1
|
Draft genome sequencing and functional annotation and characterization of biofilm-producing bacterium Bacillus novalis PD1 isolated from rhizospheric soil. Antonie van Leeuwenhoek 2021; 114:1977-1989. [PMID: 34537868 DOI: 10.1007/s10482-021-01655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Biofilm forming bacterium Bacillus novalis PD1 was isolated from the rhizospheric soil of a paddy field. B. novalis PD1 is a Gram-positive, facultatively anaerobic, motile, slightly curved, round-ended, and spore-forming bacteria. The isolate B. novalis PD1 shares 98.45% similarity with B. novalis KB27B. B. vireti LMG21834 and B. drentensis NBRC 102,427 are the closest phylogenetic neighbours for B. novalis PD1. The draft genome RAST annotation showed a linear chromosome with 4,569,088 bp, encoding 6139 coding sequences, 70 transfer RNA (tRNA), and 11 ribosomal RNA (rRNA) genes. The genomic annotation of biofilm forming B. novalis PD1(> 3.6@OD595nm) showed the presence of exopolysaccharide-forming genes (ALG, PSL, and PEL) as well as other biofilm-related genes (comER, Spo0A, codY, sinR, TasA, sipW, degS, and degU). Antibiotic inactivation gene clusters (ANT (6)-I, APH (3')-I, CatA15/A16 family), efflux pumps conferring antibiotic resistance genes (BceA, BceB, MdtABC-OMF, MdtABC-TolC, and MexCD-OprJ), and secondary metabolites linked to phenazine, terpene, and beta lactone gene clusters are part of the genome.
Collapse
|
2
|
Comparative Analysis of Chloramphenicol-Resistant Enterococcus faecalis Isolated from Dairy Companies in Korea. Vet Sci 2021; 8:vetsci8080143. [PMID: 34437465 PMCID: PMC8402777 DOI: 10.3390/vetsci8080143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/06/2021] [Accepted: 07/24/2021] [Indexed: 12/28/2022] Open
Abstract
Although chloramphenicol is currently banned from use in livestock, other phenicols, such as florfenicol and thiamphenicol, have been used for the treatment of bacterial infections in domestic cattle in Korea. This study compares the characteristics of chloramphenicol-resistant Enterococcus faecalis isolated from the bulk tank milk of four major dairy companies in Korea. Although the distribution of multidrug resistance patterns showed no significant differences between the four companies, 85 chloramphenicol-resistant Enterococcus faecalis isolates showed a significantly high number of resistances against five or six antimicrobial classes (37.6%, respectively) (p < 0.05). When analyzing the distribution of phenicol resistance genes, 31 (36.5%) isolates only carried the catA gene, and two (6.3%) isolates from company A only carried the cfr gene. No isolates carried the catB or fexA genes. Regarding the distribution of other resistance genes, both the tetL and tetM (45.9%), ermB (82.4%), and both aac(6″)-Ie-aph(2″)-la and ant(6′)-Ia genes (30.6%) showed a high prevalence, and the optrA and poxtA genes were observed separately, each in only two (2.4%) isolates. Our results confirm that the dissemination of chloramphenicol-resistant Enterococcus faecalis and some antimicrobial resistance genes show significant differences between dairy companies. Therefore, our results support that each dairy company should undertake effective surveillance programs to better understand and minimize the emergence of resistance on a multidisciplinary level.
Collapse
|
3
|
Chandler JC, Anders JE, Blouin NA, Carlson JC, LeJeune JT, Goodridge LD, Wang B, Day LA, Mangan AM, Reid DA, Coleman SM, Hopken MW, Bisha B. The Role of European Starlings (Sturnus vulgaris) in the Dissemination of Multidrug-Resistant Escherichia coli among Concentrated Animal Feeding Operations. Sci Rep 2020; 10:8093. [PMID: 32415136 PMCID: PMC7229194 DOI: 10.1038/s41598-020-64544-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial use in livestock production is a driver for the development and proliferation of antimicrobial resistance (AMR). Wildlife interactions with livestock, acquiring associated AMR bacteria and genes, and wildlife's subsequent dispersal across the landscape are hypothesized to play an important role in the ecology of AMR. Here, we examined priority AMR phenotypes and genotypes of Escherichia coli isolated from the gastrointestinal tracts of European starlings (Sturnus vulgaris) found on concentrated animal feeding operations (CAFOs). European starlings may be present in high numbers on CAFOs (>100,000 birds), interact with urban environments, and can migrate distances exceeding 1,500 km in North America. In this study, 1,477 European starlings from 31 feedlots in five U.S. states were sampled for E. coli resistant to third generation cephalosporins (3G-C) and fluoroquinolones. The prevalence of 3G-C and fluoroquinolone-resistant E. coli was 4% and 10%, respectively. Multidrug resistance in the E. coli isolates collected (n = 236) was common, with the majority of isolates displaying resistance to six or more classes of antibiotics. Genetic analyses of a subset of these isolates identified 94 genes putatively contributing to AMR, including seven class A and C β-lactamases as well as mutations in gyrA and parC recognized to confer resistance to quinolones. Phylogenetic and subtyping assessments showed that highly similar isolates (≥99.4% shared core genome, ≥99.6% shared coding sequence) with priority AMR were found in birds on feedlots separated by distances exceeding 150 km, suggesting that European starlings could be involved in the interstate dissemination of priority AMR bacteria.
Collapse
Affiliation(s)
- Jeffrey C Chandler
- U.S. Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| | - Jennifer E Anders
- University of Wyoming, Department of Animal Science, Laramie, WY, USA
| | - Nicolas A Blouin
- University of Wyoming, Department of Molecular Biology, Laramie, WY, USA
| | - James C Carlson
- U.S. Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| | - Jeffrey T LeJeune
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Baolin Wang
- University of Wyoming, Department of Animal Science, Laramie, WY, USA
| | - Leslie A Day
- University of Wyoming, Department of Animal Science, Laramie, WY, USA
| | - Anna M Mangan
- U.S. Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| | - Dustin A Reid
- U.S. Department of Agriculture, National Wildlife Research Center, Fort Collins, CO, USA
| | - Shannon M Coleman
- Iowa State University, Department of Food Science and Human Nutrition, Ames, IA, USA
| | - Matthew W Hopken
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | - Bledar Bisha
- University of Wyoming, Department of Animal Science, Laramie, WY, USA.
| |
Collapse
|
4
|
Kondakova T, Kumar S, Cronan JE. A novel synthesis of trans-unsaturated fatty acids by the Gram-positive commensal bacterium Enterococcus faecalis FA2-2. Chem Phys Lipids 2019; 222:23-35. [PMID: 31054954 PMCID: PMC7392533 DOI: 10.1016/j.chemphyslip.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
A key mechanism of Pseudomonas spp. adaptation to environmental stressors is their ability to convert the cis-unsaturated fatty acids of the membrane lipids to their trans-isomers to rigidify the membrane and thereby resist stresses. Although this Cti-catalyzed enzymatic isomerization has been well investigated in the P. putida paradigm, several bacterial species have been found to produce trans-unsaturated fatty acids. Although cti orthologs have only been reported in Gram-negative bacteria, we report that E. faecalis FA2-2 cultures synthesize trans-unsaturated fatty acids during growth by a mechanism similar of P. putida. Although the role of trans-unsaturated fatty acids (trans-UFAs) in E. faecalis remains obscure, our results indicate that organic solvents, as well as the membrane altering antibiotic, daptomycin, had no effect on trans-UFA formation in E. faecalis FA2-2. Moreover trans-UFA production in E. faecalis FA2-2 membranes was constant in oxidative stress conditions or when metal chelator EDTA was added, raising the question about the role of heme domain in cis-trans isomerization in E. faecalis FA2-2. Although growth temperature and growth phase had significant effects on cis-trans isomerization, the bulk physical properties of the membranes seems unlikely to be altered by the low levels of trans-UFA. Hence, any effects seems likely to be on membrane proteins and membrane enzyme activities. We also report investigations of cti gene distribution in bacteria was and suggest the distribution to be triggered by habitat population associations. Three major Cti clusters were defined, corresponding to Pseudomonas, Pseudoalteromonas and Vibrio Cti proteins.
Collapse
Affiliation(s)
- Tatiana Kondakova
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | - Sneha Kumar
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA; Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Hasan KA, Ali SA, Rehman M, Bin-Asif H, Zahid S. The unravelled Enterococcus faecalis zoonotic superbugs: Emerging multiple resistant and virulent lineages isolated from poultry environment. Zoonoses Public Health 2018; 65:921-935. [PMID: 30105884 DOI: 10.1111/zph.12512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the zoonotic potential by virtue of phylogenetic analysis, virulence and resistance gene profiles of Enterococcus faecalis originating from poultry environment. The ERIC, BOX and RAPD PCR analysis showed the clustering of E. faecalis strains (n = 74) into five groups (G1-G5) and fifteen sub-clusters (B1-B15), which share 50%-80% similarities with ATCC E. faecalis and clinical strains of human infection. E. faecalis strains harboured seven enterocins genes including ent1097 (85%), entB (84%), enterolysinA (51%), entSEK4 (51%), entL50 (31%), entA (25.7%) and ent1071 (14.9%). The highest prevalence of gelE-sprE (90%), lip-fl (90%) followed by cylL (62%), hyl (60%), katA (16%) and cylA (5.4%) was observed in poultry isolates. The fsr operon and gelE-sprE was co-associated in 66.2% strains. E. faecalis also harboured biofilm and endocarditis-associated genes, including efaAfs (97%), ebp-pilli (ebpABC and srtC 69.9%-80%), asa1 (71%), agg (55%), ace (54%) and esp-Tim (3%). Despite all found sensitive to vancomycin, 98.6% strains were multi-drug resistant to five to twelve tested antimicrobials. An increased-level of resistance (≥32 μg/ml) was observed to ampicillin (8.1%), meropenem (21.6%), chloramphenicol (73.4%), erythromycin (90.5%), tetracycline (100%) and high-level resistance to kanamycin (79.7%) and gentamicin (52.7%). The multi-drug resistant E. faecalis (MDRe.f) were carried pbp4 (90%), tetL (90%), tetM (70%), ermB (81%), cat (52.7%), acc6-aph2 (58.1%), aaph(3)-III (49.9%), gyrA (97%) and parC (98%) genes. Moreover, these MDRe.f were also harboured, hospital-associated marker IS16 (58%) and pheromone responsive genes, that is ccf (88%), cpd (74%), cob (62%) and eep (66%). Thus, regardless of the distinct phylogenetic background of E. faecalis of poultry origin, ATCC E. faecalis and clinical strains of human origin, we found major similarities in virulence, resistance gene profiles and mobile genetic elements (IS16 and pheromone responsive plasmids), supporting the zoonotic/reverse zoonotic risk associated with this organism.
Collapse
Affiliation(s)
- Khwaja A Hasan
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Syed A Ali
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Marium Rehman
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Hassaan Bin-Asif
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Sindhu Zahid
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
6
|
Clauss-Lendzian E, Vaishampayan A, de Jong A, Landau U, Meyer C, Kok J, Grohmann E. Stress response of a clinical Enterococcus faecalis isolate subjected to a novel antimicrobial surface coating. Microbiol Res 2017; 207:53-64. [PMID: 29458868 DOI: 10.1016/j.micres.2017.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 04/21/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022]
Abstract
Emerging antibiotic resistance among pathogenic bacteria, paired with their ability to form biofilms on medical and technical devices, represents a serious problem for effective and long-term decontamination in health-care environments and gives rise to an urgent need for new antimicrobial materials. Here we present the impact of AGXX®, a novel broad-spectrum antimicrobial surface coating consisting of micro-galvanic elements formed by silver and ruthenium, on the transcriptome of Enterococcus faecalis. A clinical E. faecalis isolate was subjected to metal stress by growing it for different periods in presence of the antimicrobial coating or silver-coated steel meshes. Subsequently, total RNA was isolated and next-generation RNA sequencing was performed to analyze variations in gene expression in presence of the antimicrobial materials with focus on known stress genes. Exposure to the antimicrobial coating had a large impact on the transcriptome of E. faecalis. After 24min almost 1/5 of the E. faecalis genome displayed differential expression. At each time-point the cop operon was strongly up-regulated, providing indirect evidence for the presence of free Ag+-ions. Moreover, exposure to the antimicrobial coating induced a broad general stress response in E. faecalis. Genes coding for the chaperones GroEL and GroES and the Clp proteases, ClpE and ClpB, were among the top up-regulated heat shock genes. Differential expression of thioredoxin, superoxide dismutase and glutathione synthetase genes indicates a high level of oxidative stress. We postulate a mechanism of action where the combination of Ag+-ions and reactive oxygen species generated by AGXX® results in a synergistic antimicrobial effect, superior to that of conventional silver coatings.
Collapse
Affiliation(s)
- Emanuel Clauss-Lendzian
- Division of Infectious Diseases, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg im Breisgau, Baden-Württemberg, Germany
| | - Ankita Vaishampayan
- School of Life Sciences and Technology, Beuth University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany
| | - Anne de Jong
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 Groningen, The Netherlands
| | - Uwe Landau
- Largentec GmbH, Am Waldhaus 32, 14129 Berlin, Germany
| | - Carsten Meyer
- Largentec GmbH, Am Waldhaus 32, 14129 Berlin, Germany
| | - Jan Kok
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 Groningen, The Netherlands
| | - Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg im Breisgau, Baden-Württemberg, Germany; School of Life Sciences and Technology, Beuth University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany.
| |
Collapse
|
7
|
Subinhibitory Concentrations of Ciprofloxacin Enhance Antimicrobial Resistance and Pathogenicity of Enterococcus faecium. Antimicrob Agents Chemother 2017; 61:AAC.02763-16. [PMID: 28193670 DOI: 10.1128/aac.02763-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/08/2017] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecium has emerged as a major opportunistic pathogen for 2 decades with the spread of hospital-adapted multidrug-resistant clones. As members of the intestinal microbiota, they are subjected to numerous bacterial stresses, including antibiotics at subinhibitory concentrations (SICs). Since fluoroquinolones are extensively prescribed, SICs are very likely to occur in vivo, with potential effects on bacterial metabolism with subsequent modulation of opportunistic traits. The aim of this study was to evaluate globally the impact of SICs of ciprofloxacin on antimicrobial resistance and pathogenicity of E. faecium Transcriptomic analysis was performed by RNA sequencing (RNA-seq) (HiSeq 2500; Illumina) using the vanB-positive reference strain E. faecium Aus0004 in the absence or presence of ciprofloxacin SIC (0.38 mg/liter, i.e., 1/8 of the MIC). Several genetic and phenotypic tests were used for validation. In the presence of ciprofloxacin SIC, 196 genes were significantly induced, whereas 286 genes were significantly repressed, meaning that 16.8% of the E. faecium genome was altered. Among upregulated genes, EFAU004_02294 (fold change, 14.3) encoded a protein (Qnr of E. faecium [EfmQnr]) homologue of Qnr proteins involved in quinolone resistance in Gram-negative bacilli. Its implication in intrinsic and adaptive fluoroquinolone (FQ) resistance in E. faecium was experimentally ascertained. Moreover, EFAU004_02292, coding for the collagen adhesin Acm, was also induced by the SIC of ciprofloxacin (fold change, 8.2), and higher adhesion capabilities were demonstrated phenotypically. Both EfmQnr and Acm determinants may play an important role in the transition from a commensal to a pathogenic state of E. faecium that resides in the gut of patients receiving fluoroquinolone therapy.
Collapse
|
8
|
Huang L, Yuan H, Liu MF, Zhao XX, Wang MS, Jia RY, Chen S, Sun KF, Yang Q, Wu Y, Chen XY, Cheng AC, Zhu DK. Type B Chloramphenicol Acetyltransferases Are Responsible for Chloramphenicol Resistance in Riemerella anatipestifer, China. Front Microbiol 2017; 8:297. [PMID: 28298905 PMCID: PMC5331189 DOI: 10.3389/fmicb.2017.00297] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022] Open
Abstract
Riemerella anatipestifer causes serositis and septicaemia in domestic ducks, geese, and turkeys. Traditionally, the antibiotics were used to treat this disease. Currently, our understanding of R. anatipestifer susceptibility to chloramphenicol and the underlying resistance mechanism is limited. In this study, the cat gene was identified in 69/192 (36%) R. anatipestifer isolated from different regions in China, including R. anatipestifer CH-2 that has been sequenced in previous study. Sequence analysis suggested that there are two copies of cat gene in this strain. Only both two copies of the cat mutant strain showed a significant decrease in resistance to chloramphenicol, exhibiting 4 μg/ml in the minimum inhibitory concentration for this antibiotic, but not for the single cat gene deletion strains. Functional analysis of the cat gene via expression in Escherichia coli BL21 (DE3) cells and in vitro site-directed mutagenesis indicated that His79 is the main catalytic residue of CAT in R. anatipestifer. These results suggested that chloramphenicol resistance of R. anatipestifer CH-2 is mediated by the cat genes. Finally, homology analysis of types A and B CATs indicate that R. anatipestifer comprises type B3 CATs.
Collapse
Affiliation(s)
- Li Huang
- Research Center of Avian Diseases, College of Veterinary Medicine of Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China
| | - Hui Yuan
- Research Center of Avian Diseases, College of Veterinary Medicine of Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China
| | - Ma-Feng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xin-Xin Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ming-Shu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ren-Yong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine of Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China
| | - Shun Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kun-Feng Sun
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xiao-Yue Chen
- Research Center of Avian Diseases, College of Veterinary Medicine of Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China
| | - An-Chun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine of Sichuan Agricultural UniversityChengdu, China; Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu, China
| | - De-Kang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine of Sichuan Agricultural University Chengdu, China
| |
Collapse
|
9
|
Hürlimann LM, Corradi V, Hohl M, Bloemberg GV, Tieleman DP, Seeger MA. The Heterodimeric ABC Transporter EfrCD Mediates Multidrug Efflux in Enterococcus faecalis. Antimicrob Agents Chemother 2016; 60:5400-11. [PMID: 27381387 PMCID: PMC4997860 DOI: 10.1128/aac.00661-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/20/2016] [Indexed: 11/22/2022] Open
Abstract
Nosocomial infections with Enterococcus faecalis are an emerging health problem. However, drug efflux pumps contributing to intrinsic drug resistance are poorly studied in this Gram-positive pathogen. In this study, we functionally investigated seven heterodimeric ABC transporters of E. faecalis that are annotated as drug efflux pumps. Deletion of ef0789-ef0790 on the chromosome of E. faecalis resulted in increased susceptibility to daunorubicin, doxorubicin, ethidium, and Hoechst 33342, and the corresponding transporter was named EfrCD. Unexpectedly, the previously described heterodimeric multidrug ABC transporter EfrAB contributes marginally to drug efflux in the endogenous context of E. faecalis In contrast, heterologous expression in Lactococcus lactis revealed that EfrAB, EfrCD, and the product of ef2226-ef2227 (EfrEF) mediate the efflux of fluorescent substrates and confer resistance to multiple dyes and drugs, including fluoroquinolones. Four of seven transporters failed to exhibit drug efflux activity for the set of drugs and dyes tested, even upon overexpression in L. lactis Since all seven transporters were purified as heterodimers after overexpression in L. lactis, a lack of drug efflux activity is not attributed to poor expression or protein aggregation. Reconstitution of the purified multidrug transporters EfrAB, EfrCD, and EfrEF in proteoliposomes revealed functional coupling between ATP hydrolysis and drug binding. Our analysis creates an experimental basis for the accurate prediction of drug efflux transporters and indicates that many annotated multidrug efflux pumps might be incapable of drug transport and thus might fulfill other physiological functions in the cell.
Collapse
Affiliation(s)
- Lea M Hürlimann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Michael Hohl
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Guido V Bloemberg
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Innocenti N, Golumbeanu M, Fouquier d'Hérouël A, Lacoux C, Bonnin RA, Kennedy SP, Wessner F, Serror P, Bouloc P, Repoila F, Aurell E. Whole-genome mapping of 5' RNA ends in bacteria by tagged sequencing: a comprehensive view in Enterococcus faecalis. RNA (NEW YORK, N.Y.) 2015; 21:1018-30. [PMID: 25737579 PMCID: PMC4408782 DOI: 10.1261/rna.048470.114] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/22/2014] [Indexed: 05/21/2023]
Abstract
Enterococcus faecalis is the third cause of nosocomial infections. To obtain the first snapshot of transcriptional organizations in this bacterium, we used a modified RNA-seq approach enabling to discriminate primary from processed 5' RNA ends. We also validated our approach by confirming known features in Escherichia coli. We mapped 559 transcription start sites (TSSs) and 352 processing sites (PSSs) in E. faecalis. A blind motif search retrieved canonical features of SigA- and SigN-dependent promoters preceding transcription start sites mapped. We discovered 85 novel putative regulatory RNAs, small- and antisense RNAs, and 72 transcriptional antisense organizations. Presented data constitute a significant insight into bacterial RNA landscapes and a step toward the inference of regulatory processes at transcriptional and post-transcriptional levels in a comprehensive manner.
Collapse
Affiliation(s)
- Nicolas Innocenti
- Department of Computational Biology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden INRA, UMR1319 Micalis, Domaine de Vilvert, F-78352, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Domaine de Vilvert, F-78350, Jouy-en-Josas, France
| | - Monica Golumbeanu
- Department of Biosystems Science and Engineering, ETH Zürich, CH-4058, Basel, Switzerland SIB Swiss Institute of Bioinformatics, University of Basel, CH-4056, Basel, Switzerland
| | - Aymeric Fouquier d'Hérouël
- Department of Computational Biology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Caroline Lacoux
- INRA, UMR1319 Micalis, Domaine de Vilvert, F-78352, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Domaine de Vilvert, F-78350, Jouy-en-Josas, France
| | - Rémy A Bonnin
- Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS, UMR8621, F-91405, Orsay, France
| | - Sean P Kennedy
- INRA, MetaGenoPolis US1367, Domaine de Vilvert, F-78350, Jouy-en-Josas, France
| | - Françoise Wessner
- INRA, UMR1319 Micalis, Domaine de Vilvert, F-78352, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Domaine de Vilvert, F-78350, Jouy-en-Josas, France
| | - Pascale Serror
- INRA, UMR1319 Micalis, Domaine de Vilvert, F-78352, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Domaine de Vilvert, F-78350, Jouy-en-Josas, France
| | - Philippe Bouloc
- Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS, UMR8621, F-91405, Orsay, France
| | - Francis Repoila
- INRA, UMR1319 Micalis, Domaine de Vilvert, F-78352, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Domaine de Vilvert, F-78350, Jouy-en-Josas, France
| | - Erik Aurell
- Department of Computational Biology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden Department of Information and Computer Science, Aalto University, FI-02150 Espoo, Finland
| |
Collapse
|
11
|
Karlskås IL, Eijsink VGH, Saleihan Z, Holo H, Mathiesen G. EF0176 and EF0177 from Enterococcus faecalis V583 are substrate-binding lipoproteins involved in ABC transporter mediated ribonucleoside uptake. Microbiology (Reading) 2015; 161:754-64. [DOI: 10.1099/mic.0.000045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/26/2015] [Indexed: 12/12/2022] Open
|
12
|
Improvement of LysM-mediated surface display of designed ankyrin repeat proteins (DARPins) in recombinant and nonrecombinant strains of Lactococcus lactis and Lactobacillus Species. Appl Environ Microbiol 2015; 81:2098-106. [PMID: 25576617 DOI: 10.1128/aem.03694-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities.
Collapse
|
13
|
Abranches J, Tijerina P, Avilés-Reyes A, Gaca AO, Kajfasz JK, Lemos JA. The cell wall-targeting antibiotic stimulon of Enterococcus faecalis. PLoS One 2013; 8:e64875. [PMID: 23755154 PMCID: PMC3670847 DOI: 10.1371/journal.pone.0064875] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/19/2013] [Indexed: 02/06/2023] Open
Abstract
Enterococcus faecalis is an opportunistic nosocomial pathogen that is highly resistant to a variety of environmental insults, including an intrinsic tolerance to antimicrobials that target the cell wall (CW). With the goal of determining the CW-stress stimulon of E. faecalis, the global transcriptional profile of E. faecalis OG1RF exposed to ampicillin, bacitracin, cephalotin or vancomycin was obtained via microarrays. Exposure to the β-lactams ampicillin and cephalotin resulted in the fewest transcriptional changes with 50 and 192 genes differentially expressed 60 min after treatment, respectively. On the other hand, treatment with bacitracin or vancomycin for 60 min affected the expression of, respectively, 377 and 297 genes. Despite the differences in the total number of genes affected, all antibiotics induced a very similar gene expression pattern with an overrepresentation of genes encoding hypothetical proteins, followed by genes encoding proteins associated with cell envelope metabolism as well as transport and binding proteins. In particular, all drug treatments, most notably bacitracin and vancomycin, resulted in an apparent metabolic downshift based on the repression of genes involved in translation, energy metabolism, transport and binding. Only 19 genes were up-regulated by all conditions at both the 30 and 60 min time points. Among those 19 genes, 4 genes encoding hypothetical proteins (EF0026, EF0797, EF1533 and EF3245) were inactivated and the respective mutant strains characterized in relation to antibiotic tolerance and virulence in the Galleria mellonella model. The phenotypes obtained for two of these mutants, ΔEF1533 and ΔEF3245, support further characterization of these genes as potential candidates for the development of novel preventive or therapeutic approaches.
Collapse
Affiliation(s)
- Jacqueline Abranches
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Pamella Tijerina
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Alejandro Avilés-Reyes
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Anthony O. Gaca
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jessica K. Kajfasz
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - José A. Lemos
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Physico-chemical factors affect chloramphenicol efflux and EmhABC efflux pump expression in Pseudomonas fluorescens cLP6a. Res Microbiol 2012; 164:172-80. [PMID: 23142491 DOI: 10.1016/j.resmic.2012.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/18/2012] [Indexed: 11/20/2022]
Abstract
Protein synthesis inhibitors such as chloramphenicol and tetracycline may be inducers of efflux pumps such as MexY in Pseudomonas aeruginosa, complicating their use for the treatment of bacterial infections. We previously determined that chloramphenicol, a substrate of the EmhABC efflux pump in Pseudomonas fluorescens cLP6a, did not induce emhABC expression. In this study, we determined the effect of physico-chemical factors on chloramphenicol efflux by EmhABC, and the expression of emhABC. Efflux assays measuring accumulation of (14)C-chloramphenicol in cell pellets showed that chloramphenicol efflux is dependent on growth temperature, pH and concentration of Mg(2+). These physico-chemical factors modulated the efflux of chloramphenicol by 26 to >50%. All conditions tested that decreased the efflux of chloramphenicol unexpectedly induced transcription of emhABC efflux genes. EmhABC activity also effectively suppressed the deleterious effect of chloramphenicol on the cell membrane of strain cLP6a, which may explain why chloramphenicol is not an inducer of emhABC. Our results suggest that the detrimental effect of an antibiotic on cell membrane integrity and fatty acid composition may be the signal that induces emhABC expression, and that inducers of other bacterial efflux pumps may include environmental factors rather than their substrates per se.
Collapse
|
15
|
Mechanisms of resistance to chloramphenicol in Pseudomonas putida KT2440. Antimicrob Agents Chemother 2011; 56:1001-9. [PMID: 22143519 DOI: 10.1128/aac.05398-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 is a chloramphenicol-resistant bacterium that is able to grow in the presence of this antibiotic at a concentration of up to 25 μg/ml. Transcriptomic analyses revealed that the expression profile of 102 genes changed in response to this concentration of chloramphenicol in the culture medium. The genes that showed altered expression include those involved in general metabolism, cellular stress response, gene regulation, efflux pump transporters, and protein biosynthesis. Analysis of a genome-wide collection of mutants showed that survival of a knockout mutant in the TtgABC resistance-nodulation-division (RND) efflux pump and mutants in the biosynthesis of pyrroloquinoline (PQQ) were compromised in the presence of chloramphenicol. The analysis also revealed that an ABC extrusion system (PP2669/PP2668/PP2667) and the AgmR regulator (PP2665) were needed for full resistance toward chloramphenicol. Transcriptional arrays revealed that AgmR controls the expression of the pqq genes and the operon encoding the ABC extrusion pump from the promoter upstream of open reading frame (ORF) PP2669.
Collapse
|