare disorder characterized by impaired autonomic control of breathing during sleep from the loss of vagal input and diminished sensitivity of CO2 receptors in the medulla. CCHS correlates to the malformation of the neural crest located in the brainstem; this consequently affects the loss of sensitivity of CO2 chemoreceptors, bringing about hypoventilation during sleep. The primary cause of CCHS is the mutation of the paired-like homeobox PHO2XB gene, found in 90% of the patients. This mutation not only affects breathing but also drives neurological abnormalities such as autonomic and neurocognitive dysfunction. Though typically congenital, there have been late-onset (i.e., acquired) cases reported. It is vital for physicians and clinicians to be able to diagnose CCHS due to its similar presentation to other syndromes and disorders, which may cause it to be misdiagnosed and may account for its deleterious effects. CCHS can lead to a constellation of symptoms, and consideration of diseases that present concomitantly with CCHS affords us a better understanding of the etiology of this illness. Although a rare syndrome, we aim to review the current literature to emphasize the pathogenesis, etiology, clinical presentation, symptoms, diagnosis, and current treatment methods of CCHS for clinicians to better identify and understand this condition.
Collapse
|
16
|
Rousseau JP, Tenorio-Lopes L, Baldy C, Janes TA, Fournier S, Kinkead R. On the origins of sex-based differences in respiratory disorders: Lessons and hypotheses from stress neuroendocrinology in developing rats. Respir Physiol Neurobiol 2017; 245:105-121. [DOI: 10.1016/j.resp.2017.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 12/31/2022]
|
17
|
Llona I, Farías P, Troc-Gajardo JL. Early Postnatal Development of Somastostatinergic Systems in Brainstem Respiratory Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:131-144. [DOI: 10.1007/978-3-319-62817-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Dharmadhikari AV, Sun JJ, Gogolewski K, Carofino BL, Ustiyan V, Hill M, Majewski T, Szafranski P, Justice MJ, Ray RS, Dickinson ME, Kalinichenko VV, Gambin A, Stankiewicz P. Lethal lung hypoplasia and vascular defects in mice with conditional Foxf1 overexpression. Biol Open 2016; 5:1595-1606. [PMID: 27638768 PMCID: PMC5155529 DOI: 10.1242/bio.019208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/13/2016] [Indexed: 01/03/2023] Open
Abstract
FOXF1 heterozygous point mutations and genomic deletions have been reported in newborns with the neonatally lethal lung developmental disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). However, no gain-of-function mutations in FOXF1 have been identified yet in any human disease conditions. To study the effects of FOXF1 overexpression in lung development, we generated a Foxf1 overexpression mouse model by knocking-in a Cre-inducible Foxf1 allele into the ROSA26 (R26) locus. The mice were phenotyped using micro-computed tomography (micro-CT), head-out plethysmography, ChIP-seq and transcriptome analyses, immunohistochemistry, and lung histopathology. Thirty-five percent of heterozygous R26-Lox-Stop-Lox (LSL)-Foxf1 embryonic day (E)15.5 embryos exhibit subcutaneous edema, hemorrhages and die perinatally when bred to Tie2-cre mice, which targets Foxf1 overexpression to endothelial and hematopoietic cells. Histopathological and micro-CT evaluations revealed that R26Foxf1; Tie2-cre embryos have immature lungs with a diminished vascular network. Neonates exhibited respiratory deficits verified by detailed plethysmography studies. ChIP-seq and transcriptome analyses in E18.5 lungs identified Sox11, Ghr, Ednrb, and Slit2 as potential downstream targets of FOXF1. Our study shows that overexpression of the highly dosage-sensitive Foxf1 impairs lung development and causes vascular abnormalities. This has important clinical implications when considering potential gene therapy approaches to treat disorders of FOXF1 abnormal dosage, such as ACDMPV.
Collapse
Affiliation(s)
- Avinash V Dharmadhikari
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jenny J Sun
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Brandi L Carofino
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vladimir Ustiyan
- Division of Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Misty Hill
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tadeusz Majewski
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Monica J Justice
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Genetics & Genome Biology Program, SickKids, Toronto, Ontario M5G 0A4, Canada
| | - Russell S Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary E Dickinson
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Anna Gambin
- Institute of Informatics, University of Warsaw, Warsaw 02-097, Poland
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Silva CA, Vicente MC, Tenorio-Lopes L, Soliz J, Gargaglioni LH. Erythropoietin in the Locus coeruleus attenuates the ventilatory response to CO 2 in rats. Respir Physiol Neurobiol 2016; 236:11-18. [PMID: 27818313 DOI: 10.1016/j.resp.2016.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/30/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
Abstract
The Locus coeruleus (LC) is a pontine area that contributes to the CO2/pH chemosensitivity. LC cells express erythropoietin (Epo) receptors (EpoR), and Epo in the brainstem is a potent normoxic and hypoxic respiratory stimulant. However, a recent study showed that the intra-cisternal injection (ICI) of Epo antagonist does not alter the hypercapnic ventilatory response in mice. As ICI leads to a widespread dispersal of the product throughout the brainstem, in this work we evaluated the specific impact of Epo in the LC-mediated ventilatory response to CO2 (by whole body plethysmography) in juvenile male Wistar rats. Normocapnic and hypercapnic ventilation were evaluated before and after unilateral microinjection of Epo (1ng/100nL) into the LC. To evaluate the long-term effect of Epo, the HcVR was re-evaluated 24h later. Our results show that Epo attenuates the hypercapnic ventilation. We conclude that Epo in the LC tunes the hypercapnia-induced hyperpnea.
Collapse
Affiliation(s)
- Carlos A Silva
- Department of Animal Morphology and Physiology, Sao Paulo State University-FCAV, Jaboticabal, SP, Brazil
| | - Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University-FCAV, Jaboticabal, SP, Brazil
| | - Luana Tenorio-Lopes
- Centre de Recherche du CHU de Québec, Pavillon St. François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Jorge Soliz
- Centre de Recherche du CHU de Québec, Pavillon St. François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-FCAV, Jaboticabal, SP, Brazil
| |
Collapse
|
20
|
Yu H, Dhingra RR, Dick TE, Galán RF. Effects of ion channel noise on neural circuits: an application to the respiratory pattern generator to investigate breathing variability. J Neurophysiol 2016; 117:230-242. [PMID: 27760817 PMCID: PMC5209552 DOI: 10.1152/jn.00416.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/18/2016] [Indexed: 01/13/2023] Open
Abstract
Neural activity generally displays irregular firing patterns even in circuits with apparently regular outputs, such as motor pattern generators, in which the output frequency fluctuates randomly around a mean value. This "circuit noise" is inherited from the random firing of single neurons, which emerges from stochastic ion channel gating (channel noise), spontaneous neurotransmitter release, and its diffusion and binding to synaptic receptors. Here we demonstrate how to expand conductance-based network models that are originally deterministic to include realistic, physiological noise, focusing on stochastic ion channel gating. We illustrate this procedure with a well-established conductance-based model of the respiratory pattern generator, which allows us to investigate how channel noise affects neural dynamics at the circuit level and, in particular, to understand the relationship between the respiratory pattern and its breath-to-breath variability. We show that as the channel number increases, the duration of inspiration and expiration varies, and so does the coefficient of variation of the breath-to-breath interval, which attains a minimum when the mean duration of expiration slightly exceeds that of inspiration. For small channel numbers, the variability of the expiratory phase dominates over that of the inspiratory phase, and vice versa for large channel numbers. Among the four different cell types in the respiratory pattern generator, pacemaker cells exhibit the highest sensitivity to channel noise. The model shows that suppressing input from the pons leads to longer inspiratory phases, a reduction in breathing frequency, and larger breath-to-breath variability, whereas enhanced input from the raphe nucleus increases breathing frequency without changing its pattern. NEW & NOTEWORTHY A major source of noise in neuronal circuits is the "flickering" of ion currents passing through the neurons' membranes (channel noise), which cannot be suppressed experimentally. Computational simulations are therefore the best way to investigate the effects of this physiological noise by manipulating its level at will. We investigate the role of noise in the respiratory pattern generator and show that endogenous, breath-to-breath variability is tightly linked to the respiratory pattern.
Collapse
Affiliation(s)
- Haitao Yu
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, People's Republic of China.,Department of Electrical Engineering and Computer Science, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Rishi R Dhingra
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and
| | - Thomas E Dick
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and
| | - Roberto F Galán
- Department of Electrical Engineering and Computer Science, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
21
|
Developmental plasticity of phrenic motoneuron and diaphragm properties with the inception of inspiratory drive transmission in utero. Exp Neurol 2016; 287:137-143. [PMID: 27181410 DOI: 10.1016/j.expneurol.2016.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 11/23/2022]
Abstract
The review outlines data consistent with the hypothesis that inspiratory drive transmission that generates fetal breathing movements (FBMs) is essential for the developmental plasticity of phrenic motoneurons (PMNs) and diaphragm musculature prior to birth. A systematic examination during the perinatal period demonstrated a very marked transformation of PMN and diaphragm properties coinciding with the onset and strengthening of inspiratory drive and FBMs in utero. This included studies of age-dependent changes of: i) morphology, neuronal coupling, passive and electrophysiological properties of PMNs; ii) rhythmic inspiratory activity in vitro; iii) FBMs generated in vivo detected by ultrasonography; iv) contractile and end-plate potential properties of diaphragm musculature. We also propose how the hypothesis can be further evaluated with studies of perinatal hypoglossal motoneuron-tongue musculature and the use of Dbx1 null mice that provide an experimental model lacking descending inspiratory drive transmission in utero.
Collapse
|
22
|
Joubert F, Perrin-Terrin AS, Verkaeren E, Cardot P, Fiamma MN, Frugière A, Rivals I, Similowski T, Straus C, Bodineau L. Desogestrel enhances ventilation in ondine patients: Animal data involving serotoninergic systems. Neuropharmacology 2016; 107:339-350. [PMID: 27040794 DOI: 10.1016/j.neuropharm.2016.03.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/25/2016] [Accepted: 03/24/2016] [Indexed: 01/09/2023]
Abstract
Congenital central hypoventilation syndrome (CCHS) is a neurorespiratory disease characterized by life-threatening sleep-related hypoventilation involving an alteration of CO2/H(+) chemosensitivity. Incidental findings have suggested that desogestrel may allow recovery of the ventilatory response to CO2. The effects of desogestrel on resting ventilation have not been reported. This study was designed to test the hypothesis that desogestrel strengthens baseline ventilation by analyzing the ventilation of CCHS patients. Rodent models were used in order to determine the mechanisms involved. Ventilation in CCHS patients was measured with a pneumotachometer. In mice, ventilatory neural activity was recorded from ex vivo medullary-spinal cord preparations, ventilation was measured by plethysmography and c-fos expression was studied in medullary respiratory nuclei. Desogestrel increased baseline respiratory frequency of CCHS patients leading to a decrease in their PETCO2. In medullary spinal-cord preparations or in vivo mice, the metabolite of desogestrel, etonogestrel, induced an increase in respiratory frequency that necessitated the functioning of serotoninergic systems, and modulated GABAA and NMDA ventilatory regulations. c-FOS analysis showed the involvement of medullary respiratory groups of cell including serotoninergic neurons of the raphe pallidus and raphe obscurus nuclei that seem to play a key role. Thus, desogestrel may improve resting ventilation in CCHS patients by a stimulant effect on baseline respiratory frequency. Our data open up clinical perspectives based on the combination of this progestin with serotoninergic drugs to enhance ventilation in CCHS patients.
Collapse
Affiliation(s)
- Fanny Joubert
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Anne-Sophie Perrin-Terrin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France; University Paris 13, Sorbonne Paris Cité, Laboratory "Hypoxia & Lung" EA2363, 74 rue Marcel Cachin, 93017, Bobigny, France
| | - Emilienne Verkaeren
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Philippe Cardot
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Marie-Noëlle Fiamma
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Alain Frugière
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
| | - Isabelle Rivals
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France; Équipe de Statistique Appliquée, ESPCI ParisTech, PSL Research University, F-75005, Paris, France
| | - Thomas Similowski
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département "R3S"), F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Branche "Adultes" du Centre de Référence du Syndrome d'Ondine, F-75013, Paris, France
| | - Christian Straus
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Branche "Adultes" du Centre de Référence du Syndrome d'Ondine, F-75013, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service d'Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département "R3S"), Paris, France
| | - Laurence Bodineau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France.
| |
Collapse
|
23
|
Caravagna C, Kinkead R, Soliz J. Post-natal hypoxic activity of the central respiratory command is improved in transgenic mice overexpressing Epo in the brain. Respir Physiol Neurobiol 2014; 200:64-71. [PMID: 24914467 DOI: 10.1016/j.resp.2014.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/29/2022]
Abstract
Previous studies indicated that erythropoietin modulates central respiratory command in mice. Specifically, a one-hour incubation of the brainstems with erythropoietin attenuates hypoxia-induced central respiratory depression. Here, using transgenic mice constitutively overexpressing erythropoietin specifically in the brain (Tg21), we investigated the effect of chronic erythropoietin stimulation on central respiratory command activity during post-natal development. In vitro brainstem-spinal cord preparations from mice at 0 (P0) or 3 days of age (P3) were used to record the fictive inspiratory activity from the C4 ventral root. Our results show that erythropoietin already stimulates the hypoxic burst frequency at P0, and at P3, erythropoietin effectively stimulates the hypoxic burst frequency and amplitude. Because the maturation of the central respiratory command in mice is characterized by a decrease in the burst frequency with age, our results also suggest that erythropoietin accelerates the maturation of the newborn respiratory network and its response to hypoxia.
Collapse
Affiliation(s)
- Céline Caravagna
- Department of Pediatrics, Laval University, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Hôpital St-François d'Assise, 10 Rue de l'Espinay, Québec, QC G1L 3L5, Canada.
| | - Richard Kinkead
- Department of Pediatrics, Laval University, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Hôpital St-François d'Assise, 10 Rue de l'Espinay, Québec, QC G1L 3L5, Canada.
| | - Jorge Soliz
- Department of Pediatrics, Laval University, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Hôpital St-François d'Assise, 10 Rue de l'Espinay, Québec, QC G1L 3L5, Canada.
| |
Collapse
|
24
|
Abstract
Inhibitory 5-HT(1a) receptors are located on serotonin (5-HT) neurons (autoreceptors) as well as neurons of the respiratory network (heteroreceptors). Thus, effects on breathing of 5-HT(1a) agonists, such as (R)-(+)-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT), could either be due to decreased firing of 5-HT neurons or direct effects on the respiratory network. Mice in which the transcription factor LMX1B is genetically deleted selectively in Pet1-1-expressing cells (Lmx1b(f/f/p)) essentially have complete absence of central 5-HT neurons, providing a unique opportunity to separate the effect of activation of downstream 5-HT(1a) heteroreceptors from that of autoreceptors. We used rhythmically active medullary slices from wild-type (WT) and Lmx1b(f/f/p) neonatal mice to differentiate autoreceptor versus heteroreceptor effects of 8-OH-DPAT on hypoglossal nerve respiratory output. 8-OH-DPAT transiently increased respiratory burst frequency in Lmx1b(f/f/p) preparations, but not in WT slices. This excitation was abolished when synaptic inhibition was blocked by GABAergic/glycinergic receptor antagonists. Conversely, after 10 min of application, frequency in Lmx1b(f/f/p) slices was not different from baseline, whereas it was significantly depressed in WT slices. In WT mice in vivo, subcutaneous injection of 8-OH-DPAT produced similar biphasic respiratory effects as in Lmx1b(f/f/p) mice. We conclude that 5-HT1a receptor agonists have two competing effects: rapid stimulation of breathing due to excitation of the respiratory network, and delayed inhibition of breathing due to autoreceptor inhibition of 5-HT neurons. The former effect is presumably due to inhibition of inhibitory interneurons embedded in the respiratory network.
Collapse
|
25
|
Abstract
Breathing movements have been demonstrated in the fetuses of every mammalian species investigated and are a critical component of normal fetal development. The classic sheep preparations instrumented for chronic fetal monitoring determined that fetal breathing movements (FBMs) occur in aggregates interspersed with long periods of quiescence that are strongly associated with neurophysiological state. The fetal sheep model also provided data regarding the neurochemical modulation of behavioral state and FBMs under a variety of in utero conditions. Subsequently, in vitro rodent models have been developed to advance our understanding of cellular, synaptic, network, and more detailed neuropharmacological aspects of perinatal respiratory neural control. This includes the ontogeny of the inspiratory rhythm generating center, the preBötzinger complex (preBötC), and the anatomical and functional development of phrenic motoneurons (PMNs) and diaphragm during the perinatal period. A variety of newborn animal models and studies of human infants have provided insights into age-dependent changes in state-dependent respiratory control, responses to hypoxia/hypercapnia and respiratory pathologies.
Collapse
Affiliation(s)
- John J Greer
- Department of Physiology, Centre for Neuroscience, Women and Children Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
26
|
Gallego J. Genetic diseases: congenital central hypoventilation, Rett, and Prader-Willi syndromes. Compr Physiol 2013; 2:2255-79. [PMID: 23723037 DOI: 10.1002/cphy.c100037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present review summarizes current knowledge on three rare genetic disorders of respiratory control, congenital central hypoventilation syndrome (CCHS), Rett syndrome (RTT), and Prader-Willi syndrome (PWS). CCHS is characterized by lack of ventilatory chemosensitivity caused by PHOX2B gene abnormalities consisting mainly of alanine expansions. RTT is associated with episodes of tachypneic and irregular breathing intermixed with breathholds and apneas and is caused by mutations in the X-linked MECP2 gene encoding methyl-CpG-binding protein. PWS manifests as sleep-disordered breathing with apneas and episodes of hypoventilation and is caused by the loss of a group of paternally inherited genes on chromosome 15. CCHS is the most specific disorder of respiratory control, whereas the breathing disorders in RTT and PWS are components of a more general developmental disorder. The main clinical features of these three disorders are reviewed with special emphasis on the associated brain abnormalities. In all three syndromes, disease-causing genetic defects have been identified, allowing the development of genetically engineered mouse models. New directions for future therapies based on these models or, in some cases, on clinical experience are delineated. Studies of CCHS, RTT, and PWS extend our knowledge of the molecular and cellular aspects of respiratory rhythm generation and suggest possible pharmacological approaches to respiratory control disorders. This knowledge is relevant for the clinical management of many respiratory disorders that are far more prevalent than the rare diseases discussed here.
Collapse
Affiliation(s)
- Jorge Gallego
- Inserm U676 and University of Paris Diderot, Paris, France.
| |
Collapse
|
27
|
Abstract
Cough may be the first overt sign of disease of the airways or lungs when it represents more than a defense mechanism, and may by its persistence become a helpful pointer of potential disease for both patient and physician. On the other hand, impairment or absence of the coughing mechanism can be harmful and even fatal; this is why cough suppression is rarely indicated in childhood. Pediatricians are concerned more with the etiology of the cough and making the right diagnosis. Whereas chronic cough in adults has been universally defined as a cough that lasts more than 8 weeks, in childhood, different timing has been reported. Many reasons support defining a cough that lasts more than 4 weeks in preschool children as chronic, however; and this is particularly true when the cough is wet. During childhood, the respiratory tract and nervous system undergo a series of anatomical and physiological maturation processes that influence the cough reflex. In addition, immunological response undergoes developmental and memorial processes that make infection and congenital abnormalities the overwhelming causes of cough in preschool children. Cough in children should be treated on the basis of etiology, and there is no evidence in support of the use of medication for symptomatic cough relief or adopting empirical approaches. Most cases of chronic cough in preschool age are caused by protracted bacterial bronchitis, tracheobronchomalacia, foreign body aspiration, post-infectious cough or some combination of these. Other causes of chronic cough, such as bronchiectasis, asthma, gastroesophageal reflux, and upper respiratory syndrome appear to be less frequent in this age group. The prevalence of each depends on the population in consideration, the epidemiology of infectious diseases, socioeconomic aspects, and the local health system.
Collapse
Affiliation(s)
- Ahmad Kantar
- Pediatric Asthma and Cough Centre, Istituti Ospedalieri Bergamaschi, Bergamo, Italy.
| | | | | | | | | |
Collapse
|
28
|
O'Connell RA, Carberry J, O'Halloran KD. Sternohyoid and diaphragm muscle form and function during postnatal development in the rat. Exp Physiol 2013; 98:1386-400. [PMID: 23709586 DOI: 10.1113/expphysiol.2013.073346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Co-ordinated activity of the thoracic pump and pharyngeal dilator muscles is critical for maintaining airway calibre and respiratory homeostasis. Whilst postnatal maturation of the diaphragm has been well characterized, surprisingly little is known about the developmental programme in the airway dilator muscles. What is the main finding and its importance? Developmental increases in force-generating capacity and fatigue in the sternohyoid and diaphragm muscles are attributed to a maturational shift in muscle myosin heavy chain phenotype. This maturation is accelerated in the sternohyoid muscle relative to the diaphragm and may have implications for the control of airway calibre in vivo. The striated muscles of breathing, including the thoracic pump and pharyngeal dilator muscles, play a critical role in maintaining respiratory homeostasis. Whilst postnatal maturation of the diaphragm has been well characterized, surprisingly little is known about the developmental programme in airway dilator muscles given that co-ordinated activity of both sets of muscles is needed for the maintenance of airway calibre and effective pulmonary ventilation. The form and function of sternohyoid and diaphragm muscles from Wistar rat pups [postnatal day (PD) 10, 20 and 30] was determined. Isometric contractile and endurance properties were examined in tissue baths containing Krebs solution at 35°C. Myosin heavy chain (MHC) isoform composition was determined using immunofluorescence. Muscle oxidative and glycolytic capacity was assessed by measuring the activities of succinate dehydrogenase and glycerol-3-phosphate dehydrogenase using semi-quantitative histochemistry. Sternohyoid and diaphragm peak isometric force and fatigue increased significantly with postnatal maturation. Developmental myosin disappeared by PD20, whereas MHC2B areal density increased significantly from PD10 to PD30, emerging earlier and to a much greater extent in the sternohyoid muscle. The numerical density of fibres expressing MHC2X and MHC2B increased significantly during development in the sternohyoid. Diaphragm succinate dehydrogenase activity and sternohyoid glycerol-3-phosphate dehydrogenase activity increased significantly with age. Developmental increases in force-generating capacity and fatigue in the sternohyoid and diaphragm muscles are attributed to a postnatal shift in muscle MHC phenotype. The accelerated maturation of the sternohyoid muscle relative to the diaphragm may have implications for the control of airway calibre in vivo.
Collapse
Affiliation(s)
- R A O'Connell
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
29
|
Gestational stress promotes pathological apneas and sex-specific disruption of respiratory control development in newborn rat. J Neurosci 2013; 33:563-73. [PMID: 23303936 DOI: 10.1523/jneurosci.1214-12.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recurrent apneas are important causes of hospitalization and morbidity in newborns. Gestational stress (GS) compromises fetal brain development. Maternal stress and anxiety during gestation are linked to respiratory disorders in newborns; however, the mechanisms remain unknown. Here, we tested the hypothesis that repeated activation of the neuroendocrine response to stress during gestation is sufficient to disrupt the development of respiratory control and augment the occurrence of apneas in newborn rats. Pregnant dams were displaced and exposed to predator odor from days 9 to 19 of gestation. Control dams were undisturbed. Experiments were performed on male and female rats aged between 0 and 4 d old. Apnea frequency decreased with age but was consistently higher in stressed pups than controls. At day 4, GS augmented the proportion of apneas with O(2) desaturations by 12%. During acute hypoxia (12% O(2)), the reflexive increase in breathing augmented with age; however, this response was lower in stressed pups. Instability of respiratory rhythm recorded from medullary preparations decreased with age but was higher in stressed pups than controls. GS reduced medullary serotonin (5-HT) levels in newborn pups by 32%. Bath application of 5-HT and injection of 8-OH-DPAT [(±)-8-hydroxy-2-di-(n-propylamino) tetralin hydrobromide; 5-HT(1A) agonist; in vivo] reduced respiratory instability and apneas; these effects were greater in stressed pups than controls. Sex-specific effects were observed. We conclude that activation of the stress response during gestation is sufficient to disrupt respiratory control development and promote pathological apneas in newborn rats. A deficit in medullary 5-HT contributes to these effects.
Collapse
|
30
|
Wong-Riley MTT, Liu Q, Gao XP. Peripheral-central chemoreceptor interaction and the significance of a critical period in the development of respiratory control. Respir Physiol Neurobiol 2013; 185:156-69. [PMID: 22684042 PMCID: PMC3467325 DOI: 10.1016/j.resp.2012.05.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/30/2012] [Accepted: 05/30/2012] [Indexed: 01/09/2023]
Abstract
Respiratory control entails coordinated activities of peripheral chemoreceptors (mainly the carotid bodies) and central chemosensors within the brain stem respiratory network. Candidates for central chemoreceptors include Phox2b-containing neurons of the retrotrapezoid nucleus, serotonergic neurons of the medullary raphé, and/or multiple sites within the brain stem. Extensive interconnections among respiratory-related nuclei enable central chemosensitive relay. Both peripheral and central respiratory centers are not mature at birth, but undergo considerable development during the first two postnatal weeks in rats. A critical period of respiratory development (∼P12-P13 in the rat) exists when abrupt neurochemical, metabolic, ventilatory, and electrophysiological changes occur. Environmental perturbations, including hypoxia, intermittent hypoxia, hypercapnia, and hyperoxia alter the development of the respiratory system. Carotid body denervation during the first two postnatal weeks in the rat profoundly affects the development and functions of central respiratory-related nuclei. Such denervation delays and prolongs the critical period, but does not eliminate it, suggesting that the critical period may be intrinsically and genetically determined.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
31
|
ter Horst PGJ, Bos HJ, de Jong-van de Berg LTW, Wilffert B. In utero exposure to antidepressants and the use of drugs for pulmonary diseases in children. Eur J Clin Pharmacol 2012; 69:541-7. [PMID: 22815049 PMCID: PMC3572380 DOI: 10.1007/s00228-012-1314-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/12/2012] [Indexed: 11/29/2022]
Abstract
Purpose The use of antidepressants during pregnancy is common. Some studies suggest an association between in utero exposure to antidepressants and the occurrence of pulmonary diseases like asthma later in life. Serotonin reuptake inhibitors (SSRIs) as well tricyclic antidepressants (TCAs) are thought to be involved in the development of the respiratory rhythm generator (RRG) and the maturation of the formation of surfactant. In this study the use of drugs for pulmonary diseases in children who were exposed to antidepressants in utero were compared with non-exposed children. Methods The pharmacy prescription database IADB.nl was used for a cohort study in which the use of drugs for pulmonary disease in children after in utero exposure to antidepressants (TCAs, SSRIs) was compared with children with no antidepressant exposure in utero. Drugs for pulmonary diseases were applied as a proxy for disturbed development of the respiratory tract. Results A small though significant increase in the incidence risk ratio (IRR) of the use of drugs for pulmonary disease was found after any-time in utero exposure to SSRIs, adjusted for maternal use of antibiotics, of 1.17 (95 % CI 1.16–1.18). An increase was also seen when we looked specifically for the use of SSRIs in at least the first trimester (IRR = 1.18, 95 % CI 1.17–1.20). An increased IRR in the use of drugs for pulmonary disease was also seen when children were exposed to TCAs, but this was not statistically significant. However, in both groups our sample size was rather small. The effect size is modest and may also be confounded by maternal smoking. Conclusions In utero exposure to SSRIs leads to a statistically significant increase in the use of drugs for pulmonary diseases, especially when exposure occurred during the first trimester of pregnancy. The increase in the use of drugs for pulmonary disease may also be related to other factors. Therefore, further study is recommended.
Collapse
Affiliation(s)
- P G J ter Horst
- Department of Clinical Pharmacy, Isala Klinieken, Groot Wezenland 20, 8011 JW Zwolle, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Respiratory Response to Microinjections of GABA and Penicillin into Various Parts of the Ventral Respiratory Group. Bull Exp Biol Med 2012; 153:173-6. [DOI: 10.1007/s10517-012-1669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Simpson SJ, Fong AY, Cummings KJ, Frappell PB. The ventilatory response to hypoxia and hypercapnia is absent in the neonatal fat-tailed dunnart. J Exp Biol 2012; 215:4242-7. [DOI: 10.1242/jeb.072413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
At birth, the newborn fat-tailed dunnart relies on cutaneous gas exchange to meet metabolic demands, with continuous lung ventilation emerging several days later. We hypothesized that the delayed expression of lung ventilation (VE) in these animals is in part owing to a low responsiveness of the respiratory control system to blood gas perturbations. To address this hypothesis we assessed the ventilatory and metabolic response to hypoxia (10% O2) and hypercapnia (5% CO2) using closed-system respirometry from birth to 23 days postpartum (P). Neonatal fat-tailed dunnarts displayed no significant hypoxic or hypercapnic ventilatory responses at any age. Regardless, significant hyperventilation through a suppression of metabolic rate (Vo2) was observed at birth in response to hypercapnia and in response to hypoxia at all ages, except P12. Therefore, reliance on cutaneous gas exchange during early life may be partially attributed to reduced chemosensitivity or a lack of central integration of chemosensitive afferent information. This may be in part due to the relative immaturity of this species at birth, compared to other mammals.
Collapse
|
34
|
Abstract
This review dissects the complex human cough reflex and suggests hypotheses about the evolutionary basis for the reflex. A mechanosensory-induced cough reflex conveys through branches of myelinated Aδ nerve fibers is not chemically reactive (i.e., capsaicin, bradykinin); possibly, its evolution is to prevent the harmful effects of aspiration of gastric or particulate contents into the lungs. This became necessary as the larynx moves closer to the opening of the esophagus as human ancestors adapt phonation over olfaction beginning less than 10 million years ago. The second type of cough reflex, a chemosensory type, is carried by unmyelinated C fibers. Supposedly, its origin dates back when prehistoric humans began living in close proximity to each other and were at risk for infectious respiratory diseases or irritant-induced lung injury. The mechanism for the latter type of cough is analogous to induced pain after tissue injury; and, it is controlled by the identical transient receptor potential vanilloid cation channel (TRPV1). The airways do not normally manifest nociceptive pain from a stimulus but the only consistent response that capsaicin and lung inflammation provoke in healthy human airways is cough. TRPA1, another excitatory ion channel, has been referred to as the "irritant receptor" and its activation also induces cough. For both types of cough, the motor responses are identical and via coordinated, precisely-timed and sequential respiratory events orchestrated by complex neuromuscular networking of the diaphragm, chest and abdominal respiratory muscles, the glottis and parts of the brain.
Collapse
Affiliation(s)
- Stuart M Brooks
- Colleges of Public Health and Medicine, University of South Florida, Tampa, Florida.
| |
Collapse
|
35
|
Gustafson KM, Allen JJB, Yeh HW, May LE. Characterization of the fetal diaphragmatic magnetomyogram and the effect of breathing movements on cardiac metrics of rate and variability. Early Hum Dev 2011; 87:467-75. [PMID: 21497027 PMCID: PMC3114157 DOI: 10.1016/j.earlhumdev.2011.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 03/04/2011] [Accepted: 03/25/2011] [Indexed: 11/17/2022]
Abstract
Breathing movements are one of the earliest fetal motor behaviors to emerge and are a hallmark of fetal well-being. Fetal respiratory sinus arrhythmia (RSA) has been documented but efforts to quantify the influence of breathing on heart rate (HR) and heart rate variability (HRV) are difficult due to the episodic nature of fetal breathing activity. We used a dedicated fetal biomagnetometer to acquire the magnetocardiogram (MCG) between 36 and 38 weeks gestational age (GA). We identified and characterized a waveform observed in the raw data and independent component decomposition that we attribute to fetal diaphragmatic movements during breathing episodes. RSA and increased high frequency power in a time-frequency analysis of the IBI time-series was observed during fetal breathing periods. Using the diaphragmatic magnetomyogram (dMMG) as a marker, we compared time and frequency domain metrics of heart rate and heart rate variability between breathing and non-breathing epochs. Fetal breathing activity resulted in significantly lower HR, increased high frequency power, greater sympathovagal balance, increased short-term HRV and greater parasympathetic input relative to non-breathing episodes confirming the specificity of fetal breathing movements on parasympathetic cardiac influence. No significant differences between breathing and non-breathing epochs were found in two metrics reflecting total HRV or very low, low and intermediate frequency bands. Using the fetal dMMG as a marker, biomagnetometry can help to elucidate the electrophysiologic mechanisms associated with diaphragmatic motor function and may be used to study the longitudinal development of human fetal cardiac autonomic control and breathing activity.
Collapse
Affiliation(s)
- Kathleen M Gustafson
- University of Kansas Medical Center, Department of Neurology, Kansas City, KS, USA.
| | | | | | | |
Collapse
|
36
|
Chai S, Gillombardo CB, Donovan L, Strohl KP. Morphological differences of the carotid body among C57/BL6 (B6), A/J, and CSS B6A1 mouse strains. Respir Physiol Neurobiol 2011; 177:265-72. [PMID: 21555000 DOI: 10.1016/j.resp.2011.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 11/26/2022]
Abstract
The C57/BL6 (B6) mouse strain exhibits post-hypoxic frequency decline and periodic breathing, as well as greater amount of irregular breathing during rest in comparison to the A/J and to the B6a1, a chromosomal substitution strain whereby the A/J chromosome 1 is bred onto the B6 background (Han et al., 2002; Yamauchi et al., 2008a,b). The hypothesis was that morphological differences in the carotid body would associate with such trait variations. After confirming strain differences in post-hypoxic ventilatory behavior, histological examination (n=8 in each group) using hematoxylin and eosin (H&E) staining revealed equivalent, well-defined tissue structure at the bifurcation of the carotid arteries, an active secretory parenchyma (type I cells) from the supportive stromal tissue, and clustering of type I cells in all three strains. Tyrosine hydroxylase (TH) immunohistochemical staining revealed a typical organization of type I cells and neurovascular components into glomeruli in all three strains. Image analysis from 5 μm sections from each strain generated a series of cytological metrics. The percent carotid body composition of TH+ type I cells in the A/J, B6 and B6a1 was 20±4%, 39±3%, and 44±3%, respectively (p=0.00004). However, cellular organization in terms of density and ultrastructure in the B6a1 is more similar to the B6 than to the A/J. These findings indicate that genetic mechanisms that produce strain differences in ventilatory function do not associate with carotid body structure or tyrosine hydroxylase morphology, and that A/J chromosome 1 does not contribute much to B6 carotid body morphology.
Collapse
Affiliation(s)
- Sam Chai
- Department of Pulmonary, Critical Care, and Sleep Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | | | | | | |
Collapse
|
37
|
Gao XP, Liu QS, Liu Q, Wong-Riley MTT. Excitatory-inhibitory imbalance in hypoglossal neurons during the critical period of postnatal development in the rat. J Physiol 2011; 589:1991-2006. [PMID: 21486774 DOI: 10.1113/jphysiol.2010.198945] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Hypoglossal motoneurons (HMs) innervate tongue muscles and are critical in maintaining patency of the upper airway during respiration. Abnormalities in HMs have been implicated in sudden infant death syndrome (SIDS) and obstructive sleep apnoea. Previously, we found a critical period in respiratory network development in rats around postnatal day (P) 12-13, when abrupt neurochemical, metabolic and physiological changes occurred. To test our hypothesis that an imbalance between inhibitory and excitatory synaptic transmission exists during the critical period, whole-cell patch-clamp recordings of HMs were done in brainstem slices of rats daily from P0 to P16. The results indicated that: (1) the amplitude and charge transfer of miniature excitatory postsynaptic currents (mEPSCs) were significantly reduced at P12-13; (2) the amplitude, mean frequency and charge transfer of miniature inhibitory postsynaptic currents (mIPSCs) were significantly increased at P12-13; (3) the kinetics (rise time and decay time) of both mEPSCs and mIPSCs accelerated with age; (4) the amplitude and frequency of spontaneous EPSCs were significantly reduced at P12-13, whereas those of spontaneous IPSCs were significantly increased at P12-13; and (5) both glycine and GABA contributed to mIPSCs. However, GABAergic currents fluctuated within a narrow range during the first three postnatal weeks, whereas glycinergic ones exhibited age-dependent changes comparable to those of total mIPSCs, indicating a reversal in dominance from GABA to glycine with development. Thus, our results provide strong electrophysiological evidence for an excitatory-inhibitory imbalance in HMs during the critical period of postnatal development in rats that may have significant implications for SIDS.
Collapse
Affiliation(s)
- Xiu-ping Gao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
38
|
Lavezzi AM, Mehboob R, Matturri L. Developmental alterations of the spinal trigeminal nucleus disclosed by substance P immunohistochemistry in fetal and infant sudden unexplained deaths. Neuropathology 2011; 31:405-13. [PMID: 21276082 DOI: 10.1111/j.1440-1789.2010.01190.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the immunohistochemical expression of substance P (SP) in the brainstems of 56 subjects aged from 17 gestational weeks to 10 post natal months, who died of unknown (sudden unexplained fetal deaths and SIDS) and known causes (controls). The goals of this study were: (i) to obtain basic information about the expression of SP during the first phases of human nervous system development; (ii) to evaluate whether there are alterations of this neuromodulator in victims of sudden death; and (iii) to verify any correlation with maternal cigarette smoking. Immunohistochemistry demonstrated SP immunoreactivity in the caudal trigeminal nucleus area, with a progressive increase in the density of SP-positive fibers of the corresponding tract during normal development from fetal life to the first post natal months. Delineation of the structure of the human trigeminal nucleus, little investigated so far, provided essential data on its morphologic and functional development. Instead, a negative or low SP expression was detectable in the fibers of this tract in a wide subset of SIDS victims and, conversely, a high SP-expression in a wide subset of sudden fetal deaths. We postulate, on the basis of these results, that SP has a functional importance in the early phases of central nervous system development and in the regulation of autonomic functions. In addition, the observation of a significant correlation between sudden unexplained death, altered SP staining and maternal smoking leads us to suggest a close relation between the absorption of cigarette smoke in utero and a decreased functional activity of the trigeminal nucleus, that can trigger sudden death of the fetus during pregnancy or of the infant in the first months of life.
Collapse
Affiliation(s)
- Anna M Lavezzi
- Lino Rossi Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Surgical, Reconstructive and Diagnostic Sciences, University of Milan, Milan, Italy.
| | | | | |
Collapse
|
39
|
Abstract
During the development of the pulmonary vasculature in the fetus, many structural and functional changes occur to prepare the lung for the transition to air breathing. The development of the pulmonary circulation is genetically controlled by an array of mitogenic factors in a temporo-spatial order. With advancing gestation, pulmonary vessels acquire increased vasoreactivity. The fetal pulmonary vasculature is exposed to a low oxygen tension environment that promotes high intrinsic myogenic tone and high vasocontractility. At birth, a dramatic reduction in pulmonary arterial pressure and resistance occurs with an increase in oxygen tension and blood flow. The striking hemodynamic differences in the pulmonary circulation of the fetus and newborn are regulated by various factors and vasoactive agents. Among them, nitric oxide, endothelin-1, and prostaglandin I2 are mainly derived from endothelial cells and exert their effects via cGMP, cAMP, and Rho kinase signaling pathways. Alterations in these signaling pathways may lead to vascular remodeling, high vasocontractility, and persistent pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| | - J. Usha Raj
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Voituron N, Menuet C, Dutschmann M, Hilaire G. Physiological definition of upper airway obstructions in mouse model for Rett syndrome. Respir Physiol Neurobiol 2010; 173:146-56. [DOI: 10.1016/j.resp.2010.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 11/17/2022]
|
41
|
Liu Q, Wong-Riley MTT. Postnatal changes in tryptophan hydroxylase and serotonin transporter immunoreactivity in multiple brainstem nuclei of the rat: implications for a sensitive period. J Comp Neurol 2010; 518:1082-97. [PMID: 20127812 DOI: 10.1002/cne.22265] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previously, we found that the brainstem neuronal network in normal rats undergoes abrupt neurochemical, metabolic, and physiological changes around postnatal days (P) 12-13, a critical period when the animal's response to hypoxia is also the weakest. This has special implications for sudden infant death syndrome (SIDS), insofar as seemingly normal infants succumb to SIDS when exposed to respiratory stressors (e.g., hypoxia) during a narrow postnatal window. Because an abnormal serotonergic system has recently been implicated in SIDS, we conducted a large-scale investigation of the 5-HT-synthesizing enzyme tryptophan hydroxylase (TPH) and serotonin transporter (SERT) with semiquantitative immunohistochemistry in multiple brainstem nuclei of normal rats aged P2-21. We found that 1) TPH and SERT immunoreactivity in neurons of raphé magnus, obscurus, and pallidus and SERT in the neuropil of the pre-Bötzinger complex, nucleus ambiguus, and retrotrapezoid nucleus were high at P2-11 but decreased markedly at P12 and plateaued thereafter until P21; 2) SERT labeling in neurons of the lateral paragigantocellular nucleus (LPGi) and parapyramidal region (pPy) was high at P2-9 but fell significantly at P10, followed by a gradual decline until P21; 3) TPH labeling in neurons of the ventrolateral medullary surface was stable except for a significant fall at P12; and 4) TPH and SERT immunoreactivity in a number of other nuclei was relatively stable from P2 to P21. Thus, multiple brainstem nuclei exhibited a significant decline in TPH and SERT immunoreactivity during the critical period, suggesting that such normal development can contribute to a narrow window of vulnerability in postnatal animals.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
42
|
Mellen NM. Degeneracy as a substrate for respiratory regulation. Respir Physiol Neurobiol 2010; 172:1-7. [PMID: 20412870 DOI: 10.1016/j.resp.2010.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 04/13/2010] [Accepted: 04/13/2010] [Indexed: 11/27/2022]
Abstract
Recent studies in vivo and in vitro suggest that both respiratory rhythmogenesis and its central chemosensory modulation arise from multiple, mechanistically and/or anatomically distinct networks whose outputs are similar. These observations are consistent with degeneracy, defined as the ability of structurally distinct elements to generate similar function. This review argues that degeneracy is an essential feature of respiratory networks, ensuring the survival of the individual organism over the course of development, and accounting for the transformation of respiratory biomechanics over evolutionary time. At faster timescales, respiration must adapt continuously and rapidly to changes in metabolic demand and ambient conditions to maintain blood-gas homeostasis. Control theory, which formalizes homeostasis, states axiomatically that rapid responsiveness can only be achieved with high gain, but high gain comes at the cost of instability. Homeostatic systems displaying highly optimized tolerance (HOT) mitigate the instability accompanying high gain by incorporating regulatory mechanisms that provide protection against expected perturbations, yet these systems remain fragile to catastrophic failure in response to rare events. Because the multiple mechanisms that are conjectured to mediate respiratory rhythmogenesis and chemosensation have distinct ranges of activity and responses to modulatory input, they provide a richer substrate for respiratory regulation than those of any single mechanism. Respiration, though robust, remains fragile to rare perturbations, matching a key feature of HOT. These observations support the conclusion that degeneracy provides the substrate for respiratory regulation, and that the resulting regulatory system conforms to HOT.
Collapse
Affiliation(s)
- Nicholas M Mellen
- Kosair Children's Hospital Research Institute, University of Louisville, 570 S. Preston Street, Baxter Building 1, Suite 304, Louisville, KY 40202, USA.
| |
Collapse
|
43
|
Timofeeva OP, Vdovichenko ND. Study of cardiac, respiratory, and motor activities in rat fetuses. J EVOL BIOCHEM PHYS+ 2010. [DOI: 10.1134/s0022093009060052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Bursian AV, Dmitrieva LE, Sizonov VA. Secondary rhythms of automatically functioning systems. J EVOL BIOCHEM PHYS+ 2010. [DOI: 10.1134/s0022093009060040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Gassmann M, Soliz J. Erythropoietin modulates the neural control of hypoxic ventilation. Cell Mol Life Sci 2009; 66:3575-82. [PMID: 19756385 PMCID: PMC11115915 DOI: 10.1007/s00018-009-0142-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 10/20/2022]
Abstract
Numerous factors involved in general homeostasis are able to modulate ventilation. Classically, this comprises several kind of molecules, including neurotransmitters and steroids that are necessary for fine tuning ventilation under different conditions such as sleep, exercise, and acclimatization to high altitude. Recently, however, we have found that erythropoietin (Epo), the main regulator of red blood cell production, influences both central (brainstem) and peripheral (carotid bodies) respiratory centers when the organism is exposed to hypoxic conditions. Here, we summarize the effect of Epo on the respiratory control in mammals and highlight the potential implication of Epo in the ventilatory acclimatization to high altitude, as well as in the several respiratory sickness and syndromes occurring at low and high altitude.
Collapse
Affiliation(s)
- Max Gassmann
- Vetsuisse Faculty, Institute of Veterinary Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Jorge Soliz
- Vetsuisse Faculty, Institute of Veterinary Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
46
|
Muller KJ, Tsechpenakis G, Homma R, Nicholls JG, Cohen LB, Eugenin J. Optical analysis of circuitry for respiratory rhythm in isolated brainstem of foetal mice. Philos Trans R Soc Lond B Biol Sci 2009; 364:2485-91. [PMID: 19651650 DOI: 10.1098/rstb.2009.0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Respiratory rhythms arise from neurons situated in the ventral medulla. We are investigating their spatial and functional relationships optically by measuring changes in intracellular calcium using the fluorescent, calcium-sensitive dye Oregon Green 488 BAPTA-1 AM while simultaneously recording the regular firing of motoneurons in the phrenic nerve in isolated brainstem/spinal cord preparations of E17 to E19 mice. Responses of identified cells are associated breath by breath with inspiratory and expiratory phases of respiration and depend on CO(2) and pH levels. Optical methods including two-photon microscopy are being developed together with computational analyses. Analysis of the spatial pattern of neuronal activity associated with respiratory rhythm, including cross-correlation analysis, reveals a network distributed in the ventral medulla with intermingling of neurons that are active during separate phases of the rhythm. Our experiments, aimed at testing whether initiation of the respiratory rhythm depends on pacemaker neurons, on networks or a combination of both, suggest an important role for networks.
Collapse
Affiliation(s)
- Kenneth J Muller
- Department of Physiology and Biophysics and Neuroscience Program, University of Miami School of Medicine, Miami, FL 33134, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Gassmann M, Tissot van Patot M, Soliz J. The Neuronal Control of Hypoxic Ventilation. Ann N Y Acad Sci 2009; 1177:151-61. [DOI: 10.1111/j.1749-6632.2009.05028.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Liu Q, Wong-Riley MTT. Postnatal changes in the expressions of serotonin 1A, 1B, and 2A receptors in ten brain stem nuclei of the rat: implication for a sensitive period. Neuroscience 2009; 165:61-78. [PMID: 19800944 DOI: 10.1016/j.neuroscience.2009.09.078] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 09/25/2009] [Accepted: 09/28/2009] [Indexed: 01/08/2023]
Abstract
A critical period in respiratory network development occurs in the rat around postnatal days (P) 12-13, when abrupt neurochemical, metabolic, and physiological changes were evident. As serotonin and its receptors are involved in respiratory modulation, and serotonergic abnormality is implicated in sudden infant death syndrome, we hypothesized that 5-HT receptors are significantly downregulated during the critical period. This was documented recently for 5-HT(2A)R in several respiratory nuclei. The present study represents a comprehensive analysis of postnatal development of 5-HT(1A)R and 5-HT(1B)R in 10 brain stem nuclei and 5-HT(2A)R in six nuclei not previously examined. Optical densitometric analysis of immunohistochemically-reacted neurons from P2 to P21 indicated four developmental patterns of expression: (1) Pattern I: a high level of expression at P2-P11, an abrupt and significant reduction at P12, followed by a plateau until P21 (5-HT(1A)R and 5-HT(1B)R in raphé magnus [RM], raphé obscurus [ROb], raphé pallidus [RP], pre-Bötzinger complex [PBC], nucleus ambiguus [Amb], and hypoglossal nucleus [XII; 5-HT(1A)R only]). (2) Pattern II: a high level at P2-P9, a gradual decline from P9 to P12, followed by a plateau until P21 (5-HT(1A)R and 5-HT(1B)R in the retrotrapezoid nucleus (RTN)/parafacial respiratory group (pFRG)). (3) Pattern III: a high level at P2-P11, followed by a gradual decline until P21 (5-HT(1A)R in the ventrolateral subnucleus of solitary tract nucleus [NTS(VL)] and the non-respiratory cuneate nucleus [CN]). (4) Pattern IV: a relatively constant level maintained from P2 to P21 (5-HT(1A)R in the commissural subnucleus of solitary tract nucleus (NTS(COM)); 5-HT(1B)R in XII, NTS(VL), NTS(COM), and CN; and 5-HT(2A)R in RM, ROb, RP, RTN/pFRG, NTS(VL), and NTS(COM)). Thus, a significant reduction in the expression of 5-HT(1A)R, 5-HT(1B)R, and 5-HT(2A)R in multiple respiratory-related nuclei at P12 is consistent with reduced serotonergic transmission during the critical period, thereby rendering the animals less able to respond adequately to ventilatory distress.
Collapse
Affiliation(s)
- Q Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | |
Collapse
|
49
|
Early breathing defects after moderate hypoxia or hypercapnia in a mouse model of Rett syndrome. Respir Physiol Neurobiol 2009; 168:109-18. [DOI: 10.1016/j.resp.2009.05.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 12/21/2022]
|
50
|
Ogier M, Katz DM. Breathing dysfunction in Rett syndrome: understanding epigenetic regulation of the respiratory network. Respir Physiol Neurobiol 2009; 164:55-63. [PMID: 18534925 DOI: 10.1016/j.resp.2008.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/09/2008] [Accepted: 04/10/2008] [Indexed: 11/17/2022]
Abstract
Severely arrhythmic breathing is a hallmark of Rett syndrome (RTT) and profoundly affects quality of life for patients and their families. The last decade has seen the identification of the disease-causing gene, methyl-CpG-binding protein 2 (Mecp2) and the development of mouse models that phenocopy many aspects of the human syndrome, including breathing dysfunction. Recent studies have begun to characterize the breathing phenotype of Mecp2 mutant mice and to define underlying electrophysiological and neurochemical deficits. The picture that is emerging is one of defects in synaptic transmission throughout the brainstem respiratory network associated with abnormal expression in several neurochemical signaling systems, including brain-derived neurotrophic factor (BDNF), biogenic amines and gamma-amino-butyric acid (GABA). Based on such findings, potential therapeutic strategies aimed at improving breathing by targeting deficits in neurochemical signaling are being explored. This review details our current understanding of respiratory dysfunction and underlying mechanisms in RTT with a particular focus on insights gained from mouse models.
Collapse
Affiliation(s)
- Michael Ogier
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| | | |
Collapse
|