1
|
Turovskaya MV, Gavrish MS, Tarabykin VS, Babaev AA. Overexpression of BDNF Suppresses the Epileptiform Activity in Cortical Neurons of Heterozygous Mice with a Transcription Factor Sip1 Deletion. Int J Mol Sci 2024; 25:10537. [PMID: 39408863 PMCID: PMC11476396 DOI: 10.3390/ijms251910537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Since genetic mutations during brain development play a significant role in the genesis of epilepsy, and such genetically determined epilepsies are the most difficult to treat, there is a need to study the mechanisms of epilepsy development with deletions of various transcription factors. We utilized heterozygous mice (Sip1wt/fl) with a neuronal deletion of the transcription factor Sip1 (Smad interacting protein 1) in the cerebral cortex. These mice are characterized by cognitive impairment and are prone to epilepsy. It is known that the brain-derived neurotrophic factor (BDNF) has a neuroprotective effect in various neurodegenerative diseases. Therefore, we created and applied an adeno-associated construct carrying the BDNF sequence selectively in neurons. Using in vitro and in vivo research models, we were able to identify a key gen, the disruption of whose expression accompanies the deletion of Sip1 and contributes to hyperexcitation of neurons in the cerebral cortex. Overexpression of BDNF in cortical neurons eliminated epileptiform activity in neurons obtained from heterozygous Sip1 mice in a magnesium-free model of epileptiform activity (in vitro). Using PCR analysis, it was possible to identify correlations in the expression profile of genes encoding key proteins responsible for neurotransmission and neuronal survival. The effects of BDNF overexpression on the expression profiles of these genes were also revealed. Using BDNF overexpression in cortical neurons of heterozygous Sip1 mice, it was possible to achieve 100% survival in the pilocarpine model of epilepsy. At the level of gene expression in the cerebral cortex, patterns were established that may be involved in the protection of brain cells from epileptic seizures and the restoration of cognitive functions in mice with Sip1 deletion.
Collapse
Affiliation(s)
- Maria V. Turovskaya
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, 603022 Nizhny Novgorod, Russia; (M.S.G.); (A.A.B.)
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya st. building 3, 142290 Pushchino, Russia
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, 603022 Nizhny Novgorod, Russia; (M.S.G.); (A.A.B.)
| | - Viktor S. Tarabykin
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alexei A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave, 603022 Nizhny Novgorod, Russia; (M.S.G.); (A.A.B.)
| |
Collapse
|
2
|
Lai G, Malavolta M, Marcozzi S, Bigossi G, Giuliani ME, Casoli T, Balietti M. Late-onset major depressive disorder: exploring the therapeutic potential of enhancing cerebral brain-derived neurotrophic factor expression through targeted microRNA delivery. Transl Psychiatry 2024; 14:352. [PMID: 39227372 PMCID: PMC11371930 DOI: 10.1038/s41398-024-02935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 09/05/2024] Open
Abstract
Major depressive disorder (MDD) is a severe psychiatric condition that significantly impacts the overall quality of life. Although MDD can occur across all age groups, it is notably prevalent among older individuals, with the aggravating circumstance that the clinical condition is frequently overlooked and undertreated. Furthermore, older adults often encounter resistance to standard treatments, experience adverse events, and face challenges associated with polypharmacy. Given that late-life MDD is associated with heightened rates of disability and mortality, as well as imposing a significant economic and logistical burden on healthcare systems, it becomes imperative to explore novel therapeutic approaches. These could serve as either supplements to standard guidelines or alternatives for non-responsive patients, potentially enhancing the management of geriatric MDD patients. This review aims to delve into the potential of microRNAs targeting Brain-Derived Neurotrophic Factor (BDNF). In MDD, a significant decrease in both central and peripheral BDNF has been well-documented, raising implications for therapy response. Notably, BDNF appears to be a key player in the intricate interplay between microRNA-induced neuroplasticity deficits and neuroinflammation, both processes deeply implicated in the onset and progression of the disease. Special emphasis is placed on delivery methods, with a comprehensive comparison of the strengths and weaknesses of each proposed approach. Our hypothesis proposes that employing multiple microRNAs concurrently, with the ability to directly influence BDNF and activate closely associated pathways, may represent the most promising strategy. Regarding vehicles, although the perfect nanoparticle remains elusive, considering the trade-offs, liposomes emerge as the most suitable option.
Collapse
Affiliation(s)
- Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy.
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Tiziana Casoli
- Center of Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Marta Balietti
- Center of Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
3
|
Wang S, Zhao J, Wang C, Yao Y, Song Z, Li L, Jiang J. miR-206-3p Targets Brain-Derived Neurotrophic Factor and Affects Postoperative Cognitive Function in Aged Mice. Neurochem Res 2024; 49:2005-2020. [PMID: 38814357 DOI: 10.1007/s11064-024-04174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Postoperative cognitive dysfunction (POCD) occurs after surgery and severely impairs patients' quality of life. Finding POCD-associated variables can aid in its diagnosis and prognostication. POCD is associated with noncoding RNAs, such as microRNAs (miRNAs), involved in metabolic function, immune response alteration, and cognitive ability impairment; however, the underlying mechanisms remain unclear. The aim of this study was to investigate hub miRNAs (i.e., miRNAs that have an important regulatory role in diseases) regulating postoperative cognitive function and the associated mechanisms. Hub miRNAs were identified by bioinformatics, and their expression in mouse hippocampus tissues was determined using real-time quantitative polymerase chain reaction. Hub miRNAs were overexpressed or knocked down in cell and animal models to test their effects on neuroinflammation and postoperative cognitive function. Six differentially expressed hub miRNAs were identified. miR-206-3p was the only broadly conserved miRNA, and it was used in follow-up studies and animal experiments. Its inhibitors reduced the release of proinflammatory cytokines in BV-2 microglia by regulating its target gene, brain-derived neurotrophic factor (BDNF), and the downstream signaling pathways. miR-206-3p inhibition suppressed microglial activation in the hippocampi of mice and improved learning and cognitive decline. Therefore, miR-206-3p significantly affects POCD, implying its potential as a therapeutic target.
Collapse
Affiliation(s)
- Shentong Wang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jia Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Chengran Wang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yuhan Yao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhiyao Song
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Longyun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Jinlan Jiang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
4
|
Balan I, Boero G, Chéry SL, McFarland MH, Lopez AG, Morrow AL. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life (Basel) 2024; 14:582. [PMID: 38792602 PMCID: PMC11122352 DOI: 10.3390/life14050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Yilmaz U, Tanbek K, Gul S, Koc A, Gul M, Sandal S. Intracerebroventricular BDNF infusion may reduce cerebral ischemia/reperfusion injury by promoting autophagy and suppressing apoptosis. J Cell Mol Med 2024; 28:e18246. [PMID: 38520223 PMCID: PMC10960178 DOI: 10.1111/jcmm.18246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
Here, it was aimed to investigate the effects of intracerebroventricular (ICV) Brain Derived Neurotrophic Factor (BDNF) infusion for 7 days following cerebral ischemia (CI) on autophagy in neurons in the penumbra. Focal CI was created by the occlusion of the right middle cerebral artery. A total of 60 rats were used and divided into 4 groups as Control, Sham CI, CI and CI + BDNF. During the 7-day reperfusion period, aCSF (vehicle) was infused to Sham CI and CI groups, and BDNF infusion was administered to the CI + BDNF group via an osmotic minipump. By the end of the 7th day of reperfusion, Beclin-1, LC3, p62 and cleaved caspase-3 protein levels in the penumbra area were evaluated using Western blot and immunofluorescence. BDNF treatment for 7 days reduced the infarct area after CI, induced the autophagic proteins Beclin-1, LC3 and p62 and suppressed the apoptotic protein cleaved caspase-3. Furthermore, rotarod and adhesive removal test times of BDNF treatment started to improve from the 4th day, and the neurological deficit score from the 5th day. ICV BDNF treatment following CI reduced the infarct area by inducing autophagic proteins Beclin-1, LC3 and p62 and inhibiting the apoptotic caspase-3 protein while its beneficial effects were apparent in neurological tests from the 4th day.
Collapse
Affiliation(s)
- Umit Yilmaz
- Department of Physiology, Faculty of MedicineKarabuk UniversityKarabukTurkey
| | - Kevser Tanbek
- Department of Physiology, Faculty of MedicineInonu UniversityMalatyaTurkey
| | - Semir Gul
- Department of Histology and Embryology, Faculty of MedicineInonu UniversityMalatyaTurkey
| | - Ahmet Koc
- Department of Medical Biology and Genetics, Faculty of MedicineInonu UniversityMalatyaTurkey
| | - Mehmet Gul
- Department of Histology and Embryology, Faculty of MedicineInonu UniversityMalatyaTurkey
| | - Suleyman Sandal
- Department of Physiology, Faculty of MedicineInonu UniversityMalatyaTurkey
| |
Collapse
|
6
|
Xiong HY, Hendrix J, Schabrun S, Wyns A, Campenhout JV, Nijs J, Polli A. The Role of the Brain-Derived Neurotrophic Factor in Chronic Pain: Links to Central Sensitization and Neuroinflammation. Biomolecules 2024; 14:71. [PMID: 38254671 PMCID: PMC10813479 DOI: 10.3390/biom14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic pain is sustained, in part, through the intricate process of central sensitization (CS), marked by maladaptive neuroplasticity and neuronal hyperexcitability within central pain pathways. Accumulating evidence suggests that CS is also driven by neuroinflammation in the peripheral and central nervous system. In any chronic disease, the search for perpetuating factors is crucial in identifying therapeutic targets and developing primary preventive strategies. The brain-derived neurotrophic factor (BDNF) emerges as a critical regulator of synaptic plasticity, serving as both a neurotransmitter and neuromodulator. Mounting evidence supports BDNF's pro-nociceptive role, spanning from its pain-sensitizing capacity across multiple levels of nociceptive pathways to its intricate involvement in CS and neuroinflammation. Moreover, consistently elevated BDNF levels are observed in various chronic pain disorders. To comprehensively understand the profound impact of BDNF in chronic pain, we delve into its key characteristics, focusing on its role in underlying molecular mechanisms contributing to chronic pain. Additionally, we also explore the potential utility of BDNF as an objective biomarker for chronic pain. This discussion encompasses emerging therapeutic approaches aimed at modulating BDNF expression, offering insights into addressing the intricate complexities of chronic pain.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, ON N6A 4V2, Canada
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (J.H.); (A.W.); (J.V.C.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
7
|
Balan I, Grusca A, O’Buckley TK, Morrow AL. Neurosteroid [3α,5α]-3-hydroxy-pregnan-20-one enhances IL-10 production via endosomal TRIF-dependent TLR4 signaling pathway. Front Endocrinol (Lausanne) 2023; 14:1299420. [PMID: 38179300 PMCID: PMC10765172 DOI: 10.3389/fendo.2023.1299420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Background Previous studies demonstrated the inhibitory effect of allopregnanolone (3α,5α-THP) on the activation of inflammatory toll-like receptor 4 (TLR4) signals in RAW264.7 macrophages and the brains of selectively bred alcohol-preferring (P) rats. In the current study, we investigated the impact of 3α,5α-THP on the levels of IL-10 and activation of the TRIF-dependent endosomal TLR4 pathway. Methods The amygdala and nucleus accumbens (NAc) of P rats, which exhibit innately activated TLR4 pathways as well as RAW264.7 cells, were used. Enzyme-linked immunosorbent assays (ELISA) and immunoblotting assays were used to ascertain the effects of 3α,5α-THP on the TRIF-dependent endosomal TLR4 pathway and endosomes were isolated to examine translocation of TLR4 and TRIF. Additionally, we investigated the effects of 3α,5α-THP and 3α,5α-THDOC (0.1, 0.3, and 1.0 µM) on the levels of IL-10 in RAW264.7 macrophages. Finally, we examined whether inhibiting TRIF (using TRIF siRNA) in RAW264.7 cells altered the levels of IL-10. Results 3α,5α-THP administration facilitated activation of the endosomal TRIF-dependent TLR4 pathway in males, but not female P rats. 3α,5α-THP increased IL-10 levels (+13.2 ± 6.5%) and BDNF levels (+21.1 ± 11.5%) in the male amygdala. These effects were associated with increases in pTRAM (+86.4 ± 28.4%), SP1 (+122.2 ± 74.9%), and PI(3)K-p110δ (+61.6 ± 21.6%), and a reduction of TIRAP (-13.7 ± 6.0%), indicating the activation of the endosomal TRIF-dependent TLR4 signaling pathway. Comparable effects were observed in NAc of these animals. Furthermore, 3α,5α-THP enhanced the accumulation of TLR4 (+43.9 ± 11.3%) and TRIF (+64.8 ± 32.8%) in endosomes, with no significant effect on TLR3 accumulation. Additionally, 3α,5α-THP facilitated the transition from early endosomes to late endosomes (increasing Rab7 levels: +35.8 ± 18.4%). In RAW264.7 cells, imiquimod (30 µg/mL) reduced IL-10 while 3α,5α-THP and 3α,5α-THDOC (0.1, 0.3, and 1.0 µM) restored IL-10 levels. To determine the role of the TRIF-dependent TLR4 signaling pathway in IL-10 production, the downregulation of TRIF (-62.9 ± 28.2%) in RAW264.7 cells led to a reduction in IL-10 levels (-42.3 ± 8.4%). TRIF (-62.9 ± 28.2%) in RAW264.7 cells led to a reduction in IL-10 levels (-42.3 ± 8.4%) and 3α,5α-THP (1.0 µM) no longer restored the reduced IL-10 levels. Conclusion The results demonstrate 3α,5α-THP enhancement of the endosomal TLR4-TRIF anti-inflammatory signals and elevations of IL-10 in male P rat brain that were not detected in female P rat brain. These effects hold significant implications for controlling inflammatory responses in both the brain and peripheral immune cells.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Adelina Grusca
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
8
|
da Cunha MJ, Pires Dorneles G, Peres A, Maurer S, Horn K, Souza Pagnussat A. tDCS does not add effect to foot drop stimulator and gait training in improving clinical parameters and neuroplasticity biomarkers in chronic post-stroke: randomized controlled trial. Int J Neurosci 2023:1-10. [PMID: 37855112 DOI: 10.1080/00207454.2023.2272041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) and foot drop stimulators (FDS) are widely used for stroke rehabilitation. However, no study has investigated if tDCS could boost the effects of FDS and gait training in improving clinical parameters and neuroplasticity biomarkers of chronic post-stroke subjects. OBJECTIVE To investigate the effects of combining tDCS and FDS on motor impairment, functional mobility, and brain-derived neurotrophic factor (BDNF) serum levels. Also, to evaluate the effects of this protocol on the insulin-like growth factor-1 (IGF-1), insulin growth factor-binding proteins-3 (IGFBP-3), interleukin (IL) 6 and 10, and tumor necrosis factor-α (TNF-α) levels. METHODS Thirty-two chronic post-stroke individuals were randomized to tDCS plus FDS or sham tDCS plus FDS groups. Both groups underwent ten gait training sessions for two weeks using a FDS device and real or sham tDCS. Blood samples and clinical data were acquired before and after the intervention. Motor impairment was assessed by the Fugl-Meyer Assessment and functional mobility using the Timed up and Go test. RESULTS Both groups improved the motor impairment and functional mobility and increased the BDNF levels. Both groups also increased the IL-10 and decreased the cortisol, IL-6, and TNF-α levels. No difference was observed between groups. CONCLUSION tDCS did not add effect to FDS and gait training in improving clinical parameters and neuroplasticity biomarkers in chronic post-stroke individuals. Only FDS and gait training might be enough for people with chronic stroke to modify some clinical parameters and neuroplasticity biomarkers.
Collapse
Affiliation(s)
- Maira Jaqueline da Cunha
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Movement Analysis and Rehabilitation Laboratory, UFCSPA, Porto Alegre, Brazil
| | - Gilson Pires Dorneles
- Cellular and Molecular Immunology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Alessandra Peres
- Cellular and Molecular Immunology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Simone Maurer
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Movement Analysis and Rehabilitation Laboratory, UFCSPA, Porto Alegre, Brazil
| | - Keli Horn
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Movement Analysis and Rehabilitation Laboratory, UFCSPA, Porto Alegre, Brazil
| | - Aline Souza Pagnussat
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Movement Analysis and Rehabilitation Laboratory, UFCSPA, Porto Alegre, Brazil
- Department of Physical Therapy, GA State University, Atlanta, GA, USA
| |
Collapse
|
9
|
Mottolese N, Uguagliati B, Tassinari M, Cerchier CB, Loi M, Candini G, Rimondini R, Medici G, Trazzi S, Ciani E. Voluntary Running Improves Behavioral and Structural Abnormalities in a Mouse Model of CDKL5 Deficiency Disorder. Biomolecules 2023; 13:1396. [PMID: 37759796 PMCID: PMC10527551 DOI: 10.3390/biom13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene. CDD is characterized by a broad spectrum of clinical manifestations, including early-onset refractory epileptic seizures, intellectual disability, hypotonia, visual disturbances, and autism-like features. The Cdkl5 knockout (KO) mouse recapitulates several features of CDD, including autistic-like behavior, impaired learning and memory, and motor stereotypies. These behavioral alterations are accompanied by diminished neuronal maturation and survival, reduced dendritic branching and spine maturation, and marked microglia activation. There is currently no cure or effective treatment to ameliorate the symptoms of the disease. Aerobic exercise is known to exert multiple beneficial effects in the brain, not only by increasing neurogenesis, but also by improving motor and cognitive tasks. To date, no studies have analyzed the effect of physical exercise on the phenotype of a CDD mouse model. In view of the positive effects of voluntary running on the brain of mouse models of various human neurodevelopmental disorders, we sought to determine whether voluntary daily running, sustained over a month, could improve brain development and behavioral defects in Cdkl5 KO mice. Our study showed that long-term voluntary running improved the hyperlocomotion and impulsivity behaviors and memory performance of Cdkl5 KO mice. This is correlated with increased hippocampal neurogenesis, neuronal survival, spine maturation, and inhibition of microglia activation. These behavioral and structural improvements were associated with increased BDNF levels. Given the positive effects of BDNF on brain development and function, the present findings support the positive benefits of exercise as an adjuvant therapy for CDD.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Camilla Bruna Cerchier
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
10
|
Jashire Nezhad N, Safari A, Namavar MR, Nami M, Karimi-Haghighi S, Pandamooz S, Dianatpour M, Azarpira N, Khodabandeh Z, Zare S, Hooshmandi E, Bayat M, Owjfard M, Zafarmand SS, Fadakar N, Jaberi AR, Salehi MS, Borhani-Haghighi A. Short-term beneficial effects of human dental pulp stem cells and their secretome in a rat model of mild ischemic stroke. J Stroke Cerebrovasc Dis 2023; 32:107202. [PMID: 37354874 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/01/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023] Open
Abstract
Although cell therapy has been applied in regenerative medicine for decades, recent years have seen greatly increased attention being given to the use of stem cell-based derivatives such as cell-free secretome. Dental pulp stem cells (DPSCs) are widely available, easily accessible, and have high neuroprotective and angiogenic properties. In addition, DPSC-derived secretome contains a rich mixture of trophic factors. The current investigation evaluated the short-term therapeutic effects of human DPSCs and their secretome in a rat model of mild ischemic stroke. Mild ischemic stroke was induced by 30 min middle cerebral artery occlusion, and hDPSCs or their secretome was administered intra-arterially and intranasally. Neurological function, infarct size, spatial working memory, and relative expression of seven target genes in two categories of neurotrophic and angiogenic factors were assessed three days after stroke. In the short-term, all treatments reduced the severity of neurological and histological deficits caused by ischemic stroke. Moreover, transient middle cerebral artery occlusion led to the striatal and cortical over-expression of BDNF, NT-3, and angiogenin, while NGF and VEGF expression was reduced. Almost all interventions were able to modulate the expression of target genes after stroke. The obtained data revealed that single intra-arterial administration of hDPSCs or their secretome, single intranasal transplantation of hDPSCs, or repeated intranasal administration of hDPSC-derived secretome was able to ameliorate the devastating effects of a mild stroke, at least in the short-term.
Collapse
Affiliation(s)
- Nahid Jashire Nezhad
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry & Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nima Fadakar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
11
|
Tang X, Wu L, Zhu J, Xu M, Li S, Zeng G, Zhu S, Jiang Y. GABAergic neurons differentiated from BDNF- and Dlx2-modified neural stem cells restore disrupted neural circuits in brainstem stroke. Stem Cell Res Ther 2023; 14:170. [PMID: 37365654 DOI: 10.1186/s13287-023-03378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Brainstem stroke causes severe and persistent neurological impairment. Due to the limited spontaneous recovery and regeneration of the disrupted neural circuits, transplantation of exogenous neural stem cells (NSCs) was an alternative, while there were limitations for primitive NSCs. METHODS We established a mouse model of brainstem stroke by injecting endothelin in the right pons. Brain-derived neurotrophic factor (BDNF)- and distal-less homeobox 2 (Dlx2)-modified NSCs were transplanted to treat brainstem stroke. Transsynaptic viral tracking, immunostaining, magnetic resonance imaging, behavioral testing, and whole-cell patch clamp recordings were applied to probe the pathophysiology and therapeutic prospects of BDNF- and Dlx2-modified NSCs. RESULTS GABAergic neurons were predominantly lost after the brainstem stroke. No endogenous NSCs were generated in situ or migrated from the neurogenesis niches within the brainstem infarct region. Co-overexpressions of BDNF and Dlx2 not only promoted the survival of NSCs, but also boosted the differentiation of NSCs into GABAergic neurons. Results from transsynaptic virus tracking, immunostaining, and evidence from whole-cell patch clamping revealed the morphological and functional integration of the grafted BDNF- and Dlx2-modified NSCs-derived neurons with the host neural circuits. Neurological function was improved by transplantation of BDNF- and Dlx2-modified NSCs in brainstem stroke. CONCLUSIONS These findings demonstrated that BDNF- and Dlx2-modified NSCs differentiated into GABAergic neurons, integrated into and reconstituted the host neural networks, and alleviated the ischemic injury. It thus provided a potential therapeutic strategy for brainstem stroke.
Collapse
Affiliation(s)
- Xiangyue Tang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, 510260, China
| | - Li Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, 510260, China
| | - Juehua Zhu
- Department of Neurology, The First Affiliated Hospital of SooChow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, China
| | - Mindong Xu
- School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, 510260, China
| | - Shaojun Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, 510260, China
| | - Guanfeng Zeng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, 510260, China
| | - Shuanggen Zhu
- Shenzhen Longhua District Central Hospital, The Affiliated Hospital of Guangdong Medical University, 187 Guanlan West Road, Shenzhen, 518110, China.
- Department of Neurology, People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Yongjun Jiang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, 510260, China.
| |
Collapse
|
12
|
Li L, Wang X, Guo J, Chen Y, Wang Z. Effect of acupuncture in the acute phase of intracerebral hemorrhage on the prognosis and serum BDNF: a randomized controlled trial. Front Neurosci 2023; 17:1167620. [PMID: 37123377 PMCID: PMC10133506 DOI: 10.3389/fnins.2023.1167620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a common cerebrovascular disease, with a high rate of disability. In the literature on Chinese traditional medicine, there is increasing evidence that acupuncture can help hematoma absorption and improve neurological deficits after cerebral hemorrhage. Brain-derived neurotrophic factor (BDNF), one of the most studied neurotrophic factors, is involved in a variety of neurological functions and plays an important role in brain injury recovery. We investigated the effect of acupuncture intervention in the acute phase of ICH on the prognosis and serum BDNF levels of several patient groups. Objective To investigate the influence of acupuncture on the prognosis and brain-derived neurotrophic factor (BDNF) levels in patients in the acute phase of ICH. Methods From November 2021 to May 2022, 109 subjects were consecutively enrolled, including patients with ICH, who were randomized into the acupuncture group (AG) and sham acupuncture group (SAG), and a control group (CG). The CG received the same acupuncture intervention as the AG, and the SAG received sham acupuncture, with 14 interventions in each group. The level of consciousness of patients with ICH was assessed and serum BDNF levels were measured in all three groups before the intervention and at 3 weeks after onset, and the level of consciousness and outcomes were assessed at 12 weeks after onset. Results After the intervention, the level of consciousness of the AG improved significantly (P < 0.05); the BDNF level of only the AG increased significantly (P < 0.05); the changes in Glasgow Coma Scale (GCS) score and BDNF level were significantly greater in the AG than in the SAG (P < 0.05), especially for locomotion (P < 0.05). At 12 weeks post-onset, the AG showed better outcomes and recovery of consciousness than the SAG (P < 0.05).
Collapse
Affiliation(s)
| | | | | | | | - Zhenyu Wang
- Department of Rehabilitation Medicine, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Inhibition of Microglial GSK3β Activity Is Common to Different Kinds of Antidepressants: A Proposal for an In Vitro Screen to Detect Novel Antidepressant Principles. Biomedicines 2023; 11:biomedicines11030806. [PMID: 36979785 PMCID: PMC10045655 DOI: 10.3390/biomedicines11030806] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Depression is a major public health concern. Unfortunately, the present antidepressants often are insufficiently effective, whilst the discovery of more effective antidepressants has been extremely sluggish. The objective of this review was to combine the literature on depression with the pharmacology of antidepressant compounds, in order to formulate a conceivable pathophysiological process, allowing proposals how to accelerate the discovery process. Risk factors for depression initiate an infection-like inflammation in the brain that involves activation microglial Toll-like receptors and glycogen synthase kinase-3β (GSK3β). GSK3β activity alters the balance between two competing transcription factors, the pro-inflammatory/pro-oxidative transcription factor NFκB and the neuroprotective, anti-inflammatory and anti-oxidative transcription factor NRF2. The antidepressant activity of tricyclic antidepressants is assumed to involve activation of GS-coupled microglial receptors, raising intracellular cAMP levels and activation of protein kinase A (PKA). PKA and similar kinases inhibit the enzyme activity of GSK3β. Experimental antidepressant principles, including cannabinoid receptor-2 activation, opioid μ receptor agonists, 5HT2 agonists, valproate, ketamine and electrical stimulation of the Vagus nerve, all activate microglial pathways that result in GSK3β-inhibition. An in vitro screen for NRF2-activation in microglial cells with TLR-activated GSK3β activity, might therefore lead to the detection of totally novel antidepressant principles with, hopefully, an improved therapeutic efficacy.
Collapse
|
14
|
Qin S, Zhang Z, Zhao Y, Liu J, Qiu J, Gong Y, Fan W, Guo Y, Guo Y, Xu Z, Guo Y. The impact of acupuncture on neuroplasticity after ischemic stroke: a literature review and perspectives. Front Cell Neurosci 2022; 16:817732. [PMID: 36439200 PMCID: PMC9685811 DOI: 10.3389/fncel.2022.817732] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/24/2022] [Indexed: 09/07/2023] Open
Abstract
Ischemic stroke is common in the elderly, and is one of the main causes of long-term disability worldwide. After ischemic stroke, spontaneous recovery and functional reconstruction take place. These processes are possible thanks to neuroplasticity, which involves neurogenesis, synaptogenesis, and angiogenesis. However, the repair of ischemic damage is not complete, and neurological deficits develop eventually. The WHO recommends acupuncture as an alternative and complementary method for the treatment of stroke. Moreover, clinical and experimental evidence has documented the potential of acupuncture to ameliorate ischemic stroke-induced neurological deficits, particularly sequelae such as dyskinesia, spasticity, cognitive impairment, and dysphagia. These effects are related to the ability of acupuncture to promote spontaneous neuroplasticity after ischemic stroke. Specifically, acupuncture can stimulate neurogenesis, activate axonal regeneration and sprouting, and improve the structure and function of synapses. These processes modify the neural network and function of the damaged brain area, producing the improvement of various skills and adaptability. Astrocytes and microglia may be involved in the regulation of neuroplasticity by acupuncture, such as by the production and release of a variety of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Moreover, the evidence presented indicates that acupuncture promotes neuroplasticity by modulating the functional reconstruction of the whole brain after ischemia. Therefore, the promotion of neuroplasticity is expected to become a new target for acupuncture in the treatment of neurological deficits after ischemic stroke, and research into the mechanisms responsible for these actions will be of significant clinical value.
Collapse
Affiliation(s)
- Siru Qin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zichen Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yadan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiwen Qiu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Fan
- Department of Rehabilitation Physical Therapy Course, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Yongming Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Guo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Acupuncture Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Agh F, Hasani M, Khazdouz M, Amiri F, Heshmati J, Aryaeian N. The Effect of Zinc Supplementation on Circulating Levels of Brain-Derived Neurotrophic Factor (BDNF): A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int J Prev Med 2022; 13:117. [PMID: 36276891 PMCID: PMC9580557 DOI: 10.4103/ijpvm.ijpvm_478_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/08/2021] [Indexed: 11/04/2022] Open
Abstract
Background There are randomized controlled trials (RCTs) about the zinc supplementation effect on circulating levels of brain-derived neurotrophic factor (BDNF). However, the findings of these studies are inconsistent. The purpose of this systematic review and meta-analysis was to determine the zinc supplementation effect on BDNF and zinc levels in published RCTs. Methods We searched PubMed/Medline, Cochrane, Scopus, ISI Web of Science, EMBASE, "Clinicaltrials.gov", "Cochrane Register of Controlled Trials", "IRCT" and also key journals up to 2019. RCTs with two intervention (zinc) and control (placebo) groups that evaluated zinc supplementation efficacy on BDNF levels were included. Study heterogeneity was assessed, and then, meta-analysis was performed using the fixed-effects model. Results Four studies were included in the present secondary analysis. Compared with placebo, zinc supplementation significantly enhanced circulating levels of BDNF [(SMD): 0.31, 95% confidence interval (CI): (0.22, 0.61)] and zinc [(SMD): 0.88, 95% CI: (0.54, 1.22)] with no considerable heterogeneity among the studies [(Q = 3.46; P = 0.32; I2% = 13.4); (Q = 2.01; P = 0, 37; I2% = 0.5), respectively]. Conclusions Our results propose that zinc supplementation can increase the circulating levels of BDNF and zinc. This study was registered at PROSPERO as CRD42020149513.
Collapse
Affiliation(s)
- Fahimeh Agh
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Motahareh Hasani
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Khazdouz
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amiri
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naheed Aryaeian
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran,Address for correspondence: Dr. Naheed Aryaeian, Department of Nutrition, School of Health, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, Iran. E-mail:
| |
Collapse
|
16
|
Kang EM, Jia YB, Wang JY, Wang GY, Chen HJ, Chen XY, Ye YQ, Zhang X, Su XH, Wang JY, He XS. Downregulation of microRNA-124-3p promotes subventricular zone neural stem cell activation by enhancing the function of BDNF downstream pathways after traumatic brain injury in adult rats. CNS Neurosci Ther 2022; 28:1081-1092. [PMID: 35481944 PMCID: PMC9160452 DOI: 10.1111/cns.13845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Aims In this study, the effect of intracerebral ventricle injection with a miR‐124‐3p agomir or antagomir on prognosis and on subventricular zone (SVZ) neural stem cells (NSCs) in adult rats with moderate traumatic brain injury (TBI) was investigated. Methods Model rats with moderate controlled cortical impact (CCI) were established and verified as described previously. The dynamic changes in miR‐124‐3p and the status of NSCs in the SVZ were analyzed. To evaluate the effect of lateral ventricle injection with miR‐124‐3p analogs and inhibitors after TBI, modified neurological severity scores (mNSSs) and rotarod tests were used to assess motor function prognosis. The variation in SVZ NSC marker expression was also explored. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of predicted miR‐124‐3p targets was performed to infer miR‐124‐3p functions, and miR‐124‐3p effects on pivotal predicted targets were further explored. Results Administration of miR‐124 inhibitors enhanced SVZ NSC proliferation and improved the motor function of TBI rats. Functional analysis of miR‐124 targets revealed high correlations between miR‐124 and neurotrophin signaling pathways, especially the TrkB downstream pathway. PI3K, Akt3, and Ras were found to be crucial miR‐124 targets and to be involved in most predicted functional pathways. Interference with miR‐124 expression in the lateral ventricle affected the PI3K/Akt3 and Ras pathways in the SVZ, and miR‐124 inhibitors intensified the potency of brain‐derived neurotrophic factor (BDNF) in SVZ NSC proliferation after TBI. Conclusion Disrupting miR‐124 expression through lateral ventricle injection has beneficial effects on neuroregeneration and TBI prognosis. Moreover, the combined use of BDNF and miR‐124 inhibitors might lead to better outcomes in TBI than BDNF treatment alone.
Collapse
Affiliation(s)
- En-Ming Kang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Yi-Bin Jia
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Jia-You Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Guan-Yi Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Hui-Jun Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xiao-Yan Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Yu-Qin Ye
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China.,Department of Neurosurgery, PLA 163rd Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xin-Hong Su
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Jing-Yu Wang
- Teaching and Research Support Center, Engineering University of Chinese Armed Police Force, Xi'an, Shaanxi, China
| | - Xiao-Sheng He
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
17
|
Zhou JF, Xiong Y, Kang X, Pan Z, Zhu Q, Goldbrunner R, Stavrinou L, Lin S, Hu W, Zheng F, Stavrinou P. Application of stem cells and exosomes in the treatment of intracerebral hemorrhage: an update. Stem Cell Res Ther 2022; 13:281. [PMID: 35765072 PMCID: PMC9241288 DOI: 10.1186/s13287-022-02965-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/19/2022] [Indexed: 12/14/2022] Open
Abstract
Non-traumatic intracerebral hemorrhage is a highly destructive intracranial disease with high mortality and morbidity rates. The main risk factors for cerebral hemorrhage include hypertension, amyloidosis, vasculitis, drug abuse, coagulation dysfunction, and genetic factors. Clinically, surviving patients with intracerebral hemorrhage exhibit different degrees of neurological deficits after discharge. In recent years, with the development of regenerative medicine, an increasing number of researchers have begun to pay attention to stem cell and exosome therapy as a new method for the treatment of intracerebral hemorrhage, owing to their intrinsic potential in neuroprotection and neurorestoration. Many animal studies have shown that stem cells can directly or indirectly participate in the treatment of intracerebral hemorrhage through regeneration, differentiation, or secretion. However, considering the uncertainty of its safety and efficacy, clinical studies are still lacking. This article reviews the treatment of intracerebral hemorrhage using stem cells and exosomes from both preclinical and clinical studies and summarizes the possible mechanisms of stem cell therapy. This review aims to provide a reference for future research and new strategies for clinical treatment.
Collapse
Affiliation(s)
- Jian-Feng Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Xiaodong Kang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Qiangbin Zhu
- Department of Neurosurgery, Hui'an County Hospital of Fujian Province, Quanzhou, Fujian, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, Athens Medical School, "Attikon" University Hospital, National and Kapodistrian University, Athens, Greece
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| | - Pantelis Stavrinou
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany.,Neurosurgery, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
18
|
Alqudah M, Khanfar M, Alfaqih M, Al‑Shboul O, Al‑U'datt D, Al‑Dwairi A, Allouh M. Correlation between vitamin D and serum brain derived neurotropic factor levels in type 2 diabetes mellitus patients. Biomed Rep 2022; 16:54. [PMID: 35620310 PMCID: PMC9112377 DOI: 10.3892/br.2022.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes Mellitus (DM) currently ranks as the most common endocrine disorder worldwide. Current opinion views DM as a group of heterogeneous metabolic diseases characterized by hyperglycemia triggered by defects in the ability of the body to produce or use insulin in type 1 and 2 DM, respectively. Brain-derived neurotrophic factor (BDNF), one of the neurotrophin family of growth factors, has been linked to the pathogenesis of DM and insulin resistance. Moreover, vitamin D has been associated with insulin resistance and DM. Recently, the interactions between vitamin D and BDNF have been investigated in diabetic rats. However, this correlation has never been investigated in humans. Thus, the aim of the present study was to assess the alterations in serum BDNF and vitamin D levels in T2DM patients in Jordan, prior to and following vitamin D supplementation. A combination of non-experimental case-control and experimental designed studies were utilized to assess the relationship between serum BDNF and vitamin D levels in T2DM patients. The levels of BDNF and vitamin D were measured using commercially available ELISA kits, and fasting blood glucose (FBG) and HbA1c levels were measured in medical labs. The results showed that diabetic patients had lower levels of serum vitamin D and higher levels of BDNF compared with the healthy controls. Moreover, linear regression analysis indicated that BDNF levels were inversely correlated with serum vitamin D levels. Furthermore, vitamin D supplementation significantly increased vitamin D serum levels and decreased BDNF serum levels in diabetic patients. Intriguingly, FBG and HbA1c levels were significantly improved post vitamin D supplementation. These data demonstrate a positive effect of vitamin D supplementation in diabetic patients suggesting the implementation of vitamin D as part of future T2DM treatment plans. However, additional studies are needed to investigate the direct link between vitamin D, BDNF, and T2DM.
Collapse
Affiliation(s)
- Mohammad Alqudah
- Department of Physiology and Biochemistry, School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mariam Khanfar
- Department of Physiology and Biochemistry, School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mahmoud Alfaqih
- Department of Physiology and Biochemistry, School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Othman Al‑Shboul
- Department of Physiology and Biochemistry, School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Doa'a Al‑U'datt
- Department of Physiology and Biochemistry, School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed Al‑Dwairi
- Department of Physiology and Biochemistry, School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammed Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
19
|
Cramer T, Gill R, Thirouin ZS, Vaas M, Sampath S, Martineau F, Noya SB, Panzanelli P, Sudharshan TJJ, Colameo D, Chang PKY, Wu PY, Shi R, Barker PA, Brown SA, Paolicelli RC, Klohs J, McKinney RA, Tyagarajan SK. Cross-talk between GABAergic postsynapse and microglia regulate synapse loss after brain ischemia. SCIENCE ADVANCES 2022; 8:eabj0112. [PMID: 35245123 PMCID: PMC8896802 DOI: 10.1126/sciadv.abj0112] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Microglia interact with neurons to facilitate synapse plasticity; however, signal(s) contributing to microglia activation for synapse elimination in pathology are not fully understood. Here, using in vitro organotypic hippocampal slice cultures and transient middle cerebral artery occlusion (MCAO) in genetically engineered mice in vivo, we report that at 24 hours after ischemia, microglia release brain-derived neurotrophic factor (BDNF) to downregulate glutamatergic and GABAergic synapses within the peri-infarct area. Analysis of the cornu ammonis 1 (CA1) in vitro shows that proBDNF and mBDNF downregulate glutamatergic dendritic spines and gephyrin scaffold stability through p75 neurotrophin receptor (p75NTR) and tropomyosin receptor kinase B (TrkB) receptors, respectively. After MCAO, we report that in the peri-infarct area and in the corresponding contralateral hemisphere, similar neuroplasticity occurs through microglia activation and gephyrin phosphorylation at serine-268 and serine-270 in vivo. Targeted deletion of the Bdnf gene in microglia or GphnS268A/S270A (phospho-null) point mutations protects against ischemic brain damage, neuroinflammation, and synapse downregulation after MCAO.
Collapse
Affiliation(s)
- Teresa Cramer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Raminder Gill
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
| | - Zahra S. Thirouin
- Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada
| | - Markus Vaas
- Clinical Trials Center, University Hospital Zurich, Rämistrasse 100/MOU2, CH 8044 Zürich, Switzerland
| | - Suchita Sampath
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Fanny Martineau
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, CH 1005 Lausanne, Switzerland
| | - Sara B. Noya
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Tania J. J. Sudharshan
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - David Colameo
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Philip K.-Y. Chang
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
| | - Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
| | - Roy Shi
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
| | - Philip A. Barker
- Department of Biology, University of British Columbia, 3187 University Way, ASC 413, Kelowna, BC V1V 1V7, Canada
| | - Steven A. Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Rosa C. Paolicelli
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, CH 1005 Lausanne, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Wolfgang-Pauli-Strasse 27, CH 8093 Zürich, Switzerland
| | - Rebecca Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
- Corresponding author. (S.K.T.); (R.A.M.)
| | - Shiva K. Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
- Corresponding author. (S.K.T.); (R.A.M.)
| |
Collapse
|
20
|
Dolcetti E, Bruno A, Azzolini F, Gilio L, Moscatelli A, De Vito F, Pavone L, Iezzi E, Gambardella S, Giardina E, Ferese R, Buttari F, Rizzo FR, Furlan R, Finardi A, Musella A, Mandolesi G, Guadalupi L, Centonze D, Stampanoni Bassi M. The BDNF Val66Met Polymorphism (rs6265) Modulates Inflammation and Neurodegeneration in the Early Phases of Multiple Sclerosis. Genes (Basel) 2022; 13:genes13020332. [PMID: 35205376 PMCID: PMC8871843 DOI: 10.3390/genes13020332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/23/2022] Open
Abstract
The clinical course of multiple sclerosis (MS) is critically influenced by the interplay between inflammatory and neurodegenerative processes. The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265), one of the most studied single-nucleotide polymorphisms (SNPs), influences brain functioning and neurodegenerative processes in healthy individuals and in several neuropsychiatric diseases. However, the role of this polymorphism in MS is still controversial. In 218 relapsing–remitting (RR)-MS patients, we explored, at the time of diagnosis, the associations between the Val66Met polymorphism, clinical characteristics, and the cerebrospinal fluid (CSF) levels of a large set of pro-inflammatory and anti-inflammatory molecules. In addition, associations between Val66Met and structural MRI measures were assessed. We identified an association between the presence of Met and a combination of cytokines, identified by principal component analysis (PCA), including the pro-inflammatory molecules MCP-1, IL-8, TNF, Eotaxin, and MIP-1b. No significant associations emerged with clinical characteristics. Analysis of MRI measures evidenced reduced cortical thickness at the time of diagnosis in patients with Val66Met. We report for the first time an association between the Val66Met polymorphism and central inflammation in MS patients at the time of diagnosis. The role of this polymorphism in both inflammatory and neurodegenerative processes may explain its complex influence on the MS course.
Collapse
Affiliation(s)
| | - Antonio Bruno
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | | | - Luana Gilio
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | - Alessandro Moscatelli
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
- Laboratory of Neuromotor Physiology, IRCSS Fondazione Santa Lucia, 00179 Rome, Italy
| | | | - Luigi Pavone
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | - Ennio Iezzi
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | - Stefano Gambardella
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61029 Urbino, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | | | - Fabio Buttari
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | | | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, 00163 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00163 Rome, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, 00163 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00163 Rome, Italy
| | - Livia Guadalupi
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, 00163 Rome, Italy
| | - Diego Centonze
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | | |
Collapse
|
21
|
Porter GA, O’Connor JC. Brain-derived neurotrophic factor and inflammation in depression: Pathogenic partners in crime? World J Psychiatry 2022; 12:77-97. [PMID: 35111580 PMCID: PMC8783167 DOI: 10.5498/wjp.v12.i1.77] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/21/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder is a debilitating disorder affecting millions of people each year. Brain-derived neurotrophic factor (BDNF) and inflammation are two prominent biologic risk factors in the pathogenesis of depression that have received considerable attention. Many clinical and animal studies have highlighted associations between low levels of BDNF or high levels of inflammatory markers and the development of behavioral symptoms of depression. However, less is known about potential interaction between BDNF and inflammation, particularly within the central nervous system. Emerging evidence suggests that there is bidirectional regulation between these factors with important implications for the development of depressive symptoms and anti-depressant response. Elevated levels of inflammatory mediators have been shown to reduce expression of BDNF, and BDNF may play an important negative regulatory role on inflammation within the brain. Understanding this interaction more fully within the context of neuropsychiatric disease is important for both developing a fuller understanding of biological pathogenesis of depression and for identifying novel therapeutic opportunities. Here we review these two prominent risk factors for depression with a particular focus on pathogenic implications of their interaction.
Collapse
Affiliation(s)
- Grace A Porter
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX 78229, United States
| | - Jason C O’Connor
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX 78229, United States
- Audie L. Murphy VA Hospital, South Texas Veterans Health System, San Antonio, TX 78229, United States
| |
Collapse
|
22
|
Microglia as the Critical Regulators of Neuroprotection and Functional Recovery in Cerebral Ischemia. Cell Mol Neurobiol 2021; 42:2505-2525. [PMID: 34460037 DOI: 10.1007/s10571-021-01145-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Microglial activation is considered as the critical pathogenic event in diverse central nervous system disorders including cerebral ischemia. Proinflammatory responses of activated microglia have been well reported in the ischemic brain and neuroinflammatory responses of activated microglia have been believed to be the potential therapeutic strategy. However, despite having proinflammatory roles, microglia can have significant anti-inflammatory roles and they are associated with the production of growth factors which are responsible for neuroprotection and recovery after ischemic injury. Microglia can directly promote neuroprotection by preventing ischemic infarct expansion and promoting functional outcomes. Indirectly, microglia are involved in promoting anti-inflammatory responses, neurogenesis, and angiogenesis in the ischemic brain which are crucial pathophysiological events for ischemic recovery. In fact, anti-inflammatory cytokines and growth factors produced by microglia can promote neuroprotection and attenuate neurobehavioral deficits. In addition, microglia regulate phagocytosis, axonal regeneration, blood-brain barrier protection, white matter integrity, and synaptic remodeling, which are essential for ischemic recovery. Microglia can also regulate crosstalk with neurons and other cell types to promote neuroprotection and ischemic recovery. This review mainly focuses on the roles of microglia in neuroprotection and recovery following ischemic injury. Furthermore, this review also sheds the light on the therapeutic potential of microglia in stroke patients.
Collapse
|
23
|
Study on the antidepressant effect of panaxynol through the IκB-α/NF-κB signaling pathway to inhibit the excessive activation of BV-2 microglia. Biomed Pharmacother 2021; 138:111387. [DOI: 10.1016/j.biopha.2021.111387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
|
24
|
Braschi C, Capsoni S, Narducci R, Poli A, Sansevero G, Brandi R, Maffei L, Cattaneo A, Berardi N. Intranasal delivery of BDNF rescues memory deficits in AD11 mice and reduces brain microgliosis. Aging Clin Exp Res 2021; 33:1223-1238. [PMID: 32676979 PMCID: PMC8081712 DOI: 10.1007/s40520-020-01646-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023]
Abstract
A decrease in brain-derived neurotrophic factor (BDNF), a neurotrophin essential for synaptic function, plasticity and neuronal survival, is evident early in the progression of Alzheimer's disease (AD), being apparent in subjects with mild cognitive impairment or mild AD, and both proBDNF and mature BDNF levels are positively correlated with cognitive measures. BDNF delivery is, therefore, considered of great interest as a potentially useful therapeutic strategy to contrast AD. Invasive BDNF administration has indeed been recently used in animal models of AD with promising results in rescuing memory deficits, synaptic density and cell loss. Here, we tested whether non-invasive intranasal administration of different BDNF concentrations after the onset of cognitive and anatomical deficits (6 months of age) could rescue neuropathological and memory deficits in AD11 mice, a model of NGF deprivation-induced neurodegeneration. In addition to AD hallmarks, we investigated BDNF effects on microglia presence in the brain of AD11 mice, since alterations in microglia activation have been associated with ageing-related cognitive decline and with the progression of neurodegenerative diseases, including AD. We found that intranasal delivery of 42 pmol BDNF (1 μM), but not PBS, was sufficient to completely rescue performance of AD11 mice both in the object recognition test and in the object context test. No further improvement was obtained with 420 pmol (10 μM) BDNF dose. The strong improvement in memory performance in BDNF-treated mice was not accompanied by an amelioration of AD-like pathology, Aβ burden, tau hyperphosphorylation and cholinergic deficit, but there was a dramatic decrease of CD11b immunoreactive brain microglia. These results reinforce the potential therapeutic uses of BDNF in AD and the non-invasive intranasal route as an effective delivery strategy of BDNF to the brain. They also strengthen the connection between neuroinflammation and neurodegenerative dementia and suggest microglia as a possible mediator of BDNF therapeutic actions in the brain.
Collapse
Affiliation(s)
- Chiara Braschi
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy
| | - Simona Capsoni
- Scuola Normale Superiore, Pisa, Italy
- Human Physiology Section, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Narducci
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy
| | | | - Gabriele Sansevero
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- IRCCS Stella Maris, Calambrone, Pisa, Italy
| | | | - Lamberto Maffei
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - Antonino Cattaneo
- Scuola Normale Superiore, Pisa, Italy
- European Brain Research Institute, Rome, Italy
| | - Nicoletta Berardi
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy.
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy.
| |
Collapse
|
25
|
The Effect of Two Types of Exercise Preconditioning on the Expression of TrkB, TNF- α, and MMP2 Genes in Rats with Stroke. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5595368. [PMID: 33954182 PMCID: PMC8057886 DOI: 10.1155/2021/5595368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Abstract
Despite the beneficial effects of exercise and physical activity, there is little knowledge about the effects of different types of physical activity on neural function. The present study assessed the effects of two types of selected aerobic exercises prior to stroke induction and characterized the expression of TrkB, TNF-α, and MMP2 genes in vivo. Forty male adult Wistar rats were exposed to aerobic exercises following randomization into four groups, including swimming + MCAO (Middle Cerebral Artery Occlusion) (n = 10), treadmill training + MCAO (n = 10), MCAO (n = 10), and control (n = 10). The swimming + MCAO group included swimming for 30 minutes each day, while the treadmill training + MCAO group program involved running for 30 minutes each day at an intensity of 15 m/min, for three weeks, five days a week. Neurological deficit was assessed using modified criteria at 24 h after the onset of cerebral ischemia. In the control group, the animals worked freely for three weeks without undergoing ischemia. The MCAO group also operated freely for three weeks after they underwent a stroke. Both training groups underwent ischemia after three weeks of training. TrkB, TNF-α, and MMP2 gene expressions were increased in the MCAO+ swimming training and in the MCAO + running training group compared to the control and MCAO groups, respectively. Preconditioning aerobic exercises significantly increased brain trophic support and reduced brain damage conditions in exercise groups, which support the importance of aerobic exercise in the prevention and treatment of stroke.
Collapse
|
26
|
Chen Q, Li L, Xie H. [Research progress of different types of stem cells in treatment of ischemic stroke]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:111-117. [PMID: 33448208 DOI: 10.7507/1002-1892.202004160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the recent research progress of different types of stem cells in the treatment of ischemic stroke. Methods By searching the PubMed database, a systematic review had been carried out for the results of applying different types of stem cells in the treatment of ischemic stroke between 2000 and 2020. Results Stem cells can be transplanted via intracranial, intravascular, cerebrospinal fluid, and intranasal route in the treatment of ischemic stroke. Paracrine and cell replacement are the two major mechanisms of the therapy. The researches have mainly focused on utilization of neural stem cells, embryonic stem cells, and mesenchymal stem cells. Each has its own advantages and disadvantages in terms of capability of migration, survival rate, and safety. Certain stem cell therapies have completed phase one clinical trial. Conclusion Stem cells transplantation is feasible and has a great potential for the treatment of ischemic stroke, albeit that certain obstacles, including the selection of stem cells, transplantation strategy, migration ability, survival rate, still wait to be solved.
Collapse
Affiliation(s)
- Qiuzhu Chen
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ling Li
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
27
|
Cao BQ, Tan F, Zhan J, Lai PH. Mechanism underlying treatment of ischemic stroke using acupuncture: transmission and regulation. Neural Regen Res 2021; 16:944-954. [PMID: 33229734 PMCID: PMC8178780 DOI: 10.4103/1673-5374.297061] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The inflammatory response after cerebral ischemia/reperfusion is an important cause of neurological damage and repair. After cerebral ischemia/reperfusion, microglia are activated, and a large number of circulating inflammatory cells infiltrate the affected area. This leads to the secretion of inflammatory mediators and an inflammatory cascade that eventually causes secondary brain damage, including neuron necrosis, blood-brain barrier destruction, cerebral edema, and an oxidative stress response. Activation of inflammatory signaling pathways plays a key role in the pathological process of ischemic stroke. Increasing evidence suggests that acupuncture can reduce the inflammatory response after cerebral ischemia/reperfusion and promote repair of the injured nervous system. Acupuncture can not only inhibit the activation and infiltration of inflammatory cells, but can also regulate the expression of inflammation-related cytokines, balance the effects of pro-inflammatory and anti-inflammatory factors, and interfere with inflammatory signaling pathways. Therefore, it is important to study the transmission and regulatory mechanism of inflammatory signaling pathways after acupuncture treatment for cerebral ischemia/reperfusion injury to provide a theoretical basis for clinical treatment of this type of injury using acupuncture. Our review summarizes the overall conditions of inflammatory cells, mediators, and pathways after cerebral ischemia/reperfusion, and discusses the possible synergistic intervention of acupuncture in the inflammatory signaling pathway network to provide a foundation to explore the multiple molecular mechanisms by which acupuncture promotes nerve function restoration.
Collapse
Affiliation(s)
- Bing-Qian Cao
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, China
| | - Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, China
| | - Jie Zhan
- Department of Rehabilitation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Peng-Hui Lai
- Department of Rehabilitation, Nan'ao People's Hospital Dapeng New District, Shenzhen, Guangdong Province, China
| |
Collapse
|
28
|
Liu J, Li Y, Chen S, Lin Y, Lai H, Chen B, Chen T. Biomedical Application of Reactive Oxygen Species-Responsive Nanocarriers in Cancer, Inflammation, and Neurodegenerative Diseases. Front Chem 2020; 8:838. [PMID: 33062637 PMCID: PMC7530259 DOI: 10.3389/fchem.2020.00838] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Numerous pathological conditions, including cancer, inflammatory diseases, and neurodegenerative diseases, are accompanied by overproduction of reactive oxygen species (ROS). This makes ROS vital flagging molecules in disease pathology. ROS-responsive drug delivery platforms have been developed. Nanotechnology has been broadly applied in the field of biomedicine leading to the progress of ROS-responsive nanoparticles. In this review, we focused on the production and physiological/pathophysiological impact of ROS. Particular emphasis is put on the mechanisms and effects of abnormal ROS levels on oxidative stress diseases, including cancer, inflammatory disease, and neurodegenerative diseases. Finally, we summarized the potential biomedical applications of ROS-responsive nanocarriers in these oxidative stress diseases. We provide insights that will help in the designing of new ROS-responsive nanocarriers for various applications.
Collapse
Affiliation(s)
- Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongjin Li
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Chen
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongpeng Lin
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoqiang Lai
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Bolai Chen
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Sénécal V, Barat C, Tremblay MJ. The delicate balance between neurotoxicity and neuroprotection in the context of HIV-1 infection. Glia 2020; 69:255-280. [PMID: 32910482 DOI: 10.1002/glia.23904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) causes a spectrum of neurological impairments, termed HIV-associated neurocognitive disorder (HAND), following the infiltration of infected cells into the brain. Even though the implementation of antiretroviral therapy reduced the systemic viral load, the prevalence of HAND remains unchanged and infected patients develop persisting neurological disturbances affecting their quality of life. As a result, HAND have gained importance in basic and clinical researches, warranting the need of developing new adjunctive treatments. Nonetheless, a better understanding of the molecular and cellular mechanisms remains necessary. Several studies consolidated their efforts into elucidating the neurotoxic signaling leading to HAND including the deleterious actions of HIV-1 viral proteins and inflammatory mediators. However, the scope of these studies is not sufficient to address all the complexity related to HAND development. Fewer studies focused on an altered neuroprotective capacity of the brain to respond to HIV-1 infection. Neurotrophic factors are endogenous polyproteins involved in neuronal survival, synaptic plasticity, and neurogenesis. Any defects in the processing or production of these crucial factors might compose a risk factor rendering the brain more vulnerable to neuronal damages. Due to their essential roles, they have been investigated for their diverse interplays with HIV-1 infection. In this review, we present a complete description of the neurotrophic factors involved in HAND. We discuss emerging concepts for their therapeutic applications and summarize the complex mechanisms that down-regulate their production in favor of a neurotoxic environment. For certain factors, we finally address opposing roles that rather lead to increased inflammation.
Collapse
Affiliation(s)
- Vincent Sénécal
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada.,Département de Microbiologie-infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
30
|
Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of Glial Function During Neurodegeneration. Front Cell Neurosci 2020; 14:278. [PMID: 32973460 PMCID: PMC7473408 DOI: 10.3389/fncel.2020.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour and Development, Penrith, NSW, Australia
| |
Collapse
|
31
|
Steliga A, Kowiański P, Czuba E, Waśkow M, Moryś J, Lietzau G. Neurovascular Unit as a Source of Ischemic Stroke Biomarkers-Limitations of Experimental Studies and Perspectives for Clinical Application. Transl Stroke Res 2020; 11:553-579. [PMID: 31701356 PMCID: PMC7340668 DOI: 10.1007/s12975-019-00744-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023]
Abstract
Cerebral stroke, which is one of the most frequent causes of mortality and leading cause of disability in developed countries, often leads to devastating and irreversible brain damage. Neurological and neuroradiological diagnosis of stroke, especially in its acute phase, is frequently uncertain or inconclusive. This results in difficulties in identification of patients with poor prognosis or being at high risk for complications. It also makes difficult identification of these stroke patients who could benefit from more aggressive therapies. In contrary to the cardiovascular disease, no single biomarker is available for the ischemic stroke, addressing the abovementioned issues. This justifies the need for identifying of effective diagnostic measures characterized by high specificity and sensitivity. One of the promising avenues in this area is studies on the panels of biomarkers characteristic for processes which occur in different types and phases of ischemic stroke and represent all morphological constituents of the brains' neurovascular unit (NVU). In this review, we present the current state of knowledge concerning already-used or potentially applicable biomarkers of the ischemic stroke. We also discuss the perspectives for identification of biomarkers representative for different types and phases of the ischemic stroke, as well as for different constituents of NVU, which concentration levels correlate with extent of brain damage and patients' neurological status. Finally, a critical analysis of perspectives on further improvement of the ischemic stroke diagnosis is presented.
Collapse
Affiliation(s)
- Aleksandra Steliga
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland
| | - Przemysław Kowiański
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland.
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland.
| | - Ewelina Czuba
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
| | - Monika Waśkow
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland
| | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
| | - Grażyna Lietzau
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Sugiyama A, Kato H, Takakura H, Osawa S, Maeda Y, Izawa T. Effects of physical activity and melatonin on brain-derived neurotrophic factor and cytokine expression in the cerebellum of high-fat diet-fed rats. Neuropsychopharmacol Rep 2020; 40:291-296. [PMID: 32681810 PMCID: PMC7722650 DOI: 10.1002/npr2.12125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Obesity suppresses brain-derived neurotrophic factor (BDNF) expression and increases the expression of pro-inflammatory cytokines. Herein, we assessed whether exercise training (ET), melatonin administration (MT), or their combination can affect the expressions of BDNF and cytokines in the cerebellum of high-fat diet (HFD)-fed rats. METHODS Wistar rats (4 weeks old) were divided into five groups: normal diet (ND)-fed control (ND-SED), HFD-fed control (HFD-SED), HFD-fed ET (HFD-ET), HFD-fed MT (HFD-MT), and HFD-fed MT plus ET (HFD-ETMT) group. The rats were fed ND or HFD for 17 weeks. Rats were subjected to ET (running on a treadmill) and/or MT (melatonin 5 mg/kg body weight, i.p.) for 9 weeks, 8 weeks after beginning the diet intervention. Changes in BDNF and cytokine expression levels were determined using immunoblotting and cytokine arrays, respectively, 36 hours following the last bout of ET. RESULTS Neither HFD-ET nor HFD-MT rats exhibited enhanced BDNF expression in the cerebellum, but HFD-ETMT rats had higher level of BDNF expression compared with the others. The expression of TrkB, a BDNF receptor, was higher in HFD-ETMT rats than in HFD-ET and HFD-MT rats. HFD enhanced the expression of interleukin (IL)-1, IL-2, and interferon-γ but reduced the expression of IL-4, IL-6, and IL13. ET and ET plus MT counteracted these HFD-induced changes in cytokine expressions. CONCLUSION Exercise in combination with melatonin confers the potential benefits of increasing BDNF and improving HFD-induced dysregulations of cytokines in the cerebellum.
Collapse
Affiliation(s)
- Ai Sugiyama
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Japan
| | - Hisashi Kato
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Japan
| | - Hisashi Takakura
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Japan
| | - Seita Osawa
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Japan
| | - Yuki Maeda
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Japan
| | - Tetsuya Izawa
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe City, Japan
| |
Collapse
|
33
|
Wu SY, Pan BS, Tsai SF, Chiang YT, Huang BM, Mo FE, Kuo YM. BDNF reverses aging-related microglial activation. J Neuroinflammation 2020; 17:210. [PMID: 32664974 PMCID: PMC7362451 DOI: 10.1186/s12974-020-01887-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Excessive microglial activation is implicated in the pathogenesis of various age-related neurodegenerative diseases. In addition to neurons, brain-derived neurotrophic factor (BDNF) and its receptor TrkB are also expressed in microglia. However, the direct effect of BDNF on age-related microglial activation has rarely been investigated. METHODS We began to address this question by examining the effect of age on microglial activation and the BDNF-TrkB pathway in mice. By using pharmacological and genetic approaches, the roles of BDNF and downstream signaling pathways in microglial activation and related neurotoxicity were examined in microglial cell line and primary microglial cells. RESULTS We showed that microglial activation was evident in the brains of aged mice. The levels of BDNF and TrkB in microglia decreased with age and negatively correlated with their activation statuses in mice during aging. Interestingly, aging-related microglial activation could be reversed by chronic, subcutaneous perfusion of BDNF. Peripheral lipopolysaccharide (LPS) injection-induced microglial activation could be reduced by local supplement of BDNF, while shTrkB induced local microglial activation in naïve mice. In cultured microglial cell line and primary microglial cells, BDNF inhibited LPS-induced microglial activation, including morphological changes, activations of p38, JNK, and NF-кB, and productions of proinflammatory cytokines. These effects were blocked by shTrkB. BDNF induced activations of ErK and CREB which then competed with LPS-induced activation of NF-кB for binding to a common coactivator, CREB-binding protein. CONCLUSIONS Decreasing BDNF-TrkB signaling during aging favors microglial activation, while upregulation BDNF signaling inhibits microglial activation via the TrkB-Erk-CREB pathway.
Collapse
Affiliation(s)
- Shih-Ying Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Syong Pan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Chiang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta Hsueh Road, 70101, Tainan, Taiwan
| | - Bu-Miin Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta Hsueh Road, 70101, Tainan, Taiwan
| | - Fan-E Mo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta Hsueh Road, 70101, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta Hsueh Road, 70101, Tainan, Taiwan.
| |
Collapse
|
34
|
Sayad A, Ghafouri-Fard S, Shams B, Arsang-Jang S, Gholami L, Taheri M. Blood and tissue levels of lncRNAs in periodontitis. J Cell Physiol 2020; 235:9568-9576. [PMID: 32372456 DOI: 10.1002/jcp.29764] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Periodontitis is a complex disorder that affects a large number of human beings from different ethnic groups. This condition has been associated with dysregulation of a number of genes, among them are long noncoding RNAs (lncRNAs). In the current study, we assessed the expression of four lncRNAs (BDNF-AS, MIAT, MIR137HG, and PNKY) as well as BDNF in the peripheral blood and gingival tissues obtained from patients with periodontitis and healthy subjects. The expression of BDNF was significantly lower in blood samples of male patients with periodontitis compared with male controls (posterior β of RE = -4.754, p = .048). However, there was no significant difference in the expression of BDNF in tissue samples from the cases and controls. The expression of BDNF-AS was significantly lower in the tissue samples of patients compared with control tissue samples (posterior β of RE = -2.151, p = .019). Such an expression difference was detected between male subgroups as well (posterior β of RE = -3.679, p = .009). However, expression of this lncRNA was not different in blood samples obtained from patients compared with healthy subjects. The expression of PNKY was significantly higher in tissue samples obtained from female patients compared with sex-matched controls (posterior β of RE = 6.23, p = .037). Blood levels of this lncRNA were not different between cases and controls. There was no significant difference either in the tissue expression or in blood expression of MIR137HG or MIAT between cases and controls. The current study indicates the putative role of BDNF, BDNF-AS, and PNKY in the pathophysiology of periodontitis and potentiates these genes as candidates for functional studies.
Collapse
Affiliation(s)
- Arezou Sayad
- Dental School, Dental Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Shams
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Department of Biostatistics and Epidemiology, Cancer Gene Therapy Research Center, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Gholami
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Silva J, Yu X, Moradian R, Folk C, Spatz MH, Kim P, Bhatti AA, Davies DL, Liang J. Dihydromyricetin Protects the Liver via Changes in Lipid Metabolism and Enhanced Ethanol Metabolism. Alcohol Clin Exp Res 2020; 44:1046-1060. [PMID: 32267550 PMCID: PMC7211127 DOI: 10.1111/acer.14326] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Background Excess alcohol (ethanol, EtOH) consumption is a significant cause of chronic liver disease, accounting for nearly half of the cirrhosis‐associated deaths in the United States. EtOH‐induced liver toxicity is linked to EtOH metabolism and its associated increase in proinflammatory cytokines, oxidative stress, and the subsequent activation of Kupffer cells. Dihydromyricetin (DHM), a bioflavonoid isolated from Hovenia dulcis, can reduce EtOH intoxication and potentially protect against chemical‐induced liver injuries. But there remains a paucity of information regarding the effects of DHM on EtOH metabolism and liver protection. As such, the current study tests the hypothesis that DHM supplementation enhances EtOH metabolism and reduces EtOH‐mediated lipid dysregulation, thus promoting hepatocellular health. Methods The hepatoprotective effect of DHM (5 and 10 mg/kg; intraperitoneal injection) was evaluated using male C57BL/6J mice and a forced drinking ad libitum EtOH feeding model and HepG2/VL‐17A hepatoblastoma cell models. EtOH‐mediated lipid accumulation and DHM effects against lipid deposits were determined via H&E stains, triglyceride measurements, and intracellular lipid dyes. Protein expression of phosphorylated/total proteins and serum and hepatic cytokines was determined via Western blot and protein array. Total NAD+/NADH Assay of liver homogenates was used to detect NAD + levels. Results DHM reduced liver steatosis, liver triglycerides, and liver injury markers in mice chronically fed EtOH. DHM treatment resulted in increased activation of AMPK and downstream targets, carnitine palmitoyltransferase (CPT)‐1a, and acetyl CoA carboxylase (ACC)‐1. DHM induced expression of EtOH‐metabolizing enzymes and reduced EtOH and acetaldehyde concentrations, effects that may be partly explained by changes in NAD+. Furthermore, DHM reduced the expression of proinflammatory cytokines and chemokines in sera and cell models. Conclusion In total, these findings support the utility of DHM as a dietary supplement to reduce EtOH‐induced liver injury via changes in lipid metabolism, enhancement of EtOH metabolism, and suppressing inflammation responses to promote liver health.
Collapse
Affiliation(s)
- Joshua Silva
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Xin Yu
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Renita Moradian
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Carson Folk
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Maximilian H Spatz
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Phoebe Kim
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Adil A Bhatti
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Daryl L Davies
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Jing Liang
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| |
Collapse
|
36
|
Oshita J, Okazaki T, Mitsuhara T, Imura T, Nakagawa K, Otsuka T, Kurose T, Tamura T, Abiko M, Takeda M, Kawahara Y, Yuge L, Kurisu K. Early Transplantation of Human Cranial Bone-derived Mesenchymal Stem Cells Enhances Functional Recovery in Ischemic Stroke Model Rats. Neurol Med Chir (Tokyo) 2020; 60:83-93. [PMID: 31956170 PMCID: PMC7040434 DOI: 10.2176/nmc.oa.2019-0186] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We analyzed the cell characteristics, neuroprotective, and transplantation effects of human cranial bone-derived mesenchymal stem cells (hcMSCs) in ischemic stroke model rats compared with human iliac bone-derived mesenchymal stem cells (hiMSCs). The expressions of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) as neurotrophic factors were analyzed in both MSCs. hiMSCs or hcMSCs were intravenously administered into ischemic stroke model rats at 3 or 24 h after middle cerebral artery occlusion (MCAO) and neurological function was evaluated. The survival rate of neuroblastoma × glioma hybrid cells (NG108-15) after 3 or 24 h oxidative or inflammatory stress and the neuroprotective effects of hiMSCs or hcMSCs-conditioned medium (CM) on 3 or 24 h oxidative or inflammatory stress-exposed NG108-15 cells were analyzed. The expressions of BDNF and VEGF were higher in hcMSCs than in hiMSCs. hcMSCs transplantation at 3 h after MCAO resulted in significant functional recovery compared with that in the hiMSCs or control group. The survival rate of stress-exposed NG108-15 was lower after 24 h stress than after 3 h stress. The survival rates of NG108-15 cells cultured with hcMSCs-CM after 3 h oxidative or inflammatory stress were significantly higher than in the control group. Our results suggest that hcMSCs transplantation in the early stage of ischemic stroke suppresses the damage of residual nerve cells and leads to functional recovery through the strong expressions of neurotrophic factors. This is the first report demonstrating a functional recovery effect after ischemic stroke following hcMSCs transplantation.
Collapse
Affiliation(s)
- Jumpei Oshita
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takahito Okazaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takafumi Mitsuhara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takeshi Imura
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Kei Nakagawa
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takashi Otsuka
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Tomoyuki Kurose
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | - Masaru Abiko
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Masaaki Takeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University.,Space Bio-Laboratories Co., Ltd
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
37
|
Wen Z, Jiang Y, Zhang L, Xu X, Zhao N, Xu X, Wang F, Gao J, Yang GY, Liu X. The effect of anterior communicating artery flow on neurovascular injury and neurobehavioral outcomes in mice with recurrent stroke. Brain Res 2019; 1724:146440. [PMID: 31513789 DOI: 10.1016/j.brainres.2019.146440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Previous studies have estimated that the risk of recurrent stroke was nearly 20% shortly after a transient ischemic attack (TIA) or minor stroke. A missing or hypoplastic (<0.5 mm) anterior communicating artery can have deleterious effects on the brain. Our study aimed to investigate the effect of anterior communicating artery flow on neurovascular injury and neurobehavioral outcomes in mice with recurrent stroke and to identify its underlying mechanisms. METHODS A recurrent stroke model was established by an initial cortical infarction followed by a corticostriatal infarction 3 days later. The vascular structure was visualized using synchrotron radiation angiography & magnetic resonance angiography in vivo and transparent endovascular perfusion imaging in vitro. Microvessel perfusion was assessed via fluorescein isothiocyanate perfusion. The infarct volume was measured by magnetic resonance imaging. RESULTS The finding that anterior communicating artery flow facilitates pial artery patency in the ipsilateral hemisphere in mice with recurrent stroke suggests that compensatory collateral patency contributes to increased regional cerebral blood flow, enhanced microcirculatory perfusion, improved neurological function and reduced infarct volume. CONCLUSIONS The results of this study demonstrate that anterior communicating artery flow alleviates recurrent stroke-induced neurovascular injury and improves neurobehavioral outcomes by promoting the establishment of collateral circulation.
Collapse
Affiliation(s)
- Zhuoyu Wen
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China; Department of Neurology, Shanghai Fifth People's Hospital Affiliated with Fudan University, Shanghai, China
| | - Yongjun Jiang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China; Department of Neurology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linyuan Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomeng Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Nan Zhao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaohui Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fang Wang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jie Gao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
38
|
Wang J, Huang Q, Ding J, Wang X. Elevated serum levels of brain-derived neurotrophic factor and miR-124 in acute ischemic stroke patients and the molecular mechanism. 3 Biotech 2019; 9:386. [PMID: 31656724 PMCID: PMC6778548 DOI: 10.1007/s13205-019-1914-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and microRNAs (miRNAs) play a significant role in the pathogenesis of acute ischemic stroke (AIS). The present study investigates the elevated expression of BDNF and miR-124 in AIS patients. In the present study, serum samples from AIS patients and healthy controls were collected to determine the regulatory role and mechanism of operation of BDNF and to determine the regulatory miRNAs involved in AIS. Using bioinformatics analysis, we identified putative and regulatory miR-124. The effect of miR-124 on BDNF expression was examined in human neuronal cell lines. Moreover, the function of miR-124 in regulating BDNF was analyzed by assessing the serum level of BDNF in both AIS patients and healthy controls. The results indicate that the BDNF level of AIS patients is very low compared with that of controls. In contrast, real-time polymerase chain reaction (RT-PCR) data revealed a very high serum level of miR-124 in AIS patients relative to healthy individuals. The associations of the National Institutes of Health (NIH) stroke scale (NIHSS) score with BDNF and BDNF-related miR-124 serum levels were calculated using Pearson's/Spearman's correlation coefficient. The findings revealed a negative correlation between NIHSS score and BDNF level, whereas a positive correlation was observed between NIHSS score and miR-124. In addition, the relationship between serum BDNF and miR-124 was negative in AIS patients. In conclusion, this study provides strong evidence that serum BDNF and the BDNF-regulatory miR-124 may serve as molecular markers for AIS.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, No 1111 of XianXia Road, Shanghai, 200335 China
| | - Qiong Huang
- Department of Neurology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, No 1111 of XianXia Road, Shanghai, 200335 China
| | - Ji Ding
- Department of Neurology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, No 1111 of XianXia Road, Shanghai, 200335 China
| | - Xiaoping Wang
- Department of Neurology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, No 1111 of XianXia Road, Shanghai, 200335 China
| |
Collapse
|
39
|
Farokhi-Sisakht F, Farhoudi M, Sadigh-Eteghad S, Mahmoudi J, Mohaddes G. Cognitive Rehabilitation Improves Ischemic Stroke-Induced Cognitive Impairment: Role of Growth Factors. J Stroke Cerebrovasc Dis 2019; 28:104299. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/24/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022] Open
|
40
|
Zhao N, Xu X, Jiang Y, Gao J, Wang F, Xu X, Wen Z, Xie Y, Li J, Li R, Lv Q, Liu Q, Dai Q, Liu X, Xu G. Lipocalin-2 may produce damaging effect after cerebral ischemia by inducing astrocytes classical activation. J Neuroinflammation 2019; 16:168. [PMID: 31426811 PMCID: PMC6699078 DOI: 10.1186/s12974-019-1556-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Background Functions of astrocytes in the rehabilitation after ischemic stroke, especially their impacts on inflammatory processes, remain controversial. This study uncovered two phenotypes of astrocytes, of which one was helpful, and the other harmful to anoxic neurons after brain ischemia. Methods We tested the levels of inflammatory factors including TNF-a, IL-6, IL-10, iNOS, IL-1beta, and CXCL10 in primary astrocytes at 0 h, 6 h, 12 h, 24 h, and 48 h after OGD, grouped the hypoxia astrocytes into iNOS-positive (iNOS(+)) and iNOS-negative (iNOS(−)) by magnetic bead sorting, and then co-cultured the two groups of cells with OGD-treated neurons for 24 h. We further verified the polarization of astrocytes in vivo by detecting the co-localization of iNOS, GFAP, and Iba-1 on MCAO brain sections. Lentivirus overexpressing LCN2 and LCN2 knockout mice (#024630. JAX, USA) were used to explore the role of LCN2 in the functional polarization of astrocytes. 7.0-T MRI scanning and the modified Neurological Severity Score (mNSS) were used to evaluate the neurological outcomes of the mice. Results After oxygen-glucose deprivation (OGD), iNOS mRNA expression increased to the peak at 6 h in primary astrocytes, but keep baseline expression in LCN2-knockout astrocytes. In mice with transient middle cerebral artery occlusion (tMCAO), LCN2 was proved necessary for astrocyte classical activation. In LCN2 knockout mice with MCAO, no classically activated astrocytes were detected, and smaller infarct volumes and better neurological functions were observed. Conclusions The results indicated a novel pattern of astrocyte activation after ischemic stroke and lipocalin-2 (LCN2) plays a key role in polarizing and activating astrocytes.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xiaomeng Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.,Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Roud, Shanghai, 20025, China
| | - Yongjun Jiang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, 510260, China
| | - Jie Gao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Fang Wang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xiaohui Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Zhuoyu Wen
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Yi Xie
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Juanji Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Rongrong Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Qiushi Lv
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Qiliang Dai
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
41
|
Corey S, Abraham DI, Kaneko Y, Lee JY, Borlongan CV. Selective endovascular cooling for stroke entails brain-derived neurotrophic factor and splenic IL-10 modulation. Brain Res 2019; 1722:146380. [PMID: 31415765 DOI: 10.1016/j.brainres.2019.146380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022]
Abstract
Stroke poses a serious health and economic burden, and the lack of treatment options necessitates a viable therapy. Hypothermia represents a promising stroke therapy, yet side effects of full-body cooling, such as pneumonia, limit its clinical application. Selective endovascular cooling (SEC), via infusion of cold saline through the intraarterial artery, represents an attractive alternative by locally cooling the brain while preserving body temperature. However, the mechanisms underlying SEC are poorly understood. Brain-derived neurotrophic factor (BDNF) is a widely recognized promotor of neuroplasticity and biomarker of stroke outcomes, as well as its association with inflammation, such as IL-10. Stroke-induced neuroinflammation exacerbates damage and stems from peripheral organs, namely the spleen. The spleen has emerged as a therapeutic target for stroke, yet the effect of SEC on the splenic inflammatory response is unknown. Here, we aimed to elucidate the local and peripheral mechanisms driving SEC as a neuroprotective stroke therapy by examining brain BDNF and splenic IL-10 expression. Animals that received SEC prior to stroke displayed elevated brain BDNF expression ipsilaterally and contralaterally across the cortex, striatum, and hippocampus. SEC also upregulated splenic IL-10, suggesting alteration of the peripheral inflammatory response. The oxygen-glucose deprivation in vitro model of stroke further demonstrated that "cold" rat splenocytes protected rat primary neurons by upregulating BDNF and IL-10. Altogether these data support BDNF- and IL-10-based mechanisms underlying the neuroprotective potential of SEC therapy for stroke, and further advance the concept of exploiting the pathological link between brain and spleen as therapeutic targets.
Collapse
Affiliation(s)
- Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Diego Incontri Abraham
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
42
|
Mee-Inta O, Zhao ZW, Kuo YM. Physical Exercise Inhibits Inflammation and Microglial Activation. Cells 2019; 8:cells8070691. [PMID: 31324021 PMCID: PMC6678635 DOI: 10.3390/cells8070691] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicates that exercise can enhance brain function and attenuate neurodegeneration. Besides improving neuroplasticity by altering the synaptic structure and function in various brain regions, exercise also modulates multiple systems that are known to regulate neuroinflammation and glial activation. Activated microglia and several pro-inflammatory cytokines play active roles in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. The purpose of this review is to highlight the impacts of exercise on microglial activation. Possible mechanisms involved in exercise-modulated microglial activation are also discussed. Undoubtedly, more studies are needed in order to disclose the detailed mechanisms, but this approach offers therapeutic potential for improving the brain health of millions of aging people where pharmacological intervention has failed.
Collapse
Affiliation(s)
- Onanong Mee-Inta
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zi-Wei Zhao
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
43
|
Kong L, Yao Y, Xia Y, Liang X, Ni Y, Yang J. Osthole alleviates inflammation by down-regulating NF-κB signaling pathway in traumatic brain injury. Immunopharmacol Immunotoxicol 2019; 41:349-360. [PMID: 31056982 DOI: 10.1080/08923973.2019.1608560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) is a common neurotrosis disorder of the central nervous system (CNS), which has dramatic consequences on the integrity of damaged tissue. In this study, we investigated the neuroprotective effect and anti-inflammatory actions of osthole, a natural coumarin derivative, in both in vivo and in vitro TBI models. We first prepared a mouse model of cortical stab wound brain injury, investigated the capacity for osthole to prevent secondary brain injury and further examined the underlying mechanism. We revealed that osthole significantly improved the neurological function, increased the number of neurons beside injured site. Additionally, osthole treatment reduced the expression of microglia and glial scar, lowered the level of the proinflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α), and blocked the activation of nuclear factor kappa B (NF-κB). Furthermore, the protective effect of osthole was also examined in SH-SY5Y cells subjected to scratch injury. Treatment of osthole prominently suppressed cell apoptosis and inflammatory factors release by blocking injury-induced IκB-α phosphorylation and NF-κB translocation, and upregulated the IκB-α which functions in the NF-κB signaling pathway of SH-SY5Y cells. However, NF-κB signaling pathway was inhibited by pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, the anti-inflammatory effect of osthole was abolished. In conclusion, our findings demonstrated that osthole attenuated inflammatory response by inhibiting the NF-κB pathway in TBI.
Collapse
Affiliation(s)
- Liang Kong
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yingjia Yao
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yang Xia
- b Department of Engineering , University of Oxford , Oxford , UK
| | - Xicai Liang
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Yingnan Ni
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Jingxian Yang
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| |
Collapse
|
44
|
Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of Neurotrophic Factors in Glial Cells in the Central Nervous System: Expression and Properties in Neurodegeneration and Injury. Front Physiol 2019; 10:486. [PMID: 31105589 PMCID: PMC6499070 DOI: 10.3389/fphys.2019.00486] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 04/08/2019] [Indexed: 12/28/2022] Open
Abstract
Astrocytes, oligodendrocytes, and microglia are abundant cell types found in the central nervous system and have been shown to play crucial roles in regulating both normal and disease states. An increasing amount of evidence points to the critical importance of glia in mediating neurodegeneration in Alzheimer’s and Parkinson’s diseases (AD, PD), and in ischemic stroke, where microglia are involved in initial tissue clearance, and astrocytes in the subsequent formation of a glial scar. The importance of these cells for neuronal survival has previously been studied in co-culture experiments and the search for neurotrophic factors (NTFs) initiated after finding that the addition of conditioned media from astrocyte cultures could support the survival of primary neurons in vitro. This led to the discovery of the potent dopamine neurotrophic factor, glial cell line-derived neurotrophic factor (GDNF). In this review, we focus on the relationship between glia and NTFs including neurotrophins, GDNF-family ligands, CNTF family, and CDNF/MANF-family proteins. We describe their expression in astrocytes, oligodendrocytes and their precursors (NG2-positive cells, OPCs), and microglia during development and in the adult brain. Furthermore, we review existing data on the glial phenotypes of NTF knockout mice and follow NTF expression patterns and their effects on glia in disease models such as AD, PD, stroke, and retinal degeneration.
Collapse
Affiliation(s)
- Suvi Pöyhönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Safak Er
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
45
|
Townsend EC, Zhang GY, Ali R, Firke M, Moon MS, Han MAT, Fram B, Glenn JS, Kleiner DE, Koh C, Heller T. The balance of type 1 and type 2 immune responses in the contexts of hepatitis B infection and hepatitis D infection. J Gastroenterol Hepatol 2019; 34:764-775. [PMID: 30695096 PMCID: PMC8237314 DOI: 10.1111/jgh.14617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Hepatitis delta virus (HDV) infection is the most rapidly progressive chronic viral hepatitis. Little is understood about the immune responses to HDV. This study aims to characterize the systemic immune environments of hepatitis B virus (HBV) and HDV patients at various disease stages. METHODS A total of 129 subjects were evaluated: 53 HBV, 43 HDV, and 33 healthy controls. HBV and HDV subjects were categorized by aspartate aminotransferase to platelet ratio index (APRI) into mild (APRI < 0.5), moderate, and severe (APRI > 1.0). Serum cytokines and immune markers were assessed at a single treatment-naïve time-point. RESULTS Type 1 cytokines are elevated in both HBV and HDV. Both groups show higher tumor necrosis factor-α (TNF-α), interleukin (IL)-12p40, and C-X-C motif chemokine ligand 9 when compared with controls (all P < 0.05). However, only HBV group displayed elevated γ-interferon compared with controls. Type 2 cytokines are elevated in HBV. HBV group shows higher IL-4, IL-13, and C-C motif chemokine ligand (CCL) 26 compared with healthy controls and HDV. Chemokines CCL2 and CCL13 are lower in HDV. When assessing ratios, HDV displays higher γ-interferon/IL-4, TNF-α/IL-4, and TNF-α/IL-13 ratios than HBV and controls. CONCLUSION Hepatitis B virus and HDV subjects show similarly elevated type 1 cytokines. HDV subjects display relatively lower type 2 cytokines. These differences in the systemic immune environments, particularly the predominance of type 1 responses, may contribute to the comparatively rapid progression of HDV disease. Characterization of the imbalance in type 1 and type 2 immunity unique HDV has the potential to provide immunological insights for designing therapeutic targets in HDV-associated disease progression.
Collapse
Affiliation(s)
- Elizabeth C Townsend
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Grace Y Zhang
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Rabab Ali
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Marian Firke
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Mi Sun Moon
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Ma Ai Thanda Han
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Benjamin Fram
- Department of Medicine, Stanford University, Stanford
| | - Jeffrey S Glenn
- Department of Medicine, Stanford University, Stanford,Department of Microbiology and Immunology, Stanford University, Stanford,Department of Medicine, Veterans Administration Medical Center, Palo Alto, California, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| |
Collapse
|
46
|
Bristot G, Ascoli BM, Scotton E, Géa LP, Pfaffenseller B, Kauer-Sant'Anna M. Effects of lithium on inflammatory and neurotrophic factors after an immune challenge in a lisdexamfetamine animal model of mania. ACTA ACUST UNITED AC 2019; 41:419-427. [PMID: 30843957 PMCID: PMC6796815 DOI: 10.1590/1516-4446-2017-0001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 09/28/2018] [Indexed: 11/22/2022]
Abstract
Objective: To evaluate whether an animal model of mania induced by lisdexamfetamine dimesylate (LDX) has an inflammatory profile and whether immune activation by lipopolysaccharides (LPS) has a cumulative effect on subsequent stimuli in this model. We also evaluated the action of lithium (Li) on inflammatory and neurotrophic factors. Methods: Adult male Wistar rats were subjected to an animal model of mania. After the open-field test, they were given LPS to induce systemic immune activation. Subsequently, the animals’ blood was collected, and their serum levels of brain-derived neurotrophic factor and inflammatory markers (tumor necrosis factor [TNF]-α, interleukin [IL]-6, IL-1β, IL-10, and inducible nitric oxide synthase [iNOS]) were measured. Results: LDX induced hyperactivity in the animals, but no inflammatory marker levels increased except brain-derived neurotrophic factor (BDNF). Li had no effect on serum BDNF levels but prevented iNOS levels from increasing in animals subjected to immune activation. Conclusion: Although Li prevented an LPS-induced increase in serum iNOS levels, its potential anti-inflammatory effects in this animal model of mania were conflicting.
Collapse
Affiliation(s)
- Giovana Bristot
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bruna M Ascoli
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil
| | - Ellen Scotton
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil
| | - Luiza P Géa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Farmacologia e Terapêutica, UFRGS, Porto Alegre, RS, Brazil
| | - Bianca Pfaffenseller
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Márcia Kauer-Sant'Anna
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
47
|
Zhou Y, Peng W, Wang J, Zhou W, Zhou Y, Ying B. Plasma levels of IL-1Ra are associated with schizophrenia. Psychiatry Clin Neurosci 2019; 73:109-115. [PMID: 30375100 DOI: 10.1111/pcn.12794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/20/2018] [Accepted: 10/24/2018] [Indexed: 02/05/2023]
Abstract
AIM Although peripheral low-grade inflammation and brain-derived neurotrophic factor (BDNF) levels have been implicated in schizophrenia (SCZ), the interactions between them remain to be fully revealed. We aimed to compare BDNF and cytokines in patients with SCZ and healthy controls (HC). Additionally, we aimed to investigate the association between peripheral levels of cytokines and BDNF in patients with SCZ. METHODS Plasma levels of BDNF, interferon gamma, interleukin (IL)-10, IL-12, IL-1, IL-6, IL-8, tumor necrosis factor alpha, macrophage migration inhibitory factor, IL-1 receptor antagonist (IL-1Ra), and CD40 Ligand were compared in 45 SCZ patients and 38 HC using Luminex technology. RESULTS Compared to HC, patients had significantly higher IL-1Ra levels (P = 0.031). We found a strong positive association between BDNF and CD40 Ligand in the patient group (rho = 0.858, P < 0.001) as well as in the HC group (rho = 0.822, P < 0.001), respectively. Furthermore, there was a negative association between BDNF and tumor necrosis factor alpha in patients (rho = -0.429, P = 0.030) as well as in HC (rho = -0.649, P < 0.001). CONCLUSION These results suggest that the cytokine IL-1Ra may play a role in SCZ pathophysiology. Additionally, the interaction between cytokines and BDNF levels further indicated the diverse actions of these cytokines.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wu Peng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - WenJing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - YanHong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - BinWu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
The Serum BDNF Level Offers Minimum Predictive Value for Motor Function Recovery After Stroke. Transl Stroke Res 2018; 10:342-351. [PMID: 30074228 DOI: 10.1007/s12975-018-0648-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in neuroplasticity and neurogenesis following ischemic and non-ischemic brain injury. The predictive value of BDNF for short-term outcome after stroke is controversial. The objective of this study was to investigate the relationship among serum BDNF level, fractional anisotropy (FA), and functional outcome during post-acute stroke rehabilitation. Serum BDNF levels were measured on admission to an acute inpatient rehabilitation hospital. The primary functional outcome was functional independence measure (FIM) motor subscore at discharge. The secondary outcome measures were FIM total score at discharge, FIM motor subscore on admission, length of stay in the hospital, and discharge destination. We investigated the relationship among the level of serum BDNF and FA as well as functional outcome measures. Three hundred forty-eight consecutive stroke subjects were included in the analysis. Serum BDNF levels on admission were statistically but not clinically correlated with FIM motor subscore at discharge (r = 0.173, P = 0.001) and FIM total score at discharge (r = 0.155, P = 0.004). Receiver operating characteristic (ROC) analysis of BDNF as a predictor for FIM motor subscore improvement showed low accuracy of prediction with an area under the curve (AUC) of 0.581 (P = 0.026). Serum BDNF significantly correlated with FA in the high FIM motor group (n = 10, r = 0.609, P = 0.031) but not in the low FIM motor group (n = 11, r = - 0.132, P = 0.349). The serum BDNF level alone offers minimum predictive value for recovery of motor function during post-acute rehabilitation. Our findings suggest that serum BDNF level may be correlated with FA.
Collapse
|
49
|
Zhang X, Zhou Y, Li H, Wang R, Yang D, Li B, Fu J. Intravenous administration of DPSCs and BDNF improves neurological performance in rats with focal cerebral ischemia. Int J Mol Med 2018; 41:3185-3194. [PMID: 29512704 PMCID: PMC5881652 DOI: 10.3892/ijmm.2018.3517] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/12/2018] [Indexed: 12/16/2022] Open
Abstract
Dental pulp stem cells (DPSCs) are considered as an ideal stem cell source for the treatment of neurological diseases. In this study, we evaluated the therapeutic potency of DPSCs and brain-derived neurotrophic factor (BDNF) in focal cerebral ischemia using animal models. Following middle cerebral artery occlusion (MCAO), rats were randomized into four groups: the BDNF, DPSCs, DPSCs+BDNF and the controls injected with saline. DPSCs were transplanted and BDNF was injected into the DPSCs+BDNF group via the tail vein. The fate of the transplanted DPSCs in rat brains was evaluated using immunofluorescence, immunohistochemistry, western blot analysis and reverse transcription-polymerase chain reaction (RT-PCR). Adhesive removal tests and the modified neurological severity scores were used to estimate the restoration of neurological function. Proliferation of intravenously transplanted DPSCs was observed in the peripheral ischemic regions of the MCAO models. A green fluorescent dye PKH67 was used to label cells. PKH67-labeled DPSCs were co-localized with neuronal cell markers and 4′,6-diamidino-2-phenylindole (DAPI). DPSC transplantation combined with BDNF induced the expression of neural differentiation markers such as nestin, doublecortin (DCX) and neuronal specific filament (NF-H), suggesting that BDNF enhances the survival of DPSCs and differentiation into neuronal cells. Treatment with DPSCs combined with BDNF promoted the recovery of neurological function more effectively compared with BDNF injection or DPSC transplantation alone. In conclusion, treatment with DPSCs combined with BDNF enhances neurological recovery after stroke suggesting a novel therapeutic strategy against cerebral ischemia.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yinglian Zhou
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hulun Li
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Rui Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Dan Yang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bing Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
50
|
Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SSA, Kim S, Suk K. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Prog Neurobiol 2017; 162:37-69. [PMID: 29247683 DOI: 10.1016/j.pneurobio.2017.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes, which are homeostatic cells of the central nervous system (CNS), display remarkable heterogeneity in their morphology and function. Besides their physical and metabolic support to neurons, astrocytes modulate the blood-brain barrier, regulate CNS synaptogenesis, guide axon pathfinding, maintain brain homeostasis, affect neuronal development and plasticity, and contribute to diverse neuropathologies via secreted proteins. The identification of astrocytic proteome and secretome profiles has provided new insights into the maintenance of neuronal health and survival, the pathogenesis of brain injury, and neurodegeneration. Recent advances in proteomics research have provided an excellent catalog of astrocyte-secreted proteins. This review categorizes astrocyte-secreted proteins and discusses evidence that astrocytes play a crucial role in neuronal activity and brain function. An in-depth understanding of astrocyte-secreted proteins and their pathways is pivotal for the development of novel strategies for restoring brain homeostasis, limiting brain injury/inflammation, counteracting neurodegeneration, and obtaining functional recovery.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Gyun Jee Song
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|