1
|
Yousofvand N, Moloodi B. An overview of the effect of medicinal herbs on pain. Phytother Res 2023; 37:1057-1081. [PMID: 36585701 DOI: 10.1002/ptr.7697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/26/2022] [Accepted: 10/08/2022] [Indexed: 01/01/2023]
Abstract
This paper is typically intended to carefully collect and properly review the antinociceptive activities of medicinal plants. In this review article, by searching keywords of medicinal plants, pain, herbal medicine, antinociceptive, phytotherapy in databases of Web of Science, Scopus, Google Scholar, Springer, Wiley, Proquest, PubMed, Nature, Magiran, Emerald, SID, ISI, and some other indexing cites, or traditional books, desired articles were obtained until 2021. The title of medicinal plants was searched diligently in Persian and English. Ultimately, 270 articles were studied. The findings possibly indicated that several medicinal plants are among the most valuable plants that have antinociceptive activities. There efficiently are various antinociceptive compounds in medicinal plants. The antinociceptive activity of these specific compounds may be through their peculiar effects on the opioid system, cholinergic pathways, and stimulation of GABA receptors, with the peripheral and central antinociceptive mechanism. Antiinflammatory processes, inhibition of the synthesis, and the release of arachidonic acid, prostaglandins, phospholipase, nitric oxide, and cyclooxygenase-2 have been reported as analgesic mechanisms of some herbs. In a reasonable conclusion, our review thoughtfully provides a comprehensive summary of present data from some scientific studies on the common herbs with antinociceptive and antiinflammatory activities.
Collapse
Affiliation(s)
- Namdar Yousofvand
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, I & R of Iran
| | - Boshra Moloodi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, I & R of Iran
| |
Collapse
|
2
|
Choudhary S, Kaur R, Waziri A, Garg A, Kadian R, Alam MS. N-type calcium channel blockers: a new approach towards the treatment of chronic neuropathic pain. EXPLORATION OF MEDICINE 2023. [DOI: 10.37349/emed.2023.00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Neuropathic pain (NP) remains maltreated for a wide number of patients by the currently available treatments and little research has been done in finding new drugs for treating NP. Ziconotide (PrialtTM) had been developed as the new drug, which belongs to the class of ω-conotoxin MVIIA. It inhibits N-type calcium channels. Ziconotide is under the last phase of the clinical trial, a new non-narcotic drug for the management of NP. Synthetically it has shown the similarities with ω-conotoxin MVIIA, a constituent of poison found in fish hunting snails (Conus magus). Ziconotide acts by selectively blocking neural N-type voltage-sensitized Ca2+ channels (NVSCCs). Certain herbal drugs also have been studied but no clinical result is there and the study is only limited to preclinical data. This review emphasizes the N-type calcium channel inhibitors, and their mechanisms for blocking calcium channels with their remedial prospects for treating chronic NP.
Collapse
Affiliation(s)
- Shikha Choudhary
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, Haryana, India
| | - Raminderjit Kaur
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, Haryana, India
| | - Aafrin Waziri
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Delhi, 110078, India
| | - Arun Garg
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India
| | - Renu Kadian
- Ram Gopal College of Pharmacy, Gurugram 122506, Haryana, India
| | - Md Sabir Alam
- SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India
| |
Collapse
|
3
|
Umbaugh DS, Maciejewski JC, Wooten JS, Guilford BL. Neuronal Inflammation is Associated with Changes in Epidermal Innervation in High Fat Fed Mice. Front Physiol 2022; 13:891550. [PMID: 36082224 PMCID: PMC9445198 DOI: 10.3389/fphys.2022.891550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral neuropathy (PN), a debilitating complication of diabetes, is associated with obesity and the metabolic syndrome in nondiabetic individuals. Evidence indicates that a high fat diet can induce signs of diabetic peripheral PN in mice but the pathogenesis of high fat diet-induced PN remains unknown. PURPOSE: Determine if neuronal inflammation is associated with the development of mechanical hypersensitivity and nerve fiber changes in high fat fed mice. METHODS: Male C57Bl/6 mice were randomized to a standard (Std, 15% kcal from fat) or high fat diet (HF, 54% kcal from fat) for 2, 4, or 8 weeks (n = 11-12 per group). Lumbar dorsal root ganglia were harvested and inflammatory mediators (IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-17, MCP-1, IFN-γ, TNF-α, MIP-1α, GMCSF, RANTES) were quantified. Hindpaw mechanical sensitivity was assessed using the von Frey test. Intraepidermal nerve fiber density (IENFD) and TrkA nerve fiber density were quantified via immunohistochemistry. RESULTS: After 8 weeks, HF had greater body mass (33.3 ± 1.0 vs 26.7 ± 0.5 g, p < 0.001), fasting blood glucose (160.3 ± 9.4 vs 138.5 ± 3.4 mg/dl, p < 0.05) and insulin (3.58 ± 0.46 vs 0.82 ± 0.14 ng/ml, p < 0.001) compared to Std. IL-1α, RANTES and IL-5 were higher in HF compared to Std after 2 and 4 weeks, respectively (IL-1α: 4.8 ± 1.3 vs 2.9 ± 0.6 pg/mg, p < 0.05; RANTES: 19.6 ± 2.2 vs 13.3 ± 1.2 pg/mg p < 0.05; IL-5: 5.8 ± 0.7 vs 3.1 ± 0.5 pg/mg, p < 0.05). IENFD and TrkA fiber density were also higher in HF vs Std after 4 weeks (IENFD: 39.4 ± 1.2 vs 32.2 ± 1.3 fibers/mm, p < 0.001; TrkA: 30.4 ± 1.8 vs 22.4 ± 1.3 fibers/mm). There were no significant differences in hindpaw sensitivity for Std vs HF. CONCLUSION: Increased inflammatory mediators preceded and accompanied an increase in cutaneous pain sensing nerve fibers in high fat fed mice but was not accompanied by significant mechanical allodynia. Diets high in fat may increase neuronal inflammation and lead to increased nociceptive nerve fiber density.
Collapse
Affiliation(s)
| | | | | | - Brianne L. Guilford
- Department of Applied Health, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| |
Collapse
|
4
|
Wiggins AM, Sorge RE. An improved model of type 2 diabetes with effects on glucose tolerance, neuropathy and retinopathy with and without obesity. Physiol Behav 2022; 248:113740. [PMID: 35167879 PMCID: PMC10714886 DOI: 10.1016/j.physbeh.2022.113740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 12/01/2022]
Abstract
RATIONALE Type 2 diabetes (T2D) costs billions of dollars annually, is also associated with pain (diabetic neuropathy), as well as retinopathy, lower urinary tract/urinary bladder dysfunction, depression, and systemic inflammation, affecting quality of life for patients. To that end, animal models are utilized to explore potential treatments, but may not reflect the complexity of the condition. OBJECTIVE We aimed to test an improved model of T2D that more closely mimics the clinical mechanisms and symptoms in an outbred strain of mouse. FINDINGS Male and female CD-1 mice (n = 72) were fed one of four diets: regular chow (REG), our Standard American Diet (SAD), a revised SAD (SAD2), or the commonly-used high-fat diet (HFD). Overall, HFD- and SAD-fed mice had significant weight gain and increased fat mass. Following injury, the SAD- and SAD2-fed mice showed protracted recovery, but the HFD-fed mice did not. Similarly, SAD- and SAD2-fed mice showed impaired retinal function compared to REG-fed mice, but the HFD-fed mice did not. CONCLUSIONS The SAD and SAD2 more closely model the problematic dietary intake and subsequent clinical symptoms associated with T2D. POTENTIAL IMPACT OF STUDY The adjusted SAD2 may be a better representation of a human-translatable diet than the SAD and HFD, and may allow for increased advances in the investigation of T2D-related symptoms.
Collapse
Affiliation(s)
- Asia M Wiggins
- Department of Psychology, University of Alabama at Birmingham, United States
| | - Robert E Sorge
- Department of Psychology, University of Alabama at Birmingham, United States.
| |
Collapse
|
5
|
Arora K, Tomar PC, Mohan V. Diabetic neuropathy: an insight on the transition from synthetic drugs to herbal therapies. J Diabetes Metab Disord 2021; 20:1773-1784. [PMID: 34900824 PMCID: PMC8630252 DOI: 10.1007/s40200-021-00830-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
The global pandemic of prediabetes and diabetes has led to a severe corresponding complication of these disorders. Neuropathy is one of the most prevalent complication of diabetes is, affecting blood supply of the peripheral nervous system that may eventually results into loss of sensations, injuries, diabetic foot and death. The utmost identified risk of diabetic neuropathy is uncontrolled high blood glucose levels. However, aging, body mass index (BMI), oxidative stress, inflammation, increased HbA1c levels and blood pressure are among the other key factors involved in the upsurge of this disease. The so far treatment to deal with diabetic neuropathy is controlling metabolic glucose levels. Apart from this, drugs like reactive oxygen species (ROS) inhibitors, aldose reductase inhibitors, PKC inhibitors, Serotonin-norepinephrine reuptake inhibitors (SNRIs), anticonvulsants, N-methyl-D-aspartate receptor (NMDAR) antagonists, are the other prescribed medications. However, the related side-effects (hallucinations, drowsiness, memory deficits), cost, poor pharmacokinetics and drug resistance brought the trust of patients down and thus herbal renaissance is occurring all over the word as the people have shifted their intentions from synthetic drugs to herbal remedies. Medicinal plants have widely been utilized as herbal remedies against number of ailments in Indian medicinal history. Their bioactive components are very much potent to handle different chronic disorders and complications with lesser-known side effects. Therefore, the current article mainly concludes the etiology and pathophysiology of diabetic neuropathy. Furthermore, it also highlights the important roles of medicinal plants and their naturally occurring bioactive compounds in addressing this disease.
Collapse
Affiliation(s)
- Komal Arora
- Department of Life Sciences, Neurosciences, Gurugram University, Gurugram, India
| | - Pushpa C. Tomar
- Department of Biotechnology, Faculty of Engineering & Technology, Manav Rachna International Institute of Research & Studies, Haryana 121004 Faridabad, India
| | - Vandana Mohan
- Department of Life Sciences, Neurosciences, Gurugram University, Gurugram, India
| |
Collapse
|
6
|
Tian J, Song T, Wang H, Wang W, Ma X, Hu Y. Toll-Like Receptor 2 Antagonist Ameliorates Type 2 Diabetes Mellitus Associated Neuropathic Pain by Repolarizing Pro-inflammatory Macrophages. Neurochem Res 2021; 46:2276-2284. [PMID: 34081245 DOI: 10.1007/s11064-021-03365-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Diabetic neuropathy is one of the common complications of type 2 diabetes mellitus (T2DM) with severe outcomes. The mechanisms of physiopathology of diabetic neuropathy are not well elucidated. Inflammation and inflammatory macrophages are recognized to be crucial in diabetic neuropathy. Toll-like receptor 2 (TLR2) is an important factor in innate immune response which could promote the polarization of inflammatory macrophages. In present study, we evaluated the effects of a TLR2 antagonist CU-CPT22 on diabetic neuropathy. We induced T2DM in mice by feeding with high fat diet (HFD). We measured the body weight, blood glucose level, paw withdrawal threshold, inflammatory cytokine production, and macrophages infiltration in T2DM mice. We evaluated the effects of CU-CPT22 on pro-inflammatory cytokines production, macrophage marker expression in lipopolysaccharides (LPS)-treated BMDMs. We administrated CU-CPT22 in T2DM mice and measured the pro-inflammatory cytokines levels, expression of macrophages markers in sciatic nerve (SCN), and paw withdrawal threshold. T2DM mice had significantly increased body weight and blood glucose, and had significantly decreased paw withdrawal threshold. Obvious increased pro-inflammatory cytokine level and infiltration of M1 phenotype macrophages was observed in SCN from T2DM mice. CU-CPT22 prevented pro-inflammatory cytokine production in LPS-treated BMDMs and re-polarized them to M2 phenotype. CU-CPT22 suppressed the inflammation and induced M2 macrophages in SCN from T2DM mice, and ameliorated the paw withdrawal threshold in T2DM mice. CU-CPT22 ameliorates neuropathic pain in T2DM by promoting M2 phenotype macrophages.
Collapse
Affiliation(s)
- Jun Tian
- Department of Neurosurgery, the First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Tieying Song
- Department of Anesthesiology, the First Hospital of Shijiazhuang, Shijiazhuang, China.
| | - Hong Wang
- Department of Anesthesiology, the First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Wenli Wang
- Department of Gynaecology, Maternal and Child Health Care Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xiaojing Ma
- Department of Anesthesiology, the First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yue Hu
- Department of Gynecology, Shijiazhuang First Hospital, Shijiazhuang, China
| |
Collapse
|
7
|
Kazeminasab F, Marandi SM, Baharlooie M, Nasr-Esfahani MH, Ghaedi K. Modulation and bioinformatics screening of hepatic mRNA-lncRNAs (HML) network associated with insulin resistance in prediabetic and exercised mice. Nutr Metab (Lond) 2021; 18:75. [PMID: 34284789 PMCID: PMC8290563 DOI: 10.1186/s12986-021-00600-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background Insulin resistance is associated with prediabetes and further progression to type 2 diabetes mellitus (T2DM). This study aims to investigate novel hepatic lncRNAs associated with key genes in insulin resistance in prediabetes.
Methods In the bioinformatics phase, we have collected screened a pool of lncRNAs and mRNAs according to their potential association to prediabetic condition. We performed pathway analysis of mRNAs, using DAVID tool based on KEGG repository data. Then, we used Python programming language to get a subset of lncRNAs located in 50 kb proximity with high-fat (HF)-responsive mRNAs. In the experimental phase, prediabetic mice model was established by the treatment of HF diets for 12 weeks. After this treatment, HF-fed animals were divided into two groups of endurance exercised or sedentary, both continuing on the HF diet for 8 weeks. Besides, a group of diabetic mice was treated using a HF diet for 8 weeks followed by injection with STZ solution and then a HF diet for another 4 weeks. Results We found three genes having paired lncRNAs annotated in insulin resistance pathway. Their hepatic expression levels were altered in prediabetic condition as upregulation of Srebf1 was associated with GM38501, upregulation of Pck1 was associated with Ctcflos and GM36691, downregulation of Cpt1b was associated with GM44502. All of these expression patterns were replicated in diabetic mice, correlated positively with their predicted lncRNAs. Interestingly, exercise reversed their expression patterns. Conclusions We suggest that the expression pattern of the hepatic mRNA-lncRNA (HML) network in prediabetic state undergoes similar modification to that of diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00600-0.
Collapse
Affiliation(s)
- Fatemeh Kazeminasab
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Hezar Jerib Avenue, Azadi Sq., Isfahan, 81746-73441, Iran. .,Department of Physical Education and Sport Sciences, Faculty of Human Sciences, University of Kashan, Ravand Street, Kashan, 87317-35153, Iran.
| | - Sayed Mohammad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Hezar Jerib Avenue, Azadi Sq., Isfahan, 81746-73441, Iran.
| | - Maryam Baharlooie
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Avenue, Azadi Sq., Isfahan, 81746-73441, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Royan Street, Salman Ave, Khorasgan Square, Jey Ave, Isfahan, 81593-58686, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Avenue, Azadi Sq., Isfahan, 81746-73441, Iran.
| |
Collapse
|
8
|
Ma Q, Deng P, Lin M, Yang L, Li L, Guo L, Zhang L, He M, Lu Y, Pi H, Zhang Y, Yu Z, Chen C, Zhou Z. Long-term bisphenol A exposure exacerbates diet-induced prediabetes via TLR4-dependent hypothalamic inflammation. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123926. [PMID: 33254826 DOI: 10.1016/j.jhazmat.2020.123926] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA), an environmental endocrine-disrupting compound, has been revealed associated with metabolic disorders such as obesity, prediabetes, and type 2 diabetes (T2D). However, its underlying mechanisms are still not fully understood. Here, we provide new evidence that BPA is a risk factor for T2D from a case-control study. To explore the detailed mechanisms, we used two types of diet models, standard diet (SD) and high-fat diet (HFD), to study the effects of long-term BPA exposure on prediabetes in 4-week-old mice. We found that BPA exposure for 12 weeks exacerbated HFD-induced prediabetic symptoms. Female mice showed increased body mass, serum insulin level, and impaired glucose tolerance, while male mice only exhibited impaired glucose tolerance. No change was found in SD-fed mice. Besides, BPA exposure enhanced astrocyte-dependent hypothalamic inflammation in both male and female mice, which impaired proopiomelanocortin (POMC) neuron functions. Moreover, eliminating inflammation by toll-like receptor 4 (TLR4) knockout significantly abolished the effects of BPA on the hypothalamus and diet-induced prediabetes. Taken together, our data establish a key role for TLR4-dependent hypothalamic inflammation in regulating the effects of BPA on prediabetes.
Collapse
Affiliation(s)
- Qinlong Ma
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Ping Deng
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Min Lin
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Lingling Yang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Le Li
- Department of Health Management Center, Southwest Hospital, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Lu Guo
- Department of Neurology, Daping Hospital, Army Medical University (Former Name: Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Lei Zhang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Mindi He
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Yonghui Lu
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Huifeng Pi
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Yanwen Zhang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Zhengping Yu
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Chunhai Chen
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China.
| | - Zhou Zhou
- Department of Environmental Medicine, and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
9
|
Li J, Liu HQ, Li XB, Yu WJ, Wang T. Function of Adenosine 2A Receptor in High-Fat Diet-Induced Peripheral Neuropathy. J Diabetes Res 2020; 2020:7856503. [PMID: 32566683 PMCID: PMC7267854 DOI: 10.1155/2020/7856503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Peripheral diabetic neuropathy (DPN) is a complication observed in up to half of all patients with type 2 diabetes. DPN has also been shown to be associated with obesity. High-fat diet (HFD) affects glucose metabolism, and the impaired glucose tolerance can lead to type 2 diabetes. There is evidence to suggest a role of adenosine 2A receptors (A2ARs) and semaphorin 3A (Sema3a) signaling in DPN. The link between the expression of Sema3a and A2AR in DPN was hypothesized, but the underlying mechanisms remain poorly understood. In this study, we investigated the regulation of Sema3a by A2AR in the spinal cord and the functional implications thereof in DPN. We examined the expression of A2ARs and Sema3a, as well as Neuropilin 1 and Plexin A, the coreceptors of Sema3a, in the dorsal horn of the lumbar spinal cord of an animal model with HFD-induced diabetes. Our results demonstrate that HFD dysregulates the A2AR-mediated Sema3a expression, with functional implications for the type 2 diabetes-induced peripheral neuropathy. These observations could stimulate clinical studies to improve our understanding on the subject.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Neuropathies/etiology
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/pathology
- Diet, High-Fat
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Nerve Fibers/metabolism
- Nerve Fibers/pathology
- Receptor, Adenosine A2A/physiology
- Semaphorin-3A/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Ji Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Huan-Qiu Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Xin-Bai Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Wen-Jun Yu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Tao Wang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Cooper MA, O'Meara B, Jack MM, Elliot D, Lamb B, Khan ZW, Menta BW, Ryals JM, Winter MK, Wright DE. Intrinsic Activity of C57BL/6 Substrains Associates with High-Fat Diet-Induced Mechanical Sensitivity in Mice. THE JOURNAL OF PAIN 2018; 19:1285-1295. [PMID: 29803670 DOI: 10.1016/j.jpain.2018.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/04/2018] [Accepted: 05/16/2018] [Indexed: 01/26/2023]
Abstract
Pain is significantly impacted by the increasing epidemic of obesity and the metabolic syndrome. Our understanding of how these features impact pain is only beginning to be developed. Herein, we have investigated how small genetic differences among C57BL/6 mice from 2 different commercial vendors lead to important differences in the development of high-fat diet-induced mechanical sensitivity. Two substrains of C57BL/6 mice from Jackson Laboratories (Bar Harbor, ME; C57BL/6J and C57BL/6NIH), as well as C57BL/6 from Charles Rivers Laboratories (Wilmington, MA; C57BL/6CR) were placed on high-fat diets and analyzed for changes in metabolic features influenced by high-fat diet and obesity, as well as measures of pain-related behaviors. All 3 substrains responded to the high-fat diet; however, C57BL/6CR mice had the highest weights, fat mass, and impaired glucose tolerance of the 3 substrains. In addition, the C57BL/6CR mice were the only strain to develop significant mechanical sensitivity over the course of 8 weeks. Importantly, the C57BL/6J mice were protected from mechanical sensitivity, which may be based on increased physical activity compared with the other 2 substrains. These findings suggest that activity may play a powerful role in protecting metabolic changes associated with a high-fat diet and that these may also be protective in pain-associated changes as a result of a high-fat diet. These findings also emphasize the importance of selection and transparency in choosing C57BL/6 substrains in pain-related research. PERSPECTIVE: Obesity and the metabolic syndrome play an important role in pain. This study identifies key differences in the response to a high-fat diet among substrains of C57BL/6 mice and differences in intrinsic physical activity that may influence pain sensitivity. The results emphasize physical activity as a powerful modulator of obesity-related pain sensitivity.
Collapse
Affiliation(s)
- Michael A Cooper
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Bryn O'Meara
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Megan M Jack
- Departments of Neurosurgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Dan Elliot
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Bradley Lamb
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Zair W Khan
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Blaise W Menta
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Janelle M Ryals
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Michelle K Winter
- Departments of Kansas Intellectual and Developmental Disabilities Research, University of Kansas Medical Center, Kansas City, Kansas
| | - Douglas E Wright
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
11
|
Wang J, Fernández AE, Tiano S, Huang J, Floyd E, Poulev A, Ribnicky D, Pasinetti GM. An Extract of Artemisia dracunculus L. Promotes Psychological Resilience in a Mouse Model of Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7418681. [PMID: 29861834 PMCID: PMC5971253 DOI: 10.1155/2018/7418681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/06/2018] [Accepted: 04/24/2018] [Indexed: 12/28/2022]
Abstract
Stress-induced peripheral inflammation contributes to depression-like behaviors in both human and experimental models. PMI 5011, a botanical extract of Artemisia dracunculus L., was previously shown to have multiple bioactivities, including anti-inflammatory activity. In this work, using a repeated social defeat stress (RSDS) model of depression, we demonstrate that oral administration of the botanical extract PMI 5011 promotes resilience to RSDS-mediated depression-like phenotypes. We also show that the behavioral improvements are associated with attenuation of stress-mediated induction of inflammatory cytokines in the periphery and alteration of synaptic plasticity in the nucleus accumbens (NAc). Our studies provide experimental evidence that botanical extracts such as PMI 5011, which target pathological mechanisms (i.e., peripheral inflammation) not addressed by currently available antidepressants, could be further developed as novel therapeutics for the treatment of stress disorders and anxiety in humans.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | | | - Simoni Tiano
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Huang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth Floyd
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Alexander Poulev
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - David Ribnicky
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
| |
Collapse
|
12
|
Bower A, Marquez S, de Mejia EG. The Health Benefits of Selected Culinary Herbs and Spices Found in the Traditional Mediterranean Diet. Crit Rev Food Sci Nutr 2017; 56:2728-46. [PMID: 25749238 DOI: 10.1080/10408398.2013.805713] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Mediterranean diet is considered one of the healthiest diets in the world. This is often attributed to low saturated fat consumption, moderate wine consumption, and high vegetable consumption. However, herbs and spices associated with these diets may also play an important role in the quality of this diet. This review summarizes the most recent research regarding the anti-diabetic, anti-inflammatory, anti-hyperlipidemic and anti-hypertensive properties of this collection of culinary species. Additionally, this review briefly summarizes studies performed on lesser known herbs from around the world, with the goal of identifying new culinary species that may be useful in the treatment or prevention of diseases.
Collapse
Affiliation(s)
- Allyson Bower
- a Division of Nutritional Sciences, Department of Food Science and Human Nutrition , University of Illinois Urbana-Champaign , Urbana , Illinois USA
| | - Susan Marquez
- b Department of Food Science and Human Nutrition , University of Illinois Urbana-Champaign , Urbana , Illinois USA
| | - Elvira Gonzalez de Mejia
- a Division of Nutritional Sciences, Department of Food Science and Human Nutrition , University of Illinois Urbana-Champaign , Urbana , Illinois USA.,b Department of Food Science and Human Nutrition , University of Illinois Urbana-Champaign , Urbana , Illinois USA
| |
Collapse
|
13
|
Waltenberger B, Mocan A, Šmejkal K, Heiss EH, Atanasov AG. Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders. Molecules 2016; 21:807. [PMID: 27338339 PMCID: PMC4928700 DOI: 10.3390/molecules21060807] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Natural products have always been exploited to promote health and served as a valuable source for the discovery of new drugs. In this review, the great potential of natural compounds and medicinal plants for the treatment or prevention of cardiovascular and metabolic disorders, global health problems with rising prevalence, is addressed. Special emphasis is laid on natural products for which efficacy and safety have already been proven and which are in clinical trials, as well as on plants used in traditional medicine. Potential benefits from certain dietary habits and dietary constituents, as well as common molecular targets of natural products, are also briefly discussed. A glimpse at the history of statins and biguanides, two prominent representatives of natural products (or their derivatives) in the fight against metabolic disease, is also included. The present review aims to serve as an "opening" of this special issue of Molecules, presenting key historical developments, recent advances, and future perspectives outlining the potential of natural products for prevention or therapy of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic;
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| |
Collapse
|
14
|
Suo M, Wang P, Zhang M. Role of Fyn-mediated NMDA receptor function in prediabetic neuropathy in mice. J Neurophysiol 2016; 116:448-55. [PMID: 27146985 DOI: 10.1152/jn.00229.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Diabetic neuropathy is a common complication of diabetes. This study evaluated the role of Fyn kinase and N-methyl-d-aspartate receptors (NMDARs) in the spinal cord in diabetic neuropathy using an animal model of high-fat diet-induced prediabetes. We found that prediabetic wild-type mice exhibited tactile allodynia and thermal hypoalgesia after a 16-wk high-fat diet, relative to normal diet-fed wild-type mice. Furthermore, prediabetic wild-type mice exhibited increased tactile allodynia and thermal hypoalgesia at 24 wk relative to 16 wk. Such phenomena were correlated with increased expression and activation of NR2B subunit of NMDARs, as well as Fyn-NR2B interaction in the spinal cord. Fyn(-/-) mice developed prediabetes after 16-wk high-fat diet treatment and exhibited thermal hypoalgesia, without showing tactile allodynia or altered expression and activation of NR2B subunit, relative to normal diet-fed Fyn(-/-) mice. Finally, intrathecal administrations of Ro 25-6981 (selective NR2B subunit-containing NMDAR antagonist) dose-dependently alleviated tactile allodynia, but not thermal hypoalgesia, at 16 and 24 wk in prediabetic wild-type mice. Our results suggested that Fyn-mediated NR2B signaling plays a critical role in regulation of prediabetic neuropathy and that the increased expression/function of NR2B subunit-containing NMDARs may contribute to the progression of neuropathy in type 2 diabetes.
Collapse
Affiliation(s)
- Meng Suo
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Ping Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
15
|
Yang P, Pei Q, Yu T, Chang Q, Wang D, Gao M, Zhang X, Liu Y. Compromised Wound Healing in Ischemic Type 2 Diabetic Rats. PLoS One 2016; 11:e0152068. [PMID: 27028201 PMCID: PMC4814123 DOI: 10.1371/journal.pone.0152068] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/07/2016] [Indexed: 02/06/2023] Open
Abstract
Ischemia is one of the main epidemic factors and characteristics of diabetic chronic wounds, and exerts a profound effect on wound healing. To explore the mechanism of and the cure for diabetic impaired wound healing, we established a type 2 diabetic rat model. We used an 8weeks high fat diet (HFD) feeding regimen followed by multiple injections of streptozotocin (STZ) at a dose of 10mg/kg to induce Wister rat to develop type 2 diabetes. Metabolic characteristics were assessed at the 5th week after the STZ injections to confirm the establishment of diabetes mellitus on the rodent model. A bipedicle flap, with length to width ratio 1.5, was performed on the back of the rat to make the flap area ischemic. Closure of excisional wounds on this bipedicle flap and related physiological and pathological changes were studied using histological, immunohistochemical, real time PCR and protein immunoblot approaches. Our results demonstrated that a combination of HFD feeding and a low dose of STZ is capable of inducing the rats to develop type 2 diabetes with noticeable insulin resistance, persistent hyperglycemia, moderate degree of insulinemia, as well as high serum cholesterol and high triglyceride levels. The excision wounds on the ischemic double pedicle flap showed deteriorative healing features comparing with non-ischemic diabetic wounds, including: delayed healing, exorbitant wound inflammatory response, excessive and prolonged ROS production and excessive production of MMPs. Our study suggested that HFD feeding combined with STZ injection could induce type 2 diabetes in rat. Our ischemic diabetic wound model is suitable for the investigation of human diabetic related wound repair; especically for diabetic chronic wounds.
Collapse
Affiliation(s)
- Peilang Yang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | - Qing Pei
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | - Tianyi Yu
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | - Qingxuan Chang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | - Di Wang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | - Min Gao
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | - Xiong Zhang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | - Yan Liu
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
- * E-mail:
| |
Collapse
|
16
|
Abstract
Length-dependent neuropathy is the most common and costly complication of diabetes and frequently causes injury primarily to small-diameter cutaneous nociceptive fibers. Not only persistent hyperglycemia but also metabolic, endocrine, and inflammatory effects of obesity and dyslipidemia appear to play an important role in the development of diabetic neuropathy. Rational therapies aimed at direct control of glucose or its increased entry into the polyol pathway, oxidative or nitrosative stress, advanced glycation end product formation or signaling, microvascular ischemia, or adipocyte-derived toxicity have each failed in human trials of diabetic neuropathy. Aerobic exercise produces salutary effects in many of these pathogenic pathways simultaneously and, in both animal models and human trials, has been shown to improve symptoms of neuropathy and promote re-growth of cutaneous small-diameter fibers. Behavioral reduction in periods of seated, awake inactivity produces multimodal metabolic benefits similar to exercise, and the two strategies when combined may offer sustained benefit to peripheral nerve function.
Collapse
Affiliation(s)
| | - A Gordon Smith
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Robin L Marcus
- Department of Physical Therapy, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
17
|
Kim B, Figueroa-Romero C, Pacut C, Backus C, Feldman EL. Insulin Resistance Prevents AMPK-induced Tau Dephosphorylation through Akt-mediated Increase in AMPKSer-485 Phosphorylation. J Biol Chem 2015; 290:19146-57. [PMID: 26100639 DOI: 10.1074/jbc.m115.636852] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 12/25/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, diabetes, and dyslipidemia, and insulin resistance (IR) is the central feature of MetS. Recent studies suggest that MetS is a risk factor for Alzheimer disease (AD). AMP-activated kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme and a key player in regulating energy metabolism. In this report, we examined the role of IR on the regulation of AMPK phosphorylation and AMPK-mediated Tau phosphorylation. We found that AMPK(Ser-485), but not AMPK(Thr-172), phosphorylation is increased in the cortex of db/db and high fat diet-fed obese mice, two mouse models of IR. In vitro, treatment of human cortical stem cell line (HK-5320) and primary mouse embryonic cortical neurons with the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), induced AMPK phosphorylation at both Thr-172 and Ser-485. AMPK activation also triggered Tau dephosphorylation. When IR was mimicked in vitro by chronically treating the cells with insulin, AICAR specifically induced AMPK(Ser-485), but not AMPK(Thr-172), hyperphosphorylation whereas AICAR-induced Tau dephosphorylation was inhibited. IR also resulted in the overactivation of Akt by AICAR treatment; however, preventing Akt overactivation during IR prevented AMPK(Ser-485) hyperphosphorylation and restored AMPK-mediated Tau dephosphorylation. Transfection of AMPK(S485A) mutant caused similar results. Therefore, our results suggest the following mechanism for the adverse effect of IR on AD pathology: IR → chronic overactivation of Akt → AMPK(Ser-485) hyperphosphorylation → inhibition of AMPK-mediated Tau dephosphorylation. Together, our results show for the first time a possible contribution of IR-induced AMPK(Ser-485) phosphorylation to the increased risk of AD in obesity and diabetes.
Collapse
Affiliation(s)
- Bhumsoo Kim
- From the Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Crystal Pacut
- From the Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Carey Backus
- From the Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Eva L Feldman
- From the Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
18
|
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes and is associated with significant morbidity and mortality. DPN is characterized by progressive, distal-to-proximal degeneration of peripheral nerves that leads to pain, weakness, and eventual loss of sensation. The mechanisms underlying DPN pathogenesis are uncertain, and other than tight glycemic control in type 1 patients, there is no effective treatment. Mouse models of type 1 (T1DM) and type 2 diabetes (T2DM) are critical to improving our understanding of DPN pathophysiology and developing novel treatment strategies. In this review, we discuss the most widely used T1DM and T2DM mouse models for DPN research, with emphasis on the main neurologic phenotype of each model. We also discuss important considerations for selecting appropriate models for T1DM and T2DM DPN studies and describe the promise of novel emerging diabetic mouse models for DPN research. The development, characterization, and comprehensive neurologic phenotyping of clinically relevant mouse models for T1DM and T2DM will provide valuable resources for future studies examining DPN pathogenesis and novel therapeutic strategies.
Collapse
|
19
|
Singleton JR, Marcus RL, Lessard MK, Jackson JE, Smith AG. Supervised exercise improves cutaneous reinnervation capacity in metabolic syndrome patients. Ann Neurol 2014; 77:146-53. [PMID: 25388934 DOI: 10.1002/ana.24310] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/04/2014] [Accepted: 11/09/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Unmyelinated cutaneous axons are vulnerable to physical and metabolic injury, but also capable of rapid regeneration. This balance may help determine risk for peripheral neuropathy associated with diabetes or metabolic syndrome. Capsaicin application for 48 hours induces cutaneous fibers to die back into the dermis. Regrowth can be monitored by serial skin biopsies to determine intraepidermal nerve fiber density (IENFD). We used this capsaicin axotomy technique to examine the effects of exercise on cutaneous regenerative capacity in the setting of metabolic syndrome. METHODS Baseline ankle IENFD and 30-day cutaneous regeneration after thigh capsaicin axotomy were compared for participants with type 2 diabetes (n = 35) or metabolic syndrome (n = 32) without symptoms or examination evidence of neuropathy. Thirty-six participants (17 with metabolic syndrome) then joined twice weekly observed exercise and lifestyle counseling. Axotomy regeneration was repeated in month 4 during this intervention. RESULTS Baseline distal leg IENFD was significantly reduced for both metabolic syndrome and diabetic groups. With exercise, participants significantly improved exercise capacity and lower extremity power. Following exercise, 30-day reinnervation rate improved (0.051 ± 0.027 fibers/mm/day before vs 0.072 ± 0.030 after exercise, p = 0.002). Those who achieved improvement in more metabolic syndrome features experienced a greater degree of 30-day reinnervation (p < 0.012). INTERPRETATION Metabolic syndrome was associated with reduced baseline IENFD and cutaneous regeneration capacity comparable to that seen in diabetes. Exercise-induced improvement in metabolic syndrome features increased cutaneous regenerative capacity. The results underscore the potential benefit to peripheral nerve function of a behavioral modification approach to metabolic improvement.
Collapse
|
20
|
Anderson NJ, King MR, Delbruck L, Jolivalt CG. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice. Dis Model Mech 2014; 7:625-33. [PMID: 24764191 PMCID: PMC4036470 DOI: 10.1242/dmm.015750] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy) but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD) can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ)-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity) and central nervous system function (learning ability, memory) were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype.
Collapse
Affiliation(s)
- Nicholas J Anderson
- School of Medicine, Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew R King
- School of Medicine, Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lina Delbruck
- School of Medicine, Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Corinne G Jolivalt
- School of Medicine, Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Ozay R, Uzar E, Aktas A, Uyar ME, Gürer B, Evliyaoglu O, Cetinalp NE, Turkay C. The role of oxidative stress and inflammatory response in high-fat diet induced peripheral neuropathy. J Chem Neuroanat 2014; 55:51-7. [PMID: 24407112 DOI: 10.1016/j.jchemneu.2013.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/25/2013] [Accepted: 12/27/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Earlier studies suggest that high-calorie diet is an important risk factor for neuronal damage resulting from oxidative stress of lipid metabolism. In our experimental study of rats under high-fat diet, oxidative stress markers and axonal degeneration parameters were used to observe the sciatic nerve neuropathy. The aim of this study is to evaluate the pathophysiology of neuropathy induced by high-fat diet. METHODS A total of 14 male rats (Wistar albino) were randomly divided into two experimental groups as follows; control group (n=7) and the model group (n=7); while control group was fed with standard diet; where the model group was fed with a high-fat diet for 12 weeks. At the end of 12 weeks, the lipid profile and blood glucose levels, interleukin-1β (IL-1), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β) levels were studied. Tissue malondialdehyde (MDA), nitric oxide (NO) levels and super-oxide dismutase (SOD), paraoxonase-1 (PON-1) and glutathione peroxidase (GPx) activities were studied. The distal blocks of the left sciatic nerves were evaluated for histomorphological analysis (including mean axon area, axon numbers, nerve fiber diameters, axon diameters, and thickness of myelin sheets). RESULTS Body weights, serum glucose and high-density lipoprotein (HDL) levels of rats were found not statistically significantly different compared between the model and the control groups (p>0.05). Serum cholesterol, triglyceride, TGF-β and TNF-α levels were significantly higher in the model group when compared with the control group (p<0.05). IL-1 and IL-6 levels were not statistically significantly different compared between the model group and the control group (p>0.05). The MDA and NO levels and the SOD and GPx activities of the sciatic nerves in model group were statistically significantly higher than the control group (p<0.05). In addition, the activities of PON-1 were statistically significantly lower in the model group when compared with the control group (p<0.05). The difference in the total number of myelinated axons between the control group and the model group was not statistically significant (p>0.05). The nerve fiber diameter and the thickness of the myelin sheet were statistically significantly lower in the model group when compared with the control group (p<0.05). The axon diameter and area were significantly decreased in the model group when compared with the control group (p<0.05). CONCLUSION Our results support that dyslipidemia is an independent risk factor for the development of neuropathy. In addition, we postulated that oxidative stress and inflammatory response may play an important role in the pathogenesis of high-fat diet induced neuropathy.
Collapse
Affiliation(s)
- Rafet Ozay
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Neurosurgery Clinic, Turkey
| | - Ertugrul Uzar
- Dicle University, Department of Neurology, School of Medicine, Diyarbakır, Turkey
| | - Abit Aktas
- Istanbul University, Faculty of Veterinary Medicine, Department of Histology and Embriology, Istanbul, Turkey
| | - Mehtap Erkmen Uyar
- Başkent University, Medical School, Department of Nephrology, Ankara, Turkey
| | - Bora Gürer
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Neurosurgery Clinic, Turkey.
| | - Osman Evliyaoglu
- Dicle University, Department of Biochemistry, School of Medicine, Diyarbakır, Turkey
| | - Nuri Eralp Cetinalp
- Etlik Ihtisas Research and Educational Hospital, Department of Neurosurgery, Ankara, Turkey
| | - Cansel Turkay
- Fatih University, Department of Gastroenterology, School of Medicine, Ankara, Turkey
| |
Collapse
|
22
|
Lupachyk S, Watcho P, Obrosov AA, Stavniichuk R, Obrosova IG. Endoplasmic reticulum stress contributes to prediabetic peripheral neuropathy. Exp Neurol 2013; 247:342-8. [DOI: 10.1016/j.expneurol.2012.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/29/2012] [Accepted: 11/02/2012] [Indexed: 01/06/2023]
|
23
|
Xie F, Fu H, Hou JF, Jiao K, Costigan M, Chen J. High energy diets-induced metabolic and prediabetic painful polyneuropathy in rats. PLoS One 2013; 8:e57427. [PMID: 23451227 PMCID: PMC3581455 DOI: 10.1371/journal.pone.0057427] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/22/2013] [Indexed: 12/16/2022] Open
Abstract
To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD) or high-fat, high-sucrose and high-salt diets (HFSSD) relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG), insulin, free fatty acids (FFA), homeostasis model assessment-insulin resistance index (HOMA-IR), thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF) as well as unmyelinated fibers (UMF) in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension) and prediabetic conditions (impaired fasting glucose) could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt) deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals.
Collapse
Affiliation(s)
- Fang Xie
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, P. R. China
| | | | | | | | | | | |
Collapse
|
24
|
Farmer KL, Li C, Dobrowsky RT. Diabetic peripheral neuropathy: should a chaperone accompany our therapeutic approach? Pharmacol Rev 2012; 64:880-900. [PMID: 22885705 DOI: 10.1124/pr.111.005314] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes that is associated with axonal atrophy, demyelination, blunted regenerative potential, and loss of peripheral nerve fibers. The development and progression of DPN is due in large part to hyperglycemia but is also affected by insulin deficiency and dyslipidemia. Although numerous biochemical mechanisms contribute to DPN, increased oxidative/nitrosative stress and mitochondrial dysfunction seem intimately associated with nerve dysfunction and diminished regenerative capacity. Despite advances in understanding the etiology of DPN, few approved therapies exist for the pharmacological management of painful or insensate DPN. Therefore, identifying novel therapeutic strategies remains paramount. Because DPN does not develop with either temporal or biochemical uniformity, its therapeutic management may benefit from a multifaceted approach that inhibits pathogenic mechanisms, manages inflammation, and increases cytoprotective responses. Finally, exercise has long been recognized as a part of the therapeutic management of diabetes, and exercise can delay and/or prevent the development of painful DPN. This review presents an overview of existing therapies that target both causal and symptomatic features of DPN and discusses the role of up-regulating cytoprotective pathways via modulating molecular chaperones. Overall, it may be unrealistic to expect that a single pharmacologic entity will suffice to ameliorate the multiple symptoms of human DPN. Thus, combinatorial therapies that target causal mechanisms and enhance endogenous reparative capacity may enhance nerve function and improve regeneration in DPN if they converge to decrease oxidative stress, improve mitochondrial bioenergetics, and increase response to trophic factors.
Collapse
Affiliation(s)
- Kevin L Farmer
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
25
|
Kalantari H, Galehdari H, Zaree Z, Gesztelyi R, Varga B, Haines D, Bombicz M, Tosaki A, Juhasz B. Toxicological and mutagenic analysis of Artemisia dracunculus (tarragon) extract. Food Chem Toxicol 2012; 51:26-32. [PMID: 23010670 DOI: 10.1016/j.fct.2012.07.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/09/2012] [Accepted: 07/19/2012] [Indexed: 11/26/2022]
Abstract
Mutagenicity and liver toxicity of the herb tarragon (Artemisia dracunculus) were evaluated using single cell gel (comet) electrophoresis. Ten microlitres aliquots of peripheral venous human blood were incubated with tarragon extract, saline, or the mutagen sodium dichromate. Cell suspensions dispersed in low-melting agarose were electrophoresed in ethidium bromide. The resulting DNA migration trails were obtained using fluorescent microscopy at 400× magnification, and graded according to the mutagenicity index (MI) for each cell incubation condition. The in vivo liver toxicity of Artemisia dracunculus was assessed in the blood of mice treated orally with the extract of the herb, using alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as liver function indicators. Liver morphology was assessed using hematoxylin and eosin (HE) staining of liver tissue. The present study demonstrated a direct correlation between tarragon extract dosage and three major outcome variables: MI; serum liver enzyme activity; and liver histopathology. These outcomes are possibly due to the presence in tarragon of methylchavicol and other genotoxic compounds. These findings provide a preliminary guide for risk assessment of tarragon in diet and in possible therapeutic applications.
Collapse
|
26
|
Abstract
Neuropathic pain is a common and very prevalent disorder affecting the citizens of both developed and developing countries. The approved and licensed drugs for neuropathic pain are reported to have associated side effects. Traditional plant treatments have been used throughout the world for the treatment of neuropathic pain. Among the many medications and other alternative medicines, several herbs are known to cure and control neuropathic pain with no side effects. The present paper discusses the plants with neuropathic pain and related beneficial effects originating from different parts of world that are of current interest.
Collapse
|
27
|
Lupachyk S, Watcho P, Hasanova N, Julius U, G.Obrosova I. Triglyceride, nonesterified fatty acids, and prediabetic neuropathy: role for oxidative-nitrosative stress. Free Radic Biol Med 2012; 52:1255-63. [PMID: 22366714 PMCID: PMC3312982 DOI: 10.1016/j.freeradbiomed.2012.01.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 01/16/2023]
Abstract
Peripheral neuropathy develops in human subjects with prediabetes and metabolic syndrome before overt hyperglycemia. The contributions of impaired glucose tolerance and insulin signaling, hypertriglyceridemia and/or increased nonesterified fatty acids (NEFA), and hypercholesterolemia to this condition remain unknown. Niacin and its derivatives alleviate dyslipidemia with a minor effect on glucose homeostasis. This study evaluated the roles of impaired glucose tolerance versus dyslipidemia in prediabetic neuropathy using Zucker fatty (fa/fa) rats and the niacin derivative acipimox, as well as the interplay of hypertriglyceridemia, increased NEFA, and oxidative-nitrosative stress. Sixteen-week-old Zucker fatty rats with impaired glucose tolerance, obesity, hyperinsulinemia, hypertriglyceridemia, hypercholesterolemia, and increased NEFA displayed sensory nerve conduction velocity deficit, thermal and mechanical hypoalgesia, and tactile allodynia. Acipimox (100 mg kg(-1) day(-1), 4 weeks) reduced serum insulin, NEFA, and triglyceride concentrations without affecting glucose tolerance and hypercholesterolemia. It alleviated sensory nerve conduction velocity deficit and changes in behavioral measures of sensory function and corrected oxidative-nitrosative stress, but not impaired insulin signaling, in peripheral nerve. Elevated NEFA increased total and mitochondrial superoxide production and NAD(P)H oxidase activity in cultured human Schwann cells. In conclusion, hypertriglyceridemia and/or increased NEFA concentrations cause prediabetic neuropathy through oxidative-nitrosative stress. Lipid-lowering agents and antioxidants may find a use in the management of this condition.
Collapse
Affiliation(s)
- Sergey Lupachyk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Pierre Watcho
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Nailia Hasanova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Ulrich Julius
- University Hospital, Technical University of Dresden, Dresden Germany
| | - Irina G.Obrosova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
28
|
Phenotypic changes in diabetic neuropathy induced by a high-fat diet in diabetic C57BL/6 mice. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:848307. [PMID: 22144990 PMCID: PMC3226416 DOI: 10.1155/2011/848307] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/03/2011] [Accepted: 08/25/2011] [Indexed: 01/05/2023]
Abstract
Emerging evidence suggests that dyslipidemia is an independent risk factor for diabetic neuropathy (DN) (reviewed by Vincent et al. 2009). To experimentally determine how dyslipidemia alters DN, we quantified neuropathic symptoms in diabetic mice fed a high-fat diet. Streptozotocin-induced diabetic C57BL/6 mice fed a high-fat diet developed dyslipidemia and a painful neuropathy (mechanical allodynia) instead of the insensate neuropathy (mechanical insensitivity) that normally develops in this strain. Nondiabetic mice fed a high-fat diet also developed dyslipidemia and mechanical allodynia. Thermal sensitivity was significantly reduced in diabetic compared to nondiabetic mice, but was not worsened by the high-fat diet. Moreover, diabetic mice fed a high-fat diet had significantly slower sensory and motor nerve conduction velocities compared to nondiabetic mice. Overall, dyslipidemia resulting from a high-fat diet may modify DN phenotypes and/or increase risk for developing DN. These results provide new insight as to how dyslipidemia may alter the development and phenotype of diabetic neuropathy.
Collapse
|
29
|
Singh J, Sood S, Muthuraman A. In-vitro evaluation of bioactive compounds, anti-oxidant, lipid peroxidation and lipoxygenase inhibitory potential of Citrus karna L. peel extract. Journal of Food Science and Technology 2011; 51:67-74. [PMID: 24426049 DOI: 10.1007/s13197-011-0479-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/16/2011] [Accepted: 08/01/2011] [Indexed: 02/01/2023]
Abstract
Many medicinal plants have been studied for their antioxidant and their pharmacological activity. Citrus species were well documented as potential antioxidant based therapy for cancer, inflammation, heart disease. Citrus seeds and peels have been shown to possess high antioxidant activity. Therefore, the present study to explore the antioxidant and lipid peroxidation & lipoxygenase inhibitory action of Citrus karna peel extracts were undertaken. Extraction was performed with different solvents of increasing polarity and yield was calculated. Peel extracts were also analyzed for the presence of phenols, flavonoids, vitamin C, and carotenoids. Then the Citrus karna peel extracts were evaluated for the antioxidant and lipid peroxidation & lipoxygenase inhibitory action In-Vitro. In further, the quantification of hesperidin and naringin was carried out by HPLC-DAD method. The results indicated the presence of phenols, flavonoids, vitamin C, carotenoids, hesperidin and naringin in Citrus karna peel extracts with maximum yield of (3.91% w/w). Citrus karna peel extracts were also found to have potential antioxidant and lipid peroxidation & lipoxygenase inhibitory action. Therefore, Citrus karna peel extracts could be used for the future therapeutic medicine due to presence of potential bioactive compounds.
Collapse
Affiliation(s)
- Jagdeep Singh
- Rayat Institute of Pharmacy, Nawanshahr District Near Ropar, Distt Shaheed Bhagat Singh Nagar, Railmajra, Punjab 144533 India
| | - Shailja Sood
- Rayat Institute of Pharmacy, Nawanshahr District Near Ropar, Distt Shaheed Bhagat Singh Nagar, Railmajra, Punjab 144533 India
| | - Arunachalam Muthuraman
- Rayat Institute of Pharmacy, Nawanshahr District Near Ropar, Distt Shaheed Bhagat Singh Nagar, Railmajra, Punjab 144533 India ; Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, 147002 Punjab India
| |
Collapse
|
30
|
Abstract
Between 25% and 62% of patients with idiopathic peripheral neuropathy are reported to have prediabetes, and among individuals with prediabetes 11-25% are thought to have peripheral neuropathy, and 13-21% have neuropathic pain. Population-based studies suggest a gradient for the prevalence of neuropathy, being highest in patients with manifest diabetes mellitus, followed by individuals with impaired glucose tolerance then impaired fasting glucose and least in those with normoglycemia. The most sensitive test to assess glucose metabolism status is the oral glucose tolerance test. Pathogenesis involves hyperglycemia, microvascular abnormalities, dyslipidemia and the metabolic syndrome. Individuals with prediabetes have less severe neuropathy than those with manifest diabetes mellitus. Sensory modalities are more frequently affected than motor modalities, but impairment of small nerve fibers could be the earliest detectable sign. Diagnosis should rely on careful clinical examination, with emphasis on the evaluation of small fibers. An oral glucose tolerance test should be performed in patients with idiopathic neuropathy. The only treatment with any efficacy is lifestyle modification to improve control of hyperglycemia and cardiovascular risk factors, but long-term efficacy of this approach has not been established. This Review summarizes the current evidence on the association between prediabetes and neuropathy.
Collapse
|
31
|
Watcho P, Stavniichuk R, Tane P, Shevalye H, Maksimchyk Y, Pacher P, Obrosova IG. Evaluation of PMI-5011, an ethanolic extract of Artemisia dracunculus L., on peripheral neuropathy in streptozotocin-diabetic mice. Int J Mol Med 2011; 27:299-307. [PMID: 21225225 DOI: 10.3892/ijmm.2011.597] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 12/13/2010] [Indexed: 11/05/2022] Open
Abstract
We previously reported that PMI-5011, an ethanolic extract of Artemisia dracunculus L., alleviates peripheral neuropathy in high fat diet-fed mice, a model of prediabetes and obesity developing oxidative stress and pro-inflammatory changes in the peripheral nervous system. This study evaluated PMI-5011 on established functional, structural, and biochemical changes associated with Type I diabetic peripheral neuropathy. C57Bl6/J mice with streptozotocin-induced diabetes of a 12-week duration, developed motor and sensory nerve conduction velocity deficits, thermal and mechanical hypoalgesia, tactile allodynia, and intra-epidermal nerve fiber loss. PMI-5011 (500 mg/kg/day for 7 weeks) alleviated diabetes-induced nerve conduction slowing, small sensory nerve fiber dysfunction, and increased intra-epidermal nerve fiber density. PMI-5011 blunted sciatic nerve and spinal cord 12/15-lipoxygenase activation and oxidative-nitrosative stress, without ameliorating hyperglycemia or reducing sciatic nerve sorbitol pathway intermediate accumulation. In conclusion, PMI-5011, a safe and non-toxic botanical extract, may find use in the treatment of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Pierre Watcho
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res 2010; 50:115-31. [PMID: 20970452 DOI: 10.1016/j.plipres.2010.10.005] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 12/25/2022]
Abstract
The 12/15-lipoxygenase enzymes react with fatty acids producing active lipid metabolites that are involved in a number of significant disease states. The latter include type 1 and type 2 diabetes (and associated complications), cardiovascular disease, hypertension, renal disease, and the neurological conditions Alzheimer's disease and Parkinson's disease. A number of elegant studies over the last thirty years have contributed to unraveling the role that lipoxygenases play in chronic inflammation. The development of animal models with targeted gene deletions has led to a better understanding of the role that lipoxygenases play in various conditions. Selective inhibitors of the different lipoxygenase isoforms are an active area of investigation, and will be both an important research tool and a promising therapeutic target for treating a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Anca D Dobrian
- Eastern Virginia Medical School, Department of Physiological Sciences, Lewis Hall, Room 2027, 700 W. Olney Road, Norfolk, VA 23507, United States.
| | | | | | | | | | | |
Collapse
|