1
|
Zhang YJ, Lee JY, Igarashi KM. Circuit dynamics of the olfactory pathway during olfactory learning. Front Neural Circuits 2024; 18:1437575. [PMID: 39036422 PMCID: PMC11258029 DOI: 10.3389/fncir.2024.1437575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
The olfactory system plays crucial roles in perceiving and interacting with their surroundings. Previous studies have deciphered basic odor perceptions, but how information processing in the olfactory system is associated with learning and memory is poorly understood. In this review, we summarize recent studies on the anatomy and functional dynamics of the mouse olfactory learning pathway, focusing on how neuronal circuits in the olfactory bulb (OB) and olfactory cortical areas integrate odor information in learning. We also highlight in vivo evidence for the role of the lateral entorhinal cortex (LEC) in olfactory learning. Altogether, these studies demonstrate that brain regions throughout the olfactory system are critically involved in forming and representing learned knowledge. The role of olfactory areas in learning and memory, and their susceptibility to dysfunction in neurodegenerative diseases, necessitate further research.
Collapse
Affiliation(s)
- Yutian J. Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, United States
| | - Jason Y. Lee
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, United States
| | - Kei M. Igarashi
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, United States
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, United States
- Center for Neural Circuit Mapping, School of Medicine, University of California, Irvine, Irvine, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, United States
| |
Collapse
|
2
|
Döbrössy MD, Ramanathan C, Ashouri Vajari D, Tong Y, Schlaepfer T, Coenen VA. Neuromodulation in Psychiatric disorders: Experimental and Clinical evidence for reward and motivation network Deep Brain Stimulation: Focus on the medial forebrain bundle. Eur J Neurosci 2020; 53:89-113. [PMID: 32931064 DOI: 10.1111/ejn.14975] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022]
Abstract
Deep brain stimulation (DBS) in psychiatric illnesses has been clinically tested over the past 20 years. The clinical application of DBS to the superolateral branch of the medial forebrain bundle in treatment-resistant depressed patients-one of several targets under investigation-has shown to be promising in a number of uncontrolled open label trials. However, there are remain numerous questions that need to be investigated to understand and optimize the clinical use of DBS in depression, including, for example, the relationship between the symptoms, the biological substrates/projections and the stimulation itself. In the context of precision and customized medicine, the current paper focuses on clinical and experimental research of medial forebrain bundle DBS in depression or in animal models of depression, demonstrating how clinical and scientific progress can work in tandem to test the therapeutic value and investigate the mechanisms of this experimental treatment. As one of the hypotheses is that depression engenders changes in the reward and motivational networks, the review looks at how stimulation of the medial forebrain bundle impacts the dopaminergic system.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany
| | - Chockalingam Ramanathan
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Danesh Ashouri Vajari
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Yixin Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Thomas Schlaepfer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Liu S. Dopamine Suppresses Synaptic Responses of Fan Cells in the Lateral Entorhinal Cortex to Olfactory Bulb Input in Mice. Front Cell Neurosci 2020; 14:181. [PMID: 32625065 PMCID: PMC7316158 DOI: 10.3389/fncel.2020.00181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/27/2020] [Indexed: 01/11/2023] Open
Abstract
The lateral entorhinal cortex (LEC) is involved in odor discrimination, odor-associative multimodal memory, and neurological or neuropsychiatric disorders. It receives direct axonal projections from both olfactory bulb (OB) output neurons and midbrain dopaminergic neurons. However, the cellular targets in LEC receiving direct synaptic input from OB output neuron, the functional characteristics of these synapses, and whether or how dopamine (DA) modulates the OB-LEC pathway remain undetermined. We addressed these questions in the present study by combing optogenetic and electrophysiological approaches with four major findings: (1) selective activation of OB input elicited glutamate-mediated monosynaptic responses in all fan cells, the major output neurons in layer II of the LEC; (2) this excitatory synaptic transmission exhibited robust paired-pulse facilitation (PPF), a presynaptically derived short-term synaptic plasticity; (3) DA dramatically attenuated the strength of the OB input-fan cell synaptic transmission via activation of D1 receptors; and (4) DA altered the PPF of this transmission but neither intrinsic properties of postsynaptic neurons nor the kinetic profile of postsynaptic responses, suggesting that presynaptic mechanisms underlie the DA inhibitory actions. This study for the first time demonstrates the FCs in the LEC layer II as the postsynaptic target of direct OB input and characterizes DA modulation of the OB input-fan cell pathway. These findings set the foundation for future studies to examine the synaptic transmission from the OB output neuron axon terminals to other potential cell types in the LEC and to pinpoint the pathophysiological mechanisms underlying olfactory deficits associated with DA-relevant neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shaolin Liu
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
4
|
Glovaci I, Chapman CA. Dopamine induces release of calcium from internal stores in layer II lateral entorhinal cortex fan cells. Cell Calcium 2019; 80:103-111. [PMID: 30999216 DOI: 10.1016/j.ceca.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 11/16/2022]
Abstract
The entorhinal cortex plays an important role in temporal lobe processes including learning and memory, object recognition, and contextual information processing. The alteration of the strength of synaptic inputs to the lateral entorhinal cortex may therefore contribute substantially to sensory and mnemonic functions. The neuromodulatory transmitter dopamine exerts powerful effects on excitatory glutamatergic synaptic transmission in the entorhinal cortex. Interestingly, inputs from midbrain dopamine neurons appear to specifically target clusters of excitatory cells located in the superficial layers of the entorhinal cortex. We have previously demonstrated that dopamine facilitates synaptic transmission through the activation of D1-like receptors. This facilitation of synaptic transmission is dependent on both activation of classical D1-like-receptors, and upon activation of dopamine receptors linked to increases in phospholipase C, inositol triphosphate (IP3), and intracellular calcium. In the present study we combined electrophysiological recordings of evoked excitatory postsynaptic currents with imaging of intracellular calcium using the fluorescent indicator fluo-4 to monitor calcium transients evoked by dopamine in electrophysiologically identified putative fan and pyramidal cells of the lateral entorhinal cortex. Bath application of dopamine (1 μM), or the phosphatidylinositol (PI)-linked D1-like-receptor agonist SKF83959 (5 μM), induced reliable and reversible increases in fluo-4 fluorescence and excitatory postsynaptic currents in fan cells, but not in pyramidal cells. In contrast, application of the classical D1-like-receptor agonist SKF38393 (10 μM) did not result in significant increases in fluorescence. Blocking release of calcium from internal stores by loading cells with the IP3 receptor blocker heparin (1 mM) or the ryanodine receptor blocker dantrolene (20 μM) abolished both the calcium transients and the facilitation of evoked synaptic currents induced by dopamine. Dopamine also induced calcium transients in fan cells when calcium was excluded from the extracellular medium, further indicating that the calcium transients are linked to release from internal stores. These results indicate that following D1-like-receptor binding, dopamine selectively induces transient elevations in intracellular calcium via activation of IP3 and ryanodine receptors, and that these elevations are linked to the facilitation of synaptic responses in putative layer II entorhinal cortex fan cells.
Collapse
Affiliation(s)
- Iulia Glovaci
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - C Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
5
|
Thiele S, Furlanetti L, Pfeiffer LM, Coenen VA, Döbrössy MD. The effects of bilateral, continuous, and chronic Deep Brain Stimulation of the medial forebrain bundle in a rodent model of depression. Exp Neurol 2018; 303:153-161. [DOI: 10.1016/j.expneurol.2018.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/14/2018] [Accepted: 02/06/2018] [Indexed: 12/17/2022]
|
6
|
Batallán-Burrowes AA, Chapman CA. Dopamine suppresses persistent firing in layer III lateral entorhinal cortex neurons. Neurosci Lett 2018. [PMID: 29524644 DOI: 10.1016/j.neulet.2018.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Persistent firing in layer III entorhinal cortex neurons that can be evoked during muscarinic receptor activation may contribute to mechanisms of working memory. The entorhinal cortex receives strong dopaminergic inputs which may modulate working memory for motivationally significant information. We used whole cell recordings in in vitro rat brain slices to assess the effects of dopamine on persistent firing in layer III neurons initiated by depolarizing current injection. Persistent firing during pharmacological block of ionotropic excitatory and inhibitory synaptic transmission, and in the presence of the cholinergic agonist carbachol (10 μM), was observed in 39% of layer III pyramidal cells. Addition of 1 μM dopamine suppressed the incidence of persistent firing and similarly reduced the mean probability of induction of persistent firing at each current step, without significantly affecting the latency, duration, plateau potential, or frequency of persistent firing that was induced. These results indicate that dopamine can result in a suppression of the induction of persistent firing in layer III entorhinal neurons, while still being permissive of persistent firing once it is initiated.
Collapse
Affiliation(s)
- Ariel A Batallán-Burrowes
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, H4 B 1R6, Canada
| | - C Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, H4 B 1R6, Canada.
| |
Collapse
|
7
|
Darvish-Ghane S, Yamanaka M, Zhuo M. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice. Mol Pain 2016; 12:12/0/1744806916648153. [PMID: 27317578 PMCID: PMC4955973 DOI: 10.1177/1744806916648153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/20/2016] [Indexed: 12/28/2022] Open
Abstract
Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA.
Collapse
Affiliation(s)
- Soroush Darvish-Ghane
- Department of Physiology, Faculty of Medicine, University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Manabu Yamanaka
- Department of Physiology, Faculty of Medicine, University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto Centre for the Study of Pain, Toronto, ON, Canada Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, China
| |
Collapse
|
8
|
Long-term characterization of the Flinders Sensitive Line rodent model of human depression: Behavioral and PET evidence of a dysfunctional entorhinal cortex. Behav Brain Res 2016; 300:11-24. [DOI: 10.1016/j.bbr.2015.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 12/19/2022]
|
9
|
A behavioral defect of temporal association memory in mice that partly lack dopamine reuptake transporter. Sci Rep 2015; 5:17461. [PMID: 26658842 PMCID: PMC4674704 DOI: 10.1038/srep17461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/30/2015] [Indexed: 01/22/2023] Open
Abstract
Temporal association memory, like working memory, is a type of episodic memory in which temporally discontinuous elements are associated. However, the mechanisms that govern this association remain incompletely understood. Here, we identify a crucial role of dopaminergic action in temporal association memory. We used hemizygote hyperdopaminergic mutant mice with reduced dopamine transporter (DAT) expression, referred to as DAT+/− mice. We found that mice with this modest dopamine imbalance exhibited significantly impaired trace fear conditioning, which necessitates the association of temporally discontinuous elements, and intact delay auditory fear conditioning, which does not. Moreover, the DAT+/− mice displayed substantial impairments in non-matching-to-place spatial working-memory tasks. Interestingly, these temporal association and working memory deficits could be mimicked by a low dose of the dopamine D2 receptor antagonist haloperidol. The shared phenotypes resulting from either the genetic reduction of DAT or the pharmacological inhibition of the D2 receptor collectively indicate that temporal association memory necessitates precise regulation of dopaminergic signaling. The particular defect in temporal association memory due to partial lack of DAT provides mechanistic insights on the understanding of cognitive impairments in multiple neurodevelopmental disorders.
Collapse
|
10
|
Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex. PLoS One 2015; 10:e0131948. [PMID: 26133167 PMCID: PMC4489908 DOI: 10.1371/journal.pone.0131948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI)-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3) receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36) completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is likely dependent upon both DAG and enhanced intracellular Ca2+. These signaling pathways may collaborate to enhance sensory and mnemonic function in the entorhinal cortex during tonic release of dopamine.
Collapse
|
11
|
O'Connor WT, O'Shea SD. Clozapine and GABA transmission in schizophrenia disease models. Pharmacol Ther 2015; 150:47-80. [DOI: 10.1016/j.pharmthera.2015.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
|
12
|
Morrissey MD, Takehara-Nishiuchi K. Diversity of mnemonic function within the entorhinal cortex: A meta-analysis of rodent behavioral studies. Neurobiol Learn Mem 2014; 115:95-107. [DOI: 10.1016/j.nlm.2014.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 11/16/2022]
|
13
|
Glovaci I, Caruana DA, Chapman CA. Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D₁-like receptor-mediated signaling. Neuroscience 2013; 258:74-83. [PMID: 24220689 DOI: 10.1016/j.neuroscience.2013.10.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/11/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022]
Abstract
The modulatory neurotransmitter dopamine induces concentration-dependent changes in synaptic transmission in the entorhinal cortex, in which high concentrations of dopamine suppress evoked excitatory postsynaptic potentials (EPSPs) and lower concentrations induce an acute synaptic facilitation. Whole-cell current-clamp recordings were used to investigate the dopaminergic facilitation of synaptic responses in layer II neurons of the rat lateral entorhinal cortex. A constant bath application of 1 μM dopamine resulted in a consistent facilitation of EPSPs evoked in layer II fan cells by layer I stimulation; the size of the facilitation was more variable in pyramidal neurons, and synaptic responses in a small group of multiform neurons were not modulated by dopamine. Isolated inhibitory synaptic responses were not affected by dopamine, and the facilitation of EPSPs was not associated with a change in paired-pulse facilitation ratio. Voltage-clamp recordings of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) glutamate receptor-mediated excitatory postsynaptic currents (EPSCs) were facilitated by dopamine, but N-methyl-D-aspartate receptor-mediated currents were not. Bath application of the dopamine D₁-like receptor blocker SCH23390 (50 μM), but not the D₂-like receptor blocker sulpiride (50 μM), prevented the facilitation, indicating that it is dependent upon D₁-like receptor activation. Dopamine D₁ receptors lead to activation of protein kinase A (PKA), and including the PKA inhibitor H-89 or KT 5720 in the recording pipette solution prevented the facilitation of EPSCs. PKA-dependent phosphorylation of inhibitor 1 or the dopamine- and cAMP-regulated protein phosphatase (DARPP-32) can lead to a facilitation of AMPA receptor responses by inhibiting the activity of protein phosphatase 1 (PP1) that reduces dephosphorylation of AMPA receptors, and we found here that inhibition of PP1 occluded the facilitatory effect of dopamine. The dopamine-induced facilitation of AMPA receptor-mediated synaptic responses in layer II neurons of the lateral entorhinal cortex is therefore likely mediated via a D₁ receptor-dependent increase in PKA activity and a resulting inhibition in PP1-dependent dephosphorylation of AMPA receptors.
Collapse
Affiliation(s)
- I Glovaci
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - D A Caruana
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - C A Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec H4B 1R6, Canada.
| |
Collapse
|
14
|
Hutter JA, Chapman CA. Exposure to cues associated with palatable food reward results in a dopamine D₂ receptor-dependent suppression of evoked synaptic responses in the entorhinal cortex. Behav Brain Funct 2013; 9:37. [PMID: 24093833 PMCID: PMC3852587 DOI: 10.1186/1744-9081-9-37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The lateral entorhinal cortex receives inputs from ventral tegmental area dopamine neurons that are activated by exposure to food-related cues, and exogenously applied dopamine is known to modulate excitatory synaptic responses within the entorhinal cortex. METHODS The present study used in vivo synaptic field potential recording techniques to determine how exposure to cues associated with food reward modulates synaptic responses in the entorhinal cortex of the awake rat. Chronically implanted electrodes were used to monitor synaptic potentials in the entorhinal cortex evoked by stimulation of the piriform (olfactory) cortex, and to determine how synaptic responses are modulated by food-related cues. RESULTS The amplitudes of evoked synaptic responses were reduced during exposure to cues associated with delivery of chocolate, and during delivery of chocolate for consumption at unpredictable intervals. Reductions in synaptic responses were not well predicted by changes in behavioural mobility, and were not fully blocked by systemic injection of either the D₁-like receptor antagonist SCH23390, or the muscarinic receptor antagonist scopolamine. However, the reduction in synaptic responses was blocked by injection of the D₂-like receptor antagonist eticlopride. CONCLUSIONS Exposure to cues associated with palatable food results in a suppression of synaptic responses in olfactory inputs to the entorhinal cortex that is mediated in part by activation of dopamine D₂ receptors.
Collapse
Affiliation(s)
- Juliana A Hutter
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke Street W,, Rm, SP-244, Montréal H4B 1R6, Québec, Canada.
| | | |
Collapse
|
15
|
Hutter JA, Martel A, Trigiani L, Barrett SG, Chapman CA. Rewarding stimulation of the lateral hypothalamus induces a dopamine-dependent suppression of synaptic responses in the entorhinal cortex. Behav Brain Res 2013; 252:266-74. [DOI: 10.1016/j.bbr.2013.05.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/09/2013] [Accepted: 05/28/2013] [Indexed: 01/23/2023]
|
16
|
Cilz NI, Kurada L, Hu B, Lei S. Dopaminergic modulation of GABAergic transmission in the entorhinal cortex: concerted roles of α1 adrenoreceptors, inward rectifier K⁺, and T-type Ca²⁺ channels. Cereb Cortex 2013; 24:3195-208. [PMID: 23843440 DOI: 10.1093/cercor/bht177] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Whereas the entorhinal cortex (EC) receives profuse dopaminergic innervations from the midbrain, the effects of dopamine (DA) on γ-Aminobutyric acid (GABA)ergic interneurons in this brain region have not been determined. We probed the actions of DA on GABAA receptor-mediated synaptic transmission in the EC. Application of DA increased the frequency, not the amplitude, of spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSCs) recorded from entorhinal principal neurons, but slightly reduced the amplitude of the evoked IPSCs. The effects of DA were unexpectedly found to be mediated by α1 adrenoreceptors, but not by DA receptors. DA endogenously released by the application of amphetamine also increased the frequency of sIPSCs. Ca(2+) influx via T-type Ca(2+) channels was required for DA-induced facilitation of sIPSCs and mIPSCs. DA depolarized and enhanced the firing frequency of action potentials of interneurons. DA-induced depolarization was independent of extracellular Na(+) and Ca(2+) and did not require the functions of hyperpolarization-activated (Ih) channels and T-type Ca(2+) channels. DA-generated currents showed a reversal potential close to the K(+) reversal potential and inward rectification, suggesting that DA inhibits the inward rectifier K(+) channels (Kirs). Our results demonstrate that DA facilitates GABA release by activating α1 adrenoreceptors to inhibit Kirs, which further depolarize interneurons resulting in secondary Ca(2+) influx via T-type Ca(+) channels.
Collapse
Affiliation(s)
- Nicholas I Cilz
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Lalitha Kurada
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Binqi Hu
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
17
|
Salehpoor G, Hosseininezhad M, Rezaei S. A preliminary path analysis: Effect of psychopathological symptoms, mental and physical dysfunctions related to quality of life and body mass index on fatigue severity of Iranian patients with multiple sclerosis. IRANIAN JOURNAL OF NEUROLOGY 2012; 11:96-105. [PMID: 24250873 PMCID: PMC3829253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 05/01/2012] [Indexed: 11/06/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurological disease with fatigue as most prevalent symptom. Psychopathological symptoms, physical and mental dysfunctions and body mass abnormalities potentially could deteriorate fatigue. Thus, in this study, we aimed at evaluating the effect of these factors on fatigue severity of MS patients. METHODS In this cross-sectional study, 162 patients with mean age of 34.1 ± 9.4 (16-58 years) were recruited by consecutive sampling. All the patients, after completing demographic information were evaluated using Persian versions of Fatigue Severity Scale (FSS), depression, anxiety and stress scale (DASS-21), and short form Health Survey Questionnaire (SF-36). RESULTS Correlation analysis showed a significant relationship between fatigue severity and depression, anxiety, stress, physical component summary (PCS) and mental component summary (MCS) (P < 0.01). Findings of path analysis demonstrated that PCS is the only variable which has a direct effect on fatigue severity (β = -0.278, P < 0.05). Moreover, the strongest standard coefficient (β) belonged to cause and effect relationship between MCS and depression (β = -0.691, P < 0.0001). CONCLUSION Present study made the role of psychopathological symptoms and physical and mental dysfunctions prominent in exacerbation of fatigue severity. Moreover, we can refer to more sensible effect of physical dysfunction related to life on fatigue.
Collapse
Affiliation(s)
- Ghasem Salehpoor
- MA in Psychology, Department of Psychology, University of Guilan, Rasht, Iran
| | - Mozaffar Hosseininezhad
- Assistant Professor, Department of Neurology, Guilan University of Medical Sciences, Rasht, Iran
| | - Sajjad Rezaei
- PhD Candidate, Department of Psychology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
18
|
Caruana DA, Warburton EC, Bashir ZI. Induction of activity-dependent LTD requires muscarinic receptor activation in medial prefrontal cortex. J Neurosci 2011; 31:18464-78. [PMID: 22171048 PMCID: PMC6623881 DOI: 10.1523/jneurosci.4719-11.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 11/21/2022] Open
Abstract
The medial prefrontal cortex (mPFC) forms part of a neural circuit involved in the formation of lasting associations between objects and places. Cholinergic inputs from the basal forebrain innervate the mPFC and may modulate synaptic processes required for the formation of object-in-place memories. To investigate whether acetylcholine regulates synaptic function in the rat mPFC, whole-cell voltage-clamp recordings were made from pyramidal neurons in layer V. Bath application of the cholinergic agonist carbachol caused a potent and long-term depression (LTD) of synaptic responses that was blocked by the muscarinic receptor antagonist scopolamine and was mimicked, in part, by the M(1) receptor agonists McN-A-343 or AF102B. Furthermore, inhibition of PKC blocked carbachol-mediated LTD. We next determined the requirements for activity-dependent LTD in the prefrontal cortex. Synaptic stimulation that was subthreshold for producing LTD did, however, result in LTD when acetylcholine levels were enhanced by inhibition of acetylcholinesterase or when delivered in the presence of the M(1)-selective positive allosteric modulator BQCA. Increasing the levels of synaptic stimulation resulted in M(1) receptor-dependent LTD without the need for pharmacological manipulation of acetylcholine levels. These results show that synaptic stimulation of muscarinic receptors alone can be critical for plastic changes in excitatory synaptic transmission in the mPFC. In turn, these muscarinic mediated events may be important in the formation of object-in-place memories. A loss of basal forebrain cholinergic neurons is a classic hallmark of Alzheimer's dementia and our results provide a potential explanation for the loss of memory associated with the disease.
Collapse
Affiliation(s)
- Douglas A. Caruana
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - E. Clea Warburton
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Zafar I. Bashir
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
19
|
Siniscalchi A, Gallelli L, Tolotta GA, Loiacono D, De Sarro G. Open, uncontrolled, nonrandomized, 9-month, off-label use of bupropion to treat fatigue in a single patient with multiple sclerosis. Clin Ther 2011; 32:2030-4. [PMID: 21118738 DOI: 10.1016/j.clinthera.2010.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Improvement of fatigue in patients with multiple sclerosis (MS) who were given bupropion has been previously reported, but scales for lethargy and depression were not used. OBJECTIVE This letter describes the course of chronic fatigue in a patient with MS who received off-label treatment with bupropion. METHODS A 47-year-old white woman (weight, 56 kg) with a 7-year history of relapsing-remitting MS (Ex- panded Disability Status Scale score of 3), without previous use of medication for MS, presented with a complaint of irritability and chronic fatigue. The Fatigue Severity Scale (FSS) documented the presence of fatigue related to MS (score of 7). The Beck Depression Inventory scale excluded an association between depression and fatigue (score of 8; possible range, 0-24); both the Pittsburgh Sleep Quality Index (score of 4; possible range, 0-21) and the Epworth Sleepiness Scale (score of 6; possible range, 0-24) excluded nighttime and daytime sleep disturbances. The patient was started on amantadine (100 mg/d), with an increase to 100 mg every 12 hours 2 weeks later, for the persistence of fatigue. Three months later, the absence of clinical response was noted (FSS score of 7). Amantadine was discontinued and bupropion therapy was initiated at 300 mg/d. RESULTS A repeat clinical evaluation conducted after 3 months of bupropion treatment indicated an improvement in fatigue (FSS score of 4) without changes in Beck Depression Inventory, Pittsburgh Sleep Quality Index, or Epworth Sleepiness Scale scores. The discontinuation and reinitiation of bupropion confirmed the effectiveness of bupropion for improving chronic fatigue in this patient. At the time of writing this report, 13 months after the resumption of bupropion treatment, the patient had experienced no further episodes of fatigue, and no adverse events had been reported. CONCLUSION This patient with relapsing-remitting MS experienced improvements in chronic fatigue (as measured by FSS) after treatment with bupropion, but properly designed, randomized, active- and placebo-controlled clinical trials are needed to evaluate the efficacy and safety of bupropion in more patients with MS and fatigue.
Collapse
Affiliation(s)
- Antonio Siniscalchi
- Department of Neuroscience, Neurology Division, Annunziata Hospital, Cosenza, Italy
| | | | | | | | | |
Collapse
|
20
|
Cerebral morphology and dopamine D2/D3 receptor distribution in humans: a combined [18F]fallypride and voxel-based morphometry study. Neuroimage 2009; 46:31-8. [PMID: 19457373 DOI: 10.1016/j.neuroimage.2009.01.049] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/05/2008] [Accepted: 01/22/2009] [Indexed: 11/20/2022] Open
Abstract
The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D(2)/D(3) ligand [(18)F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BP(ND)) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BP(ND) were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BP(ND) throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BP(ND) and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BP(ND) were observed. Overall, grey matter density appeared more strongly correlated with BP(ND) than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [(18)F]fallypride BP(ND) in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization.
Collapse
|