1
|
Mantovani A, Marchesi F, Di Mitri D, Garlanda C. Macrophage diversity in cancer dissemination and metastasis. Cell Mol Immunol 2024; 21:1201-1214. [PMID: 39402303 PMCID: PMC11528009 DOI: 10.1038/s41423-024-01216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Invasion and metastasis are hallmarks of cancer. In addition to the well-recognized hematogenous and lymphatic pathways of metastasis, cancer cell dissemination can occur via the transcoelomic and perineural routes, which are typical of ovarian and pancreatic cancer, respectively. Macrophages are a universal major component of the tumor microenvironment and, in established tumors, promote growth and dissemination to secondary sites. Here, we review the role of tumor-associated macrophages (TAMs) in cancer cell dissemination and metastasis, emphasizing the diversity of myeloid cells in different tissue contexts (lungs, liver, brain, bone, peritoneal cavity, nerves). The generally used models of lung metastasis fail to capture the diversity of pathways and tissue microenvironments. A better understanding of TAM diversity in different tissue contexts may pave the way for tailored diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.
- William Harvey Research Institute, Queen Mary University, London, UK.
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| |
Collapse
|
2
|
Wolters-Eisfeld G, Oliveira-Ferrer L. Glycan diversity in ovarian cancer: Unraveling the immune interplay and therapeutic prospects. Semin Immunopathol 2024; 46:16. [PMID: 39432076 PMCID: PMC11493797 DOI: 10.1007/s00281-024-01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 10/22/2024]
Abstract
Ovarian cancer remains a formidable challenge in oncology due to its late-stage diagnosis and limited treatment options. Recent research has revealed the intricate interplay between glycan diversity and the immune microenvironment within ovarian tumors, shedding new light on potential therapeutic strategies. This review seeks to investigate the complex role of glycans in ovarian cancer and their impact on the immune response. Glycans, complex sugar molecules decorating cell surfaces and secreted proteins, have emerged as key regulators of immune surveillance in ovarian cancer. Aberrant glycosylation patterns can promote immune evasion by shielding tumor cells from immune recognition, enabling disease progression. Conversely, certain glycan structures can modulate the immune response, leading to either antitumor immunity or immune tolerance. Understanding the intricate relationship between glycan diversity and immune interactions in ovarian cancer holds promise for the development of innovative therapeutic approaches. Immunotherapies that target glycan-mediated immune evasion, such as glycan-based vaccines or checkpoint inhibitors, are under investigation. Additionally, glycan profiling may serve as a diagnostic tool for patient stratification and treatment selection. This review underscores the emerging importance of glycan diversity in ovarian cancer, emphasizing the potential for unraveling immune interplay and advancing tailored therapeutic prospects for this devastating disease.
Collapse
Affiliation(s)
- Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
3
|
Mashhouri S, Rahmati A, Azimi A, Fava RA, Ismail IH, Walker J, Elahi S. Targeting Dectin-1 and or VISTA enhances anti-tumor immunity in melanoma but not colorectal cancer model. Cell Oncol (Dordr) 2024; 47:1735-1756. [PMID: 38668817 PMCID: PMC11467025 DOI: 10.1007/s13402-024-00950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 06/27/2024] Open
Abstract
PURPOSE Acquired resistance to immune checkpoint blockers (ICBs) is a major barrier in cancer treatment, emphasizing the need for innovative strategies. Dectin-1 (gene Clec7a) is a C-type lectin receptor best known for its ability to recognize β-glucan-rich structures in fungal cell walls. While Dectin-1 is expressed in myeloid cells and tumor cells, its significance in cancer remains the subject of controversy. METHODS Using Celc7a-/- mice and curdlan administration to stimulate Dectin-1 signaling, we explored its impact. VISTA KO mice were employed to assess VISTA's role, and bulk RNAseq analyzed curdlan effects on neutrophils. RESULTS Our findings reveal myeloid cells as primary Dectin-1 expressing cells in the tumor microenvironment (TME), displaying an activated phenotype. Strong Dectin-1 co-expression/co-localization with VISTA and PD-L1 in TME myeloid cells was observed. While Dectin-1 deletion lacked protective effects, curdlan stimulation significantly curtailed B16-F10 tumor progression. RNAseq and pathway analyses supported curdlan's role in triggering a cascade of events leading to increased production of pro-inflammatory mediators, potentially resulting in the recruitment and activation of immune cells. Moreover, we identified a heterogeneous subset of Dectin-1+ effector T cells in the TME. Similar to mice, human myeloid cells are the prominent cells expressing Dectin-1 in cancer patients. CONCLUSION Our study proposes Dectin-1 as a potential adjunctive target with ICBs, orchestrating a comprehensive engagement of innate and adaptive immune responses in melanoma. This innovative approach holds promise for overcoming acquired resistance to ICBs in cancer treatment, offering avenues for further exploration and development.
Collapse
Affiliation(s)
- Siavash Mashhouri
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Amirhossein Rahmati
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Ako Azimi
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Roy A Fava
- Department of Veterans Affairs Medical Center, Research Service, White River Junction, VT, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Ismail Hassan Ismail
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - John Walker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
4
|
Wang H, Chen S, Liu Z, Meng Q, Sobreiro-Almeida R, Liu L, Haugen HJ, Li J, Mano JF, Hong Y, Crouzier T, Yan H, Li B. Preserving the Immune-Privileged Niche of the Nucleus Pulposus: Safeguarding Intervertebral Discs from Degeneration after Discectomy with Synthetic Mucin Hydrogel Injection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404496. [PMID: 39207014 DOI: 10.1002/advs.202404496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Intervertebral disc (IVD) herniation is a prevalent spinal disorder, often necessitating surgical intervention such as microdiscectomy for symptomatic relief and nerve decompression. IVDs comprise a gel-like nucleus pulposus (NP) encased by an annulus fibrosus (AF), and their avascular nature renders them immune-privileged. Microdiscectomy exposes the residual NP to the immune system, precipitating an immune cell infiltration and attack that exacerbates IVD degeneration. While many efforts in the tissue engineering field are directed toward IVD regeneration, the inherently limited regenerative capacity due to the avascular and low-cellularity nature of the disc and the challenging mechanical environment of the spine often impedes success. This study, aiming to prevent IVD degeneration post-microdiscectomy, utilizes mucin-derived gels (Muc-gels) that form a gel at the surgical site, inspired by the natural mucin coating on living organisms to evade immune reorganization. It is shown that type I macrophages are present in severely degenerated human discs. Encapsulating IVDs within Muc-gels prevents fibrous encapsulation and macrophage infiltration in a mouse subcutaneous model. The injection of Muc-gels prevents IVD degeneration in a rat tail IVD degeneration model up to 24 weeks post-operation. Mechanistic investigations indicate that Muc-gels attenuate immune cell infiltration into NPs, offering durable protection against immune attack post-microdiscectomy.
Collapse
Affiliation(s)
- Huan Wang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Song Chen
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zhao Liu
- National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, 215000, China
| | - Qingchen Meng
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Rita Sobreiro-Almeida
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ling Liu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, Oslo, 0376, Norway
| | - Jiaying Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Youzhi Hong
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Thomas Crouzier
- Department of Health Technology, DTU, Ørsteds Plads, building 345C DK-2800 Kgs, Lyngby, Copenhagen, Denmark
| | - Hongji Yan
- Department of Medical Cell Biology, Uppsala University, Uppsala, 75123, Sweden
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institute and KTH Royal Institute of Technology, Stockholm, 17177, Sweden
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
5
|
Ota Y, Inagaki R, Takanashi Y, Uemachi H, Matsuda K, Matsuoka M, Taoda R, Ohe S, Ishitsubo Y, Nakamura M, Goto M, Ban H, Nagai Y. Targeting Tumor-Associated Macrophages with the Immune-Activating Nanomedicine for Achieving Strong Antitumor Activity with Rapid Clearance from the Body. ACS NANO 2024; 18:23757-23772. [PMID: 39141816 PMCID: PMC11363121 DOI: 10.1021/acsnano.4c08811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) crucial for the detection of infections and activation of downstream signaling pathways that lead to the production of pro-inflammatory cytokines and interferons. The TLR pathway is an attractive actively studied target pathway. Because of their strong immunostimulatory activity, TLRs are thought to be a "double-edged sword" for systemic treatment, even in the cancer field. To solve this, we have developed dextran-based TAM targeting activating conjugate (D-TAC) technology, which successfully uses tumor-associated macrophages (TAMs) to deliver the TLR7 agonist DSP-0509. We used low molecular weight dextran to target CD206 high M2-type macrophages, activate them, and induce a change in phenotype to antitumor M1-type macrophages with rapid clearance from the body and astonishing antitumor activity. We also demonstrated that the antitumor effect of our best drug candidate 5DEX-0509R is dependent on the abundance of TAMs, which is consistent with their mechanism of action. We believe that 5DEX-0509R generated by D-TAC technology can be a clinically applicable immunotherapy targeting the TLR signaling pathway.
Collapse
Affiliation(s)
- Yosuke Ota
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Ryosaku Inagaki
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Yosuke Takanashi
- Modality
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Hiro Uemachi
- Modality
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Kimiya Matsuda
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Makoto Matsuoka
- Modality
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Risa Taoda
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Seina Ohe
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Yukari Ishitsubo
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Megumi Nakamura
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Masashi Goto
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Hitoshi Ban
- Oncology, Sumitomo
Pharma Co Ltd, Osaka 5540022, Japan
| | - Yasuhiro Nagai
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| |
Collapse
|
6
|
Lupo F, Pezzini F, Pasini D, Fiorini E, Adamo A, Veghini L, Bevere M, Frusteri C, Delfino P, D'agosto S, Andreani S, Piro G, Malinova A, Wang T, De Sanctis F, Lawlor RT, Hwang CI, Carbone C, Amelio I, Bailey P, Bronte V, Tuveson D, Scarpa A, Ugel S, Corbo V. Axon guidance cue SEMA3A promotes the aggressive phenotype of basal-like PDAC. Gut 2024; 73:1321-1335. [PMID: 38670629 PMCID: PMC11287654 DOI: 10.1136/gutjnl-2023-329807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE The dysregulation of the axon guidance pathway is common in pancreatic ductal adenocarcinoma (PDAC), yet our understanding of its biological relevance is limited. Here, we investigated the functional role of the axon guidance cue SEMA3A in supporting PDAC progression. DESIGN We integrated bulk and single-cell transcriptomic datasets of human PDAC with in situ hybridisation analyses of patients' tissues to evaluate SEMA3A expression in molecular subtypes of PDAC. Gain and loss of function experiments in PDAC cell lines and organoids were performed to dissect how SEMA3A contributes to define a biologically aggressive phenotype. RESULTS In PDAC tissues, SEMA3A is expressed by stromal elements and selectively enriched in basal-like/squamous epithelial cells. Accordingly, expression of SEMA3A in PDAC cells is induced by both cell-intrinsic and cell-extrinsic determinants of the basal-like phenotype. In vitro, SEMA3A promotes cell migration as well as anoikis resistance. At the molecular level, these phenotypes are associated with increased focal adhesion kinase signalling through canonical SEMA3A-NRP1 axis. SEMA3A provides mouse PDAC cells with greater metastatic competence and favours intratumoural infiltration of tumour-associated macrophages and reduced density of T cells. Mechanistically, SEMA3A functions as chemoattractant for macrophages and skews their polarisation towards an M2-like phenotype. In SEMA3Ahigh tumours, depletion of macrophages results in greater intratumour infiltration by CD8+T cells and better control of the disease from antitumour treatment. CONCLUSIONS Here, we show that SEMA3A is a stress-sensitive locus that promotes the malignant phenotype of basal-like PDAC through both cell-intrinsic and cell-extrinsic mechanisms.
Collapse
Affiliation(s)
- Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Francesco Pezzini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Davide Pasini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- Department of Medicine, University of Verona, Verona, Italy
| | - Elena Fiorini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Annalisa Adamo
- Department of Medicine, University of Verona, Verona, Italy
| | - Lisa Veghini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | | | - Pietro Delfino
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele, Milan, Italy
| | - Sabrina D'agosto
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
- Human Technopole, Milan, Italy
| | - Silvia Andreani
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Biochemistry and Molecular Biology, University of Würzburg, Wurzburg, Germany
| | - Geny Piro
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Antonia Malinova
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Tian Wang
- Department of Medicine, University of Verona, Verona, Italy
| | | | | | - Chang-Il Hwang
- Microbiology and Molecular Genetics, UC Davis Department of Microbiology, Davis, California, USA
| | - Carmine Carbone
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Ivano Amelio
- Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | | | - David Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Aldo Scarpa
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Eichin D, Rahkila J, Li XG, Ekambaram R, Lassfolk R, Leino R, Savolainen J. Mannose receptor independent uptake of transmembrane glycocluster immunostimulant TADM by macrophages. Carbohydr Res 2024; 541:109166. [PMID: 38815341 DOI: 10.1016/j.carres.2024.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/21/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Triacedimannose (TADM) is a synthetic trivalent acetylated glycocluster comprising β-1,2-linked mannobioses that in humans induces TNF in vitro and in vivo. The purpose of this study was to analyze whether uptake of acetylated glycoclusters of such β-1,2-linked mannobioses by human macrophages is dependent on the mannose receptor (CD206) or if it is mediated by transmembrane activation. In mannose receptor blocking assays, monocyte-derived polarized macrophages were incubated with carbohydrate test-compounds and their binding to the mannose receptor was demonstrated as inhibition of FITC-Dextran binding. For 1H NMR spectroscopy, macrophages were incubated with TADM. The cells were collected at 6 and 24 h of incubation, centrifuged and washed twice with PBS. We found dose-dependent blocking of the mannose receptor in macrophage carbohydrate constructs containing free hydroxyl groups, but not by the trivalent acetylated glycocluster molecules. NMR spectroscopic analyses demonstrated that TADM was found in washed cellular pellets after 6-h co-culture, while after 24-h co-culture TADM was no more detectable, suggesting cleavage of the acetyl groups in vitro. The Type 1 immune response enhancing effects of TADM and other, stereochemically and structurally similar, trivalent acetylated glycoclusters may be due to transmembrane uptake of macrophages independent of the mannose receptor.
Collapse
Affiliation(s)
- Dominik Eichin
- MediCity Research Laboratory, University of Turku, 20520, Turku, Finland; InFLAMES Flagship, University of Turku, Turku, Finland.
| | - Jani Rahkila
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, 20500, Turku, Finland.
| | - Xiang-Guo Li
- Turku PET Centre and Department of Chemistry, University of Turku, 20520, Turku, Finland.
| | - Ramesh Ekambaram
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, 20500, Turku, Finland.
| | - Robert Lassfolk
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, 20500, Turku, Finland.
| | - Reko Leino
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, 20500, Turku, Finland.
| | - Johannes Savolainen
- MediCity Research Laboratory, University of Turku, 20520, Turku, Finland; Department of Pulmonary Diseases and Clinical Allergology, University of Turku and Turku University Hospital, 20520, Turku, Finland.
| |
Collapse
|
8
|
Jeong S, Jeon OH, Hong JH, Kim K, Kim BM, Park JY, Kim K, Cho HW, Kim HK. Detection of metastatic lymph node and sentinel lymph node mapping using mannose receptor targeting in in vivo mouse footpad tumor models and rabbit uterine cancer models. Int J Surg 2024; 110:2692-2700. [PMID: 38377062 PMCID: PMC11093454 DOI: 10.1097/js9.0000000000001227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND This study aimed to evaluate the effectiveness of neo-mannosyl human serum albumin-indocyanine green (MSA-ICG) for detecting metastatic lymph node (LN) and mapping sentinel lymph node (SLN) using mouse footpad uterine tumor models. Additionally, the authors assessed the feasibility of MSA-ICG in SLN mapping in rabbit uterine cancer models. MATERIALS AND METHODS The authors compared the LN targeting ability of MSA-ICG with ICG. Six mouse footpad tumor models and two normal mice were each assigned to MSA-ICG and ICG, respectively. After the assigned tracers were injected, fluorescence images were taken, and the authors compared the signal-to-background ratio (SBR) of the tracers. A SLN biopsy was performed to confirm LN metastasis status and CD206 expression level. Finally, an intraoperative SLN biopsy was performed in rabbit uterine cancer models using MSA-ICG. RESULTS The authors detected 14 groin LNs out of 16 in the MSA-ICG and ICG groups. The SBR of the MSA-ICG group was significantly higher than that of the ICG group. The metastatic LN subgroup of MSA-ICG showed a significantly higher SBR than that of ICG. CD206 was expressed at a high level in metastatic LN, and the signal intensity difference increased as the CD206 expression level increased. SLN mapping was successfully performed in two of the three rabbit uterine cancer models. CONCLUSIONS MSA-ICG was able to distinguish metastatic LN for an extended period due to its specific tumor-associated macrophage-targeting property. Therefore, it may be a more distinguishable tracer for identifying metastatic LNs and SLNs during uterine cancer surgery. Further research is needed to confirm these results.
Collapse
Affiliation(s)
- Sohyeon Jeong
- Department of Obstetrics and Gynecology, Korea University Guro Hospital
| | - Ok Hwa Jeon
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine
- Department of Biomedical Sciences, Korea University College of Medicine
| | - Jin Hwa Hong
- Department of Obstetrics and Gynecology, Korea University Guro Hospital
| | - Kyungsu Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine
- Department of Biomedical Sciences, Korea University College of Medicine
| | | | - Ji Yong Park
- Department of Nuclear Medicine, College of Medicine, Seoul National University
| | - Kweon Kim
- Cellbion Co., Ltd., Seoul, Republic of Korea
| | - Hyun-Woong Cho
- Department of Obstetrics and Gynecology, Korea University Guro Hospital
| | - Hyun Koo Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine
- Department of Biomedical Sciences, Korea University College of Medicine
| |
Collapse
|
9
|
Reis E Sousa C, Yamasaki S, Brown GD. Myeloid C-type lectin receptors in innate immune recognition. Immunity 2024; 57:700-717. [PMID: 38599166 DOI: 10.1016/j.immuni.2024.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| | - Sho Yamasaki
- Molecular Immunology, Research Institute for Microbial Diseases, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan.
| | - Gordon D Brown
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
10
|
Zhou Q, Meng Q. Insights into the Microbial Composition of Intratumoral, Reproductive Tract, and Gut Microbiota in Ovarian Cancer Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:107-118. [PMID: 38805127 DOI: 10.1007/978-3-031-58311-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
According to the latest global cancer data, ovarian cancer is the deadliest among all gynecological malignant tumors and ranks fifth in terms of mortality. Its etiology and pathogenesis are unknown, and the 5-year survival rate of patients with advanced ovarian cancer is only 40% (Sung et al. CA Cancer J Clin 71:209-49, 2021). Recent research has shown that the human microbiota plays a crucial role in the development and progression of tumors, including ovarian cancer. Numerous studies have highlighted the complex connections between the reproductive tract microbiota, intestinal microbiota, and ovarian cancer (Jacobson et al. PeerJ 9:e11574, 2021). Therefore, this chapter will delve into composition, function, and the correlation between microbiota and immunity in the field of ovarian cancer microbiota, as well as the potential of bacteria in therapeutics and diagnostics of ovarian cancer.
Collapse
Affiliation(s)
- Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China.
| | - Qingren Meng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Tumoglu B, Keelaghan A, Avci FY. Tn antigen interactions of macrophage galactose-type lectin (MGL) in immune function and disease. Glycobiology 2023; 33:879-887. [PMID: 37847609 PMCID: PMC10859631 DOI: 10.1093/glycob/cwad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Protein-carbohydrate interactions are essential in maintaining immune homeostasis and orchestrating inflammatory and regulatory immune processes. This review elucidates the immune interactions of macrophage galactose-type lectin (MGL, CD301) and Tn carbohydrate antigen. MGL is a C-type lectin receptor (CLR) primarily expressed by myeloid cells such as macrophages and immature dendritic cells. MGL recognizes terminal O-linked N-acetylgalactosamine (GalNAc) residue on the surface proteins, also known as Tn antigen (Tn). Tn is a truncated form of the elongated cell surface O-glycan. The hypoglycosylation leading to Tn may occur when the enzyme responsible for O-glycan elongation-T-synthase-or its associated chaperone-Cosmc-becomes functionally inhibited. As reviewed here, Tn expression is observed in many different neoplastic and non-neoplastic diseases, and the recognition of Tn by MGL plays an important role in regulating effector T cells, immune suppression, and the recognition of pathogens.
Collapse
Affiliation(s)
- Berna Tumoglu
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
| | - Aidan Keelaghan
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
| |
Collapse
|
12
|
Pankowska KA, Będkowska GE, Chociej-Stypułkowska J, Rusak M, Dąbrowska M, Osada J. Crosstalk of Immune Cells and Platelets in an Ovarian Cancer Microenvironment and Their Prognostic Significance. Int J Mol Sci 2023; 24:ijms24119279. [PMID: 37298230 DOI: 10.3390/ijms24119279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological cancers, largely due to the fast development of metastasis and drug resistance. The immune system is a critical component of the OC tumor microenvironment (TME) and immune cells such as T cells, NK cells, and dendritic cells (DC) play a key role in anti-tumor immunity. However, OC tumor cells are well known for evading immune surveillance by modulating the immune response through various mechanisms. Recruiting immune-suppressive cells such as regulatory T cells (Treg cells), macrophages, or myeloid-derived suppressor cells (MDSC) inhibit the anti-tumor immune response and promote the development and progression of OC. Platelets are also involved in immune evasion by interaction with tumor cells or through the secretion of a variety of growth factors and cytokines to promote tumor growth and angiogenesis. In this review, we discuss the role and contribution of immune cells and platelets in TME. Furthermore, we discuss their potential prognostic significance to help in the early detection of OC and to predict disease outcome.
Collapse
Affiliation(s)
- Katarzyna Aneta Pankowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Grażyna Ewa Będkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Chociej-Stypułkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Małgorzata Rusak
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Milena Dąbrowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Osada
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| |
Collapse
|
13
|
Kohlhepp MS, Liu H, Tacke F, Guillot A. The contradictory roles of macrophages in non-alcoholic fatty liver disease and primary liver cancer-Challenges and opportunities. Front Mol Biosci 2023; 10:1129831. [PMID: 36845555 PMCID: PMC9950415 DOI: 10.3389/fmolb.2023.1129831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Chronic liver diseases from varying etiologies generally lead to liver fibrosis and cirrhosis. Among them, non-alcoholic fatty liver disease (NAFLD) affects roughly one-quarter of the world population, thus representing a major and increasing public health burden. Chronic hepatocyte injury, inflammation (non-alcoholic steatohepatitis, NASH) and liver fibrosis are recognized soils for primary liver cancer, particularly hepatocellular carcinoma (HCC), being the third most common cause for cancer-related deaths worldwide. Despite recent advances in liver disease understanding, therapeutic options on pre-malignant and malignant stages remain limited. Thus, there is an urgent need to identify targetable liver disease-driving mechanisms for the development of novel therapeutics. Monocytes and macrophages comprise a central, yet versatile component of the inflammatory response, fueling chronic liver disease initiation and progression. Recent proteomic and transcriptomic studies performed at singular cell levels revealed a previously overlooked diversity of macrophage subpopulations and functions. Indeed, liver macrophages that encompass liver resident macrophages (also named Kupffer cells) and monocyte-derived macrophages, can acquire a variety of phenotypes depending on microenvironmental cues, and thus exert manifold and sometimes contradictory functions. Those functions range from modulating and exacerbating tissue inflammation to promoting and exaggerating tissue repair mechanisms (i.e., parenchymal regeneration, cancer cell proliferation, angiogenesis, fibrosis). Due to these central functions, liver macrophages represent an attractive target for the treatment of liver diseases. In this review, we discuss the multifaceted and contrary roles of macrophages in chronic liver diseases, with a particular focus on NAFLD/NASH and HCC. Moreover, we discuss potential therapeutic approaches targeting liver macrophages.
Collapse
|
14
|
Cui Y, Xu Y, Li Y, Sun Y, Hu J, Jia J, Li X. Antibody Drug Conjugates of Near-Infrared Photoimmunotherapy (NIR-PIT) in Breast Cancers. Technol Cancer Res Treat 2023; 22:15330338221145992. [PMID: 36734039 PMCID: PMC9903039 DOI: 10.1177/15330338221145992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Worldwide, the incidence rate of breast cancer is the highest in women. Approximately 2.3 million people were newly diagnosed and 0.685 million were dead of breast cancer in 2020, which continues to grow. Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with a higher risk of recurrence and metastasis, but disappointly, there are no effective and specific therapies clinically, especially for patients presenting with metastatic diseases. Therefore, it is urgent to develop a new type of cancer therapy for survival improvisation and adverse effects alleviation of breast cancers. Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed, photochemistry-based cancer therapy. It was drive by an antibody-photoabsorber conjugate (APC) which is triggered by near-infrared light. The key part of APC is a cancer-targeting monoclonal antibody (mAb) that can bind to receptors or antigens on the surface of tumor cells. Because of this targeted conjugate accumulation, subsequent deployment of focal NIR-light results in functional damage on the targeted cell membranes without harming the immediately adjacent receptor-negative cells and evokes a kind of photochemical, speedy, and highly specific immunogenic cell death (ICD) of cancer cells with corresponding antigens. Subsequently, immature dendritic cells adjacent to dying cancer cells will become mature, further inducing a host-oriented anti-cancer immune response, complicatedly and comprehensively. Currently, NIR-PIT has progressed into phase 3 clinical trial for recurrent head and neck cancer. And preclinical studies have illustrated strong therapeutic efficacy of NIR-PIT targeting various molecular receptors overexpressed in breast cancer cells, including EGFR, HER2, CD44c, CD206, ICAM-1 and FAP-α. Thereby, NIR-PIT is in early trials, but appears to be a promising breast cancer therapy and moving into the future. Here, we present the specific advantages and discuss the most recent preclinical studies against several transmembrane proteins of NIR-PIT in breast cancers.
Collapse
Affiliation(s)
- Yingshu Cui
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Medical School of Chinese PLA, Beijing, China
| | - Yuanyuan Xu
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Laser, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yi Li
- Medical School of Chinese PLA, Beijing, China,Department of Laser, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuanyuan Sun
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia Hu
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia Jia
- Department of Oncology, the Seventh Medical Center, Chinese PLA General Hospital, Beijing, China,Jia Jia, Department of Oncology, the Seventh Medical Centre, Chinese PLA General Hospital, Beijing 100700, China.
| | - Xiaosong Li
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Xiaosong Li, Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100071, China.
| |
Collapse
|
15
|
Role of lymphocytes, macrophages and immune receptors in suppression of tumor immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:269-310. [PMID: 36631195 DOI: 10.1016/bs.pmbts.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cancer is now the leading cause of mortality across the world. Inflammatory immune cells are functionally important in the genesis and progression of tumors, as demonstrated by their presence in human tumors. Numerous research has recently been conducted to determine if the innate and adaptive immune systems' cytotoxic cells can inhibit tumor growth and spread. Majority of cancers, when growing into identifiable tumors use multiple strategies to elude immune monitoring by lowering tumor immunity. Immunological suppression in the tumor microenvironment is achieved through interfering with antigen-presenting cells and effector T cells. Treatment of cancer requires managing both the tumor as well as tumor microenvironment (TME). Most patients will not be able to gain benefits from immunotherapy because of the immunosuppressive tumor microenvironment. The actions of many stromal myeloid and lymphoid cells are regulated to suppress tumor-specific T lymphocytes. These frequently exhibit inducible suppressive processes brought on by the same anti-tumor inflammatory response the immunotherapy aims to produce. Therefore, a deeper comprehensive understanding of how the immunosuppressive environment arises and endures is essential. Here in this chapter, we will talk about how immune cells, particularly macrophages and lymphocytes, and their receptors affect the ability of tumors to mount an immune response.
Collapse
|
16
|
Rajesh C, Radhakrishnan P. The (Sialyl) Tn antigen: Contributions to immunosuppression in gastrointestinal cancers. Front Oncol 2023; 12:1093496. [PMID: 36686742 PMCID: PMC9852904 DOI: 10.3389/fonc.2022.1093496] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Cellular signaling pathways are intricately regulated to maintain homeostasis. During cancer progression, these mechanisms are manipulated to become harmful. O-glycosylation, a crucial post-translational modification, is one such pathway that can lead to multiple isoforms of glycoproteins. The Tn (GalNAc-O-Ser/Thr) and Sialyl Tn (STn; Neu5Ac-GalNAc-O-Ser/Thr) antigens resulting from the incomplete synthesis of fully branched O-glycan chains on proteins contribute to disease progression in the pancreas and other gastrointestinal cancers. The tumor microenvironment (TME) is a major constituent of tumors and a key modulator of their behavior. Multiple cellular and secretory components of the TME dictate the development and metastasis of tumors. Immune cells like macrophages, natural killer (NK) cells, dendritic cells, B and T lymphocytes are a part of the tumor "immune" microenvironment (TIME). The expression of the Tn and STn antigens on tumors has been found to regulate the function of these immune cells and alter their normal antitumor cytotoxic role. This is possible through multiple cell intrinsic and extrinsic signaling pathways, elaborated in this review. Studying the interaction between Tn/STn antigens and the TIME of gastrointestinal cancers can help develop better and more robust therapies that can counteract immunosuppressive mechanisms to sensitize these tumors to anticancer therapies.
Collapse
Affiliation(s)
- Christabelle Rajesh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
17
|
Kwart D, He J, Srivatsan S, Lett C, Golubov J, Oswald EM, Poon P, Ye X, Waite J, Zaretsky AG, Haxhinasto S, Au-Yeung E, Gupta NT, Chiu J, Adler C, Cherravuru S, Malahias E, Negron N, Lanza K, Coppola A, Ni M, Song H, Wei Y, Atwal GS, Macdonald L, Oristian NS, Poueymirou W, Jankovic V, Fury M, Lowy I, Murphy AJ, Sleeman MA, Wang B, Skokos D. Cancer cell-derived type I interferons instruct tumor monocyte polarization. Cell Rep 2022; 41:111769. [PMID: 36476866 DOI: 10.1016/j.celrep.2022.111769] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/29/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Monocytes are highly plastic immune cells that modulate antitumor immunity. Therefore, identifying factors that regulate tumor monocyte functions is critical for developing effective immunotherapies. Here, we determine that endogenous cancer cell-derived type I interferons (IFNs) control monocyte functional polarization. Guided by single-cell transcriptomic profiling of human and mouse tumors, we devise a strategy to distinguish and separate immunostimulatory from immunosuppressive tumor monocytes by surface CD88 and Sca-1 expression. Leveraging this approach, we show that cGAS-STING-regulated cancer cell-derived IFNs polarize immunostimulatory monocytes associated with anti-PD-1 immunotherapy response in mice. We also demonstrate that immunosuppressive monocytes convert into immunostimulatory monocytes upon cancer cell-intrinsic cGAS-STING activation. Consistently, we find that human cancer cells can produce type I IFNs that polarize monocytes, and our immunostimulatory monocyte gene signature is enriched in patient tumors that respond to anti-PD-1 immunotherapy. Our work exposes a role for cancer cell-derived IFNs in licensing monocyte functions that influence immunotherapy outcomes.
Collapse
Affiliation(s)
- Dylan Kwart
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Jing He
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | | - Patrick Poon
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Xuan Ye
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | | | | - Joyce Chiu
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | | | | | | - Min Ni
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Hang Song
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | | | | - Matthew Fury
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Israel Lowy
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - Bei Wang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA.
| | | |
Collapse
|
18
|
Visca H, DuPont M, Moshnikova A, Crawford T, Engelman DM, Andreev OA, Reshetnyak YK. pHLIP Peptides Target Acidity in Activated Macrophages. Mol Imaging Biol 2022; 24:874-885. [PMID: 35604527 PMCID: PMC9681937 DOI: 10.1007/s11307-022-01737-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/19/2022] [Accepted: 04/27/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Acidity can be a useful alternative biomarker for the targeting of metabolically active cells in certain diseased tissues, as in acute inflammation or aggressive tumors. We investigated the targeting of activated macrophages by pH low insertion peptides (pHLIPs), an established technology for targeting cell-surface acidity. PROCEDURES The uptake of fluorescent pHLIPs by activated macrophages was studied in cell cultures, in a mouse model of lung inflammation, and in a mouse tumor model. Fluorescence microscopy, whole-body and organ imaging, immunohistochemistry, and FACS analysis were employed. RESULTS We find that cultured, activated macrophages readily internalize pHLIPs. The uptake is higher in glycolytic macrophages activated by LPS and INF-γ compared to macrophages activated by IL-4/IL-13. Fluorescent pHLIPs target LPS-induced lung inflammation in mice. In addition to marking cancer cells within the tumor microenvironment, fluorescent pHLIPs target CD45+, CD11b+, F4/80+, and CD206+ tumor-associated macrophages with no significant targeting of other immune cells. Also, fluorescent pHLIPs target CD206-positive cells found in the inguinal lymph nodes of animals inoculated with breast cancer cells in mammary fat pads. CONCLUSIONS pHLIP peptides sense low cell surface pH, which triggers their insertion into the cell membrane. Unlike cancerous cells, activated macrophages do not retain inserted pHLIPs on their surfaces, instead their highly active membrane recycling moves the pHLIPs into endosomes. Targeting activated macrophages in diseased tissues may enable clinical visualization and therapeutic opportunities.
Collapse
Affiliation(s)
- Hannah Visca
- Physics Department, University of Rhode Island, Kingston, RI, USA
| | - Michael DuPont
- Physics Department, University of Rhode Island, Kingston, RI, USA
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, Kingston, RI, USA
| | - Troy Crawford
- Physics Department, University of Rhode Island, Kingston, RI, USA
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale, New Haven, CT, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
19
|
Sosa Cuevas E, Valladeau-Guilemond J, Mouret S, Roubinet B, de Fraipont F, Landemarre L, Charles J, Bendriss-Vermare N, Chaperot L, Aspord C. Unique CLR expression patterns on circulating and tumor-infiltrating DC subsets correlated with clinical outcome in melanoma patients. Front Immunol 2022; 13:1040600. [PMID: 36353633 PMCID: PMC9638162 DOI: 10.3389/fimmu.2022.1040600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 08/15/2023] Open
Abstract
Subversion of immunity by tumors is a crucial step for their development. Dendritic cells (DCs) are strategic immune cells that orchestrate anti-tumor immune responses but display altered functions in cancer. The bases for such DCs' hijacking are not fully understood. Tumor cells harbor unusual glycosylation patterns of surface glycoproteins and glycolipids. DCs express glycan-binding receptors, named C-type lectin receptors (CLR), allowing them to sense changes in glycan signature of their environment, and subsequently trigger a response. Recognition of tumor glycans by CLRs is crucial for DCs to shape antitumor immunity, and decisive in the orientation of the response. Yet the status of the CLR machinery on DCs in cancer, especially melanoma, remained largely unknown. We explored CLR expression patterns on circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs of melanoma patients, assessed their clinical relevance, and further depicted the correlations between CLR expression profiles and DCs' features. For the first time, we highlighted that the CLR repertoire of circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs was strongly perturbed in melanoma patients, with modulation of DCIR, CLEC-12α and NKp44 on circulating DCs, and perturbation of Dectin-1, CD206, DEC205, DC-SIGN and CLEC-9α on tumor-infiltrating DCs. Furthermore, melanoma tumor cells directly altered CLR expression profiles of healthy DC subsets, and this was associated with specific glycan patterns (Man, Fuc, GlcNAc) that may interact with DCs through CLR molecules. Notably, specific CLR expression profiles on DC subsets correlated with unique DCs' activation status and functionality and were associated with clinical outcome of melanoma patients. Higher proportions of DCIR-, DEC205-, CLEC-12α-expressing cDCs were linked with a better survival, whereas elevated proportions of CD206-, Dectin1-expressing cDCs and NKp44-expressing pDCs were associated with a poor outcome. Thus, melanoma tumor may shape DCs' features by exploiting the plasticity of the CLR machinery. Our study revealed that melanoma manipulates CLR pathways to hijack DC subsets and escape from immune control. It further paved the way to exploit glycan-lectin interactions for the design of innovative therapeutic strategies, which exploit DCs' potentialities while avoiding hijacking by tumor, to properly reshape anti-tumor immunity by manipulating the CLR machinery.
Collapse
Affiliation(s)
- Eleonora Sosa Cuevas
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Jenny Valladeau-Guilemond
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Stephane Mouret
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Grenoble, France
| | | | - Florence de Fraipont
- Medical Unit of Molecular genetic (Hereditary Diseases and Oncology), Grenoble University Hospital, Grenoble, France
| | | | - Julie Charles
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Grenoble, France
| | - Nathalie Bendriss-Vermare
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Laurence Chaperot
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Caroline Aspord
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
20
|
Brech D, Herbstritt AS, Diederich S, Straub T, Kokolakis E, Irmler M, Beckers J, Büttner FA, Schaeffeler E, Winter S, Schwab M, Nelson PJ, Noessner E. Dendritic Cells or Macrophages? The Microenvironment of Human Clear Cell Renal Cell Carcinoma Imprints a Mosaic Myeloid Subtype Associated with Patient Survival. Cells 2022; 11:3289. [PMID: 36291154 PMCID: PMC9600747 DOI: 10.3390/cells11203289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 09/29/2023] Open
Abstract
Since their initial description by Elie Metchnikoff, phagocytes have sparked interest in a variety of biologic disciplines. These important cells perform central functions in tissue repair and immune activation as well as tolerance. Myeloid cells can be immunoinhibitory, particularly in the tumor microenvironment, where their presence is generally associated with poor patient prognosis. These cells are highly adaptable and plastic, and can be modulated to perform desired functions such as antitumor activity, if key programming molecules can be identified. Human clear cell renal cell carcinoma (ccRCC) is considered immunogenic; yet checkpoint blockades that target T cell dysfunction have shown limited clinical efficacy, suggesting additional layers of immunoinhibition. We previously described "enriched-in-renal cell carcinoma" (erc) DCs that were often found in tight contact with dysfunctional T cells. Using transcriptional profiling and flow cytometry, we describe here that ercDCs represent a mosaic cell type within the macrophage continuum co-expressing M1 and M2 markers. The polarization state reflects tissue-specific signals that are characteristic of RCC and renal tissue homeostasis. ErcDCs are tissue-resident with increasing prevalence related to tumor grade. Accordingly, a high ercDC score predicted poor patient survival. Within the profile, therapeutic targets (VSIG4, NRP1, GPNMB) were identified with promise to improve immunotherapy.
Collapse
Affiliation(s)
- Dorothee Brech
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Anna S. Herbstritt
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Sarah Diederich
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Tobias Straub
- Bioinformatics Core Unit, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg, Germany
| | - Evangelos Kokolakis
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, 85354 Freising, Germany
| | - Florian A. Büttner
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
| | - Elke Schaeffeler
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
| | - Stefan Winter
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
| | - Matthias Schwab
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
- Department of Clinical Pharmacology, University of Tuebingen, 72074 Tuebingen, Germany
- Department of Pharmacy and Biochemistry, University of Tuebingen, 72074 Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tuebingen, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter J. Nelson
- Medizinische Klinik und Poliklinik IV, University of Munich, 80336 Munich, Germany
| | - Elfriede Noessner
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| |
Collapse
|
21
|
Li Z, Yu Q, Zhu Q, Yang X, Li Z, Fu J. Applications of machine learning in tumor-associated macrophages. Front Immunol 2022; 13:985863. [PMID: 36211379 PMCID: PMC9538115 DOI: 10.3389/fimmu.2022.985863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Evaluation of tumor-host interaction and intratumoral heterogeneity in the tumor microenvironment (TME) is gaining increasing attention in modern cancer therapies because it can reveal unique information about the tumor status. As tumor-associated macrophages (TAMs) are the major immune cells infiltrating in TME, a better understanding of TAMs could help us further elucidate the cellular and molecular mechanisms responsible for cancer development. However, the high-dimensional and heterogeneous data in biology limit the extensive integrative analysis of cancer research. Machine learning algorithms are particularly suitable for oncology data analysis due to their flexibility and scalability to analyze diverse data types and strong computation power to learn underlying patterns from massive data sets. With the application of machine learning in analyzing TME, especially TAM’s traceable status, we could better understand the role of TAMs in tumor biology. Furthermore, we envision that the promotion of machine learning in this field could revolutionize tumor diagnosis, treatment stratification, and survival predictions in cancer research. In this article, we described key terms and concepts of machine learning, reviewed the applications of common methods in TAMs, and highlighted the challenges and future direction for TAMs in machine learning.
Collapse
Affiliation(s)
- Zhen Li
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qijun Yu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingyuan Zhu
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojing Yang
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhaobin Li
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jie Fu
- Radiation Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- *Correspondence: Jie Fu,
| |
Collapse
|
22
|
Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov 2022; 21:799-820. [PMID: 35974096 PMCID: PMC9380983 DOI: 10.1038/s41573-022-00520-5] [Citation(s) in RCA: 659] [Impact Index Per Article: 329.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/11/2022]
Abstract
Tumour-associated macrophages are an essential component of the tumour microenvironment and have a role in the orchestration of angiogenesis, extracellular matrix remodelling, cancer cell proliferation, metastasis and immunosuppression, as well as in resistance to chemotherapeutic agents and checkpoint blockade immunotherapy. Conversely, when appropriately activated, macrophages can mediate phagocytosis of cancer cells and cytotoxic tumour killing, and engage in effective bidirectional interactions with components of the innate and adaptive immune system. Therefore, they have emerged as therapeutic targets in cancer therapy. Macrophage-targeting strategies include inhibitors of cytokines and chemokines involved in the recruitment and polarization of tumour-promoting myeloid cells as well as activators of their antitumorigenic and immunostimulating functions. Early clinical trials suggest that targeting negative regulators (checkpoints) of myeloid cell function indeed has antitumor potential. Finally, given the continuous recruitment of myelomonocytic cells into tumour tissues, macrophages are candidates for cell therapy with the development of chimeric antigen receptor effector cells. Macrophage-centred therapeutic strategies have the potential to complement, and synergize with, currently available tools in the oncology armamentarium. Macrophages can promote tumorigenesis and enhance the antitumour response. This Review discusses the molecular mechanisms underlying the reprogramming of macrophages in the tumour microenvironment and provides an overview of macrophage-targeted therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy. .,IRCCS- Humanitas Research Hospital, Milan, Italy. .,The William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Paola Allavena
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS- Humanitas Research Hospital, Milan, Italy
| | - Federica Marchesi
- IRCCS- Humanitas Research Hospital, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS- Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
23
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII-HDs: A Versatile Platform for Developing Activatable NIR-II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022; 61:e202201541. [PMID: 35218130 DOI: 10.1002/anie.202201541] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Small-molecule-based second near-infrared (NIR-II) activatable fluorescent probes can potentially provide a high target-to-background ratio and deep tissue penetration. However, most of the reported NIR-II activatable small-molecule probes exhibit poor versatility owing to the lack of a general and stable optically tunable group. In this study, we designed NIRII-HDs, a novel dye scaffold optimized for NIR-II probe development. In particular, dye NIRII-HD5 showed the best optical properties such as proper pKa value, excellent stability, and high NIR-II brightness, which can be beneficial for in vivo imaging with high contrast. To demonstrate the applicability of the NIRII-HD5 dye, we designed three target-activatable NIR-II probes for ROS, thiols, and enzymes. Using these novel probes, we not only realized reliable NIR-II imaging of different diseases in mouse models but also evaluated the redox potential of liver tissue during a liver injury in vivo with high fidelity.
Collapse
Affiliation(s)
- Zuojia Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Huijie Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xingxing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Long He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
24
|
Cui R, Wang L, Zhang D, Zhang K, Dou J, Dong L, Zhang Y, Wu J, Tan L, Yu J, Liang P. Combination therapy using microwave ablation and D-mannose-chelated iron oxide nanoparticles inhibits hepatocellular carcinoma progression. Acta Pharm Sin B 2022; 12:3475-3485. [PMID: 36176908 PMCID: PMC9513490 DOI: 10.1016/j.apsb.2022.05.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
Despite being a common therapy for hepatocellular carcinoma (HCC), insufficient thermal ablation can leave behind tumor residues that can cause recurrence. This is believed to augment M2 inflammatory macrophages that usually play a pro-tumorigenic role. To address this problem, we designed d-mannose-chelated iron oxide nanoparticles (man-IONPs) to polarize M2-like macrophages into the antitumor M1 phenotype. In vitro and in vivo experiments demonstrated that man-IONPs specifically targeted M2-like macrophages and accumulated in peri-ablation zones after macrophage infiltration was augmented under insufficient microwave ablation (MWA). The nanoparticles simultaneously induced polarization of pro-tumorigenic M2 macrophages into antitumor M1 phenotypes, enabling the transformation of the immunosuppressive microenvironment into an immunoactivating one. Post-MWA macrophage polarization exerted robust inhibitory effects on HCC progression in a well-established orthotopic liver cancer mouse model. Thus, combining thermal ablation with man-IONPs can salvage residual tumors after insufficient MWA. These results have strong potential for clinical translation.
Collapse
|
25
|
Spiliopoulou P, Spear S, Mirza H, Garner I, McGarry L, Grundland-Freile F, Cheng Z, Ennis DP, Iyer N, McNamara S, Natoli M, Mason S, Blyth K, Adams PD, Roxburgh P, Fuchter MJ, Brown B, McNeish IA. Dual G9A/EZH2 Inhibition Stimulates Antitumor Immune Response in Ovarian High-Grade Serous Carcinoma. Mol Cancer Ther 2022; 21:522-534. [PMID: 35131874 PMCID: PMC9377747 DOI: 10.1158/1535-7163.mct-21-0743] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Ovarian high-grade serous carcinoma (HGSC) prognosis correlates directly with presence of intratumoral lymphocytes. However, cancer immunotherapy has yet to achieve meaningful survival benefit in patients with HGSC. Epigenetic silencing of immunostimulatory genes is implicated in immune evasion in HGSC and re-expression of these genes could promote tumor immune clearance. We discovered that simultaneous inhibition of the histone methyltransferases G9A and EZH2 activates the CXCL10-CXCR3 axis and increases homing of intratumoral effector lymphocytes and natural killer cells while suppressing tumor-promoting FoxP3+ CD4 T cells. The dual G9A/EZH2 inhibitor HKMTI-1-005 induced chromatin changes that resulted in the transcriptional activation of immunostimulatory gene networks, including the re-expression of elements of the ERV-K endogenous retroviral family. Importantly, treatment with HKMTI-1-005 improved the survival of mice bearing Trp53-/- null ID8 ovarian tumors and resulted in tumor burden reduction. These results indicate that inhibiting G9A and EZH2 in ovarian cancer alters the immune microenvironment and reduces tumor growth and therefore positions dual inhibition of G9A/EZH2 as a strategy for clinical development.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Spear
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Hasan Mirza
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Ian Garner
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Lynn McGarry
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Fabio Grundland-Freile
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Zhao Cheng
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Darren P. Ennis
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nayana Iyer
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Sophie McNamara
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Marina Natoli
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Susan Mason
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Karen Blyth
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Peter D. Adams
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, California
| | - Patricia Roxburgh
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew J. Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Bob Brown
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Iain A. McNeish
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
26
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
27
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII‐HDs: A Versatile Platform for Developing Activatable NIR‐II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Long He
- Hunan University Chemistry CHINA
| | - Zhe Li
- Hunan University Chemistry CHINA
| | | | - Lin Yuan
- Hunan University College of Chemistry and Chemical Engineering NO372, Lushan Rd. Yuelu District. 410082 Changsha CHINA
| |
Collapse
|
28
|
Kedage V, Ellerman D, Fei M, Liang WC, Zhang G, Cheng E, Zhang J, Chen Y, Huang H, Lee WP, Wu Y, Yan M. CLEC5a-directed bispecific antibody for effective cellular phagocytosis. MAbs 2022; 14:2040083. [PMID: 35293277 PMCID: PMC8932924 DOI: 10.1080/19420862.2022.2040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
While antibody-dependent cellular phagocytosis mediated by activating Fcγ receptor is a key mechanism underlying many antibody drugs, their full therapeutic activities can be restricted by the inhibitory Fcγ receptor IIB (FcγRIIB). Here, we describe a bispecific antibody approach that harnesses phagocytic receptor CLEC5A (C-type Lectin Domain Containing 5A) to drive Fcγ receptor-independent phagocytosis, potentially circumventing the negative impact of FcγRIIB. First, we established the effectiveness of such an approach by constructing bispecific antibodies that simultaneously target CLEC5A and live B cells. Furthermore, we demonstrated its in vivo application for regulatory T cell depletion and subsequent tumor regression.
Collapse
Affiliation(s)
- Vivekananda Kedage
- Department of Molecular Oncology, Genentech, South San Francisco, California, USA
| | - Diego Ellerman
- Department of Protein Chemistry and Structural Biology, Genentech, South San Francisco, California, USA
| | - Mingjian Fei
- Department of Molecular Oncology, Genentech, South San Francisco, California, USA
| | - Wei-Ching Liang
- Department of Antibody Engineering, Genentech, South San Francisco, California, USA
| | - Gu Zhang
- Department of Molecular Oncology, Genentech, South San Francisco, California, USA
| | - Eric Cheng
- Department of Immunology, Genentech, South San Francisco, California, USA
| | - Juan Zhang
- Department of Immunology, Genentech, South San Francisco, California, USA
| | - Yongmei Chen
- Department of Antibody Engineering, Genentech, South San Francisco, California, USA
| | - Haochu Huang
- Department of Molecular Oncology, Genentech, South San Francisco, California, USA
| | - Wyne P Lee
- Department of Immunology, Genentech, South San Francisco, California, USA
| | - Yan Wu
- Department of Antibody Engineering, Genentech, South San Francisco, California, USA
| | - Minhong Yan
- Department of Molecular Oncology, Genentech, South San Francisco, California, USA
| |
Collapse
|
29
|
Brazil JC, Parkos CA. Finding the sweet spot: glycosylation mediated regulation of intestinal inflammation. Mucosal Immunol 2022; 15:211-222. [PMID: 34782709 PMCID: PMC8591159 DOI: 10.1038/s41385-021-00466-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023]
Abstract
Glycans are essential cellular components that facilitate a range of critical functions important for tissue development and mucosal homeostasis. Furthermore, specific alterations in glycosylation represent important diagnostic hallmarks of cancer that contribute to tumor cell dissociation, invasion, and metastasis. However, much less is known about how glycosylation contributes to the pathobiology of inflammatory mucosal diseases. Here we will review how epithelial and immune cell glycosylation regulates gut homeostasis and how inflammation-driven changes in glycosylation contribute to intestinal pathobiology.
Collapse
Affiliation(s)
- Jennifer C. Brazil
- grid.214458.e0000000086837370Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Charles A. Parkos
- grid.214458.e0000000086837370Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
30
|
Ritch SJ, Telleria CM. The Transcoelomic Ecosystem and Epithelial Ovarian Cancer Dissemination. Front Endocrinol (Lausanne) 2022; 13:886533. [PMID: 35574025 PMCID: PMC9096207 DOI: 10.3389/fendo.2022.886533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is considered the deadliest gynecological disease and is normally diagnosed at late stages, at which point metastasis has already occurred. Throughout disease progression, EOC will encounter various ecosystems and the communication between cancer cells and these microenvironments will promote the survival and dissemination of EOC. The primary tumor is thought to develop within the ovaries or the fallopian tubes, both of which provide a microenvironment with high risk of causing DNA damage and enhanced proliferation. EOC disseminates by direct extension from the primary tumors, as single cells or multicellular aggregates. Under the influence of cellular and non-cellular factors, EOC spheroids use the natural flow of peritoneal fluid to reach distant organs within the peritoneal cavity. These cells can then implant and seed distant organs or tissues, which develop rapidly into secondary tumor nodules. The peritoneal tissue and the omentum are two common sites of EOC metastasis, providing a microenvironment that supports EOC invasion and survival. Current treatment for EOC involves debulking surgery followed by platinum-taxane combination chemotherapy; however, most patients will relapse with a chemoresistant disease with tumors developed within the peritoneum. Therefore, understanding the role of the unique microenvironments that promote EOC transcoelomic dissemination is important in improving patient outcomes from this disease. In this review article, we address the process of ovarian cancer cellular fate at the site of its origin in the secretory cells of the fallopian tube or in the ovarian surface epithelial cells, their detachment process, how the cells survive in the peritoneal fluid avoiding cell death triggers, and how cancer- associated cells help them in the process. Finally, we report the mechanisms used by the ovarian cancer cells to adhere and migrate through the mesothelial monolayer lining the peritoneum. We also discuss the involvement of the transcoelomic ecosystem on the development of chemoresistance of EOC.
Collapse
Affiliation(s)
- Sabrina J. Ritch
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Carlos M. Telleria, ; orcid.org/0000-0003-1070-3538
| |
Collapse
|
31
|
Han X, Deng F, Zhu R, Li K, Yang S, Jin L, Ma Z, Ning C, Shi X, Li Y. Osteoimmune reaction caused by novel silicocarnotite bioceramic promoting osteogenesis through MAPK pathway. Biomater Sci 2022; 10:2877-2891. [DOI: 10.1039/d2bm00125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The host immune response to implant is a key factor in determining the fate of bone grafts, which is thought to be a regulator of tissue regeneration. Figuring out the...
Collapse
|
32
|
van der Zande HJP, Nitsche D, Schlautmann L, Guigas B, Burgdorf S. The Mannose Receptor: From Endocytic Receptor and Biomarker to Regulator of (Meta)Inflammation. Front Immunol 2021; 12:765034. [PMID: 34721436 PMCID: PMC8551360 DOI: 10.3389/fimmu.2021.765034] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 01/27/2023] Open
Abstract
The mannose receptor is a member of the C-type lectin (CLEC) family, which can bind and internalize a variety of endogenous and pathogen-associated ligands. Because of these properties, its role in endocytosis as well as antigen processing and presentation has been studied intensively. Recently, it became clear that the mannose receptor can directly influence the activation of various immune cells. Cell-bound mannose receptor expressed by antigen-presenting cells was indeed shown to drive activated T cells towards a tolerogenic phenotype. On the other hand, serum concentrations of a soluble form of the mannose receptor have been reported to be increased in patients suffering from a variety of inflammatory diseases and to correlate with severity of disease. Interestingly, we recently demonstrated that the soluble mannose receptor directly promotes macrophage proinflammatory activation and trigger metaflammation. In this review, we highlight the role of the mannose receptor and other CLECs in regulating the activation of immune cells and in shaping inflammatory responses.
Collapse
Affiliation(s)
| | - Dominik Nitsche
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Laura Schlautmann
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Sven Burgdorf
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
33
|
TAp73 represses NF-κB-mediated recruitment of tumor-associated macrophages in breast cancer. Proc Natl Acad Sci U S A 2021; 118:2017089118. [PMID: 33649219 PMCID: PMC7958209 DOI: 10.1073/pnas.2017089118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most prevalent cancers worldwide. Understanding this complex disease is therefore of great importance. Here, we report that loss of TAp73, a known tumor suppressor and member of the p53 protein family, leads to increased activation of the NF-κB pathway, secretion of the chemokine CCL2, and an increase in protumoral macrophage infiltration in human breast cancer. Both high levels of CCL2 and high macrophage infiltration are known to correlate with poor prognosis in breast cancer patients. This study identifies TAp73 as a regulator of macrophage recruitment and highlights a role for TAp73 in immune cell regulation in cancer. Infiltration of tumor-promoting immune cells is a strong driver of tumor progression. Especially the accumulation of macrophages in the tumor microenvironment is known to facilitate tumor growth and to correlate with poor prognosis in many tumor types. TAp73, a member of the p53/p63/p73 family, acts as a tumor suppressor and has been shown to suppress tumor angiogenesis. However, what role TAp73 has in regulating immune cell infiltration is unknown. Here, we report that low levels of TAp73 correlate with an increased NF-κB–regulated inflammatory signature in breast cancer. Furthermore, we show that loss of TAp73 results in NF-κB hyperactivation and secretion of Ccl2, a known NF-κB target and chemoattractant for monocytes and macrophages. Importantly, TAp73-deficient tumors display an increased accumulation of protumoral macrophages that express the mannose receptor (CD206) and scavenger receptor A (CD204) compared to controls. The relevance of TAp73 expression in human breast carcinoma was further accentuated by revealing that TAp73 expression correlates negatively with the accumulation of protumoral CD163+ macrophages in breast cancer patient samples. Taken together, our findings suggest that TAp73 regulates macrophage accumulation and phenotype in breast cancer through inhibition of the NF-κB pathway.
Collapse
|
34
|
Stavenhagen K, Laan LC, Gao C, Mehta AY, Heimburg-Molinaro J, Glickman JN, van Die I, Cummings RD. Tumor cells express pauci- and oligomannosidic N-glycans in glycoproteins recognized by the mannose receptor (CD206). Cell Mol Life Sci 2021; 78:5569-5585. [PMID: 34089345 PMCID: PMC11072813 DOI: 10.1007/s00018-021-03863-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 01/21/2023]
Abstract
The macrophage mannose receptor (CD206, MR) is an endocytic lectin receptor which plays an important role in homeostasis and innate immunity, however, the endogenous glycan and glycoprotein ligands recognized by its C-type lectin domains (CTLD) have not been well studied. Here we used the murine MR CTLD4-7 coupled to the Fc-portion of human IgG (MR-Fc) to investigate the MR glycan and glycoprotein recognition. We probed 16 different cancer and control tissues using the MR-Fc, and observed cell- and tissue-specific binding with varying intensity. All cancer tissues and several control tissues exhibited MR-Fc ligands, intracellular and/or surface-located. We further confirmed the presence of ligands on the surface of cancer cells by flow cytometry. To characterize the fine specificity of the MR for glycans, we screened a panel of glycan microarrays. Remarkably, the results indicate that the CTLD4-7 of the MR is highly selective for specific types of pauci- and oligomannose N-glycans among hundreds of glycans tested. As lung cancer tissue and the lung cancer cell line A549 showed intense MR-Fc binding, we further investigated the MR glycoprotein ligands in those cells by immunoprecipitation and glycoproteomic analysis. All enriched glycoproteins, of which 42 were identified, contained pauci- or oligomannose N-glycans, confirming the microarray results. Our study demonstrates that the MR CTLD4-7 is highly selective for pauci- and oligomannosidic N-glycans, structures that are often elevated in tumor cells, and suggest a potential role for the MR in tumor biology.
Collapse
Affiliation(s)
- Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC (VU Medical Center), Amsterdam, The Netherlands
| | - Lisa C Laan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC (VU Medical Center), Amsterdam, The Netherlands
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Jonathan N Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC (VU Medical Center), Amsterdam, The Netherlands
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
35
|
Martin JD, Miyazaki T, Cabral H. Remodeling tumor microenvironment with nanomedicines. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1730. [PMID: 34124849 DOI: 10.1002/wnan.1730] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) has been recognized as a major contributor to cancer malignancy and therapeutic resistance. Thus, strategies directed to re-engineer the TME are emerging as promising approaches for improving the efficacy of antitumor therapies by enhancing tumor perfusion and drug delivery, as well as alleviating the immunosuppressive TME. In this regard, nanomedicine has shown great potential for developing effective treatments capable of re-modeling the TME by controlling drug action in a spatiotemporal manner and allowing long-lasting modulatory effects on the TME. Herein, we review recent progress on TME re-engineering by using nanomedicine, particularly focusing on formulations controlling TME characteristics through targeted interaction with cellular components of the TME. Importantly, the TME should be re-engineering to a quiescent phenotype rather than be destroyed. Finally, immediate challenges and future perspectives of TME-re-engineering nanomedicines are discussed, anticipating further innovation in this growing field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | - Takuya Miyazaki
- Kanagawa Institute of Industrial Science and Technology, Ebina, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Arlauckas S, Oh N, Li R, Weissleder R, Miller MA. Macrophage imaging and subset analysis using single-cell RNA sequencing. Nanotheranostics 2021; 5:36-56. [PMID: 33391974 PMCID: PMC7738942 DOI: 10.7150/ntno.50185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages have been associated with drug response and resistance in diverse settings, thus raising the possibility of using macrophage imaging as a companion diagnostic to inform personalized patient treatment strategies. Nanoparticle-based contrast agents are especially promising because they efficiently deliver fluorescent, magnetic, and/or radionuclide labels by leveraging the intrinsic capacity of macrophages to accumulate nanomaterials in their role as professional phagocytes. Unfortunately, current clinical imaging modalities are limited in their ability to quantify broad molecular programs that may explain (a) which particular cell subsets a given imaging agent is actually labeling, and (b) what mechanistic role those cells play in promoting drug response or resistance. Highly multiplexed single-cell approaches including single-cell RNA sequencing (scRNAseq) have emerged as resources to help answer these questions. In this review, we query recently published scRNAseq datasets to support companion macrophage imaging, with particular focus on using dextran-based nanoparticles to predict the action of anti-cancer nanotherapies and monoclonal antibodies.
Collapse
Affiliation(s)
- Sean Arlauckas
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Nuri Oh
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
37
|
Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm Sin B 2020; 10:2156-2170. [PMID: 33304783 PMCID: PMC7714989 DOI: 10.1016/j.apsb.2020.04.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages have a leading position in the tumor microenvironment (TME) which paves the way to carcinogenesis. Initially, monocytes and macrophages are recruited to the sites where the tumor develops. Under the guidance of different microenvironmental signals, macrophages would polarize into two functional phenotypes, named as classically activated macrophages (M1) and alternatively activated macrophages (M2). Contrary to the anti-tumor effect of M1, M2 exerts anti-inflammatory and tumorigenic characters. In progressive tumor, M2 tumor-associated macrophages (TAMs) are in the majority, being vital regulators reacting upon TME. This review elaborates on the role of TAMs in tumor progression. Furthermore, prospective macrophage-focused therapeutic strategies, including drugs not only in clinical trials but also at primary research stages, are summarized followed by a discussion about their clinical application values. Nanoparticulate systems with efficient drug delivery and improved antitumor effect are also summed up in this article.
Collapse
Affiliation(s)
- Qiyao Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ningning Guo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiejian Chen
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
38
|
Rodrigues Mantuano N, Natoli M, Zippelius A, Läubli H. Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-001222. [PMID: 33020245 PMCID: PMC7537339 DOI: 10.1136/jitc-2020-001222] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
During oncogenesis, tumor cells present specific carbohydrate chains that are new targets for cancer immunotherapy. Whereas these tumor-associated carbohydrates (TACA) can be targeted with antibodies and vaccination approaches, TACA including sialic acid-containing glycans are able to inhibit anticancer immune responses by engagement of immune receptors on leukocytes. A family of immune-modulating receptors are sialic acid-binding Siglec receptors that have been recently described to inhibit antitumor activity mediated by myeloid cells, natural killer cells and T cells. Other TACA-binding receptors including selectins have been linked to cancer progression. Recent studies have shown that glycan-lectin interactions can be targeted to improve cancer immunotherapy. For example, interactions between the immune checkpoint T cell immunoglobulin and mucin-domain containing-3 and the lectin galectin-9 are targeted in clinical trials. In addition, an antibody against the lectin Siglec-15 is being tested in an early clinical trial. In this review, we summarize the previous and current efforts to target TACA and to inhibit inhibitory immune receptors binding to TACA including the Siglec-sialoglycan axis.
Collapse
Affiliation(s)
| | - Marina Natoli
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| | - Heinz Läubli
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| |
Collapse
|
39
|
Kudelka MR, Stowell SR, Cummings RD, Neish AS. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol 2020; 17:597-617. [PMID: 32710014 PMCID: PMC8211394 DOI: 10.1038/s41575-020-0331-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) affects 6.8 million people globally. A variety of factors have been implicated in IBD pathogenesis, including host genetics, immune dysregulation and gut microbiota alterations. Emerging evidence implicates intestinal epithelial glycosylation as an underappreciated process that interfaces with these three factors. IBD is associated with increased expression of truncated O-glycans as well as altered expression of terminal glycan structures. IBD genes, glycosyltransferase mislocalization, altered glycosyltransferase and glycosidase expression and dysbiosis drive changes in the glycome. These glycan changes disrupt the mucus layer, glycan-lectin interactions, host-microorganism interactions and mucosal immunity, and ultimately contribute to IBD pathogenesis. Epithelial glycans are especially critical in regulating the gut microbiota through providing bacterial ligands and nutrients and ultimately determining the spatial organization of the gut microbiota. In this Review, we discuss the regulation of intestinal epithelial glycosylation, altered epithelial glycosylation in IBD and mechanisms for how these alterations contribute to disease pathobiology. We hope that this Review provides a foundation for future studies on IBD glycosylation and the emergence of glycan-inspired therapies for IBD.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Department of Internal Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
40
|
Molgora M, Esaulova E, Vermi W, Hou J, Chen Y, Luo J, Brioschi S, Bugatti M, Omodei AS, Ricci B, Fronick C, Panda SK, Takeuchi Y, Gubin MM, Faccio R, Cella M, Gilfillan S, Unanue ER, Artyomov MN, Schreiber RD, Colonna M. TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1 Immunotherapy. Cell 2020; 182:886-900.e17. [PMID: 32783918 DOI: 10.1016/j.cell.2020.07.013] [Citation(s) in RCA: 328] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/01/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022]
Abstract
Checkpoint immunotherapy unleashes T cell control of tumors, but is undermined by immunosuppressive myeloid cells. TREM2 is a myeloid receptor that transmits intracellular signals that sustain microglial responses during Alzheimer's disease. TREM2 is also expressed by tumor-infiltrating macrophages. Here, we found that Trem2-/- mice are more resistant to growth of various cancers than wild-type mice and are more responsive to anti-PD-1 immunotherapy. Furthermore, treatment with anti-TREM2 mAb curbed tumor growth and fostered regression when combined with anti-PD-1. scRNA-seq revealed that both TREM2 deletion and anti-TREM2 are associated with scant MRC1+ and CX3CR1+ macrophages in the tumor infiltrate, paralleled by expansion of myeloid subsets expressing immunostimulatory molecules that promote improved T cell responses. TREM2 was expressed in tumor macrophages in over 200 human cancer cases and inversely correlated with prolonged survival for two types of cancer. Thus, TREM2 might be targeted to modify tumor myeloid infiltrates and augment checkpoint immunotherapy.
Collapse
Affiliation(s)
- Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ekaterina Esaulova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William Vermi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology, University of Brescia, Brescia 25123, Italy
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Simone Brioschi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mattia Bugatti
- Department of Pathology, University of Brescia, Brescia 25123, Italy
| | | | - Biancamaria Ricci
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catrina Fronick
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Santosh K Panda
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoshiko Takeuchi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew M Gubin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Children's Hospital in St. Louis, St. Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
41
|
Baek SH, Lee HW, Gangadaran P, Oh JM, Zhu L, Rajendran RL, Lee J, Ahn BC. Role of M2-like macrophages in the progression of ovarian cancer. Exp Cell Res 2020; 395:112211. [PMID: 32755554 DOI: 10.1016/j.yexcr.2020.112211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
In this study, we noninvasively assessed whether M2-like macrophages accelerate the progression of ovarian cancer by performing molecular imaging of ovarian cancer cells expressing enhanced firefly luciferase (Effluc) in living mice. First, murine ovarian cancer ID8 cells expressing Effluc (ID8/Effluc cells) were established by retroviral infection. Subsequently, macrophages were isolated from the peritoneal exudate of mice injected with thioglycollate medium and differentiated into M2-like macrophages by adding interleukin 4. To characterize these M2-like macrophages, F4/80 and cluster of differentiation 206 expression levels were determined. Then, the M2-like macrophages were co-cultured with the ID8/Effluc cells and bioluminescence imaging (BLI) of signals from the ID8/Effluc cells was completed. Additionally, migration and wound healing were assessed to evaluate the effects of conditioned medium (CM) from M2-like macrophages on ID8/Effluc cell motility. In the in vivo study, mice were first given either liposome-phosphate-buffered saline or liposome-clodronate (lipo-clodronate). After 24 h, ID8/Effluc cells were intraperitoneally injected into the mice and BLI was completed at the designed time points. Next, histological analysis was conducted to characterize the infiltrated tumor. Flow cytometric analysis revealed high levels of CD206 expression in the differentiated M2-like macrophages. Meanwhile, ID8/Effluc cells co-cultured with these M2-like macrophages proliferated rapidly in an M2-like macrophage, number-dependent manner. The migration of the ID8/Effluc cells was also increased by the application of CM from M2-like macrophages. In vivo BLI revealed that the growth rate of intraperitoneally injected ovarian cancer cells was inhibited following macrophage depletion by treatment with lipo-clodronate. M2-like macrophages accelerated the progression of ovarian cancer, suggesting they are a new therapeutic target for ovarian cancer and that ovarian cancer could be managed by altering the nature of communication between ovarian cancer and macrophages.
Collapse
Affiliation(s)
- Se Hwan Baek
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.
| |
Collapse
|
42
|
Puthenveetil A, Dubey S. Metabolic reprograming of tumor-associated macrophages. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1030. [PMID: 32953830 PMCID: PMC7475460 DOI: 10.21037/atm-20-2037] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022]
Abstract
A large body of scientific evidence corroborated by clinical and animal model experiments indicates that tumor-associated macrophages (TAMs) play a crucial role in tumor development and progression. TAMs are a key immune cell type present in tumor microenvironment (TME) and associated with poor prognosis, drug resistance, enhanced angiogenesis and metastasis in cancer. TAMs are a phenotypically diverse population of myeloid cells which display tremendous plasticity and dynamic metabolic nature. A complete interpretation of pro-tumoral and anti-tumoral metabolic switch in TAMs is essential to understand immune evasion mechanisms in cancer. Recent studies have also implicated epigenetic mechanisms as significantly regulators of TAM functions. In this review we provide an overview of metabolic circuitry in TAMs, its impact on immune effector cells and interventions aimed at rewiring the metabolic circuits in TAMs. Mechanisms responsible for TAM polarization in cancer are also discussed.
Collapse
Affiliation(s)
- Abhishek Puthenveetil
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Noida, India
| | | |
Collapse
|
43
|
Sakamaki Y, Ozdemir J, Perez AD, Heidrick Z, Watson O, Tsuji M, Salmon C, Batta-Mpouma J, Azzun A, Lomonte V, Du Y, Stenken J, Woo-Kim J, Beyzavi MH. Maltotriose Conjugated Metal-Organic Frameworks for Selective Targeting and Photodynamic Therapy of Triple Negative Breast Cancer Cells and Tumor Associated Macrophages. ADVANCED THERAPEUTICS 2020; 3. [PMID: 33072859 DOI: 10.1002/adtp.202000029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we report a nano-MOF conjugated to maltotriose as a new DDS. MA-PCN-224-0.1Mn/0.9Zn showed its ability to target cancer and TAM. This novel MOF is an effective PDT agent and shows little dark toxicity, MA-PCN-224-0.1Mn/0.9Zn uptakes selectively into cancer cells. A well-suited size control methodology was used so that the nano-scaled MOFs may take advantage of the EPR effect. This development of a nano-scale MOF for PDT that is conjugated to a cancer targeting ligand represents a meaningful development for the use of MOFs as drug delivery systems.
Collapse
Affiliation(s)
- Yoshie Sakamaki
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - John Ozdemir
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Alda Diaz Perez
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Zachary Heidrick
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Olivia Watson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Miu Tsuji
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chirstopher Salmon
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Joseph Batta-Mpouma
- Department of Biological and Agricultural Engineering, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Anthony Azzun
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Valerie Lomonte
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Julie Stenken
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jin Woo-Kim
- Department of Biological and Agricultural Engineering, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - M Hassan Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
44
|
The Role of Tumor-Associated Macrophages in the Progression and Chemoresistance of Ovarian Cancer. Cells 2020; 9:cells9051299. [PMID: 32456078 PMCID: PMC7290435 DOI: 10.3390/cells9051299] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 01/11/2023] Open
Abstract
Tumor-associated macrophages (TAMs) constitute the main population of immune cells present in the ovarian tumor microenvironment. These cells are characterized by high plasticity and can be easily polarized by colony-stimulating factor-1, which is released by tumor cells, into an immunosuppressive M2-like phenotype. These cells are strongly implicated in both the progression and chemoresistance of ovarian cancer. The main pro-tumoral function of M2-like TAMs is the secretion of a variety of cytokines, chemokines, enzymes and exosomes that reach microRNAs, directly inducing the invasion potential and chemoresistance of ovarian cancer cells by triggering their pro-survival signaling pathways. The M2-like TAMs are also important players in the metastasis of ovarian cancer cells in the peritoneum through their assistance in spheroid formation and attachment of cancer cells to the metastatic area—the omentum. Moreover, TAMs interplay with other immune cells, such as lymphocytes, natural killer cells, and dendritic cells, to inhibit their responsiveness, resulting in the development of immunosuppression. The detrimental character of the M2-like type of TAMs in ovarian tumors has been confirmed by a number of studies, demonstrating the positive correlation between their high level in tumors and low overall survival of patients.
Collapse
|
45
|
M2 Macrophages Infiltrating Epithelial Ovarian Cancer Express MDR1: A Feature That May Account for the Poor Prognosis. Cells 2020; 9:cells9051224. [PMID: 32429133 PMCID: PMC7290705 DOI: 10.3390/cells9051224] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Multi drug resistance protein 1 (MDR1) expression on tumor cells has been widely investigated in context of drug resistance. However, the role of MDR1 on the immune cell infiltrate of solid tumors remains unknown. The aim of this study was to analyze the prognostic significance of a MDR1+ immune cell infiltrate in epithelial ovarian cancer (EOC) and to identify the MDR1+ leucocyte subpopulation. MDR1 expression was analyzed by immunohistochemistry in 156 EOC samples. In addition to MDR1+ cancer cells, we detected a MDR1+ leucocyte infiltrate (high infiltrate >4 leucocytes per field of view). Correlations and survival analyses were calculated. To identify immune cell subpopulations immunofluorescence double staining was performed. The MDR1+ leucocyte infiltrate was associated with human epidermal growth factor receptor 2 (HER2) (cc = 0.258, p = 0.005) and tumor-associated mucin 1 (TA-MUC1) (cc = 0.202, p = 0.022) expression on cancer cells. A high MDR1+ leucocyte infiltrate was associated with impaired survival, especially in patients whose carcinoma showed either serous histology (median OS 28.80 vs. 50.64 months, p = 0.027, n = 91) or TA-MUC1 expression (median OS 30.60 vs. 63.36 months, p = 0.015, n = 110). Similar findings for PFS suggest an influence of MDR1+ immune cells on the development of chemoresistance. A Cox regression analysis confirmed the independency of a high MDR1+ leucocyte infiltrate as prognostic factor. M2 macrophages were identified as main part of the MDR1+ leucocyte infiltrate expressing MDR1 as well as the M2 marker CD163 and the pan-macrophage marker CD68. Infiltration of MDR1+ leucocytes, mostly M2 macrophages, is associated with poor prognosis of EOC patients. Further understanding of the interaction of M2 macrophages, MDR1 and TA-MUC1 appears to be a key aspect to overcome chemoresistance in ovarian cancer.
Collapse
|
46
|
Cheng H, Wang Z, Cui L, Wen Y, Chen X, Gong F, Yi H. Opportunities and Challenges of the Human Microbiome in Ovarian Cancer. Front Oncol 2020; 10:163. [PMID: 32133297 PMCID: PMC7040031 DOI: 10.3389/fonc.2020.00163] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the most lethal malignancy among gynecological cancers worldwide. Most ovarian cancer patients are diagnosed at an advanced stage because of non-specific clinical symptoms. The human microbiome plays a crucial role in maintaining the normal physiological and pathological state of the body. With the development of technologies such as DNA and 16S rRNA sequencing, an increasing number of findings on the role of microbiome in cancers are being reported. Microbiome abnormalities are increasingly associated with diseases, including cancer development, and response to therapies. Some studies have shown the relationship between microbiome changes and ovarian cancer. However, the mechanisms underlying this relationship are not yet fully understood. Here, we summarize the key findings in this regard by focusing on estrogen metabolism and host recognition receptors in microorganisms and changes in the gut or pelvic microbiome in patients with ovarian cancer. We further discuss the potential of using the microbiome as a novel biomarker for cancers. We also highlight the possibility to use microorganisms as a treatment modality to enhance the immune system, activate anti-tumor response, mediate chemotherapy resistance, and ameliorate the adverse effects of the treatment.
Collapse
Affiliation(s)
- Huiyan Cheng
- Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Zhichao Wang
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, China
| | - Lifeng Cui
- Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Yan Wen
- Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Xiuhua Chen
- Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Fengyan Gong
- Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Huanfa Yi
- Central Laboratory of the Eastern Division, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Galon J, Bruni D. Tumor Immunology and Tumor Evolution: Intertwined Histories. Immunity 2020; 52:55-81. [PMID: 31940273 DOI: 10.1016/j.immuni.2019.12.018] [Citation(s) in RCA: 343] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/01/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Cancer is a complex disease whose outcome depends largely on the cross-talk between the tumor and its microenvironment. Here, we review the evolution of the field of tumor immunology and the advances, in lockstep, of our understanding of cancer as a disease. We discuss the involvement of different immune cells at distinct stages of tumor progression and how immune contexture determinants shaping tumor development are being exploited therapeutically. Current clinical stratification schemes focus on the tumor histopathology and the molecular characteristics of the tumor cell. We argue for the importance of revising these stratification systems to include immune parameters so as to address the immediate need for improved prognostic and/or predictive information to guide clinical decisions.
Collapse
Affiliation(s)
- Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Université de Paris; Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | - Daniela Bruni
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Université de Paris; Centre de Recherche des Cordeliers, F-75006 Paris, France
| |
Collapse
|
48
|
Lin Y, Sun L, Zeng F, Wu S. An Unsymmetrical Squaraine-Based Activatable Probe for Imaging Lymphatic Metastasis by Responding to Tumor Hypoxia with MSOT and Aggregation-Enhanced Fluorescent Imaging. Chemistry 2019; 25:16740-16747. [PMID: 31674063 DOI: 10.1002/chem.201904675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Optoacoustic imaging has great potential for preclinical research and clinical practice, and designing robust activatable optoacoustic probes for specific diseases is beneficial for its further development. Herein, an activatable probe has been developed for tumor hypoxia imaging. For this probe, indole and quinoline were linked on each side of an oxocyclobutenolate core to form an unsymmetrical squaraine. A triarylamine group was incorporated to endow the molecule with the aggregation enhanced emission (AEE) properties. In aqueous media, the squaraine chromophore aggregates into the nanoprobe, which specifically responds to nitroreductase and produces strong optoacoustic signals due to its high extinction coefficient, as well as prominent fluorescence emission as a result of its AEE feature. The nanoprobe was used to image tumor metastasis via the lymphatic system both optoacoustically and fluorescently. Moreover, both the fluorescence signals and three-dimensional multispectral optoacoustic tomography signals from the activated nanoprobe allow us to locate the tumor site and to map the metastatic route.
Collapse
Affiliation(s)
- Yi Lin
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| |
Collapse
|
49
|
Targeting innate sensing in the tumor microenvironment to improve immunotherapy. Cell Mol Immunol 2019; 17:13-26. [PMID: 31844141 DOI: 10.1038/s41423-019-0341-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
The innate immune sensing pathways play critical roles in the defense against pathogen infection, but their roles in cancer immunosurveillance and cancer therapies are less defined. We propose that defective innate immune sensing inside the tumor microenvironment might limit T-cell responses to immunotherapy. A recent mechanistic understanding of conventional therapies revealed that both innate immune sensing and T-cell responses are essential for optimal antitumor efficacy. T-cell-based immunotherapy, particularly immune checkpoint blockade, has achieved great success in reactivating antitumor immune responses to lead to tumor regression, but only in a small fraction of patients. Therefore, incorporating conventional therapy that can increase innate sensing and immunotherapy should lead to promising strategies for cancer patients. Here, we review the innate sensing pathways related to cancer initiation/progression and therapies, summarize the recent key findings in innate immune sensing related to conventional therapies, evaluate current combination strategies, and highlight the potential issues of combinational therapies in terms of antitumor efficacy and toxicities.
Collapse
|
50
|
Hoober JK, Eggink LL, Cote R. Stories From the Dendritic Cell Guardhouse. Front Immunol 2019; 10:2880. [PMID: 31921144 PMCID: PMC6919295 DOI: 10.3389/fimmu.2019.02880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
Phagocytic cells [dendritic cells (DCs), macrophages, monocytes, neutrophils, and mast cells] utilize C-type (Ca2+-dependent) lectin-like (CLEC) receptors to identify and internalize pathogens or danger signals. As monitors of environmental imbalances, CLEC receptors are particularly important in the function of DCs. Activation of the immune system requires, in sequence, presentation of antigen to the T cell receptor (TCR) by DCs, interaction of co-stimulatory factors such as CD40/80/86 on DCs with CD40L and CD28 on T cells, and production of IL-12 and/or IFN-α/β to amplify T cell differentiation and expansion. Without this sequence of events within an inflammatory environment, or in a different order, antigen-specific T cells become unresponsive, are deleted or become regulatory T cells. Thus, the mode by which CLEC receptors on DCs are engaged can either elicit activation of T cells to achieve an immune response or induce tolerance. This minireview illustrates these aspects with Dectin-1, DEC205, the mannose receptor and CLEC10A as examples.
Collapse
Affiliation(s)
| | | | - Robert Cote
- Susavion Biosciences, Inc., Tempe, AZ, United States
| |
Collapse
|