1
|
Seledtsov VI, von Delwig A. Clinically feasible and prospective immunotherapeutic interventions in multidirectional comprehensive treatment of cancer. Expert Opin Biol Ther 2020; 21:323-342. [PMID: 32981358 DOI: 10.1080/14712598.2021.1828338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The immune system is able to exert both tumor-destructive and tumor-protective functions. Immunotherapeutic technologies aim to enhance immune-based anti-tumor activity and (or) weaken tumor-protective immunity. AREAS COVERED Cancer vaccination, antibody (Ab)-mediated cytotoxicity, Ab-based checkpoint molecule inhibition, Ab-based immunostimulation, cytokine therapy, oncoviral therapy, drug-mediated immunostimulation, exovesicular therapy, anti-inflammatory therapy, neurohormonal immunorehabilitation, metabolic therapy, as well as adoptive cell immunotherapy, could be coherently used to synergize and amplify each other in achieving robust anti-cancer responses in cancer patients. Tumor-specific immunotherapy applied at early stages is capable of eliminating remaining tumor cells after surgery, thus preventing the development of minimal residual disease. Patients with advanced disease stages could benefit from combined immunotherapy, which would be aimed at providing tumor cell/mass dormancy. Traditional therapeutic anti-cancer interventions (chemoradiotherapy, hyperthermia, anti-hormonal therapy) could significantly enhance tumor sensitivity to anti-cancer immunotherapy. It is important that lower-dose (metronomic) chemotherapy regimens, which are well-tolerated by normal cells, could advance immune-mediated control over tumor growth. EXPERT OPINION We envisage that combined immunotherapy regimens in the context of traditional treatment could become the mainstream modality for treating cancers in all phases of the tumorigenesis. The effectiveness of the anti-cancer treatment could be monitored by the following blood parameters: C-reactive protein, lactate dehydrogenase, and neutrophil-to-lymphocyte ratio.
Collapse
Affiliation(s)
- Victor I Seledtsov
- Center for Integral Immunotherapy, Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russia.,Department of Immunology, Innovita Research Company, Vilnius, Lithuania
| | - Alexei von Delwig
- Department of Immunology, Innovita Research Company, Vilnius, Lithuania
| |
Collapse
|
2
|
Breast cancer vaccines delivered by dendritic cell-targeted lentivectors induce potent antitumor immune responses and protect mice from mammary tumor growth. Vaccine 2017; 35:5842-5849. [PMID: 28916248 DOI: 10.1016/j.vaccine.2017.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/15/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
Abstract
Breast cancer immunotherapy is a potent treatment option, with antibody therapies such as trastuzumab increasing 2-year survival rates by 50%. However, active immunotherapy through vaccination has generally been clinically ineffective. One potential means of improving vaccine therapy is by delivering breast cancer antigens to dendritic cells (DCs) for enhanced antigen presentation. To accomplish this in vivo, we pseudotyped lentiviral vector (LV) vaccines with a modified Sindbis Virus glycoprotein so that they could deliver genes encoding the breast cancer antigen alpha-lactalbumin (Lalba) or erb-b2 receptor tyrosine kinase 2 (ERBB2 or HER2) directly to resident DCs. We hypothesized that utilizing these DC-targeting lentiviral vectors asa breast cancer vaccine could lead to an improved immune response against self-antigens found in breast cancer tumors. Indeed, single injections of the vaccine vectors were able to amplify antigen-specific CD8T cells 4-6-fold over naïve mice, similar to the best published vaccine regimens. Immunization of these mice completely inhibited tumor growth in a foreign antigen environment (LV-ERBB2 in wildtype mice), and it reduced the rate of tumor growth in a self-antigen environment (LV-Lalba in wildtype or LV-ERBB2 in MMTV-huHER2 transgenic). These results show that a single injection with targeted lentiviral vectors can be an effective immunotherapy for breast cancer. Furthermore, they could be combined with other immunotherapeutic regimens to improve outcomes for patients with breast cancer.
Collapse
|
3
|
Hamilton DH, David JM, Dominguez C, Palena C. Development of Cancer Vaccines Targeting Brachyury, a Transcription Factor Associated with Tumor Epithelial-Mesenchymal Transition. Cells Tissues Organs 2017; 203:128-138. [PMID: 28214895 DOI: 10.1159/000446495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 01/03/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is recognized as a relevant process during the progression of carcinomas towards metastatic disease. Epithelial cancer cells undergoing an EMT program may acquire mesenchymal features, motility, invasiveness, and resistance to a variety of anticancer therapeutics. Preventing or reverting the EMT process in carcinomas has the potential to minimize tumor dissemination and the emergence of therapeutic resistance. One of the strategies currently under investigation to target tumor cells undergoing EMT is the generation of a sustained immune response directed against an essential molecular driver of the process. This review focuses on the current development of immune-mediated anticancer interventions aimed at targeting a transcription factor, brachyury, associated with human tumor EMT. Also presented here is a summary of recent studies demonstrating a role for EMT in tumor resistance to immune effector cytotoxicity, and the study of novel strategies aimed at reverting the EMT to be used in combination with immune-mediated anticancer interventions.
Collapse
Affiliation(s)
- Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
4
|
Sterman DH, Alley E, Stevenson JP, Friedberg J, Metzger S, Recio A, Moon EK, Haas AR, Vachani A, Katz SI, Sun J, Heitjan DF, Hwang WT, Litzky L, Yearley JH, Tan KS, Papasavvas E, Kennedy P, Montaner LJ, Cengel KA, Simone CB, Culligan M, Langer CJ, Albelda SM. Pilot and Feasibility Trial Evaluating Immuno-Gene Therapy of Malignant Mesothelioma Using Intrapleural Delivery of Adenovirus-IFNα Combined with Chemotherapy. Clin Cancer Res 2016; 22:3791-800. [PMID: 26968202 DOI: 10.1158/1078-0432.ccr-15-2133] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/07/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE "In situ vaccination" using immunogene therapy has the ability to induce polyclonal antitumor responses directed by the patient's immune system. EXPERIMENTAL DESIGN Patients with unresectable malignant pleural mesothelioma (MPM) received two intrapleural doses of a replication-defective adenoviral vector containing the human IFNα2b gene (Ad.IFN) concomitant with a 14-day course of celecoxib followed by chemotherapy. Primary outcomes were safety, toxicity, and objective response rate; secondary outcomes included progression-free and overall survival. Biocorrelates on blood and tumor were measured. RESULTS Forty subjects were treated: 18 received first-line pemetrexed-based chemotherapy, 22 received second-line chemotherapy with pemetrexed (n = 7) or gemcitabine (n = 15). Treatment was generally well tolerated. The overall response rate was 25%, and the disease control rate was 88%. Median overall survival (MOS) for all patients with epithelial histology was 21 months versus 7 months for patients with nonepithelial histology. MOS in the first-line cohort was 12.5 months, whereas MOS for the second-line cohort was 21.5 months, with 32% of patients alive at 2 years. No biologic parameters were found to correlate with response, including numbers of activated blood T cells or NK cells, regulatory T cells in blood, peak levels of IFNα in blood or pleural fluid, induction of antitumor antibodies, nor an immune-gene signature in pretreatment biopsies. CONCLUSIONS The combination of intrapleural Ad.IFN, celecoxib, and chemotherapy proved safe in patients with MPM. OS rate was significantly higher than historical controls in the second-line group. Results of this study support proceeding with a multicenter randomized clinical trial of chemo-immunogene therapy versus standard chemotherapy alone. Clin Cancer Res; 22(15); 3791-800. ©2016 AACR.
Collapse
Affiliation(s)
- Daniel H Sterman
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evan Alley
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - James P Stevenson
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph Friedberg
- Division of Thoracic Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Susan Metzger
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adri Recio
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edmund K Moon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew R Haas
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anil Vachani
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sharyn I Katz
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Sun
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel F Heitjan
- Department of Biostatistics & Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wei-Ting Hwang
- Department of Biostatistics & Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Leslie Litzky
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Kay See Tan
- Department of Biostatistics & Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Paul Kennedy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles B Simone
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melissa Culligan
- Division of Thoracic Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Corey J Langer
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
5
|
Seledtsov VI, Goncharov AG, Seledtsova GV. Clinically feasible approaches to potentiating cancer cell-based immunotherapies. Hum Vaccin Immunother 2016; 11:851-69. [PMID: 25933181 DOI: 10.1080/21645515.2015.1009814] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The immune system exerts both tumor-destructive and tumor-protective functions. Mature dendritic cells (DCs), classically activated macrophages (M1), granulocytes, B lymphocytes, aβ and ɣδ T lymphocytes, natural killer T (NKT) cells, and natural killer (NK) cells may be implicated in antitumor immunoprotection. Conversely, tolerogenic DCs, alternatively activated macrophages (M2), myeloid-derived suppressor cells (MDSCs), and regulatory T (Tregs) and B cells (Bregs) are capable of suppressing antitumor immune responses. Anti-cancer vaccination is a useful strategy to elicit antitumor immune responses, while overcoming immunosuppressive mechanisms. Whole tumor cells or lysates derived thereof hold more promise as cancer vaccines than individual tumor-associated antigens (TAAs), because vaccinal cells can elicit immune responses to multiple TAAs. Cancer cell-based vaccines can be autologous, allogeneic or xenogeneic. Clinical use of xenogeneic vaccines is advantageous in that they can be most effective in breaking the preexisting immune tolerance to TAAs. To potentiate immunotherapy, vaccinations can be combined with other modalities that target different immune pathways. These modalities include 1) genetic or chemical modification of cell-based vaccines; 2) cross-priming TAAs to T cells by engaging dendritic cells; 3) T-cell adoptive therapy; 4) stimulation of cytotoxic inflammation by non-specific immunomodulators, toll-like receptor (TLR) agonists, cytokines, chemokines or hormones; 5) reduction of immunosuppression and/or stimulation of antitumor effector cells using antibodies, small molecules; and 6) various cytoreductive modalities. The authors envisage that combined immunotherapeutic strategies will allow for substantial improvements in clinical outcomes in the near future.
Collapse
Key Words
- ADCC, antibody-dependent cell cytotoxicity
- APC, antigen-presenting cell
- Ab, antibodies
- BCG, Bacillus Calmette-Guérin
- Breg, regulatory B cell
- CAR, chimeric antigen receptor
- COX, cyclooxygenase
- CTA, cancer/testis antigen
- CTL, cytotoxic T lymphocyte
- CTLA-4, cytotoxic T lymphocyte antigen-4
- DC, dendritic cell
- DTH, delayed-type hypersensitivity
- GITR, glucocorticoid-induced tumor necrosis factor receptor
- GM-CSF, granulocyte-macrophage colony stimulating factor
- HIFU, high-intensity focused ultrasound
- IDO, indoleamine-2, 3-dioxygenase
- IFN, interferon
- IL, interleukin
- LAK, lymphokine-activated killer
- M, macrophage
- M1, classically activated macrophage
- M2, alternatively activated macrophage, MDSC, myeloid-derived suppressor cell
- MHC, major histocompatibility complex
- NK, natural killer (cell)
- PD-1, programmed death-1
- PGE2, prostaglandin E2
- RFA, radiofrequency ablation
- RNS, reactive nitrogen species
- ROS
- TAA, tumor-associated antigen
- TGF, transforming growth factor
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- Th, T-helper cell
- Treg, regulatory T cell
- VEGF, vascular endothelial growth factor
- antitumor immunoprotection
- cancer cell-based vaccines
- combined immunotherapy
- immunosuppression
- reactive oxygen species
Collapse
Affiliation(s)
- V I Seledtsov
- a lmmanuel Kant Baltic Federal University ; Kaliningrad , Russia
| | | | | |
Collapse
|
6
|
|
7
|
Fernández A, Oliver L, Alvarez R, Fernández LE, Lee KP, Mesa C. Adjuvants and myeloid-derived suppressor cells: enemies or allies in therapeutic cancer vaccination. Hum Vaccin Immunother 2015; 10:3251-60. [PMID: 25483674 DOI: 10.4161/hv.29847] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adjuvants are a critical but largely overlooked and poorly understood component included in vaccine formulations to stimulate and modulate the desired immune responses to an antigen. However, unlike in the protective infectious disease vaccines, adjuvants for cancer vaccines also need to overcome the effect of tumor-induced suppressive immune populations circulating in tumor-bearing individuals. Myeloid-derived suppressor cells (MDSC) are considered to be one of the key immunosuppressive populations that inhibit tumor-specific T cell responses in cancer patients. This review focuses on the different signals for the activation of the immune system induced by adjuvants, and the close relationship to the mechanisms of recruitment and activation of MDSC. This work explores the possibility that a cancer vaccine adjuvant may either strengthen or weaken the effect of tumor-induced MDSC, and the crucial need to address this in present and future cancer vaccines.
Collapse
Key Words
- APC, antigen-presenting cells
- ARG1, arginase 1
- CTL, cytotoxic T lymphocytes
- DC, dendritic cells
- G-MDSC, granulocytic MDSC
- GM-CSF, granulocyte macrophage colony-stimulating factor
- MDSC
- MDSC, myeloid-derived suppressor cells
- Mo-MDSC, monocytic MDSC
- NK, natural killer
- NOS2, inducible nitric oxide synthase
- TAM, tumor-associated macrophages
- TLR ligands
- TLR, Toll-like receptors
- Treg, regulatory T cells
- adjuvants
- cancer
- cytokines
- immunotherapy
Collapse
Affiliation(s)
- Audry Fernández
- a Immunobiology Division; Center of Molecular Immunology ; Havana , Cuba
| | | | | | | | | | | |
Collapse
|
8
|
Gérard C, Baudson N, Ory T, Segal L, Louahed J. A Comprehensive Preclinical Model Evaluating the Recombinant PRAME Antigen Combined With the AS15 Immunostimulant to Fight Against PRAME-expressing Tumors. J Immunother 2015; 38:311-20. [PMID: 26325375 PMCID: PMC4661047 DOI: 10.1097/cji.0000000000000095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 07/22/2015] [Indexed: 12/30/2022]
Abstract
The PRAME tumor antigen is a potential target for immunotherapy. We assessed the immunogenicity, the antitumor activity, and the safety and the tolerability of a recombinant PRAME protein (recPRAME) combined with the AS15 immunostimulant (recPRAME+ AS15) in preclinical studies in mice and Cynomolgus monkeys. Four groups of 12 CB6F1 mice received 4 injections of phosphate-buffered saline (PBS), recPRAME, AS15, or recPRAME+AS15. Immunized mice were injected with tumor cells expressing PRAME (CT26-PRAME) 2 weeks or 2 months after the last injection. The mean tumor surface was measured twice a week. Two groups of 10 monkeys received 7 injections of saline or recPRAME+ AS15. T-cell responses were measured by flow cytometry using intracellular cytokine staining (ICS). In CB6F1 mice, repeated injections of recPRAME+ AS15 induced high PRAME-specific antibody titers and mostly CD4+ T cells producing cytokines. This immune response was long-lasting in these animals and was associated with protection against a challenge with PRAME-expressing tumor cells (CT26-PRAME) applied either 2 weeks or 2 months after the last injection; these data indicate the induction of an immune memory. In HLA-A02.01/HLA-DR1 transgenic mice, recPRAME+ AS15 induced both CD4+ and CD8+ T-cell responses, indicating that this antigen can be processed by the human leukocyte antigen and is potentially immunogenic in humans. In addition, a repeated-dose toxicity study in monkeys showed that 7 biweekly injections of recPRAME+ AS15 were well tolerated, and induced PRAME-specific antibodies and T cells. In conclusion, these preclinical data indicate that repeated injections of the PRAME cancer immunotherapeutic are immunogenic and have an acceptable safety profile.
Collapse
|
9
|
Balint JP, Gabitzsch ES, Rice A, Latchman Y, Xu Y, Messerschmidt GL, Chaudhry A, Morse MA, Jones FR. Extended evaluation of a phase 1/2 trial on dosing, safety, immunogenicity, and overall survival after immunizations with an advanced-generation Ad5 [E1-, E2b-]-CEA(6D) vaccine in late-stage colorectal cancer. Cancer Immunol Immunother 2015; 64:977-87. [PMID: 25956394 PMCID: PMC4506904 DOI: 10.1007/s00262-015-1706-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/25/2015] [Indexed: 01/20/2023]
Abstract
A phase 1/2 clinical trial evaluating dosing, safety, immunogenicity, and overall survival on metastatic colorectal cancer (mCRC) patients after immunotherapy with an advanced-generation Ad5 [E1-, E2b-]-CEA(6D) vaccine was performed. We report our extended observations on long-term overall survival and further immune analyses on a subset of treated patients including assessment of cytolytic T cell responses, T regulatory (Treg) to T effector (Teff) cell ratios, flow cytometry on peripheral blood mononuclear cells (PBMCs), and determination of HLA-A2 status. An overall survival of 20 % (median survival 11 months) was observed during long-term follow-up, and no long-term adverse effects were reported. Cytolytic T cell responses increased after immunizations, and cell-mediated immune (CMI) responses were induced whether or not patients were HLA-A2 positive or Ad5 immune. PBMC samples from a small subset of patients were available for follow-up immune analyses. It was observed that the levels of carcinoembryonic antigen (CEA)-specific CMI activity decreased from their peak values during follow-up in five patients analyzed. Preliminary results revealed that activated CD4+ and CD8+ T cells were detected in a post-immunization sample exhibiting high CMI activity. Treg to Teff cell ratios were assessed, and samples from three of five patients exhibited a decrease in Treg to Teff cell ratio during the treatment protocol. Based upon the favorable safety and immunogenicity data obtained, we plan to perform an extensive immunologic and survival analysis on mCRC patients to be enrolled in a randomized/controlled clinical trial that investigates Ad5 [E1-, E2b-]-CEA(6D) as a single agent with booster immunizations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael A. Morse
- Department of Medicine, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
10
|
Cancer Dormancy: A Regulatory Role for Endogenous Immunity in Establishing and Maintaining the Tumor Dormant State. Vaccines (Basel) 2015; 3:597-619. [PMID: 26350597 PMCID: PMC4586469 DOI: 10.3390/vaccines3030597] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023] Open
Abstract
The significant contribution of host immunity in early tumorigenesis has been recently recognized as a result of our better understanding of the molecular pathways regulating tumor cell biology and tumor-lymphocyte interactions. Emerging evidence suggests that disseminated dormant tumor cells derived from primary tumors before or after immune surveillance, are responsible for subsequent metastases. Recent trends from the field of onco-immunology suggest that efficiently stimulating endogenous anticancer immunity is a prerequisite for the successful outcome of conventional cancer therapies. Harnessing the immune system to achieve clinical efficacy is realistic in the context of conventional therapies resulting in immunogenic cell death and/or immunostimulatory side effects. Targeted therapies designed to target oncogenic pathways in tumor cells can also positively regulate the endogenous immune response and tumor microenvironment. Identification of T cell inhibitory signals has prompted the development of immune checkpoint inhibitors, which specifically hinder immune effector inhibition, reinvigorating and potentially expanding the preexisting anticancer immune response. This anticancer immunity can be amplified in the setting of immunotherapies, mostly in the form of vaccines, which boost naturally occurring T cell clones specifically recognizing tumor antigens. Thus, a promising anticancer therapy will aim to activate patients' naturally occurring anticancer immunity either to eliminate residual tumor cells or to prolong dormancy in disseminated tumor cells. Such an endogenous anticancer immunity plays a significant role for controlling the balance between dormant tumor cells and tumor escape, and restraining metastases. In this review, we mean to suggest that anticancer therapies aiming to stimulate the endogenous antitumor responses provide the concept of the therapeutic management of cancer.
Collapse
|
11
|
Pennock GK, Chow LQM. The Evolving Role of Immune Checkpoint Inhibitors in Cancer Treatment. Oncologist 2015; 20:812-22. [PMID: 26069281 DOI: 10.1634/theoncologist.2014-0422] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/20/2015] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Traditional treatment modalities for advanced cancer (radiotherapy, chemotherapy, or targeted agents) act directly on tumors to inhibit or destroy them. Along with surgery, these modalities are predominantly palliative, with toxicity and only modest improvements in survival in patients with advanced solid tumors. Accordingly, long-term survival rates for most patients with advanced cancer remain low, thus there is a need for cancer treatments with favorable benefit and toxicity profiles that can potentially result in long-term survival. The immune system plays a critical role in the recognition and eradication of tumor cells ("immune surveillance"), and immunotherapies based on this concept have been used for decades with some success against a few tumor types; however, most immunotherapies were limited by a lack of either substantial efficacy or specificity, resulting in toxicity. We now have a greater understanding of the complex interactions between the immune system and tumors and have identified key molecules that govern these interactions. This information has revitalized the interest in immunotherapy as an evolving treatment modality using immunotherapeutics designed to overcome the mechanisms exploited by tumors to evade immune destruction. Immunotherapies have potentially complementary mechanisms of action that may allow them to be combined with other immunotherapeutics, chemotherapy, targeted therapy, or other traditional therapies. This review discusses the concepts and data behind immunotherapies, with a focus on the checkpoint inhibitors and their responses, toxicities, and potential for long-term survival, and explores promising single-agent and combination therapies in development. IMPLICATIONS FOR PRACTICE Immunotherapy is an evolving treatment approach based on the role of the immune system in eradicating cancer. An example of an immunotherapeutic is ipilimumab, an antibody that blocks cytotoxic T-lymphocyte antigen-4 (CTLA-4) to augment antitumor immune responses. Ipilimumab is approved for advanced melanoma and induced long-term survival in a proportion of patients. The programmed death-1 (PD-1) checkpoint inhibitors are promising immunotherapies with demonstrated sustained antitumor responses in several tumors. Because they harness the patient's own immune system, immunotherapies have the potential to be a powerful weapon against cancer.
Collapse
Affiliation(s)
- Gregory K Pennock
- Levine Cancer Institute, Charlotte, North Carolina, USA; University of Washington, Seattle, Washington, USA
| | - Laura Q M Chow
- Levine Cancer Institute, Charlotte, North Carolina, USA; University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Palena C, Hamilton DH. Immune Targeting of Tumor Epithelial-Mesenchymal Transition via Brachyury-Based Vaccines. Adv Cancer Res 2015. [PMID: 26216630 DOI: 10.1016/bs.acr.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a manifestation of their inherent plasticity, carcinoma cells undergo profound phenotypic changes during progression toward metastasis. One such phenotypic modulation is the epithelial-mesenchymal transition (EMT), an embryonically relevant process that can be reinstated by tumor cells, resulting in the acquisition of metastatic propensity, stem-like cell properties, and resistance to a variety of anticancer therapies, including chemotherapy, radiation, and some small-molecule targeted therapies. Targeting of the EMT is emerging as a novel intervention against tumor progression. This review focuses on the potential use of cancer vaccine strategies targeting tumor cells that exhibit mesenchymal-like features, with an emphasis on the current status of development of vaccine platforms directed against the T-box transcription factor brachyury, a novel cancer target involved in tumor EMT, stemness, and resistance to therapies. Also presented is a summary of potential mechanisms of resistance to immune-mediated attack driven by EMT and the development of novel combinatorial strategies based on the use of agents that alleviate tumor EMT for an optimized targeting of plastic tumor cells that are responsible for tumor recurrence and the establishment of therapeutic refractoriness.
Collapse
Affiliation(s)
- Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
13
|
Liu TY, Hussein WM, Giddam AK, Jia Z, Reiman JM, Zaman M, McMillan NAJ, Good MF, Monteiro MJ, Toth I, Skwarczynski M. Polyacrylate-based delivery system for self-adjuvanting anticancer peptide vaccine. J Med Chem 2014; 58:888-96. [PMID: 25489968 DOI: 10.1021/jm501514h] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vaccination can provide a safe alternative to chemotherapy by using the body's natural defense mechanisms to create a potent immune response against tumor cells. Peptide-based therapeutic vaccines against human papillomavirus (HPV)-related cancers are usually designed to elicit cytotoxic T cell responses by targeting the HPV-16 E7 oncoprotein. However, peptides alone lack immunogenicity, and an additional adjuvant or external delivery system is required. In this study, we developed new polymer-peptide conjugates to create an efficient self-adjuvanting system for peptide-based therapeutic vaccines. These conjugates reduced tumor growth and eradicated E7-positive TC-1 tumors in mice after a "single shot" immunization, without the help from an external adjuvant. The new conjugates had a significantly higher anticancer efficacy than the antigen formulated with a commercial adjuvant. Furthermore, the polymer-peptide conjugates were promptly taken up by antigen presenting cells, including dendritic cells and macrophages, and efficiently activated CD4(+) T-helper cells and CD8(+) cytotoxic T lymphocyte cells.
Collapse
Affiliation(s)
- Tzu-Yu Liu
- School of Chemistry and Molecular Biosciences, ‡Australian Institute for Bioengineering and Nanotechnology, and §School of Pharmacy, The University of Queensland , Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
ZHANG JUN, YANG JIANMIN, CAI YUAN, JIN NI, WANG HUIJU, YU TONG. Multiple antigenic polypeptide composed of heparanase B-cell epitopes shrinks human hepatocellular carcinoma in mice. Oncol Rep 2014; 33:1248-56. [DOI: 10.3892/or.2014.3679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/15/2014] [Indexed: 11/05/2022] Open
|
15
|
Brauns T, Leblanc P, Gelfand JA, Poznanski M. Could mycobacterial Hsp70-containing fusion protein lead the way to an affordable therapeutic cancer vaccine? Expert Rev Vaccines 2014; 14:435-46. [PMID: 25496347 DOI: 10.1586/14760584.2015.979797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer vaccine development efforts have recently gained momentum, but most vaccines showing clinical impact in human trials tend to be based on technology approaches that are very costly and difficult to produce at scale. With the projected doubling of the incidence of cancer and its related cost of care in the U.S. over the next two decades, the widespread clinical use of such vaccines will prove difficult to justify. Heat shock protein-based vaccines have shown the potential to elicit clinically meaningful immunologic responses in cancer, but the predominant development approach - heat shock protein-peptide complexes derived from a patient's own tumor - face similar challenges of cost and scalability. New innovative modalities for deploying heat shock proteins in cancer vaccines may open the door to vaccines that can generate potent cytotoxic responses against multiple tumor targets and can be made in a cost-effective and scalable manner.
Collapse
Affiliation(s)
- Timothy Brauns
- Vaccine and Immunotherapy Center, Massachusetts General Hospital - Medicine/Infectious Diseases, 149 13th Street, Mailstop 149-5-5246, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
16
|
Yaddanapudi K, Mitchell RA, Eaton JW. Cancer vaccines: Looking to the future. Oncoimmunology 2014; 2:e23403. [PMID: 23802081 PMCID: PMC3661166 DOI: 10.4161/onci.23403] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 12/25/2022] Open
Abstract
These are exciting times for the field of cancer immunotherapy. Although the clinical efficacy of monoclonal antibodies has been demonstrated since the early 1990s, the therapeutic profile of other immunotherapeutic approaches-especially vaccines-has not yet been formally clarified. However, the recent success of several immunotherapeutic regimens in cancer patients has boosted the development of this treatment modality. These achievements stemmed from recent scientific advances demonstrating the tolerogenic nature of cancer and the fundamental role of the tumor immune microenvironment in the suppression of antitumor immunity. New immunotherapeutic strategies against cancer attempt to promote protective antitumor immunity while disrupting the immunoregulatory circuits that contribute to tumor tolerance. Cancer vaccines differ from other anticancer immunotherapeutics in that they initiate the dynamic process of activating the immune system so as to successfully re-establish a state of equilibrium between tumor cells and the host. This article reviews recent clinical trials involving several different cancer vaccines and describes some of the most promising immunotherapeutic approaches that harness antitumor T-cell responses. In addition, we describe strategies whereby cancer vaccines can be exploited in combination with other therapeutic approach to overcome-in a synergistic fashion-tumor immunoevasion. Finally, we discuss prospects for the future development of broad spectrum prophylactic anticancer vaccines.
Collapse
Affiliation(s)
- Kavitha Yaddanapudi
- Molecular Targets Group; James Graham Brown Cancer Center; University of Louisville; Louisville, KY USA
| | | | | |
Collapse
|
17
|
Combinatorial contextualization of peptidic epitopes for enhanced cellular immunity. PLoS One 2014; 9:e110425. [PMID: 25343355 PMCID: PMC4208766 DOI: 10.1371/journal.pone.0110425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/13/2014] [Indexed: 11/25/2022] Open
Abstract
Invocation of cellular immunity by epitopic peptides remains largely dependent on empirically developed protocols, such as interfusion of aluminum salts or emulsification using terpenoids and surfactants. To explore novel vaccine formulation, epitopic peptide motifs were co-programmed with structural motifs to produce artificial antigens using our “motif-programming” approach. As a proof of concept, we used an ovalbumin (OVA) system and prepared an artificial protein library by combinatorially polymerizing MHC class I and II sequences from OVA along with a sequence that tends to form secondary structures. The purified endotoxin-free proteins were then examined for their ability to activate OVA-specific T-cell hybridoma cells after being processed within dendritic cells. One clone, F37A (containing three MHC I and two MHC II OVA epitopes), possessed a greater ability to evoke cellular immunity than the native OVA or the other artificial antigens. The sensitivity profiles of drugs that interfered with the F37A uptake differed from those of the other artificial proteins and OVA, suggesting that alteration of the cross-presentation pathway is responsible for the enhanced immunogenicity. Moreover, F37A, but not an epitopic peptide, invoked cellular immunity when injected together with monophosphoryl lipid A (MPL), and retarded tumor growth in mice. Thus, an artificially synthesized protein antigen induced cellular immunity in vivo in the absence of incomplete Freund's adjuvant or aluminum salts. The method described here could be potentially used for developing vaccines for such intractable ailments as AIDS, malaria and cancer, ailments in which cellular immunity likely play a crucial role in prevention and treatment.
Collapse
|
18
|
Antonia SJ, Larkin J, Ascierto PA. Immuno-oncology Combinations: A Review of Clinical Experience and Future Prospects. Clin Cancer Res 2014; 20:6258-68. [DOI: 10.1158/1078-0432.ccr-14-1457] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Viral Vector Vaccines To Treat Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Morse MA, Chaudhry A, Gabitzsch ES, Hobeika AC, Osada T, Clay TM, Amalfitano A, Burnett BK, Devi GR, Hsu DS, Xu Y, Balcaitis S, Dua R, Nguyen S, Balint JP, Jones FR, Lyerly HK. Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients. Cancer Immunol Immunother 2013; 62:1293-301. [PMID: 23624851 DOI: 10.1007/s00262-013-1400-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/21/2013] [Indexed: 12/11/2022]
Abstract
First-generation, E1-deleted adenovirus subtype 5 (Ad5)-based vectors, although promising platforms for use as cancer vaccines, are impeded in activity by naturally occurring or induced Ad-specific neutralizing antibodies. Ad5-based vectors with deletions of the E1 and the E2b regions (Ad5 [E1-, E2b-]), the latter encoding the DNA polymerase and the pre-terminal protein, by virtue of diminished late phase viral protein expression, were hypothesized to avoid immunological clearance and induce more potent immune responses against the encoded tumor antigen transgene in Ad-immune hosts. Indeed, multiple homologous immunizations with Ad5 [E1-, E2b-]-CEA(6D), encoding the tumor antigen carcinoembryonic antigen (CEA), induced CEA-specific cell-mediated immune (CMI) responses with antitumor activity in mice despite the presence of preexisting or induced Ad5-neutralizing antibody. In the present phase I/II study, cohorts of patients with advanced colorectal cancer were immunized with escalating doses of Ad5 [E1-, E2b-]-CEA(6D). CEA-specific CMI responses were observed despite the presence of preexisting Ad5 immunity in a majority (61.3 %) of patients. Importantly, there was minimal toxicity, and overall patient survival (48 % at 12 months) was similar regardless of preexisting Ad5 neutralizing antibody titers. The results demonstrate that, in cancer patients, the novel Ad5 [E1-, E2b-] gene delivery platform generates significant CMI responses to the tumor antigen CEA in the setting of both naturally acquired and immunization-induced Ad5-specific immunity.
Collapse
Affiliation(s)
- Michael A Morse
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shepherd FA, Douillard JY, Blumenschein GR. [Immunotherapy for non-small cell lung cancer--novel approaches to improve patient outcome]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2013; 16:C9-20. [PMID: 23601304 PMCID: PMC6123568 DOI: 10.3779/j.issn.1009-3419.2013.04.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
简介 通常,非小细胞肺癌(non-small cell lung cancer, NSCLC)诊断已为晚期,且预后较差。目前的NSCLC标准治疗总体治愈率低,有必要开发新的治疗方法。我们在本综述中提供了最新的免疫治疗干预临床数据,该手段可能能够提高免疫系统对细胞的应答。 方法 我们针对临床应用免疫疗法治疗NSCLC,检索了PubMed上的文章以及最近肿瘤学术会议上的摘要。 结果 Ⅱ期临床研究结果表明,靶向肿瘤细胞本身或其异常表达的肿瘤标志物的疫苗治疗(mucin1,黑色素瘤相关抗原3,或表皮生长因子),有望作为NSCLC免疫疗法。非抗原免疫治疗,如抗细胞毒T淋巴细胞抗原4单克隆抗体、talactoferrin alfa和toll-样受体9拮抗剂,作用于激活的免疫系统,与肿瘤抗原无关,可用于晚期NSCLC的治疗。目前一些免疫治疗正在进行Ⅲ期研究,以确定最佳治疗方案,并与NSCLC标准治疗对照,确定其临床疗效。 结论 越来越多的证据表明肺部肿瘤存在免疫应答。免疫治疗,包括疫苗治疗和非抗原免疫调节方法,可改善NSCLC的预后。而且,提高抗肿瘤免疫应答的治疗,与化疗有协同作用。生物标志物的明确以及免疫治疗作用机制的进一步阐明对于确定哪些患者更可能从免疫治疗中获益至关重要。
Collapse
Affiliation(s)
- Frances A Shepherd
- Department of Medical Oncology and Hematology, University Health Network, Princess Margaret Hospital and the University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
22
|
Eggermont AMM. Can immuno-oncology offer a truly pan-tumour approach to therapy? Ann Oncol 2013; 23 Suppl 8:viii53-7. [PMID: 22918930 DOI: 10.1093/annonc/mds264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increased understanding of cellular and molecular tumour immunology over the past two decades has enabled the identification of new and innovative ways to manipulate the immune response to cancer, with recent phase III trials in patients with metastatic melanoma and hormone-resistant prostate cancer providing proof-of-principle that immunotherapies can improve survival. Based on these successes, many new immunotherapies are being developed, including vaccines and other agents that prime or boost the immune system, T-cell modulatory agents, agents that enhance innate immunity and agents designed to inhibit immunosuppression within the tumour microenvironment. Current experience suggests that immunotherapies are a promising foundation to build treatment regimens for a variety of tumour types. Because many approaches target the immune system and not the cancer, immunotherapies are being evaluated in almost every tumour type, including those that were not previously considered likely to respond to immune manipulation. Immunotherapies also have potential for durable and adaptable cancer control at different stages of disease, including those with early-stage disease and low tumour burdens. To maximise benefits, however, it is likely that combination regimens with conventional cancer treatments or other immunotherapies will be necessary. In addition, the identification of biomarkers will allow further optimisation from a mechanistic and a patient selection perspective. Further advances in research will necessitate multidisciplinary collaboration among physicians, basic and translational researchers and the pharmaceutical industry to ensure that immuno-oncology becomes a cornerstone element in the development of cancer therapy.
Collapse
Affiliation(s)
- A M M Eggermont
- Cancer Institute Gustave-Roussy, Villejuif/Paris-Sud 94800, France.
| |
Collapse
|
23
|
Gerritsen WR. The evolving role of immunotherapy in prostate cancer. Ann Oncol 2013; 23 Suppl 8:viii22-7. [PMID: 22918924 DOI: 10.1093/annonc/mds259] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The prognosis for men with metastatic, castration-resistant prostate cancer (CRPC) is limited, and patients have very few treatment options, particularly if the treatment failed with docetaxel (Taxotere). As a result, there is a requirement for novel approaches to therapy. Using immunotherapy to induce immune responses to prostate cancer in preclinical and clinical studies appears to be a valid therapeutic approach. In a pivotal phase III trial, treatment with sipuleucel-T, an autologous cellular vaccine consisting of activated antigen-presenting cells loaded with prostatic acid phosphatase (PAP), gave a median overall survival of 25.8 months compared with 21.7 months for placebo-treated patients, resulting in a 22% relative reduction in the risk of death. Based on these results, sipuleucel-T became the first therapeutic vaccine approved for any type of cancer in the USA. PROSTVAC(®)-VF, a poxvirus-based vaccine engineered to present prostate-specific antigen (PSA) and three immune costimulatory molecules, and GVAX, a vaccine consisting of two prostate cancer cell lines (LnCAP and PC3) and genetically modified to secrete granulocyte-macrophage colony-stimulating factor (GM-CSF), both showed promising results in phase II studies, although GVAX failed to meet its primary end point of overall survival when compared with docetaxel in a phase III study. T-cell modulation is another potential immunotherapeutic strategy for CRPC. Ipilimumab, an antibody against the cytotoxic T-lymphocyte-associated antigen-4, is being evaluated in phase I/II studies, both alone and in combination with chemotherapy, radiotherapy or GVAX, with activity in prostate cancer. CRPC is one of the few tumour types where immunotherapy is the current standard of care. Further research, however, will be necessary to improve antitumour responses and clinical benefits, including the use of novel combinatorial approaches.
Collapse
Affiliation(s)
- W R Gerritsen
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Lechner MG, Russell SM, Bass RS, Epstein AL. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors. Immunotherapy 2012; 3:1317-40. [PMID: 22053884 DOI: 10.2217/imt.11.115] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or co-opted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host.
Collapse
Affiliation(s)
- Melissa G Lechner
- Department of Pathology, USC Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
25
|
Sorbye SW, Kilvaer TK, Valkov A, Donnem T, Smeland E, Al-Shibli K, Bremnes RM, Busund LT. Prognostic impact of peritumoral lymphocyte infiltration in soft tissue sarcomas. BMC Clin Pathol 2012; 12:5. [PMID: 22375962 PMCID: PMC3312871 DOI: 10.1186/1472-6890-12-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/29/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The purpose of this study was to clarify the prognostic significance of peritumoral lymphocyte infiltration in the capsule of soft tissue sarcomas (STS). Multiple observations in preclinical and clinical studies have shown that the immune system has a role in controlling tumor growth and progression. Prognostic markers in potentially curable STS should guide therapy after surgical resection. The immune status at the time of resection may be important, but the prognostic significance of peritumoral lymphocytes is unknown. METHODS Tissue microarrays from 80 patients with STS were constructed from duplicate cores of tissue from the tumor and the peritumoral capsule. Immunohistochemistry was used to evaluate the CD3+, CD4+, CD8+ and CD20+ lymphocytes in the tumor and the peritumoral capsule. RESULTS In univariate analyses, increasing numbers of CD20+ (P = 0.032) peritumoral lymphocytes were associated with a reduced disease free survival (DSS). In multivariate analyses, a high number of CD20+ peritumoral lymphocytes (P = 0.030) in the capsule was an independent negative prognostic factor for DSS. There were no such associations of lymphocyte infiltration in the tumor. CONCLUSIONS A high density of CD20+ peritumoral lymphocytes is an independent negative prognostic indicator for patients with STS. Further research is needed to determine whether CD20 cells in the peritumoral capsule of STS may promote tumor invasion in the surrounding tissue and increase the metastatic potential.
Collapse
Affiliation(s)
- Sveinung W Sorbye
- Dept of Clinical Pathology, University Hospital of North Norway, 9038 Tromso, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tumor evasion from T cell surveillance. J Biomed Biotechnol 2011; 2011:918471. [PMID: 22190859 PMCID: PMC3228689 DOI: 10.1155/2011/918471] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/29/2011] [Indexed: 12/17/2022] Open
Abstract
An intact immune system is essential to prevent the development and progression of neoplastic cells in a process termed immune surveillance. During this process the innate and the adaptive immune systems closely cooperate and especially T cells play an important role to detect and eliminate tumor cells. Due to the mechanism of central tolerance the frequency of T cells displaying appropriate arranged tumor-peptide-specific-T-cell receptors is very low and their activation by professional antigen-presenting cells, such as dendritic cells, is frequently hampered by insufficient costimulation resulting in peripheral tolerance. In addition, inhibitory immune circuits can impair an efficient antitumoral response of reactive T cells. It also has been demonstrated that large tumor burden can promote a state of immunosuppression that in turn can facilitate neoplastic progression. Moreover, tumor cells, which mostly are genetically instable, can gain rescue mechanisms which further impair immune surveillance by T cells. Herein, we summarize the data on how tumor cells evade T-cell immune surveillance with the focus on solid tumors and describe approaches to improve anticancer capacity of T cells.
Collapse
|
27
|
Shepherd FA, Douillard JY, Blumenschein GR. Immunotherapy for Non-small Cell Lung Cancer: Novel Approaches to Improve Patient Outcome. J Thorac Oncol 2011; 6:1763-73. [DOI: 10.1097/jto.0b013e31822e28fc] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
28
|
Walczak K, Dąbrowski W, Langner E, Zgrajka W, Piłat J, Kocki T, Rzeski W, Turski WA. Kynurenic acid synthesis and kynurenine aminotransferases expression in colon derived normal and cancer cells. Scand J Gastroenterol 2011; 46:903-12. [PMID: 21615226 DOI: 10.3109/00365521.2011.579159] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Kynurenic acid (KYNA), a tryptophan metabolite, was found in human saliva, gastric juice, bile, pancreatic juice and mucus of rat small intestine. METHODS KYNA content in mucus aspirated from human caecum or colon ascendens and KYNA production in colon epithelial and cancer cells were determined using HPLC. Moreover, biological properties of KYNA and kynurenine aminotransferases (KATs) expression in colon epithelial and colon cancer cells were studied. RESULTS Considerably higher KYNA concentration was detected in samples from patients diagnosed with colon carcinoma (269.40 ± 107.00 pmol/ml, N = 4), Adenoma tubulovillosum (200.50 ± 36.72, N = 10) or Adenoma tubulare (243.50 ± 38.09, N = 9) than in control group (82.22 ± 7.61 pmol/ml, N = 30). Moreover, colon epithelium CCD 841 CoTr cells actively synthesized KYNA in a concentration- and time-dependent manner. This process was decreased by aminooxyacetic acid and L-glutamate in opposite to 4-aminopyridine treatment. Interestingly, KYNA production in colon cancer cells (HT-29 1.39 ± 0.27, LS-180 1.18 ± 0.15 and Caco-2 4.21 ± 0.30 pmol/1 x 10(5) cells/2 h) was considerably higher in comparison to normal colon epithelial cells (0.70 ± 0.07 pmol/1 x 10(5) cells/2 h). However, KATs I and II were expressed at similar level in both colon epithelium and cancer cells. Furthermore, KYNA exerted an antiproliferative effect at higher micro- and millimolar concentrations against colon cancer cells with the IC(50) of 0.9, 0.2 and 1.2 mM for HT-29, LS-180 and Caco-2 cells, respectively. CONCLUSION Summarizing, this is the first report presenting KYNA synthesis and KAT expression in colon derived normal and cancer cells.
Collapse
Affiliation(s)
- Katarzyna Walczak
- Department of Medical Biology, Institute of Agricultural Medicine, Lublin, Poland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gupta S, Carballido E, Fishman M. Sipuleucel-T for therapy of asymptomatic or minimally symptomatic, castrate-refractory prostate cancer: an update and perspective among other treatments. Onco Targets Ther 2011; 4:79-96. [PMID: 21792315 PMCID: PMC3143908 DOI: 10.2147/ott.s14107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Sipuleucel-T is an autologous cell immunotherapy for castrate-refractory prostate cancer, with US Food and Drug Administration (FDA) approval in asymptomatic or minimally symptomatic prostate cancer. In this review we address the background of prostate cancer incidence and other available therapy onto which sipuleucel-T treatment has been added, with discussion of hormone-therapy, chemotherapy, and other investigational immunotherapies. The sipuleucel-T manufacturing process, toxicity and clinical benefit are reviewed, along with an examination of the issue of clinical benefit to survival, independent of apparent changes of prostate-specific antigen (PSA) levels. Sipuleucel-T therapy is appraised from clinician, patient and immunotherapeutic perspectives, with reference to the clinical data from the pivotal trial, the mechanism of action, and the treatment process.
Collapse
Affiliation(s)
- Shilpa Gupta
- Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | |
Collapse
|
30
|
Cancer vaccines. Any future? Arch Immunol Ther Exp (Warsz) 2011; 59:249-59. [PMID: 21644030 DOI: 10.1007/s00005-011-0129-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/02/2011] [Indexed: 12/22/2022]
Abstract
The idea that vaccination can be used to fight cancer is not new. Approximately 100 years ago, researchers attempted to stimulate a tumor-specific, therapeutic immune response to tumors by injecting patients with cells and extracts from their own tumors, or tumors of the same type from different individuals. During the last decade, great efforts have been made to develop immunotherapeutic approaches for the treatment of malignant diseases as alternatives to traditional chemo- and radiotherapy. A quintessential goal of immunotherapy in cancer is treatment with vaccines that elicit potent anti-tumor immune responses without side effects. In this article, we have attempted to review some of the most problematic issues facing the development of cancer vaccines. With the prospect of immunosuppression, an ill-designed cancer vaccine can be more harmful than a no-benefit therapy. We have noted that "immunoediting" and "immunodominance" are the premier setbacks in peptide-based vaccines and therefore it appears necessary not only to manipulate the activity of a vast number of principal components but also to finely tune their concentrations in time and space. In the face of all these quandaries, it is at least doubtful that any reliable anti-cancer vaccine strategy will emerge in the near future.
Collapse
|
31
|
Palena C, Fernando RI, Litzinger MT, Hamilton DH, Huang B, Schlom J. Strategies to target molecules that control the acquisition of a mesenchymal-like phenotype by carcinoma cells. Exp Biol Med (Maywood) 2011; 236:537-45. [PMID: 21427233 DOI: 10.1258/ebm.2011.010367] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The switch of carcinoma cells from an epithelial to a mesenchymal-like phenotype, via a process designated 'epithelial-to-mesenchymal transition (EMT),' has been recognized as a relevant step in the metastasis of solid tumors. Additionally, this phenotypic switch of carcinoma cells has been associated with the acquisition of tumor resistance mechanisms that reduce the antitumor effects of radiation, chemotherapy and some small-molecule-targeted therapies. As multiple signaling pathways and transcriptional regulators that play a role in this phenotypic switch are being identified, novel strategies can be designed to specifically target tumor cells with this metastatic and resistant phenotype. In particular, this review focuses on the potential use of cancer vaccine strategies to target tumor cells that exhibit a mesenchymal-like phenotype, with an emphasis on the characterization of a novel tumor antigen, Brachyury, which we have identified as a critical regulator of EMT in human cancer cells.
Collapse
Affiliation(s)
- Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
32
|
Matejuk A, Leng Q, Chou ST, Mixson AJ. Vaccines targeting the neovasculature of tumors. Vasc Cell 2011; 3:7. [PMID: 21385454 PMCID: PMC3061948 DOI: 10.1186/2045-824x-3-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/08/2011] [Indexed: 01/04/2023] Open
Abstract
Angiogenesis has a critical role in physiologic and disease processes. For the growth of tumors, angiogenesis must occur to carry sufficient nutrients to the tumor. In addition to growth, development of new blood vessels is necessary for invasion and metastases of the tumor. A number of strategies have been developed to inhibit tumor angiogenesis and further understanding of the interplay between tumors and angiogenesis should allow new approaches and advances in angiogenic therapy. One such promising angiogenic approach is to target and inhibit angiogenesis with vaccines. This review will discuss recent advances and future prospects in vaccines targeting aberrant angiogenesis of tumors. The strategies utilized by investigators have included whole endothelial cell vaccines as well as vaccines with defined targets on endothelial cells and pericytes of the developing tumor endothelium. To date, several promising anti-angiogenic vaccine strategies have demonstrated marked inhibition of tumor growth in pre-clinical trials with some showing no observed interference with physiologic angiogenic processes such as wound healing and fertility.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Pathology, University of Maryland Baltimore, MSTF Building, 10 South Pine Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
33
|
Zhang YF, Tang XD, Gao JH, Fang DC, Yang SM. Heparanase: a universal immunotherapeutic target in human cancers. Drug Discov Today 2011; 16:412-7. [PMID: 21376137 DOI: 10.1016/j.drudis.2011.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 12/23/2010] [Accepted: 02/22/2011] [Indexed: 01/05/2023]
Abstract
Heparanase has been identified as a particularly important player in metastasis, and its expression directly correlates with the metastatic spread of various tumors. Ideal targets for immunotherapy are gene products that are silenced in normal tissues but overexpressed in cancer, and that are directly involved in tumor cell survival and progression. Metastasis is the culmination of neoplastic progression. The importance of the role of heparanase in metastasis implies that immune escape by downregulation of heparanase expression could reduce the mortality of the cancer. These characteristics of heparanase make it an attractive universal target for cancer immunotherapy. Here, we review current knowledge about heparanase and its involvement in tumor metastasis, with an emphasis on recent results from heparanase-targeted cancer immunotherapy studies.
Collapse
Affiliation(s)
- Ya-Fei Zhang
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | |
Collapse
|
34
|
Vasievich EA, Chen W, Huang L. Enantiospecific adjuvant activity of cationic lipid DOTAP in cancer vaccine. Cancer Immunol Immunother 2011; 60:629-38. [PMID: 21267720 DOI: 10.1007/s00262-011-0970-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 12/31/2010] [Indexed: 12/19/2022]
Abstract
Commercially available DOTAP is a racemic mixture of two enantiomers. The adjuvanticity of each isomer was examined using a peptide/lipid complex as a therapeutic vaccine in an established murine cervical cancer model. This simple vaccine consists of a cationic lipid (DOTAP) and a major histocompatibility complex (MHC) class I-restricted epitope of the Human Papillomavirus (HPV) 16 protein E7. Dose-dependent tumor regression experiments have been completed for racemic DOTAP/E7, (R)-DOTAP/E7 and (S)-DOTAP/E7. Tumor-bearing mice treated with (R)-DOTAP/E7 complexes have shown tumor regression in a dose-dependent manner comparable to those mice treated with a racemic DOTAP with E7 peptide. These data are supported by IFN-γ production by CD8(+) splenocytes, in vivo cytotoxic T-lymphocytes (CTL) response, CD8(+) tumor-infiltrating lymphocytes (TIL), and IFN-γ production by CD8(+) TIL in (R)-DOTAP/E7-vaccinated mice. When (S)-DOTAP/E7 is delivered, tumor progression is delayed. While IFN-γ production is absent from CD8(+) splenocytes in mice vaccinated with (S)-DOTAP/E7, IFN-γ production by CD8(+) TIL is present, supporting our hypothesis that (S)-DOTAP has limited activity. Activation of bone marrow-derived dendritic cells by the enantiomeric formulations has also been evaluated, as well as cytokine production and toxicity with no considerable differences between the groups. The results show the DOTAP enantiomers act differently as adjuvants in vivo, with (R)-DOTAP being more effective at stimulating a CD8(+) anti-tumor response.
Collapse
Affiliation(s)
- Elizabeth A Vasievich
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
35
|
The consequence of immune suppressive cells in the use of therapeutic cancer vaccines and their importance in immune monitoring. J Biomed Biotechnol 2011; 2011:182413. [PMID: 21318157 PMCID: PMC3034984 DOI: 10.1155/2011/182413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/15/2010] [Indexed: 12/30/2022] Open
Abstract
Evaluating the number, phenotypic characteristics, and function of immunosuppressive cells in the tumor microenvironment and peripheral blood could elucidate the antitumor immune response and provide information to evaluate the efficacy of cancer vaccines. Further studies are needed to evaluate the correlation between changes in immunosuppressive cells and clinical outcomes of patients in cancer vaccine clinical trials. This paper focuses on the role of T-regulatory cells, myeloid-derived suppressor cells, and tumor-associated macrophages in cancer and cancer immunotherapy and their role in immune monitoring.
Collapse
|