1
|
Genetic Structure and Core Collection of Olive Germplasm from Albania Revealed by Microsatellite Markers. Genes (Basel) 2021; 12:genes12020256. [PMID: 33578843 PMCID: PMC7916616 DOI: 10.3390/genes12020256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Olive is considered one of the oldest and the most important cultivated fruit trees in Albania. In the present study, the genetic diversity and structure of Albanian olive germplasm is represented by a set of 194 olive genotypes collected in-situ in their natural ecosystems and in the ex-situ collection. The study was conducted using 26 microsatellite markers (14 genomic SSR and 12 Expressed Sequence Tag microsatellites). The identity analysis revealed 183 unique genotypes. Genetic distance-based and model-based Bayesian analyses were used to investigate the genetic diversity, relatedness, and the partitioning of the genetic variability among the Albanian olive germplasm. The genetic distance-based analysis grouped olives into 12 clusters, with an average similarity of 50.9%. Albanian native olives clustered in one main group separated from introduced foreign cultivars, which was also supported by Principal Coordinate Analysis (PCoA) and model-based methods. A core collection of 57 genotypes representing all allelic richness found in Albanian germplasm was developed for the first time. Herein, we report the first extended genetic characterization and structure of olive germplasm in Albania. The findings suggest that Albanian olive germplasm is a unique gene pool and provides an interesting genetic basis for breeding programs.
Collapse
|
2
|
Grasso F, Coppola M, Carbone F, Baldoni L, Alagna F, Perrotta G, Pérez-Pulido AJ, Garonna A, Facella P, Daddiego L, Lopez L, Vitiello A, Rao R, Corrado G. The transcriptional response to the olive fruit fly (Bactrocera oleae) reveals extended differences between tolerant and susceptible olive (Olea europaea L.) varieties. PLoS One 2017; 12:e0183050. [PMID: 28797083 PMCID: PMC5552259 DOI: 10.1371/journal.pone.0183050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/30/2017] [Indexed: 11/23/2022] Open
Abstract
The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae.
Collapse
Affiliation(s)
- Filomena Grasso
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
| | - Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
| | - Fabrizio Carbone
- Centro di Ricerca per l’Olivicoltura e l’Industria Olearia, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Rende (CS), Italy
| | - Luciana Baldoni
- Institute of Biosciences and Bioresources (IBBR), CNR, Perugia, Italy
| | - Fiammetta Alagna
- Institute of Biosciences and Bioresources (IBBR), CNR, Perugia, Italy
| | - Gaetano Perrotta
- Trisaia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rotondella (MT), Italy
| | - Antonio J. Pérez-Pulido
- Departamento Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio Garonna
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
| | - Paolo Facella
- Trisaia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rotondella (MT), Italy
| | - Loretta Daddiego
- Trisaia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rotondella (MT), Italy
| | - Loredana Lopez
- Trisaia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rotondella (MT), Italy
| | - Alessia Vitiello
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
- * E-mail: (RR); (CG)
| | - Giandomenico Corrado
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
- * E-mail: (RR); (CG)
| |
Collapse
|
3
|
Zafra A, Carmona R, Traverso JA, Hancock JT, Goldman MHS, Claros MG, Hiscock SJ, Alche JD. Identification and Functional Annotation of Genes Differentially Expressed in the Reproductive Tissues of the Olive Tree ( Olea europaea L.) through the Generation of Subtractive Libraries. FRONTIERS IN PLANT SCIENCE 2017; 8:1576. [PMID: 28955364 PMCID: PMC5601413 DOI: 10.3389/fpls.2017.01576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/28/2017] [Indexed: 05/07/2023]
Abstract
The olive tree is a crop of high socio-economical importance in the Mediterranean area. Sexual reproduction in this plant is an essential process, which determines the yield. Successful fertilization is mainly favored and sometimes needed of the presence of pollen grains from a different cultivar as the olive seizes a self-incompatibility system allegedly determined of the sporophytic type. The purpose of the present study was to identify key gene products involved in the function of olive pollen and pistil, in order to help elucidate the events and signaling processes, which happen during the courtship, pollen grain germination, and fertilization in olive. The use of subtractive SSH libraries constructed using, on the one hand one specific stage of the pistil development with germinating pollen grains, and on the other hand mature pollen grains may help to reveal the specific transcripts involved in the cited events. Such libraries have also been created by subtracting vegetative mRNAs (from leaves), in order to identify reproductive sequences only. A variety of transcripts have been identified in the mature pollen grains and in the pistil at the receptive stage. Among them, those related to defense, transport and oxidative metabolism are highlighted mainly in the pistil libraries where transcripts related to stress, and response to biotic and abiotic stimulus have a prominent position. Extensive lists containing information as regard to the specific transcripts determined for each stage and tissue are provided, as well as functional classifications of these gene products. Such lists were faced up to two recent datasets obtained in olive after transcriptomic and genomic approaches. The sequences and the differential expression level of the SSH-transcripts identified here, highly matched the transcriptomic information. Moreover, the unique presence of a representative number of these transcripts has been validated by means of qPCR approaches. The construction of SSH libraries using pistil and pollen, considering the high interaction between male-female counterparts, allowed the identification of transcripts with important roles in stigma physiology. The functions of many of the transcripts obtained are intimately related, and most of them are of pivotal importance in defense, pollen-stigma interaction and signaling.
Collapse
Affiliation(s)
- Adoración Zafra
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Rosario Carmona
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - José A. Traverso
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - John T. Hancock
- Faculty of Health and Life Sciences, University of the West of EnglandBristol, United Kingdom
| | - Maria H. S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São PauloSão Paulo, Brazil
| | - M. Gonzalo Claros
- Departamento de Biología Molecular y Bioquímica, Universidad de MálagaMálaga, Spain
| | - Simon J. Hiscock
- School of Biological Sciences, University of BristolBristol, United Kingdom
| | - Juan D. Alche
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Juan D. Alche
| |
Collapse
|
4
|
Alagna F, Cirilli M, Galla G, Carbone F, Daddiego L, Facella P, Lopez L, Colao C, Mariotti R, Cultrera N, Rossi M, Barcaccia G, Baldoni L, Muleo R, Perrotta G. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.). PLoS One 2016; 11:e0152943. [PMID: 27077738 PMCID: PMC4831748 DOI: 10.1371/journal.pone.0152943] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/20/2016] [Indexed: 02/04/2023] Open
Abstract
The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.
Collapse
Affiliation(s)
- Fiammetta Alagna
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Marco Cirilli
- Laboratory of Molecular Ecophysiology and Biotechnology of Woody Plants, Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy
| | - Giulio Galla
- Laboratory of Plant Genetics and Genomics, DAFNAE, University of Padova, Legnaro (PD), Italy
| | - Fabrizio Carbone
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| | - Loretta Daddiego
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| | - Paolo Facella
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| | - Loredana Lopez
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| | - Chiara Colao
- Laboratory of Molecular Ecophysiology and Biotechnology of Woody Plants, Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy
| | - Roberto Mariotti
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Nicolò Cultrera
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Martina Rossi
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Gianni Barcaccia
- Laboratory of Plant Genetics and Genomics, DAFNAE, University of Padova, Legnaro (PD), Italy
| | - Luciana Baldoni
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
- * E-mail: (RM); (LB)
| | - Rosario Muleo
- Laboratory of Molecular Ecophysiology and Biotechnology of Woody Plants, Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy
- * E-mail: (RM); (LB)
| | - Gaetano Perrotta
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| |
Collapse
|
5
|
Alagna F, Geu-Flores F, Kries H, Panara F, Baldoni L, O'Connor SE, Osbourn A. Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits. J Biol Chem 2016; 291:5542-5554. [PMID: 26709230 PMCID: PMC4786697 DOI: 10.1074/jbc.m115.701276] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/21/2015] [Indexed: 01/19/2023] Open
Abstract
The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait. In addition, oleuropein possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer activities. In accordance, obtaining high oleuropein varieties is a main goal of molecular breeding programs. Here we use a transcriptomic approach to identify candidate genes belonging to the secoiridoid pathway in olive. From these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive fruits. OeISY, the first pathway gene characterized for this type of secoiridoid, is a potential target for breeding programs in a high value secoiridoid-accumulating species.
Collapse
Affiliation(s)
- Fiammetta Alagna
- From the Departments of Metabolic Biology and; the Institute of Biosciences and Bio-resources, National Research Council (CNR), 06128 Perugia, Italy,.
| | - Fernando Geu-Flores
- the Copenhagen Plant Science Centre & Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark, and
| | - Hajo Kries
- Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Francesco Panara
- the ENEA Trisaia Research Center, 75026 Rotondella, Matera, Italy
| | - Luciana Baldoni
- the Institute of Biosciences and Bio-resources, National Research Council (CNR), 06128 Perugia, Italy
| | - Sarah E O'Connor
- Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | |
Collapse
|
6
|
Carmona R, Zafra A, Seoane P, Castro AJ, Guerrero-Fernández D, Castillo-Castillo T, Medina-García A, Cánovas FM, Aldana-Montes JF, Navas-Delgado I, Alché JDD, Claros MG. ReprOlive: a database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome. FRONTIERS IN PLANT SCIENCE 2015; 6:625. [PMID: 26322066 PMCID: PMC4531244 DOI: 10.3389/fpls.2015.00625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/28/2015] [Indexed: 05/18/2023]
Abstract
Plant reproductive transcriptomes have been analyzed in different species due to the agronomical and biotechnological importance of plant reproduction. Here we presented an olive tree reproductive transcriptome database with samples from pollen and pistil at different developmental stages, and leaf and root as control vegetative tissues http://reprolive.eez.csic.es). It was developed from 2,077,309 raw reads to 1,549 Sanger sequences. Using a pre-defined workflow based on open-source tools, sequences were pre-processed, assembled, mapped, and annotated with expression data, descriptions, GO terms, InterPro signatures, EC numbers, KEGG pathways, ORFs, and SSRs. Tentative transcripts (TTs) were also annotated with the corresponding orthologs in Arabidopsis thaliana from TAIR and RefSeq databases to enable Linked Data integration. It results in a reproductive transcriptome comprising 72,846 contigs with average length of 686 bp, of which 63,965 (87.8%) included at least one functional annotation, and 55,356 (75.9%) had an ortholog. A minimum of 23,568 different TTs was identified and 5,835 of them contain a complete ORF. The representative reproductive transcriptome can be reduced to 28,972 TTs for further gene expression studies. Partial transcriptomes from pollen, pistil, and vegetative tissues as control were also constructed. ReprOlive provides free access and download capability to these results. Retrieval mechanisms for sequences and transcript annotations are provided. Graphical localization of annotated enzymes into KEGG pathways is also possible. Finally, ReprOlive has included a semantic conceptualisation by means of a Resource Description Framework (RDF) allowing a Linked Data search for extracting the most updated information related to enzymes, interactions, allergens, structures, and reactive oxygen species.
Collapse
Affiliation(s)
- Rosario Carmona
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- Plataforma Andaluza de Bioinformática, Edificio de Bioinnovación, Universidad de MálagaMálaga, Spain
| | - Adoración Zafra
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Pedro Seoane
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de MálagaMálaga, Spain
| | - Antonio J. Castro
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Darío Guerrero-Fernández
- Plataforma Andaluza de Bioinformática, Edificio de Bioinnovación, Universidad de MálagaMálaga, Spain
| | | | - Ana Medina-García
- Departamento de Lenguajes y Ciencias de la Computación, Universidad de MálagaMálaga, Spain
| | - Francisco M. Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de MálagaMálaga, Spain
| | - José F. Aldana-Montes
- Departamento de Lenguajes y Ciencias de la Computación, Universidad de MálagaMálaga, Spain
| | - Ismael Navas-Delgado
- Departamento de Lenguajes y Ciencias de la Computación, Universidad de MálagaMálaga, Spain
| | - Juan de Dios Alché
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - M. Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Edificio de Bioinnovación, Universidad de MálagaMálaga, Spain
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de MálagaMálaga, Spain
- *Correspondence: M. Gonzalo Claros, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain,
| |
Collapse
|
7
|
Turktas M, Inal B, Okay S, Erkilic EG, Dundar E, Hernandez P, Dorado G, Unver T. Nutrition metabolism plays an important role in the alternate bearing of the olive tree (Olea europaea L.). PLoS One 2013; 8:e59876. [PMID: 23555820 PMCID: PMC3610735 DOI: 10.1371/journal.pone.0059876] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/19/2013] [Indexed: 12/22/2022] Open
Abstract
The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between "on year" and "off year" leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree.
Collapse
Affiliation(s)
- Mine Turktas
- Faculty of Science, Department of Biology, Cankiri Karatekin University, Cankiri, Turkey
| | - Behcet Inal
- Faculty of Science, Department of Biology, Cankiri Karatekin University, Cankiri, Turkey
| | - Sezer Okay
- Faculty of Science, Department of Biology, Cankiri Karatekin University, Cankiri, Turkey
| | - Emine Gulden Erkilic
- Faculty of Science, Department of Biology, Cankiri Karatekin University, Cankiri, Turkey
| | - Ekrem Dundar
- Department of Biology, Faculty of Art and Science, Balikesir University, Balikesir, Turkey
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo s/n, Córdoba, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | - Turgay Unver
- Faculty of Science, Department of Biology, Cankiri Karatekin University, Cankiri, Turkey
| |
Collapse
|
8
|
Muñoz-Mérida A, González-Plaza JJ, Cañada A, Blanco AM, García-López MDC, Rodríguez JM, Pedrola L, Sicardo MD, Hernández ML, De la Rosa R, Belaj A, Gil-Borja M, Luque F, Martínez-Rivas JM, Pisano DG, Trelles O, Valpuesta V, Beuzón CR. De novo assembly and functional annotation of the olive (Olea europaea) transcriptome. DNA Res 2013; 20:93-108. [PMID: 23297299 PMCID: PMC3576661 DOI: 10.1093/dnares/dss036] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Olive breeding programmes are focused on selecting for traits as short juvenile period, plant architecture suited for mechanical harvest, or oil characteristics, including fatty acid composition, phenolic, and volatile compounds to suit new markets. Understanding the molecular basis of these characteristics and improving the efficiency of such breeding programmes require the development of genomic information and tools. However, despite its economic relevance, genomic information on olive or closely related species is still scarce. We have applied Sanger and 454 pyrosequencing technologies to generate close to 2 million reads from 12 cDNA libraries obtained from the Picual, Arbequina, and Lechin de Sevilla cultivars and seedlings from a segregating progeny of a Picual × Arbequina cross. The libraries include fruit mesocarp and seeds at three relevant developmental stages, young stems and leaves, active juvenile and adult buds as well as dormant buds, and juvenile and adult roots. The reads were assembled by library or tissue and then assembled together into 81 020 unigenes with an average size of 496 bases. Here, we report their assembly and their functional annotation.
Collapse
Affiliation(s)
- Antonio Muñoz-Mérida
- Department of Integrated Bioinformatics, National Institute for Bioinformatics, University of Málaga, Campus de Teatinos, Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shahin A, van Kaauwen M, Esselink D, Bargsten JW, van Tuyl JM, Visser RGF, Arens P. Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa. BMC Genomics 2012; 13:640. [PMID: 23167289 PMCID: PMC3576253 DOI: 10.1186/1471-2164-13-640] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 11/13/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bulbous flowers such as lily and tulip (Liliaceae family) are monocot perennial herbs that are economically very important ornamental plants worldwide. However, there are hardly any genetic studies performed and genomic resources are lacking. To build genomic resources and develop tools to speed up the breeding in both crops, next generation sequencing was implemented. We sequenced and assembled transcriptomes of four lily and five tulip genotypes using 454 pyro-sequencing technology. RESULTS Successfully, we developed the first set of 81,791 contigs with an average length of 514 bp for tulip, and enriched the very limited number of 3,329 available ESTs (Expressed Sequence Tags) for lily with 52,172 contigs with an average length of 555 bp. The contigs together with singletons covered on average 37% of lily and 39% of tulip estimated transcriptome. Mining lily and tulip sequence data for SSRs (Simple Sequence Repeats) showed that di-nucleotide repeats were twice more abundant in UTRs (UnTranslated Regions) compared to coding regions, while tri-nucleotide repeats were equally spread over coding and UTR regions. Two sets of single nucleotide polymorphism (SNP) markers suitable for high throughput genotyping were developed. In the first set, no SNPs flanking the target SNP (50 bp on either side) were allowed. In the second set, one SNP in the flanking regions was allowed, which resulted in a 2 to 3 fold increase in SNP marker numbers compared with the first set. Orthologous groups between the two flower bulbs: lily and tulip (12,017 groups) and among the three monocot species: lily, tulip, and rice (6,900 groups) were determined using OrthoMCL. Orthologous groups were screened for common SNP markers and EST-SSRs to study synteny between lily and tulip, which resulted in 113 common SNP markers and 292 common EST-SSR. Lily and tulip contigs generated were annotated and described according to Gene Ontology terminology. CONCLUSIONS Two transcriptome sets were built that are valuable resources for marker development, comparative genomic studies and candidate gene approaches. Next generation sequencing of leaf transcriptome is very effective; however, deeper sequencing and using more tissues and stages is advisable for extended comparative studies.
Collapse
Affiliation(s)
- Arwa Shahin
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, Wageningen, 6700 AJ, The Netherlands
| | - Martijn van Kaauwen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, Wageningen, 6700 AJ, The Netherlands
| | - Danny Esselink
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, Wageningen, 6700 AJ, The Netherlands
| | - Joachim W Bargsten
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, Wageningen, 6700 AJ, The Netherlands
- Netherlands Bioinformatics Centre, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
- Applied Bioinformatics, Plant Research International, PO Box 619, Wageningen, 6700 AP, The Netherlands
| | - Jaap M van Tuyl
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, Wageningen, 6700 AJ, The Netherlands
| | - Richard GF Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, Wageningen, 6700 AJ, The Netherlands
| | - Paul Arens
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, Wageningen, 6700 AJ, The Netherlands
| |
Collapse
|
10
|
cDNA-SRAP and its application in differential gene expression analysis: a case study in Erianthus arundinaceum. J Biomed Biotechnol 2012; 2012:390107. [PMID: 22778549 PMCID: PMC3388624 DOI: 10.1155/2012/390107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 04/29/2012] [Accepted: 05/03/2012] [Indexed: 11/30/2022] Open
Abstract
Erianthus arundinaceum is a wild relative species of sugarcane. The aim of this research was to demonstrate the feasibility of cDNA-SRAP for differential gene expression and to explore the molecular mechanism of drought resistance in E. arundinaceum. cDNA-SRAP technique, for the first time, was applied in the analysis of differential gene expression in E. arundinaceum under drought stress. In total, eight differentially expressed genes with length of 185–427 bp were successfully isolated (GenBank Accession numbers: EU071770, EU071772, EU071774, EU071776, EU071777, EU071779, EU071780, and EU071781). Based on their homologies with genes in GenBank, these genes were assumed to encode ribonuclease III, vacuolar protein, ethylene insensitive protein, aerobactin biosynthesis protein, photosystem II protein, glucose transporter, leucine-rich repeat protein, and ammonia monooxygenase. Real-time PCR analysis on the expression profiling of gene (EU071774) encoding ethylene-insensitive protein and gene (EU071781) encoding ammonia monooxygenase revealed that the expression of these two genes was upregulated both by PEG and ABA treatments, suggesting that they may involve in the drought resistance of E. arundinaceum. This study constitutes the first report of genes activated in E. arundinaceum by drought stress and opens up the application of cDNA-SRAP in differential gene expression analysis in E. arundinaceum under certain stress conditions.
Collapse
|
11
|
Generation and Analysis of Expressed Sequence Tags from Chimonanthus praecox (Wintersweet) Flowers for Discovering Stress-Responsive and Floral Development-Related Genes. Comp Funct Genomics 2012; 2012:134596. [PMID: 22536115 PMCID: PMC3318203 DOI: 10.1155/2012/134596] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/26/2011] [Accepted: 12/26/2011] [Indexed: 11/23/2022] Open
Abstract
A complementary DNA library was constructed from the flowers of Chimonanthus praecox, an ornamental perennial shrub blossoming in winter in China. Eight hundred sixty-seven high-quality expressed sequence tag sequences with an average read length of 673.8 bp were acquired. A nonredundant set of 479 unigenes, including 94 contigs and 385 singletons, was identified after the expressed sequence tags were clustered and assembled. BLAST analysis against the nonredundant protein database and nonredundant nucleotide database revealed that 405 unigenes shared significant homology with known genes. The homologous unigenes were categorized according to Gene Ontology hierarchies (biological, cellular, and molecular). By BLAST analysis and Gene Ontology annotation, 95 unigenes involved in stress and defense and 19 unigenes related to floral development were identified based on existing knowledge. Twelve genes, of which 9 were annotated as “cold response,” were examined by real-time RT-PCR to understand the changes in expression patterns under cold stress and to validate the findings. Fourteen genes, including 11 genes related to floral development, were also detected by real-time RT-PCR to validate the expression patterns in the blooming process and in different tissues. This study provides a useful basis for the genomic analysis of C. praecox.
Collapse
|