1
|
Singh S, Ahmed AI, Almansoori S, Alameri S, Adlan A, Odivilas G, Chattaway MA, Salem SB, Brudecki G, Elamin W. A narrative review of wastewater surveillance: pathogens of concern, applications, detection methods, and challenges. Front Public Health 2024; 12:1445961. [PMID: 39139672 PMCID: PMC11319304 DOI: 10.3389/fpubh.2024.1445961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The emergence and resurgence of pathogens have led to significant global health challenges. Wastewater surveillance has historically been used to track water-borne or fecal-orally transmitted pathogens, providing a sensitive means of monitoring pathogens within a community. This technique offers a comprehensive, real-time, and cost-effective approach to disease surveillance, especially for diseases that are difficult to monitor through individual clinical screenings. Methods This narrative review examines the current state of knowledge on wastewater surveillance, emphasizing important findings and techniques used to detect potential pathogens from wastewater. It includes a review of literature on the detection methods, the pathogens of concern, and the challenges faced in the surveillance process. Results Wastewater surveillance has proven to be a powerful tool for early warning and timely intervention of infectious diseases. It can detect pathogens shed by asymptomatic and pre-symptomatic individuals, providing an accurate population-level view of disease transmission. The review highlights the applications of wastewater surveillance in tracking key pathogens of concern, such as gastrointestinal pathogens, respiratory pathogens, and viruses like SARS-CoV-2. Discussion The review discusses the benefits of wastewater surveillance in public health, particularly its role in enhancing existing systems for infectious disease surveillance. It also addresses the challenges faced, such as the need for improved detection methods and the management of antimicrobial resistance. The potential for wastewater surveillance to inform public health mitigation strategies and outbreak response protocols is emphasized. Conclusion Wastewater surveillance is a valuable tool in the fight against infectious diseases. It offers a unique perspective on the spread and evolution of pathogens, aiding in the prevention and control of disease epidemics. This review underscores the importance of continued research and development in this field to overcome current challenges and maximize the potential of wastewater surveillance in public health.
Collapse
Affiliation(s)
- Surabhi Singh
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Amina Ismail Ahmed
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Sumayya Almansoori
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Shaikha Alameri
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Ashraf Adlan
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Giovanni Odivilas
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Marie Anne Chattaway
- United Kingdom Health Security Agency, Gastrointestinal Bacteria Reference Laboratory, London, United Kingdom
| | - Samara Bin Salem
- Central Testing Laboratory, Abu Dhabi Quality and Conformity Council, Abu Dhabi, United Arab Emirates
| | - Grzegorz Brudecki
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Wael Elamin
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Zare A, Henry D, Chua G, Gordon P, Habibi HR. Differential Hepatic Gene Expression Profile of Male Fathead Minnows Exposed to Daily Varying Dose of Environmental Contaminants Individually and in Mixture. Front Endocrinol (Lausanne) 2018; 9:749. [PMID: 30619083 PMCID: PMC6295643 DOI: 10.3389/fendo.2018.00749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/26/2018] [Indexed: 01/09/2023] Open
Abstract
Environmental contaminants are known to impair reproduction, metabolism and development in wild life and humans. To investigate the mechanisms underlying adverse effects of contaminants, fathead minnows were exposed to a number of endocrine disruptive chemicals (EDCs) including Nonylphenol (NP), bisphenol-A (BPA), Di(2-ethylhexyl) phthalate (DEHP), and a mixture of the three chemicals for 21 days, followed by determination of the liver transcriptome by expression microarrays. Pathway analysis revealed a distinct mode of action for the individual chemicals and their mixture. The results showed expression changes in over 980 genes in response to exposure to these EDC contaminants individually and in mixture. Ingenuity Pathway core and toxicity analysis were used to identify the biological processes, pathways and the top regulators affected by these compounds. A number of canonical pathways were significantly altered, including cell cycle & proliferation, lipid metabolism, inflammatory, innate immune response, stress response, and drug metabolism. We identified 18 genes that were expressed in all individual and mixed treatments. Relevant candidate genes identified from expression microarray data were verified using quantitative PCR. We were also able to identify specific genes affected by NP, BPA, and DEHP individually, but were also affected by exposure to the mixture of the contaminants. Overall the results of this study provide novel information on the adverse health impact of contaminants tested based on pathway analysis of transcriptome data. Furthermore, the results identify a number of new biomarkers that can potentially be used for screening environmental contaminants.
Collapse
Affiliation(s)
- Ava Zare
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Darren Henry
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Gordon Chua
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Paul Gordon
- Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
- *Correspondence: Hamid R. Habibi
| |
Collapse
|
3
|
Tagliafierro L, Bonawitz K, Glenn OC, Chiba-Falek O. Gene Expression Analysis of Neurons and Astrocytes Isolated by Laser Capture Microdissection from Frozen Human Brain Tissues. Front Mol Neurosci 2016; 9:72. [PMID: 27587997 PMCID: PMC4988976 DOI: 10.3389/fnmol.2016.00072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/02/2016] [Indexed: 12/05/2022] Open
Abstract
Different cell types and multiple cellular connections characterize the human brain. Gene expression analysis using a specific population of cells is more accurate than conducting analysis of the whole tissue homogenate, particularly in the context of neurodegenerative diseases, where a specific subset of cells is affected by the different pathology. Due to the difficulty of obtaining homogenous cell populations, gene expression in specific cell-types (neurons, astrocytes, etc.) has been understudied. To leverage the use of archive resources of frozen human brains in studies of neurodegenerative diseases, we developed and calibrated a method to quantify cell-type specific—neuronal, astrocytes—expression profiles of genes implicated in neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. Archive human frozen brain tissues were used to prepare slides for rapid immunostaining using cell-specific antibodies. The immunoreactive-cells were isolated by Laser Capture Microdissection (LCM). The enrichment for a particular cell-type of interest was validated in post-analysis stage by the expression of cell-specific markers. We optimized the technique to preserve the RNA integrity, so that the RNA was suitable for downstream expression analyses. Following RNA extraction, the expression levels were determined digitally using nCounter Single Cell Gene Expression assay (NanoString Technologies®). The results demonstrated that using our optimized technique we successfully isolated single neurons and astrocytes from human frozen brain tissues and obtained RNA of a good quality that was suitable for mRNA expression analysis. We present here new advancements compared to previous reported methods, which improve the method's feasibility and its applicability for a variety of downstream molecular analyses. Our new developed method can be implemented in genetic and functional genomic research of neurodegenerative diseases and has the potential to significantly advance the field.
Collapse
Affiliation(s)
- Lidia Tagliafierro
- Department of Neurology, Duke University Medical CenterDurham, NC, USA; Center for Genomic and Computational Biology, Duke University Medical CenterDurham, NC, USA
| | - Kirsten Bonawitz
- Department of Neurology, Duke University Medical CenterDurham, NC, USA; Center for Genomic and Computational Biology, Duke University Medical CenterDurham, NC, USA
| | - Omolara C Glenn
- Department of Neurology, Duke University Medical CenterDurham, NC, USA; Center for Genomic and Computational Biology, Duke University Medical CenterDurham, NC, USA
| | - Ornit Chiba-Falek
- Department of Neurology, Duke University Medical CenterDurham, NC, USA; Center for Genomic and Computational Biology, Duke University Medical CenterDurham, NC, USA
| |
Collapse
|
4
|
Yu J, Ordiz MI, Stauber J, Shaikh N, Trehan I, Barnell E, Head RD, Maleta K, Tarr PI, Manary MJ. Environmental Enteric Dysfunction Includes a Broad Spectrum of Inflammatory Responses and Epithelial Repair Processes. Cell Mol Gastroenterol Hepatol 2015; 2:158-174.e1. [PMID: 26973864 PMCID: PMC4769221 DOI: 10.1016/j.jcmgh.2015.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/03/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Environmental enteric dysfunction (EED), a chronic diffuse inflammation of the small intestine, is associated with stunting in children in the developing world. The pathobiology of EED is poorly understood because of the lack of a method to elucidate the host response. This study tested a novel microarray method to overcome limitation of RNA sequencing to interrogate the host transcriptome in feces in Malawian children with EED. METHODS In 259 children, EED was measured by lactulose permeability (%L). After isolating low copy numbers of host messenger RNA, the transcriptome was reliably and reproducibly profiled, validated by polymerase chain reaction. Messenger RNA copy number then was correlated with %L and differential expression in EED. The transcripts identified were mapped to biological pathways and processes. The children studied had a range of %L values, consistent with a spectrum of EED from none to severe. RESULTS We identified 12 transcripts associated with the severity of EED, including chemokines that stimulate T-cell proliferation, Fc fragments of multiple immunoglobulin families, interferon-induced proteins, activators of neutrophils and B cells, and mediators that dampen cellular responses to hormones. EED-associated transcripts mapped to pathways related to cell adhesion, and responses to a broad spectrum of viral, bacterial, and parasitic microbes. Several mucins, regulatory factors, and protein kinases associated with the maintenance of the mucous layer were expressed less in children with EED than in normal children. CONCLUSIONS EED represents the activation of diverse elements of the immune system and is associated with widespread intestinal barrier disruption. Differentially expressed transcripts, appropriately enumerated, should be explored as potential biomarkers.
Collapse
Key Words
- %L, lactulose permeability
- EED, environmental enteric dysfunction
- Environmental Enteropathy
- FARMS, factor analyses for robust microarray summarization
- Fecal Transcriptome
- G-CSF, granulocyte colony–stimulating factor
- HAZ, height-for-age z score
- IRON, iterative rank order normalization
- Intestinal Inflammation
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- RMA, robust multi-array average
- Stunting
- dHAZ, change in height-for-age z score
- mRNA, messenger RNA
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Jinsheng Yu
- Genome Technology Access Center, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - M. Isabel Ordiz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer Stauber
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Nurmohammad Shaikh
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Indi Trehan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Erica Barnell
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Richard D. Head
- Genome Technology Access Center, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Ken Maleta
- Department of Community Health, College of Medicine, Blantyre, Malawi
| | - Phillip I. Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Mark J. Manary
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri,Department of Community Health, College of Medicine, Blantyre, Malawi,Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas,Correspondence Address correspondence to: Mark J. Manary, MD, Department of Pediatrics, Washington University School of Medicine, One Children's Place, St. Louis Children's Hospital St. Louis, Missouri 63110. fax: (314) 454-4345.Department of PediatricsWashington University School of MedicineSt. LouisMissouri 63110
| |
Collapse
|
5
|
Microarray experiments and factors which affect their reliability. Biol Direct 2015; 10:46. [PMID: 26335588 PMCID: PMC4559324 DOI: 10.1186/s13062-015-0077-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/24/2015] [Indexed: 12/12/2022] Open
Abstract
Oligonucleotide microarrays belong to the basic tools of molecular biology and allow for simultaneous assessment of the expression level of thousands of genes. Analysis of microarray data is however very complex, requiring sophisticated methods to control for various factors that are inherent to the procedures used. In this article we describe the individual steps of a microarray experiment, highlighting important elements and factors that may affect the processes involved and that influence the interpretation of the results. Additionally, we describe methods that can be used to estimate the influence of these factors, and to control the way in which they affect the expression estimates. A comprehensive understanding of the experimental protocol used in a microarray experiment aids the interpretation of the obtained results. By describing known factors which affect expression estimates this article provides guidelines for appropriate quality control and pre-processing of the data, additionally applicable to other transcriptome analysis methods that utilize similar sample handling protocols.
Collapse
|
6
|
Tokmakov AA, Hashimoto T, Hasegawa Y, Iguchi S, Iwasaki T, Fukami Y. Monitoring gene expression in a single Xenopus oocyte using multiple cytoplasmic collections and quantitative RT-PCR. FEBS J 2013; 281:104-14. [PMID: 24165194 DOI: 10.1111/febs.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 10/10/2013] [Accepted: 10/21/2013] [Indexed: 11/27/2022]
Abstract
Oocytes and eggs of the African clawed frog, Xenopus laevis, are commonly used in gene expression studies. However, monitoring transcript levels in the individual living oocytes remains challenging. To address this challenge, we used a technique based on multiple repeated collections of nanoliter volumes of cytoplasmic material from a single oocyte. Transcript quantification was performed by quantitative RT-PCR. The technique allowed monitoring of heterologous gene expression in a single oocyte without affecting its viability. We also used this approach to profile the expression of endogenous genes in living Xenopus oocytes. Although frog oocytes are traditionally viewed as a homogenous cell population, a significant degree of gene expression variation was observed among the individual oocytes. A lognormal distribution of transcript levels was revealed in the oocyte population. Finally, using this technique, we observed a dramatic decrease in the content of various cytoplasmic mRNAs in aging unfertilized eggs but not in oocytes, suggesting a link between mRNA degradation and egg apoptosis.
Collapse
|
7
|
Horstmann M, Foerster B, Brader N, John H, Maake C. Establishment of a protocol for large-scale gene expression analyses of laser capture microdissected bladder tissue. World J Urol 2012; 30:853-9. [PMID: 22638977 DOI: 10.1007/s00345-012-0881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/26/2012] [Indexed: 10/28/2022] Open
Abstract
PURPOSE Lower urinary tract symptoms (LUTS) can be caused by structural and functional changes in different compartments of the bladder. To enable extensive investigations of individual regions even in small bladder biopsies, we established a combination protocol consisting of three molecular techniques: laser capture microdissection microscopy (LCM), RNA preamplification and quantitative polymerase chain reaction (qPCR). METHODS Urinary bladders of ten mice were resected and frozen immediately or after a delay of 15 min. Cryosections were obtained and smooth muscle was isolated using the LCM technique. Then, RNA was extracted, including protocols with and without DNase digestion as well as with and without the addition of carrier RNA. Extracted RNA was either used for reverse transcriptase (RT)-PCR plus qPCR or for a combination of RNA preamplification and qPCR. RESULTS Our data showed that with RNA preamplification, 10 μg cDNA can be regularly generated from 2.5 ng RNA. Depending on expression levels, this is sufficient for hundreds of pPCR reactions. The efficiency of preamplification, however, was gene-dependent. DNase digestion before preamplification lead to lower threshold cycles in qPCR. The use of partly degraded RNA for RNA preamplification did not change the results of the following qPCR. CONCLUSIONS RNA preamplification strongly enlarges the spectrum of genes to be analyzed in distinct bladder compartments by qPCR. It is an easy and reliable method that can be realized with standard laboratory equipment. Our protocol may lead in near future to a better understanding of the pathomechanisms in LUTS.
Collapse
Affiliation(s)
- M Horstmann
- Department of Urology, Kantonsspital Winterthur, Brauerstr. 15, 8401 Winterthur, Switzerland.
| | | | | | | | | |
Collapse
|
8
|
Sudo H, Mizoguchi A, Kawauchi J, Akiyama H, Takizawa S. Use of non-amplified RNA samples for microarray analysis of gene expression. PLoS One 2012; 7:e31397. [PMID: 22355363 PMCID: PMC3280296 DOI: 10.1371/journal.pone.0031397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 01/06/2012] [Indexed: 11/18/2022] Open
Abstract
Demand for high quality gene expression data has driven the development of revolutionary microarray technologies. The quality of the data is affected by the performance of the microarray platform as well as how the nucleic acid targets are prepared. The most common method for target nucleic acid preparation includes in vitro transcription amplification of the sample RNA. Although this method requires a small amount of starting material and is reported to have high reproducibility, there are also technical disadvantages such as amplification bias and the long, laborious protocol. Using RNA derived from human brain, breast and colon, we demonstrate that a non-amplification method, which was previously shown to be inferior, could be transformed to a highly quantitative method with a dynamic range of five orders of magnitude. Furthermore, the correlation coefficient calculated by comparing microarray assays using non-amplified samples with qRT-PCR assays was approximately 0.9, a value much higher than when samples were prepared using amplification methods. Our results were also compared with data from various microarray platforms studied in the MicroArray Quality Control (MAQC) project. In combination with micro-columnar 3D-Gene™ microarray, this non-amplification method is applicable to a variety of genetic analyses, including biomarker screening and diagnostic tests for cancer.
Collapse
Affiliation(s)
- Hiroko Sudo
- New Frontiers Research Laboratories, Toray Industries, Inc., Kamakura, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
9
|
Kurban G, Gallie BL, Leveridge M, Evans A, Rushlow D, Matevski D, Gupta R, Finelli A, Jewett MAS. Needle core biopsies provide ample material for genomic and proteomic studies of kidney cancer: observations on DNA, RNA, protein extractions and VHL mutation detection. Pathol Res Pract 2011; 208:22-31. [PMID: 22177731 DOI: 10.1016/j.prp.2011.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 10/14/2022]
Abstract
The use of needle biopsies in basic research is increasing, and our study provides a comprehensive analysis of their adequacy in genomic and proteomic studies of kidney cancer. Frozen clear cell renal cell carcinoma (ccRCC) needle core biopsies and sections from core biopsies embedded in optimal cutting temperature (OCT) compound were used to extract DNA, RNA and protein. Their integrity was determined using genomic and proteomic analyses. VHL mutation testing was performed on ccRCC biopsies and corresponding tumors using bulk and laser capture microdissection (LCM) extractions for comparison. Adequate amounts of good quality DNA (5.8-13.3 μg/whole core, 0.6-2.7 μg/20 sections), RNA (2.9-11.9 μg/whole core, 0.5-1.3 μg/20 sections) and protein (137.4-444 μg/whole core, 39.9-74.1 μg/20 sections) were obtained from whole core and frozen sections of ccRCC needle biopsies, respectively. We observed VHL sequence mutations in 75% of ccRCC tumors and, in most cases, the same mutations were detected in both tumors and corresponding biopsies. Mutations observed by bulk extractions from tumors and biopsies were also detected by LCM without significant differences between both methodologies. ccRCC needle biopsies provide ample material for genomic and proteomic studies of kidney cancer. They are good representatives of their corresponding tumors for VHL mutation detection using both bulk and LCM extractions. LCM does not increase sensitivity of VHL mutation detection.
Collapse
Affiliation(s)
- Ghada Kurban
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jeanty C, Longrois D, Mertes PM, Wagner DR, Devaux Y. An optimized protocol for microarray validation by quantitative PCR using amplified amino allyl labeled RNA. BMC Genomics 2010; 11:542. [PMID: 20929564 PMCID: PMC3091691 DOI: 10.1186/1471-2164-11-542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 10/07/2010] [Indexed: 12/01/2022] Open
Abstract
Background Validation of microarrays data by quantitative real-time PCR (qPCR) is often limited by the low amount of available RNA. This raised the possibility to perform validation experiments on the amplified amino allyl labeled RNA (AA-aRNA) leftover from microarrays. To test this possibility, we used an ongoing study of our laboratory aiming at identifying new biomarkers of graft rejection by the transcriptomic analysis of blood cells from brain-dead organ donors. Results qPCR for ACTB performed on AA-aRNA from 15 donors provided Cq values 8 cycles higher than when original RNA was used (P < 0.001), suggesting a strong inhibition of qPCR performed on AA-aRNA. When expression levels of 5 other genes were measured in AA-aRNA generated from a universal reference RNA, qPCR sensitivity and efficiency were decreased. This prevented the quantification of one low-abundant gene, which was readily quantified in un-amplified and un-labeled RNA. To overcome this limitation, we modified the reverse transcription (RT) protocol that generates cDNA from AA-aRNA as follows: addition of a denaturation step and 2-min incubation at room temperature to improve random primers annealing, a transcription initiation step to improve RT, and a final treatment with RNase H to degrade remaining RNA. Tested on universal reference AA-aRNA, these modifications provided a gain of 3.4 Cq (average from 5 genes, P < 0.001) and an increase of qPCR efficiency (from -1.96 to -2.88; P = 0.02). They also allowed for the detection of a low-abundant gene that was previously undetectable. Tested on AA-aRNA from 15 brain-dead organ donors, RT optimization provided a gain of 2.7 cycles (average from 7 genes, P = 0.004). Finally, qPCR results significantly correlated with microarrays. Conclusion We present here an optimized RT protocol for validation of microarrays by qPCR from AA-aRNA. This is particularly valuable in experiments where limited amount of RNA is available.
Collapse
Affiliation(s)
- Céline Jeanty
- Laboratory of Cardiovascular Research, Centre de Recherche Public-Santé, Luxembourg
| | | | | | | | | |
Collapse
|