1
|
Meyneng M, Lemonnier H, Le Gendre R, Plougoulen G, Antypas F, Ansquer D, Serghine J, Schmitt S, Siano R. Subtropical coastal microbiome variations due to massive river runoff after a cyclonic event. ENVIRONMENTAL MICROBIOME 2024; 19:10. [PMID: 38291506 PMCID: PMC10829310 DOI: 10.1186/s40793-024-00554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Coastal ecosystem variability at tropical latitudes is dependent on climatic conditions. During the wet, rainy season, extreme climatic events such as cyclones, precipitation, and winds can be intense over a short period and may have a significant impact on the entire land‒sea continuum. This study focused on the effect of river runoff across the southwest coral lagoon ecosystem of Grand Terre Island of New Caledonia (South Pacific) after a cyclonic event, which is considered a pulse disturbance at our study site. The variability of coastal microbiomes, studied by the metabarcoding of V4 18S (protists) and V4-V5 16S (bacteria) rDNA genes, after the cyclone passage was associated with key environmental parameters describing the runoff impact (salinity, organic matter proxies, terrestrial rock origin metals) and compared to community structures observed during the dry season. RESULTS Microbiome biodiversity patterns of the dry season were destructured because of the runoff impact, and land-origin taxa were observed in the coastal areas. After the rainy event, different daily community dynamics were observed locally, with specific microbial taxa explaining these variabilities. Plume dispersal modeling revealed the extent of low salinity areas up to the coral reef area (16 km offshore), but a rapid (< 6 days) recovery to typical steady conditions of the lagoon's hydrology was observed. Conversely, during the same time, some biological components (microbial communities, Chl a) and biogeochemical components (particulate nickel, terrigenous organic matter) of the ecosystem did not recover to values observed during the dry season conditions. CONCLUSION The ecosystem resilience of subtropical ecosystems must be evaluated from a multidisciplinary, holistic perspective and over the long term. This allows evaluating the risk associated with a potential continued and long-term disequilibrium of the ecosystem, triggered by the change in the frequency and intensity of extreme climatic events in the era of planetary climatic changes.
Collapse
Affiliation(s)
- M Meyneng
- IFREMER, DYNECO, BP70, Plouzané, France
| | - H Lemonnier
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - R Le Gendre
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - G Plougoulen
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - F Antypas
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - D Ansquer
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | | | - S Schmitt
- IFREMER, DYNECO, BP70, Plouzané, France
| | - R Siano
- IFREMER, DYNECO, BP70, Plouzané, France.
| |
Collapse
|
2
|
Castro GM, Vargens RP, Carlos-Júnior LA, Cardoso FC, Salomon PS, Tenório MMB, Bastos AC, Oliveira N, Ghisolfi RD, Cordeiro RTS, Moura RL. Incised valleys drive distinctive oceanographic processes and biological assemblages within rhodolith beds. PLoS One 2023; 18:e0293259. [PMID: 37956173 PMCID: PMC10642839 DOI: 10.1371/journal.pone.0293259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
Continental shelves encompass gently sloped seascapes that are highly productive and intensively exploited for natural resources. Islands, reefs and other emergent or quasi-emergent features punctuate these shallow (<100 m) seascapes and are well known drivers of increased biomass and biodiversity, as well as predictors of fishing and other human uses. On the other hand, relict mesoscale geomorphological features that do not represent navigation hazards, such as incised valleys (IVs), remain poorly charted. Consequently, their role in biophysical processes remains poorly assessed and sampled. Incised valleys are common within rhodolith beds (RBs), the most extensive benthic habitat along the tropical and subtropical portions of the mid and outer Brazilian shelf. Here, we report on a multi-proxy assessment carried out in a tropical-subtropical transition region (~20°S) off Eastern Brazil, contrasting physicochemical and biological variables in IVs and adjacent RBs. Valleys interfere in near bottom circulation and function as conduits for water and propagules from the slope up to the mid shelf. In addition, they provide a stable and structurally complex habitat for black corals and gorgonians that usually occur in deeper water, contrasting sharply with the algae-dominated RB. Fish richness, abundance and biomass were also higher in the IVs, with small planktivores and large-bodied, commercially important species (e.g. groupers, snappers and grunts) presenting smaller abundances or being absent from RBs. Overall, IVs are unique and vulnerable habitats that sustain diverse assemblages and important ecosystem processes. As new IVs are detected by remote sensing or bathymetric surveys, they can be incorporated into regional marine management plans as conservation targets and priority sites for detailed in situ surveys.
Collapse
Affiliation(s)
- Guilherme M. Castro
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rafaela P. Vargens
- Departamento de Biologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lélis A. Carlos-Júnior
- Departamento de Biologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando C. Cardoso
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paulo S. Salomon
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Márcio M. B. Tenório
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alex C. Bastos
- Departamento de Oceanografia, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Natacha Oliveira
- Departamento de Oceanografia, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Renato D. Ghisolfi
- Departamento de Oceanografia, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Ralf T. S. Cordeiro
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Rodrigo L. Moura
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Assessment of Seasonal and Spatial Variations of Coastal Water Quality Using Multivariate Statistical Techniques. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9111292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigates the seasonal and spatial trends in Kuwait’s coastal water’s physical, chemical, and biological parameters by applying multivariate statistical techniques, including cluster analysis (CA), principal component/factor analysis (PCA/FA), and the Pearson correlation (PC) method to the average daily reading of water quality parameters from fifteen stations over one year. The investigated parameters are pH, turbidity, chlorophyll-a, conductivity, dissolved oxygen (DO), phycoerythrin, salinity, and temperature. The results show that the coastal water of Kuwait is subjected to high environmental pressure due to natural and human interferences. During 2017, the DO levels were below the threshold limit, and at the same time, the water temperature and salinity were very high, causing a series of fish death events. CA resulted in three different regions based on the turbidity, including high, moderate, and low regions, and three seasons (winter, summer, and autumn). Spring is very short and overlaps with winter and summer. PCA/FA applied on the datasets assisted in extracting and identifying parameters responsible for the variations in the seasons and regions obtained from CA. Additionally, Pearson’s correlation resulted in a strong positive relation between chlorophyll and phycoerythrin in 7 out of the 15 stations. However, at high turbidity regions (stations 1 and 2), chlorophyll concentration was low. Additionally, the negative correlation between DO and temperature was observed at stations with rare human activities.
Collapse
|
4
|
Bio-Optical Characterization and Ocean Colour Inversion in the Eastern Lagoon of New Caledonia, South Tropical Pacific. REMOTE SENSING 2018. [DOI: 10.3390/rs10071043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Sudha Rani P, Sampath Kumar G, Mukherjee J, Srinivas TNR, Sarma VVSS. Perennial occurrence of heterotrophic, indicator and pathogenic bacteria in the coastal Bay of Bengal (off Visakhapatnam) - Impact of physical and atmospheric processes. MARINE POLLUTION BULLETIN 2018; 127:412-423. [PMID: 29475679 DOI: 10.1016/j.marpolbul.2017.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 06/08/2023]
Abstract
In order to examine the health of the coastal waters off Visakhapatnam in terms of prevalence and abundance of heterotrophic (H), indicator and pathogenic (P) bacterial counts (BC) and influence of physical processes on them, time-series observations were conducted during January (winter), March (spring), July (summer) and October (post-monsoon). We noticed the impact of physical forces on substantial variations in abundance and distribution of the HBC, total coliforms, Enterococcus faecalis and Pseudomonas aeruginosa in the study region. Based on our results Escherichia coli and other PBC were not much influenced by the physical conditions. It has been noticed that the perennial existence of the high abundance of IBC and PBC above the standard limits during the entire study period leading to an alarming situation in the coastal waters off Visakhapatnam.
Collapse
Affiliation(s)
- P Sudha Rani
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam 530 017, India
| | - G Sampath Kumar
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam 530 017, India
| | - J Mukherjee
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam 530 017, India
| | - T N R Srinivas
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam 530 017, India.
| | - V V S S Sarma
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam 530 017, India
| |
Collapse
|
6
|
Sahoo S, Baliarsingh SK, Lotliker AA, Pradhan UK, Thomas CS, Sahu KC. Effect of physico-chemical regimes and tropical cyclones on seasonal distribution of chlorophyll-a in the Chilika Lagoon, east coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:153. [PMID: 28281131 DOI: 10.1007/s10661-017-5850-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
A comprehensive analysis on spatiotemporal variation in physico-chemical variables and their control on chlorophyll-a during 2013-14 was carried out in the Chilika Lagoon. Spatiotemporal variation in physico-chemical regimes significantly controlled the phytoplankton biomass of the lagoon. Further, precipitation-induced river/terrestrial freshwater influx and marine influence controlled the physico-chemical regimes of the Chilika Lagoon, such as nutrients (NH4+, NO3-, NO2-, PO43- and Si(OH)4), temperature, salinity, total suspended matter and dissolved oxygen. This study revealed significant effects of tropical cyclones Phailin (2013) and Hudhud (2014) on physico-chemical regimes and in turn the phytoplankton biomass of the lagoon. Although both cyclones Phailin (2013) and Hudhud (2014) were intense, Phailin (2013) had a greater impact on the Chilika Lagoon due to the proximity of its landfall. Heavy precipitation caused an influx of nutrient-rich freshwater, both during each cyclone's passage, through rainfall, and after, through increased river flow and terrestrial run-off. The increase in nutrients, carried by the run-off, promoted phytoplankton growth, albeit in lag phase. In general, phytoplankton growth was controlled by nitrogenous nutrients. However, the addition of SiO4 through terrigenous run-off fuelled preferential growth of diatoms. The salinity pattern (which can be considered a proxy for fresh and marine water influx) indicated injection of freshwater nutrients into the northern, southern and central sectors of the lagoon through riverine/terrestrial freshwater run-off; marine influx was restricted to the mouth of the lagoon. Present and past magnitudes of salinity and chlorophyll-a were also compared to better understand the pattern of variability. A significant change in salinity pattern was noticed after the opening of an artificial inlet, because of the resulting higher influx of marine water. The overall phytoplankton biomass (using chlorophyll-a concentration as a proxy) remained consistent in the lagoon pre- and post-restoration. Due to the wide range of salinity and temperature tolerance, diatoms remained dominant in both pre- and post-restoration periods, but the overall phytoplankton diversity increased after the artificial inlet was dredged.
Collapse
Affiliation(s)
- Subhashree Sahoo
- Department of Marine Sciences, Berhampur University, Brahmapur, Odisha, 760 007, India
| | - S K Baliarsingh
- Indian National Centre for Ocean Information Services, Hyderabad, 500 090, India
| | - Aneesh A Lotliker
- Indian National Centre for Ocean Information Services, Hyderabad, 500 090, India.
| | - Umesh K Pradhan
- CSIR-National Institute of Oceanography Regional Center, Mumbai, Maharashtra, 400053, India
| | - C S Thomas
- Science Systems and Applications, Inc., Ocean Biology Processing Group (OBPG), National Aeronautics and Space Administration (NASA), Goddard Space Flight Center (GSFC), Greenbelt, MD, 20771, USA
| | - K C Sahu
- Department of Marine Sciences, Berhampur University, Brahmapur, Odisha, 760 007, India
| |
Collapse
|
7
|
ESA-MERIS 10-Year Mission Reveals Contrasting Phytoplankton Bloom Dynamics in Two Tropical Regions of Northern Australia. REMOTE SENSING 2014. [DOI: 10.3390/rs6042963] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Murakami H, Dupouy C. Atmospheric correction and inherent optical property estimation in the southwest New Caledonia lagoon using AVNIR-2 high-resolution data. APPLIED OPTICS 2013; 52:182-198. [PMID: 23314634 DOI: 10.1364/ao.52.000182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/19/2012] [Indexed: 06/01/2023]
Abstract
Retrievals of inherent optical properties (IOPs) and chlorophyll-a concentration (Chla) were investigated for AVNIR-2 images with 30 m spatial resolution and four bands in the southwest tropical lagoon of New Caledonia. We corrected the atmospheric and sea-surface reflectance iteratively through the retrieval of IOPs. After an additional correction of seafloor reflectance, the estimated IOPs and Chla agreed well with the in situ measurements even in the lagoon areas. This study provides a method to allow a local optimal estimation of IOPs and Chla with a high-resolution sensor by preparing the candidate spectra for the target areas.
Collapse
Affiliation(s)
- Hiroshi Murakami
- Japan Aerospace Exploration Agency, Earth Observation Research Center, 2-1-1, Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | | |
Collapse
|
9
|
Fuchs R, Dupouy C, Douillet P, Caillaud M, Mangin A, Pinazo C. Modelling the impact of a La Niña event on a South West Pacific Lagoon. MARINE POLLUTION BULLETIN 2012; 64:1596-1613. [PMID: 22721694 DOI: 10.1016/j.marpolbul.2012.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/09/2012] [Accepted: 05/17/2012] [Indexed: 06/01/2023]
Abstract
In view of increasing environmental awareness and biodiversity conservation, understanding the main forcing mechanism driving biogeochemical cycles in coral reefs and lagoon coastal areas is a priority. La Niña events cause unbalanced situations in the Equatorial Pacific and result in enhanced precipitation in South West Pacific coastal areas. We investigated the impact of heavy rainfalls during the 2008 La Niña event on the New Caledonia lagoon using a 3D coupled on-line hydrodynamic-biogeochemical model. Simulations and data showed that the whole lagoon was impacted by river inputs and stronger hydrodynamics, enhancing chlorophyll-a concentration by a factor between 1.7 and 1.9. The coupled model provided new insights into plume transport, highlighting that eastern plumes can be advected northwards or can reach the South West Lagoon, depending on the balance between regional, tide-induced, and wind-induced surface currents. It also provided a synoptic view of lagoon biogeochemical-hydrodynamic response, when remote sensing data are not available due to cloud coverage.
Collapse
Affiliation(s)
- R Fuchs
- Mediterranean Institute of Oceanography-MIO, Aix-Marseille Université, 13288 Marseille Cedex 09, France.
| | | | | | | | | | | |
Collapse
|
10
|
Dupouy C, Neveux J, Ouillon S, Frouin R, Murakami H, Hochard S, Dirberg G. Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia. MARINE POLLUTION BULLETIN 2010; 61:503-518. [PMID: 20688344 DOI: 10.1016/j.marpolbul.2010.06.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The retrieval of chlorophyll-a concentration from remote sensing reflectance (Rrs) data was tested with the NASA OC4v4 algorithm on the inner New Caledonian lagoon (Case 2) and adjacent open ocean (Case 1) waters. The input to OC4v4 was Rrs measured in situ or modeled from water's inherent optical properties (2001-2007). At open ocean stations, backscattering and absorption coefficients were correlated with chlorophyll (R(2)=0.31-0.51, respectively), in agreement with models for Case 1 waters. Taking spectrofluorometric measurement as reference, the OC4v4 model leads to an average underestimation of 33% of the chlorophyll concentration. For the lagoon waters, OC4v4 performed inadequately because the backscattering coefficient, highly correlated with turbidity and suspended matter (R(2)=0.98), was poorly correlated to chlorophyll (R(2)=0.42). The OC4v4 performance was better in deep lagoon waters for stations with a TDT index (Tchla x depth/turbidity) higher than 19 mg m(-2) NTU(-1) (R(2)=0.974, bias=10.2%). Global Imager Rrs provided a good estimate of Tchla (R(2)=0.79, N=28) in the deeper part of the lagoon.
Collapse
Affiliation(s)
- Cécile Dupouy
- Université de la Méditerranée, IRD, UR Camelia, BP A5, 98848 Nouméa Cedex, New Caledonia.
| | | | | | | | | | | | | |
Collapse
|
11
|
Torréton JP, Rochelle-Newall E, Pringault O, Jacquet S, Faure V, Briand E. Variability of primary and bacterial production in a coral reef lagoon (New Caledonia). MARINE POLLUTION BULLETIN 2010; 61:335-348. [PMID: 20619862 DOI: 10.1016/j.marpolbul.2010.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We assessed the temporal variability of nutrients, phytoplankton and bacterioplankton at two sites of different trophic status in New Caledonia's South-West lagoon, a tropical coastal ecosystem. During stable meteorological conditions, Chl.a, bacterial production and nutrient concentrations experience weak but consistent daily variation. Short-term (1-2 week interval) fluctuations of planktonic variables are in the same range as annual variations at both sites. A part of these short term variations is linked to local meteorological events (wind in the main channel, precipitation at the coastal station). Although annual variations are weak compared to short term variations, phytoplankton and bacterioplankton production show consistent temporal patterns, with maxima in December-January and April-May and minima in August. Annual bacterial production represents 21% and 34% of particulate primary production at the oligotrophic and mesotrophic sites, respectively. Mineral nutrient availability indicates that nitrogen is probably the primary limiting factor of phytoplankton throughout the year.
Collapse
Affiliation(s)
- Jean-Pascal Torréton
- UR 103, CAMELIA, UMR 5119 ECOLAG, Université Montpellier II, Case 093, 34095 Montpellier, France.
| | | | | | | | | | | |
Collapse
|