1
|
Widjaja S, Antarianto RD, Hardiany NS. Effects of Dietary Restriction on PGC-1α Regulation in the Development of Age-associated Diseases. Curr Aging Sci 2024; 17:189-195. [PMID: 38616758 DOI: 10.2174/0118746098301226240402051508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Ageing is the most significant risk factor for a number of non-communicable diseases, manifesting as cognitive, metabolic, and cardiovascular diseases. Although multifactorial, mitochondrial dysfunction and oxidative stress have been proposed to be the driving forces of ageing. Peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) is a transcriptional coactivator central to various metabolic functions, of which mitochondrial biogenesis is the most prominent function. Inducible by various stimuli, including nutrient limitations, PGC-1α is a molecule of interest in the maintenance of mitochondrial function and, therefore, the prevention of degenerative diseases. This review involves a literature search for articles retrieved from PubMed using PGC-1α, ageing, and dietary restriction as keywords. Dietary restriction has been shown to promote tissue-specific PGC-1α expression. Both dietary restriction and PGC-1α upregulation have been shown to prolong the lifespans of both lower and higher-level organisms; the incidence of non-communicable diseases also decreased in fasting mammals. In conclusion, dietary interventions may delay ageing by regulating healthy mitochondria in various organs, presenting the possibility of a new primary prevention for many age-related diseases.
Collapse
Affiliation(s)
- Shefilyn Widjaja
- Undergraduate Program in Medical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Novi Silvia Hardiany
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
2
|
Alternate-Day Fasting Ameliorates Newly Established Sjögren's Syndrome-like Sialadenitis in Non-Obese Diabetic Mice. Int J Mol Sci 2022; 23:ijms232213791. [PMID: 36430269 PMCID: PMC9695328 DOI: 10.3390/ijms232213791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Intermittent fasting confers protections to various diseases including autoimmune disorders, but the specific effects of intermittent fasting on Sjögren's syndrome (SS) remains inconclusive. The present study was undertaken to determine the specific impact of alternate-day fasting (ADF) on newly established SS-like sialadenitis using non-obese diabetic (NOD) mice. Female NOD mice were deprived of food every other day from 10 to 13 weeks of age, the early stage of established SS, and then analyzed for the disease characteristics. Mice in the ADF group had higher salivary flow rate and attenuated submandibular gland (SMG) inflammation, compared to the control mice fed with standard chow ad libitum. The improvements were accompanied with a decrease in the total leukocytes, T and B lymphocytes and activated CD4 and CD8 T cells, and a down-regulation of pro-inflammatory cytokines IFN-γ and IL-17, chemokine receptor CXCR3 and its ligands CXCL9 and CXCL11 in the SMGs. ADF also led to elevated mRNA levels of water channel protein aquaporin 5 and tight junction protein claudin-1, two factors crucial for normal salivary secretion in the SMGs. In addition, ADF reduced the proportion of IFN-γ- and IL-17- expressing CD4 T cells and diminished mRNA levels of IFN-γ, TNF-α, and IL-17 in the total submandibular draining lymph node cells. Taken together, ADF is effective in ameliorating newly established SS-associated salivary gland exocrinopathy in NOD mice.
Collapse
|
3
|
Prenatal exposure to the phthalate DEHP impacts reproduction-related gene expression in the pituitary. Reprod Toxicol 2022; 108:18-27. [PMID: 34954075 PMCID: PMC8882145 DOI: 10.1016/j.reprotox.2021.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/08/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Phthalates are chemicals used in products including plastics, personal care products, and building materials, leading to widespread contact. Previous studies on prenatal exposure to Di-(2-ethylhexyl) phthalate (DEHP) in mice and humans demonstrated pubertal timing and reproductive performance could be affected in exposed offspring. However, the impacts at the pituitary, specifically regarding signaling pathways engaged and direct effects on the gonadotropins LH and FSH, are unknown. We hypothesized prenatal exposure to DEHP during a critical period of embryonic development (e15.5 to e18.5) will cause sex-specific disruptions in reproduction-related mRNA expression in offspring's pituitary due to interference with androgen and aryl hydrocarbon receptor (AhR) signaling. We found that prenatal DEHP exposure in vivo caused a significant increase in Fshb specifically in males, while the anti-androgen flutamide caused significant increases in both Lhb and Fshb in males. AhR target gene Cyp1b1 was increased in both sexes in DEHP-exposed offspring. In embryonic pituitary cultures, the DEHP metabolite MEHP increased Cyp1a1 and Cyp1b1 mRNA in both sexes and Cyp1b1 induction was reduced by co-treatment with AhR antagonist. AhR reporter assay in GHFT1 cells confirmed MEHP can activate AhR signaling. Lhb, Fshb and Gnrhr mRNA were significantly decreased in both sexes by MEHP, but co-treatment with AhR antagonist did not restore mRNA levels in pituitary culture. In summary, our data suggest phthalates can directly affect the function of the pituitary by activating AhR signaling and altering gonadotropin expression. This indicates DEHP's impacts on the pituitary could contribute to reproductive dysfunctions observed in exposed mice and humans.
Collapse
|
4
|
Wei Z, Zhou C, Li M, Huang R, Deng H, Shen S, Wang R. Integrated multi-omics profiling of nonfunctioning pituitary adenomas. Pituitary 2021; 24:312-325. [PMID: 33205234 DOI: 10.1007/s11102-020-01109-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Genetic and epigenetic alterations are involved in pituitary adenoma pathogenesis, however the molecular basis of proliferative nonfunctioning pituitary adenomas (NFPAs) remains unclear. Here, we analyzed integrated multi-omics profiling including copy number variation (CNV), DNA methylation and gene expression of 8 NFPAs. METHODS We collected 4 highly proliferative (hpNFPA, Ki-67 ≥ 3) and 4 lowly proliferative (Ki-67 ≤ 1) NFPAs, and comprehensively assessed CNV, DNA methylation, and gene expression by Illumina HumanMethylation450 BeadChip and Affymetrix GeneChip PrimeView Human Gene Expression Array. We performed Ingenuity Pathway Analysis (IPA) for differentially expressed genes to illustrate aberrant pathways and delineated protein-protein networks of selected key genes in dysregulated pathways. RESULTS Aberrant arm level CNV, dysregulated DNA methylation, and associated impacts on gene expressions were observed in 2 early occurring hpNFPAs. Chromosomal losses were associated with attenuated expression of DNA methyltransferases, further altering global methylation in these 2 samples. Correlation analysis between DNA methylation and gene expression in 8 NFPAs indicates methylation in promoter and gene body regions are both involved in gene regulation. IPA showed PPARα/RXRα, dopamine receptor signaling, cAMP-mediated signaling, and calcium signaling were all activated, while p38 MAPK and ERK5 signaling were inhibited in hpNFPAs. Moreover, selected key gene networks in hpNFPAs exhibited concurrent methylation status and expression levels of adenylate cyclase genes, G protein subunits, HLA genes, CXCL12, and CCL2. CONCLUSION This study presents comprehensive multi-omics views of CNV, DNA methylation, and gene expression in 8 NFPAs. Pathway analysis and network maps of key genes provide clues to elucidate the molecular basis of hpNFPA.
Collapse
Affiliation(s)
- Zhenqing Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China.
- Department of Neurosurgery, The First Hospital Affiliated to Dalian Medical University, Dalian, China.
| | - Cuiqi Zhou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Minghui Li
- Sinotech Genomics Co., Ltd., Shenzhen, China
| | | | | | - Stephen Shen
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
5
|
Role of PPARs in Progression of Anxiety: Literature Analysis and Signaling Pathways Reconstruction. PPAR Res 2020; 2020:8859017. [PMID: 33312191 PMCID: PMC7721491 DOI: 10.1155/2020/8859017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) group includes three isoforms encoded by PPARG, PPARA, and PPARD genes. High concentrations of PPARs are found in parts of the brain linked to anxiety development, including hippocampus and amygdala. Among three PPAR isoforms, PPARG demonstrates the highest expression in CNS, where it can be found in neurons, astrocytes, and glial cells. Herein, the highest PPARG expression occurs in amygdala. However, little is known considering possible connections between PPARs and anxiety behavior. We reviewed possible connections between PPARs and anxiety. We used the Pathway Studio software (Elsevier). Signal pathways were created according to previously developed algorithms. SNEA was performed in Pathway Studio. Current study revealed 14 PPAR-regulated proteins linked to anxiety. Possible mechanism of PPAR involvement in neuroinflammation protection is proposed. Signal pathway reconstruction and reviewing aimed to reveal possible connection between PPARG and CCK-ergic system was conducted. Said analysis revealed that PPARG-dependent regulation of MME and ACE peptidase expression may affect levels of nonhydrolysed, i.e., active CCK-4. Impairments in PPARG regulation and following MME and ACE peptidase expression impairments in amygdala may be the possible mechanism leading to pathological anxiety development, with brain CCK-4 accumulation being a key link. Literature data analysis and signal pathway reconstruction and reviewing revealed two possible mechanisms of peroxisome proliferator-activated receptors involvement in pathological anxiety: (1) cytokine expression and neuroinflammation mechanism and (2) regulation of peptidases targeted to anxiety-associated neuropeptides, primarily CCK-4, mechanism.
Collapse
|
6
|
Yin X, Zeng W, Wu B, Wang L, Wang Z, Tian H, Wang L, Jiang Y, Clay R, Wei X, Qin Y, Zhang F, Zhang C, Jin L, Liang W. PPARα Inhibition Overcomes Tumor-Derived Exosomal Lipid-Induced Dendritic Cell Dysfunction. Cell Rep 2020; 33:108278. [PMID: 33086073 PMCID: PMC7771208 DOI: 10.1016/j.celrep.2020.108278] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) orchestrate the initiation, programming, and regulation of anti-tumor immune responses. Emerging evidence indicates that the tumor microenvironment (TME) induces immune dysfunctional tumor-infiltrating DCs (TIDCs), characterized with both increased intracellular lipid content and mitochondrial respiration. The underlying mechanism, however, remains largely unclear. Here, we report that fatty acid-carrying tumor-derived exosomes (TDEs) induce immune dysfunctional DCs to promote immune evasion. Mechanistically, peroxisome proliferator activated receptor (PPAR) α responds to the fatty acids delivered by TDEs, resulting in excess lipid droplet biogenesis and enhanced fatty acid oxidation (FAO), culminating in a metabolic shift toward mitochondrial oxidative phosphorylation, which drives DC immune dysfunction. Genetic depletion or pharmacologic inhibition of PPARα effectively attenuates TDE-induced DC-based immune dysfunction and enhances the efficacy of immunotherapy. This work uncovers a role for TDE-mediated immune modulation in DCs and reveals that PPARα lies at the center of metabolic-immune regulation of DCs, suggesting a potential immunotherapeutic target. Yin et al. reveal that tumor-derived exosomes (TDEs), as fatty acid carriers, induce a metabolic shift toward oxidative phosphorylation, driving DC immune dysfunction. Transcriptomic analysis identifies PPARα as the fatty acid sensor mediating the immunosuppressive effects of TDEs on DCs. PPARα blockade effectively restores DC function and enhances the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Xiaozhe Yin
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Wenfeng Zeng
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China.
| | - Bowen Wu
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China; Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Luoyang Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zihao Wang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Hongjian Tian
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Luyao Wang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Yunhan Jiang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610-3033, USA
| | - Ryan Clay
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610-3033, USA
| | - Xiuli Wei
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Qin
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fayun Zhang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunling Zhang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingtao Jin
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610-3033, USA.
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China.
| |
Collapse
|
7
|
Griffiths A, Deighton K, Shannon OM, Matu J, King R, O'Hara JP. Substrate oxidation and the influence of breakfast in normobaric hypoxia and normoxia. Eur J Appl Physiol 2019; 119:1909-1920. [PMID: 31270614 PMCID: PMC6694084 DOI: 10.1007/s00421-019-04179-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/17/2019] [Indexed: 11/02/2022]
Abstract
PURPOSE Previous research has reported inconsistent effects of hypoxia on substrate oxidation, which may be due to differences in methodological design, such as pre-exercise nutritional status and exercise intensity. This study investigated the effect of breakfast consumption on substrate oxidation at varying exercise intensities in normobaric hypoxia compared with normoxia. METHODS Twelve participants rested and exercised once after breakfast consumption and once after omission in normobaric hypoxia (4300 m: FiO2 ~ 11.7%) and normoxia. Exercise consisted of walking for 20 min at 40%, 50% and 60% of altitude-specific [Formula: see text]O2max at 10-15% gradient with a 10 kg backpack. Indirect calorimetry was used to calculate carbohydrate and fat oxidation. RESULTS The relative contribution of carbohydrate oxidation to energy expenditure was significantly reduced in hypoxia compared with normoxia during exercise after breakfast omission at 40% (22.4 ± 17.5% vs. 38.5 ± 15.5%, p = 0.03) and 60% [Formula: see text]O2max (35.4 ± 12.4 vs. 50.1 ± 17.6%, p = 0.03), with a trend observed at 50% [Formula: see text]O2max (23.6 ± 17.9% vs. 38.1 ± 17.0%, p = 0.07). The relative contribution of carbohydrate oxidation to energy expenditure was not significantly different in hypoxia compared with normoxia during exercise after breakfast consumption at 40% (42.4 ± 15.7% vs. 48.5 ± 13.3%, p = 0.99), 50% (43.1 ± 11.7% vs. 47.1 ± 14.0%, p = 0.99) and 60% [Formula: see text]O2max (54.6 ± 17.8% vs. 55.1 ± 15.0%, p = 0.99). CONCLUSIONS Relative carbohydrate oxidation was significantly reduced in hypoxia compared with normoxia during exercise after breakfast omission but not during exercise after breakfast consumption. This response remained consistent with increasing exercise intensities. These findings may explain some of the disparity in the literature.
Collapse
Affiliation(s)
- Alex Griffiths
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Kevin Deighton
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Oliver M Shannon
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.,Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Leech Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jamie Matu
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Roderick King
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - John P O'Hara
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| |
Collapse
|
8
|
Transcriptomic profile of anterior pituitary cells of pigs is affected by adiponectin. Anim Reprod Sci 2019; 206:17-26. [DOI: 10.1016/j.anireprosci.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
|
9
|
Du X, Shen T, Wang H, Qin X, Xing D, Ye Q, Shi Z, Fang Z, Zhu Y, Yang Y, Peng Z, Zhao C, Lv B, Li X, Liu G, Li X. Adaptations of hepatic lipid metabolism and mitochondria in dairy cows with mild fatty liver. J Dairy Sci 2018; 101:9544-9558. [PMID: 30100495 DOI: 10.3168/jds.2018-14546] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/17/2018] [Indexed: 12/14/2022]
Abstract
The inevitable deficiency in nutrients and energy at the onset of lactation requires an optimal adaptation of the hepatic metabolism to overcome metabolic stress. Fatty liver is one of the main health disorders after parturition. Therefore, to investigate changes in hepatic lipid metabolic status and mitochondria in dairy cows with mild fatty liver, liver and blood samples were collected from healthy cows (n = 15) and cows with mild fatty liver (n = 15). To determine the effects of palmitic acids (PA), one of the major component of fatty acids, on lipid metabolism and mitochondria in vitro, calf hepatocytes were isolated from healthy calves and treated with various concentrations of PA (0, 50, 100, and 200 μM). Dairy cows with mild fatty liver displayed hepatic lipid accumulation. The protein levels of sterol regulatory element-binding protein 1c (SREBP-1c) and peroxisome proliferator-activated receptor-α (PPARα) and mRNA levels of acetyl CoA carboxylase 1 (ACC1), fatty acid synthase (FAS), acyl-CoA oxidase (ACO), and carnitine palmitoyltransferase 1A (CPT1A) were significantly higher in dairy cows with mild fatty liver than in control cows. The hepatic mitochondrial DNA content, mRNA levels of oxidative phosphorylation complexes I to V (CO 1-V), protein levels of cytochrome c oxidase subunit IV (COX IV), voltage dependent anion channel 1 (VDAC1), peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) and nuclear respiratory factor 1 (NRF1), and adenosine triphosphate (ATP) content were all markedly increased in the liver of dairy cows with mild fatty liver compared with healthy cows. The PA treatment significantly increased lipid accumulation; protein levels of SREBP-1c and PPARα; and mRNA levels of ACC1, FAS, ACO, and CPT1A in calf hepatocytes. Moreover, the mitochondrial DNA content, mRNA levels of CO 1-V, protein levels of COX IV, VDAC1, PGC-1α, NRF1, mitochondrial transcription factor A, and ATP content were significantly increased in PA-treated hepatocytes compared with control hepatocytes. The protein level of mitofusin-2 was significantly decreased in PA-treated groups. In conclusion, lipid synthesis and oxidation, number of mitochondria, and ATP production were increased in the liver of dairy cows with mild fatty liver and PA-treated calf hepatocytes. These changes in hepatic mitochondria and lipid metabolism may be the adaptive mechanism of dairy cows with mild fatty liver.
Collapse
Affiliation(s)
- Xiliang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Taiyu Shen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital, Jilin University, 71 Xinmin Road, Changchun, Jilin Province, 130021, China
| | - Xia Qin
- College of Veterinary Medicine, Shenyang Agriculture University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning Province 110866, China
| | - Dongmei Xing
- Animal Medicine College, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Qianqian Ye
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhen Shi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhiyuan Fang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yiwei Zhu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yuchen Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhicheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Chenxu Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Bin Lv
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
10
|
Vert A, Castro J, Ribó M, Vilanova M, Benito A. Transcriptional profiling of NCI/ADR-RES cells unveils a complex network of signaling pathways and molecular mechanisms of drug resistance. Onco Targets Ther 2018; 11:221-237. [PMID: 29379303 PMCID: PMC5757493 DOI: 10.2147/ott.s154378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Ovarian cancer has the highest mortality rate among all the gynecological cancers. This is mostly due to the resistance of ovarian cancer to current chemotherapy regimens. Therefore, it is of crucial importance to identify the molecular mechanisms associated with chemoresistance. Methods NCI/ADR-RES is a multidrug-resistant cell line that is a model for the study of drug resistance in ovarian cancer. We carried out a microarray-derived transcriptional profiling analysis of NCI/ADR-RES to identify differentially expressed genes relative to its parental OVCAR-8. Results Gene-expression profiling has allowed the identification of genes and pathways that may be important for the development of drug resistance in ovarian cancer. The NCI/ADR-RES cell line has differential expression of genes involved in drug extrusion, inactivation, and efficacy, as well as genes involved in the architectural and functional reorganization of the extracellular matrix. These genes are controlled through different signaling pathways, including MAPK–Akt, Wnt, and Notch. Conclusion Our findings highlight the importance of using orthogonal therapies that target completely independent pathways to overcome mechanisms of resistance to both classical chemotherapeutic agents and molecularly targeted drugs.
Collapse
Affiliation(s)
- Anna Vert
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Jessica Castro
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Marc Ribó
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Maria Vilanova
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| | - Antoni Benito
- Protein Engineering Laboratory, Department of Biology, Faculty of Sciences, Universitat de Girona.,Biomedical Research Institute of Girona (IDIBGi), Girona, Spain
| |
Collapse
|
11
|
More VR, Campos CR, Evans RA, Oliver KD, Chan GN, Miller DS, Cannon RE. PPAR-α, a lipid-sensing transcription factor, regulates blood-brain barrier efflux transporter expression. J Cereb Blood Flow Metab 2017; 37:1199-1212. [PMID: 27193034 PMCID: PMC5453444 DOI: 10.1177/0271678x16650216] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lipid sensor peroxisome proliferator-activated receptor alpha (PPAR- α) is the master regulator of lipid metabolism. Dietary release of endogenous free fatty acids, fibrates, and certain persistent environmental pollutants, e.g. perfluoroalkyl fire-fighting foam components, are peroxisome proliferator-activated receptor alpha ligands. Here, we define a role for peroxisome proliferator-activated receptor alpha in regulating the expression of three ATP-driven drug efflux transporters at the rat and mouse blood-brain barriers: P-glycoprotein (Abcb1), breast cancer resistance protein (Bcrp/Abcg2), and multidrug resistance-associated protein 2 (Mrp2/Abcc2). Exposing isolated rat brain capillaries to linoleic acid, clofibrate, or PKAs increased the transport activity and protein expression of the three ABC transporters. These effects were blocked by the PPAR- α antagonist, GW6471. Dosing rats with 20 mg/kg or 200 mg/kg of clofibrate decreased the brain accumulation of the P-glycoprotein substrate, verapamil, by 50% (in situ brain perfusion; effects blocked by GW6471) and increased P-glycoprotein expression and activity in capillaries ex vivo. Fasting C57Bl/6 wild-type mice for 24 h increased both serum lipids and brain capillary P-glycoprotein transport activity. Fasting did not alter P-glycoprotein activity in PPAR- α knockout mice. These results indicate that hyperlipidemia, lipid-lowering fibrates and exposure to certain fire-fighting foam components activate blood-brain barrier peroxisome proliferator-activated receptor alpha, increase drug efflux transporter expression and reduce drug delivery to the brain.
Collapse
Affiliation(s)
- Vijay R More
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health, Research Triangle Park, NC, USA
| | - Christopher R Campos
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health, Research Triangle Park, NC, USA
| | - Rebecca A Evans
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health, Research Triangle Park, NC, USA
| | - Keith D Oliver
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health, Research Triangle Park, NC, USA
| | - Gary Ny Chan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health, Research Triangle Park, NC, USA
| | - David S Miller
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health, Research Triangle Park, NC, USA
| | - Ronald E Cannon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Peroxisome Proliferator-Activated Receptors in Female Reproduction and Fertility. PPAR Res 2016; 2016:4612306. [PMID: 27559343 PMCID: PMC4983391 DOI: 10.1155/2016/4612306] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/01/2016] [Accepted: 06/19/2016] [Indexed: 12/31/2022] Open
Abstract
Reproductive functions may be altered by the exposure to a multitude of endogenous and exogenous agents, drug or environmental pollutants, which are known to affect gene transcription through the peroxisome proliferator-activated receptors (PPARs) activation. PPARs act as ligand activated transcription factors and regulate metabolic processes such as lipid and glucose metabolism, energy homeostasis, inflammation, and cell proliferation and differentiation. All PPARs isotypes are expressed along the hypothalamic-pituitary-gonadal axis and are strictly involved in reproductive functions. Since female fertility and energy metabolism are tightly interconnected, the research on female infertility points towards the exploration of potential PPARs activating/antagonizing compounds, mainly belonging to the class of thiazolidinediones (TZDs) and fibrates, as useful agents for the maintenance of metabolic homeostasis in women with ovarian dysfunctions. In the present review, we discuss the recent evidence about PPARs expression in the hypothalamic-pituitary-gonadal axis and their involvement in female reproduction. Finally, the therapeutic potential of their manipulation through several drugs is also discussed.
Collapse
|
13
|
Wang J, Zhu X, Wang Z, Yao J, Zhao B, Liu G. Non-esterified fatty acids promote expression and secretion of angiopoietin-like protein 4 in calf hepatocytes cultured in vitro. Mol Cell Biochem 2014; 401:141-6. [DOI: 10.1007/s11010-014-2301-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/27/2014] [Indexed: 12/24/2022]
|
14
|
Wege N, Schutkowski A, König B, Brandsch C, Weiwad M, Stangl GI. PPARα modulates the TSH β-subunit mRNA expression in thyrotrope TαT1 cells and in a mouse model. Mol Nutr Food Res 2012; 57:376-89. [PMID: 23255496 DOI: 10.1002/mnfr.201200409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/23/2012] [Accepted: 10/30/2012] [Indexed: 11/07/2022]
Abstract
SCOPE Fasting leads to a significant downregulation of the hypothalamus-pituitary-thyroid axis, and peroxisome proliferator-activated receptor (PPAR) α is a key transcription factor in mediating a magnitude of adaptive responses to fasting. In this study, we examined the role of PPARα in regulation of the hypothalamus-pituitary-thyroid axis. METHODS AND RESULTS Thyroid-stimulating hormone β-subunit (TSHβ) mRNA abundance was being reduced in response to treatment of TαT1 cells with PPARα agonists (p < 0.05), indicating an inhibitory transcriptional regulation of TSHβ by PPARα. As expected, fasting significantly downregulated TSHβ mRNA expression in a two-factorial study with fed or fasted wild-type (WT) and PPARα knockout mice (p < 0.05). In contrast to the in vitro data, fasted PPARα knockout mice revealed lower mRNA concentrations of pituitary TSHβ (-64%) and TSH-regulated thyroid genes, and lower plasma concentrations of thyroxine (T4, -25%), triiodothyronine (T3, -25%), free T4 (-60%), and free T3 (-35%) than fasted WT mice (p < 0.05). Those differences were not observed in fed mice. CONCLUSIONS Data from thyrotrope cells revealed that PPARα could contribute to the fasting-associated downregulation of the TSHβ mRNA expression. In a mouse model, fasting led to a significant reduction in TSHβ mRNA level, but unexpectedly this effect was stronger in mice lacking PPARα than in WT mice.
Collapse
Affiliation(s)
- Nicole Wege
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
15
|
Kocalis HE, Turney MK, Printz RL, Laryea GN, Muglia LJ, Davies SS, Stanwood GD, McGuinness OP, Niswender KD. Neuron-specific deletion of peroxisome proliferator-activated receptor delta (PPARδ) in mice leads to increased susceptibility to diet-induced obesity. PLoS One 2012; 7:e42981. [PMID: 22916190 PMCID: PMC3423438 DOI: 10.1371/journal.pone.0042981] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/16/2012] [Indexed: 01/17/2023] Open
Abstract
Central nervous system (CNS) lipid accumulation, inflammation and resistance to adipo-regulatory hormones, such as insulin and leptin, are implicated in the pathogenesis of diet-induced obesity (DIO). Peroxisome proliferator-activated receptors (PPAR α, δ, γ) are nuclear transcription factors that act as environmental fatty acid sensors and regulate genes involved in lipid metabolism and inflammation in response to dietary and endogenous fatty acid ligands. All three PPAR isoforms are expressed in the CNS at different levels. Recent evidence suggests that activation of CNS PPARα and/or PPARγ may contribute to weight gain and obesity. PPARδ is the most abundant isoform in the CNS and is enriched in the hypothalamus, a region of the brain involved in energy homeostasis regulation. Because in peripheral tissues, expression of PPARδ increases lipid oxidative genes and opposes inflammation, we hypothesized that CNS PPARδ protects against the development of DIO. Indeed, genetic neuronal deletion using Nes-Cre loxP technology led to elevated fat mass and decreased lean mass on low-fat diet (LFD), accompanied by leptin resistance and hypothalamic inflammation. Impaired regulation of neuropeptide expression, as well as uncoupling protein 2, and abnormal responses to a metabolic challenge, such as fasting, also occur in the absence of neuronal PPARδ. Consistent with our hypothesis, KO mice gain significantly more fat mass on a high-fat diet (HFD), yet are surprisingly resistant to diet-induced elevations in CNS inflammation and lipid accumulation. We detected evidence of upregulation of PPARγ and target genes of both PPARα and PPARγ, as well as genes of fatty acid oxidation. Thus, our data reveal a previously underappreciated role for neuronal PPARδ in the regulation of body composition, feeding responses, and in the regulation of hypothalamic gene expression.
Collapse
Affiliation(s)
- Heidi E. Kocalis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Maxine K. Turney
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Gloria N. Laryea
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Louis J. Muglia
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Sean S. Davies
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Gregg D. Stanwood
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kevin D. Niswender
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|