1
|
McDonald CF, Serginson J, AlShareef S, Buchan C, Davies H, Miller BR, Munsif M, Smallwood N, Troy L, Khor YH. Thoracic Society of Australia and New Zealand clinical practice guideline on adult home oxygen therapy. Respirology 2024; 29:765-784. [PMID: 39009413 DOI: 10.1111/resp.14793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
This Thoracic Society of Australia and New Zealand Guideline on the provision of home oxygen therapy in adults updates a previous Guideline from 2015. The Guideline is based upon a systematic review and meta-analysis of literature to September 2022 and the strength of recommendations is based on GRADE methodology. Long-term oxygen therapy (LTOT) is recommended for its mortality benefit for patients with COPD and other chronic respiratory diseases who have consistent evidence of significant hypoxaemia at rest (PaO2 ≤ 55 mm Hg or PaO2 ≤59 mm Hg in the presence of hypoxaemic sequalae) while in a stable state. Evidence does not support the use of LTOT for patients with COPD who have moderate hypoxaemia or isolated nocturnal hypoxaemia. In the absence of hypoxaemia, there is no evidence that oxygen provides greater palliation of breathlessness than air. Evidence does not support the use of supplemental oxygen therapy during pulmonary rehabilitation in those with COPD and exertional desaturation but normal resting arterial blood gases. Both positive and negative effects of LTOT have been described, including on quality of life. Education about how and when to use oxygen therapy in order to maximize its benefits, including the use of different delivery devices, expectations and limitations of therapy and information about hazards and risks associated with its use are key when embarking upon this treatment.
Collapse
Affiliation(s)
- Christine F McDonald
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
- Institute for Breathing and Sleep, Heidelberg, Victoria, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - John Serginson
- Department of Respiratory Medicine, Sunshine Coast Health, Birtinya, Queensland, Australia
- School of Nursing, Midwifery & Social Work, University of Queensland, St Lucia, Queensland, Australia
| | - Saad AlShareef
- Department of Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Catherine Buchan
- Respiratory Research@Alfred, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Huw Davies
- Respiratory and Sleep Services, Flinders Medical Centre, Southern Adelaide Local Health Network, South Australia, Australia
| | - Belinda R Miller
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Maitri Munsif
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
- Institute for Breathing and Sleep, Heidelberg, Victoria, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Natasha Smallwood
- Respiratory Research@Alfred, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Lauren Troy
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Institute for Academic Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Yet Hong Khor
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
- Institute for Breathing and Sleep, Heidelberg, Victoria, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Respiratory Research@Alfred, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Oliveira ATB. Worldwide Regulation of the Medical Emergency Kit and First Aid Kit. Aerosp Med Hum Perform 2024; 95:321-326. [PMID: 38790131 DOI: 10.3357/amhp.6374.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
INTRODUCTION: On-board medical emergencies are increasing. Different geographies have different legislation and requirements for medical emergency kits and first aid kits. A comprehensive review to compare the contents of both kits was conducted, including the International Air Transport Association, European Union Aviation Safety Agency, and Federal Aviation Administration, as well as some from other geographical areas of the globe to cover continents and regions with the highest air traffic, such as Brazil, Kenya, Australia, and Taiwan.METHODS: On June 10, 2023, a search was conducted using standardized medical terms (medical subject headings) within the PubMed® database. The relevant terms identified were "Aircraft" and "Medical Emergencies"; articles published within the last 10 yr were filtered. Subsequently, even articles published before 2013 were consulted if cited by the initial ones. The main regulatory entities' documentation was found using the Google search engine and consulted.CONCLUSIONS: It is impossible to be prepared for every emergency on board. Still, as doctors, we have a moral and ethical obligation to try to improve the outcomes of those emergencies. Getting a standardized report of every on-board emergency is crucial. That would make optimizing the items to include in the emergency and first aid kits easier. There are many similarities among the compared entities, but essential differences have been found. There is room for improvement, especially for pediatric travelers.Oliveira ATB. Worldwide regulation of the medical emergency kit and first aid kit. Aerosp Med Hum Perform. 2024; 95(6):321-326.
Collapse
|
3
|
Asanov E, Shatilo V, Antonyuk-Shcheglova I, Naskalova S, Dyba I, Holubova Y. PECULIARITIES OF PULMONARY VENTILATION RESPONSE TO DOSED HYPOXIA IN ELDERLY PEOPLE WITH IMPAIRED GLUCOSE TOLERANCE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:2674-2678. [PMID: 38290032 DOI: 10.36740/wlek202312117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
OBJECTIVE The aim: To determine the peculiarities of the response of pulmonary ventilation to hypoxia in elderly people with impaired glucose tolerance. PATIENTS AND METHODS Materials and methods: Forty-three elderly people were examined, including 20 patients with impaired glucose tolerance and 23 healthy individuals with preserved glucose tolerance. Fasting plasma glucose and insulin concentrations were determined, and the HOMA-IR insulin resistance index was calculated. Under conditions of normoxia and during a dosed hypoxic test (12% oxygen, duration 20 min), blood saturation and lung ventilation parameters were monitored. RESULTS Results: Under conditions of normoxia, the indicators of lung ventilation function did not differ between the groups of elderly people with impaired and preserved glucose tolerance. Under conditions of hypoxia, elderly people with impaired glucose tolerance had a less significant increase in ventilation, despite the development of more severe arterial hypoxemia. This leads to a decrease in the ventilatory response to hypoxia in case of impaired carbohydrate metabolism. CONCLUSION Conclusions: In people with impaired glucose tolerance, a less significant ventilatory response to hypoxia is combined with more pronounced insulin resistance.
Collapse
Affiliation(s)
- Ervin Asanov
- DMITRY F. CHEBOTAREV INSTITUTE OF GERONTOLOGY OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| | - Valeriy Shatilo
- DMITRY F. CHEBOTAREV INSTITUTE OF GERONTOLOGY OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| | - Ivanna Antonyuk-Shcheglova
- DMITRY F. CHEBOTAREV INSTITUTE OF GERONTOLOGY OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| | - Svetlana Naskalova
- DMITRY F. CHEBOTAREV INSTITUTE OF GERONTOLOGY OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| | - Iryna Dyba
- DMITRY F. CHEBOTAREV INSTITUTE OF GERONTOLOGY OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| | - Yuliia Holubova
- DMITRY F. CHEBOTAREV INSTITUTE OF GERONTOLOGY OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| |
Collapse
|
4
|
Schneider SR, Lichtblau M, Furian M, Mayer LC, Berlier C, Müller J, Saxer S, Schwarz EI, Bloch KE, Ulrich S. Cardiorespiratory Adaptation to Short-Term Exposure to Altitude vs. Normobaric Hypoxia in Patients with Pulmonary Hypertension. J Clin Med 2022; 11:jcm11102769. [PMID: 35628896 PMCID: PMC9147287 DOI: 10.3390/jcm11102769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Prediction of adverse health effects at altitude or during air travel is relevant, particularly in pre-existing cardiopulmonary disease such as pulmonary arterial or chronic thromboembolic pulmonary hypertension (PAH/CTEPH, PH). A total of 21 stable PH-patients (64 ± 15 y, 10 female, 12/9 PAH/CTEPH) were examined by pulse oximetry, arterial blood gas analysis and echocardiography during exposure to normobaric hypoxia (NH) (FiO2 15% ≈ 2500 m simulated altitude, data partly published) at low altitude and, on a separate day, at hypobaric hypoxia (HH, 2500 m) within 20−30 min after arrival. We compared changes in blood oxygenation and estimated pulmonary artery pressure in lowlanders with PH during high altitude simulation testing (HAST, NH) with changes in response to HH. During NH, 4/21 desaturated to SpO2 < 85% corresponding to a positive HAST according to BTS-recommendations and 12 qualified for oxygen at altitude according to low SpO2 < 92% at baseline. At HH, 3/21 received oxygen due to safety criteria (SpO2 < 80% for >30 min), of which two were HAST-negative. During HH vs. NH, patients had a (mean ± SE) significantly lower PaCO2 4.4 ± 0.1 vs. 4.9 ± 0.1 kPa, mean difference (95% CI) −0.5 kPa (−0.7 to −0.3), PaO2 6.7 ± 0.2 vs. 8.1 ± 0.2 kPa, −1.3 kPa (−1.9 to −0.8) and higher tricuspid regurgitation pressure gradient 55 ± 4 vs. 45 ± 4 mmHg, 10 mmHg (3 to 17), all p < 0.05. No serious adverse events occurred. In patients with PH, short-term exposure to altitude of 2500 m induced more pronounced hypoxemia, hypocapnia and pulmonary hemodynamic changes compared to NH during HAST despite similar exposure times and PiO2. Therefore, the use of HAST to predict physiological changes at altitude remains questionable. (ClinicalTrials.gov: NCT03592927 and NCT03637153).
Collapse
Affiliation(s)
- Simon R. Schneider
- Department of Pulmonology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (S.R.S.); (M.L.); (M.F.); (L.C.M.); (C.B.); (J.M.); (S.S.); (E.I.S.); (K.E.B.)
- Department of Health Sciences and Medicine, University of Lucerne, Frohburgstrasse 3, 6005 Lucerne, Switzerland
| | - Mona Lichtblau
- Department of Pulmonology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (S.R.S.); (M.L.); (M.F.); (L.C.M.); (C.B.); (J.M.); (S.S.); (E.I.S.); (K.E.B.)
| | - Michael Furian
- Department of Pulmonology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (S.R.S.); (M.L.); (M.F.); (L.C.M.); (C.B.); (J.M.); (S.S.); (E.I.S.); (K.E.B.)
| | - Laura C. Mayer
- Department of Pulmonology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (S.R.S.); (M.L.); (M.F.); (L.C.M.); (C.B.); (J.M.); (S.S.); (E.I.S.); (K.E.B.)
| | - Charlotte Berlier
- Department of Pulmonology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (S.R.S.); (M.L.); (M.F.); (L.C.M.); (C.B.); (J.M.); (S.S.); (E.I.S.); (K.E.B.)
| | - Julian Müller
- Department of Pulmonology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (S.R.S.); (M.L.); (M.F.); (L.C.M.); (C.B.); (J.M.); (S.S.); (E.I.S.); (K.E.B.)
| | - Stéphanie Saxer
- Department of Pulmonology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (S.R.S.); (M.L.); (M.F.); (L.C.M.); (C.B.); (J.M.); (S.S.); (E.I.S.); (K.E.B.)
| | - Esther I. Schwarz
- Department of Pulmonology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (S.R.S.); (M.L.); (M.F.); (L.C.M.); (C.B.); (J.M.); (S.S.); (E.I.S.); (K.E.B.)
| | - Konrad E. Bloch
- Department of Pulmonology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (S.R.S.); (M.L.); (M.F.); (L.C.M.); (C.B.); (J.M.); (S.S.); (E.I.S.); (K.E.B.)
| | - Silvia Ulrich
- Department of Pulmonology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (S.R.S.); (M.L.); (M.F.); (L.C.M.); (C.B.); (J.M.); (S.S.); (E.I.S.); (K.E.B.)
- Correspondence:
| |
Collapse
|
5
|
Coker RK, Armstrong A, Church AC, Holmes S, Naylor J, Pike K, Saunders P, Spurling KJ, Vaughn P. BTS Clinical Statement on air travel for passengers with respiratory disease. Thorax 2022; 77:329-350. [PMID: 35228307 PMCID: PMC8938676 DOI: 10.1136/thoraxjnl-2021-218110] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Robina Kate Coker
- Respiratory Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Alison Armstrong
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | | | | | - Katharine Pike
- Department of Paediatric Respiratory Medicine, Bristol Royal Hospital for Children, Bristol, UK
| | | | | | | |
Collapse
|
6
|
Khan IA, Pierucci P, Ambrosino N. COPD patients’ pre-flight check: A narrative review. Monaldi Arch Chest Dis 2022; 92. [DOI: 10.4081/monaldi.2022.2252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
For most of the people with stable and well-controlled chronic obstructive pulmonary disease (COPD), air travel is safe and comfortable, but the flight environment may pose clinical challenges. This narrative review aims to update the requirements for allowance to fly of people with COPD without chronic respiratory failure. A literature review was performed on platforms: Pubmed, Scopus and Ovid, for citations in English from 2000 to 2021. The following key words were used: COPD AND: air-travel, in-flight hypoxemia, fitness to air travel. Official regulatory documents and guidelines were also examined. Current air travel statements recommend supplemental oxygen when in flight arterial oxygen tension (PaO2) is expected to fall below 6.6 or 7.3 kPa. Several lung function variables, prediction equations and algorithms have been proposed to estimate in-flight PaO2, the need for in-flight supplemental oxygen, and to select individuals needing more advanced pre-flight testing, such as the hypoxia-altitude simulation test. Exercise induced desaturation and aerobic capacity correlate significantly with in-flight PaO2. COPD patients with late intensification of disease, new changes in medications, recent acute exacerbation/ hospitalization or anticipated emotional and physical stress during the proposed air-travel should be carefully evaluated by the caring family or specialist physician.
Collapse
|
7
|
Effects of Altitude on Chronic Obstructive Pulmonary Disease Patients: Risks and Care. Life (Basel) 2021; 11:life11080798. [PMID: 34440542 PMCID: PMC8401125 DOI: 10.3390/life11080798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 02/02/2023] Open
Abstract
Air travel and altitude stays have become increasingly frequent within the overall population but also in patients suffering from chronic obstructive pulmonary disease (COPD), which is the most common respiratory disease worldwide. While altitude is well tolerated by most individuals, COPD patients are exposed to some serious complications, that could be life-threatening. COPD patients present not only a respiratory illness but also frequent comorbidities. Beyond oxygen desaturation, it also affects respiratory mechanics, and those patients are at high risk to decompensate a cardiac condition, pulmonary hypertension, or a sleep disorder. Recently, there has been considerable progress in the management of this disease. Nocturnal oxygen therapy, inhaled medications, corticosteroids, inspiratory muscle training, and pulmonary rehabilitation are practical tools that must be developed in the comprehensive care of those patients so as to enable them to afford altitude stays.
Collapse
|
8
|
Bellinghausen AL, Mandel J. Assessing Patients for Air Travel. Chest 2020; 159:1961-1967. [PMID: 33212136 DOI: 10.1016/j.chest.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022] Open
Abstract
Advising patients before air travel is a frequently overlooked, but important, role of the physician, particularly primary care providers and pulmonary specialists. Although physiologic changes occur in all individuals during air travel, those with underlying pulmonary disease are at increased risk of serious complications and require a specific approach to risk stratification. We discuss the available tools for assessment of preflight risk and strategies to minimize potential harm. We also present a case discussion to illustrate our approach to assessing patients for air travel and discuss the specific conditions that should prompt a more thorough preflight workup.
Collapse
Affiliation(s)
- Amy L Bellinghausen
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, University of California San Diego, San Diego, CA.
| | - Jess Mandel
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, University of California San Diego, San Diego, CA
| |
Collapse
|
9
|
Ergan B, Akgun M, Pacilli AMG, Nava S. Should I stay or should I go? COPD and air travel. Eur Respir Rev 2018; 27:180030. [PMID: 29898904 PMCID: PMC9489124 DOI: 10.1183/16000617.0030-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/30/2018] [Indexed: 11/26/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a challenging respiratory problem throughout the world. Although survival is prolonged with new therapies and better management, the magnitude of the burden resulting from moderate-to-severe disease is increasing. One of the major aims of the disease management is to try to break the vicious cycle of patients being homebound and to promote an active lifestyle. A fundamental component of active daily life is, of course, travelling. Today, the world is getting smaller with the option of travelling by air. Air travel is usually the most preferred choice as it is easy, time saving, and relatively inexpensive. Although it is a safe choice for many passengers, the environment inside the aeroplane may sometimes have adverse effects on health. Hypobaric hypoxaemia due to cabin altitude may cause health risks in COPD patients who have limited cardiopulmonary reserve. Addressing the potential risks of air travel, promoting proactive strategies including pre-flight assessment, and education of COPD patients about the "fitness to fly" concept are essential. Thus, in this narrative review, we evaluated the current evidence for potential risks of air travel in COPD and tried to give a perspective for how to plan safe air travel for COPD patients.
Collapse
Affiliation(s)
- Begum Ergan
- Dept of Pulmonary and Critical Care, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Metin Akgun
- Dept of Pulmonary Diseases, School of Medicine, Ataturk University, Erzurum, Turkey
| | - Angela Maria Grazia Pacilli
- Dept of Clinical, Integrated and Experimental Medicine (DIMES), Respiratory and Critical Care Unit, S. Orsola-Malpighi Hospital, Alma Mater University, Bologna, Italy
| | - Stefano Nava
- Dept of Clinical, Integrated and Experimental Medicine (DIMES), Respiratory and Critical Care Unit, S. Orsola-Malpighi Hospital, Alma Mater University, Bologna, Italy
| |
Collapse
|
10
|
Kim JN, Lee BM. Risk management of free radicals involved in air travel syndromes by antioxidants. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:47-60. [PMID: 29341860 DOI: 10.1080/10937404.2018.1427914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Frequent air travelers and airplane pilots may develop various types of illnesses. The environmental risk factors associated with air travel syndromes (ATS) or air travel-related adverse health outcomes raised concerns and need to be assessed in the context of risk management and public health. Accordingly, the aim of the present review was to determine ATS, risk factors, and mechanisms underlying ATS using scientific data and information obtained from Medline, Toxline, and regulatory agencies. Additional information was also extracted from websites of organizations, such as the International Air Transport Association (IATA), International Association for Medical Assistance to Travelers (IAMAT), and International Civil Aviation Organization (ICAO). Air travelers are known to be exposed to environmental risk factors, including circadian rhythm disruption, poor cabin air quality, mental stress, high altitude conditions, hormonal dysregulation, physical inactivity, fatigue, biological infections, and alcoholic beverage consumption. Consequences of ATS attributed to air travel include sleep disturbances (e.g., insomnia), mental/physical stress, gastrointestinal disorders, respiratory diseases, circulatory-related dysfunction, such as cardiac arrest and thrombosis and, at worst, mechanical and terrorism-related airplane crashes. Thus safety measures in the cabin before or after takeoff are undertaken to prevent illnesses or accidents related to flight. In addition, airport quarantine systems are strongly recommended to prepare for any ultimate adverse circumstances. Routine monitoring of environmental risk factors also needs to be considered. Frequently, the mechanisms underlying these adverse manifestations involve free radical generation. Therefore, antioxidant supplementation may help to reduce or prevent adverse outcomes by mitigating health risk factors associated with free radical generation.
Collapse
Affiliation(s)
- Jeum-Nam Kim
- a Department of Airline Service , Howon University , Gunsan-si , South Korea
| | - Byung-Mu Lee
- b Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Seobu-ro 2066, Suwon , South Korea
| |
Collapse
|
11
|
Hammadah M, Kindya BR, Allard-Ratick MP, Jazbeh S, Eapen D, Wilson Tang WH, Sperling L. Navigating air travel and cardiovascular concerns: Is the sky the limit? Clin Cardiol 2017; 40:660-666. [PMID: 28597566 DOI: 10.1002/clc.22741] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 11/06/2022] Open
Abstract
As the population ages and our ability to care for patients with cardiac disease improves, an increasing number of passengers with cardiovascular conditions will be traveling long distances. Many have had cardiac symptoms, recent interventions, devices, or surgery. Air travel is safe for most individuals with stable cardiovascular disease. However, a thorough understanding of the physiologic changes during air travel is essential given the potential impact on cardiovascular health and the risk of complications in passengers with preexisting cardiac conditions. It is important for clinicians to be aware of the current recommendations and precautions that need to be taken before and during air travel for passengers with cardiovascular concerns.
Collapse
Affiliation(s)
- Muhammad Hammadah
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Bryan R Kindya
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Marc P Allard-Ratick
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Sammer Jazbeh
- Department of Radiology, University of Oklahoma, Oklahoma City
| | - Danny Eapen
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | | | - Laurence Sperling
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
12
|
Krivoshchekov SG, Balioz NV, Nekipelova NV, Kapilevich LV. Age, gender, and individually-typological features of reaction to sharp hypoxic influence. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s0362119714060061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Felkai P, Böszörményi Nagy G, Gyarmati I. [Preparing patients with chronic pulmonary disease for air travel]. Orv Hetil 2013; 154:323-37. [PMID: 23434882 DOI: 10.1556/oh.2013.29546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Flying is the most important way of travelling in the continually growing international tourism. Number of passengers and those with preexisting diseases, mainly with cardiopulmonary problems, is increasing over years. One of the main tasks of the pre-travel advice is to assess tolerance to hypoxia of the traveler, and specify the necessity, as well as the type and volume of supplementary oxygen therapy. It is indispensable to know the cabin-environment and impact of that on the travelers' health. Travel medicine specialist has to be aware of the examinations which provide information for the appropriate decision on the fit-to-fly condition of the patient. The physician who prepares the patient with chronic obstructive pulmonary disease for repatriation by regular flight and the escorting doctor have to be fully aware of the possibilities, modalities, advantages and contraindications of the on-board oxygen supply and therapy. In this review, the authors give a summary of literature data, outline the tools of in-flight oxygen therapy as well as discuss possibilities for the preflight assessment of patients' condition including blood gas parameters required for safe air travel, as recommended in international medical literature. The preparation process for repatriation of patients with chronic obstructive pulmonary disease is also discussed.
Collapse
Affiliation(s)
- Péter Felkai
- SOS Hungary Orvosi Szolgálat Budapest. peter.felkaisoshungary.hu
| | | | | |
Collapse
|